1
|
A Rahman NA, Balasubramaniam VRMT, Yap WB. Potential of Interleukin (IL)-12 Group as Antivirals: Severe Viral Disease Prevention and Management. Int J Mol Sci 2023; 24:ijms24087350. [PMID: 37108513 PMCID: PMC10138811 DOI: 10.3390/ijms24087350] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The interleukin (IL)-12 family consists of pro- and anti-inflammatory cytokines that are able to signal the activation of host antiviral immunity while preventing over-reactive immune reactions due to active virus replication and viral clearance. Amongst others, IL-12 and IL-23 are produced and released by innate immune cells such as monocytes and macrophages to signal the proliferation of T cells and release of effector cytokines, which subsequently activate host defence against virus infections. Interestingly, the dualities of IL-27 and -35 are evidently shown in the course of virus infections; they regulate the synthesis of cytokines and antiviral molecules, proliferation of T cells, and viral antigen presentation in order to maximize virus clearance by the host immune system. In terms of anti-inflammatory reactions, IL-27 signals the formation of regulatory T cells (Treg) which in turn secrete IL-35 to control the scale of inflammatory response that takes place during virus infections. Given the multitasking of the IL-12 family in regards to the elimination of virus infections, its potential in antiviral therapy is unequivocally important. Thus, this work aims to delve deeper into the antiviral actions of the IL-12 family and their applications in antiviral therapies.
Collapse
Affiliation(s)
- Nur Azizah A Rahman
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Vinod R M T Balasubramaniam
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 46150, Malaysia
| | - Wei Boon Yap
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
- Biomedical Science Program, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
2
|
Wang J, Zhu N, Su X, Gao Y, Yang R. Gut-Microbiota-Derived Metabolites Maintain Gut and Systemic Immune Homeostasis. Cells 2023; 12:cells12050793. [PMID: 36899929 PMCID: PMC10000530 DOI: 10.3390/cells12050793] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The gut microbiota, including bacteria, archaea, fungi, viruses and phages, inhabits the gastrointestinal tract. This commensal microbiota can contribute to the regulation of host immune response and homeostasis. Alterations of the gut microbiota have been found in many immune-related diseases. The metabolites generated by specific microorganisms in the gut microbiota, such as short-chain fatty acids (SCFAs), tryptophan (Trp) and bile acid (BA) metabolites, not only affect genetic and epigenetic regulation but also impact metabolism in the immune cells, including immunosuppressive and inflammatory cells. The immunosuppressive cells (such as tolerogenic macrophages (tMacs), tolerogenic dendritic cells (tDCs), myeloid-derived suppressive cells (MDSCs), regulatory T cells (Tregs), regulatory B cells (Breg) and innate lymphocytes (ILCs)) and inflammatory cells (such as inflammatory Macs (iMacs), DCs, CD4 T helper (Th)1, CD4Th2, Th17, natural killer (NK) T cells, NK cells and neutrophils) can express different receptors for SCFAs, Trp and BA metabolites from different microorganisms. Activation of these receptors not only promotes the differentiation and function of immunosuppressive cells but also inhibits inflammatory cells, causing the reprogramming of the local and systemic immune system to maintain the homeostasis of the individuals. We here will summarize the recent advances in understanding the metabolism of SCFAs, Trp and BA in the gut microbiota and the effects of SCFAs, Trp and BA metabolites on gut and systemic immune homeostasis, especially on the differentiation and functions of the immune cells.
Collapse
Affiliation(s)
- Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Ningning Zhu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xiaomin Su
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Correspondence:
| |
Collapse
|
3
|
Su X, Gao Y, Yang R. Gut Microbiota-Derived Tryptophan Metabolites Maintain Gut and Systemic Homeostasis. Cells 2022; 11:2296. [PMID: 35892593 PMCID: PMC9330295 DOI: 10.3390/cells11152296] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 12/16/2022] Open
Abstract
Tryptophan is an essential amino acid from dietary proteins. It can be metabolized into different metabolites in both the gut microbiota and tissue cells. Tryptophan metabolites such as indole-3-lactate (ILA), indole-3-acrylate (IAC), indole-3-propionate (IPA), indole-3-aldehyde (IAID), indoleacetic acid (IAA), indole-3-acetaldehyde and Kyn can be produced by intestinal microorganisms through direct Trp transformation and also, partly, the kynurenine (Kyn) pathway. These metabolites play a critical role in maintaining the homeostasis of the gut and systematic immunity and also potentially affect the occurrence and development of diseases such as inflammatory bowel diseases, tumors, obesity and metabolic syndrome, diseases in the nervous system, infectious diseases, vascular inflammation and cardiovascular diseases and hepatic fibrosis. They can not only promote the differentiation and function of anti-inflammatory macrophages, Treg cells, CD4+CD8αα+ regulatory cells, IL-10+ and/or IL-35+B regulatory cells but also IL-22-producing innate lymphoid cells 3 (ILC3), which are involved in maintaining the gut mucosal homeostasis. These findings have important consequences in the immunotherapy against tumor and other immune-associated diseases. We will summarize here the recent advances in understanding the generation and regulation of tryptophan metabolites in the gut microbiota, the role of gut microbiota-derived tryptophan metabolites in different immune cells, the occurrence and development of diseases and immunotherapy against immune-associated diseases.
Collapse
Affiliation(s)
- Xiaomin Su
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center, Nankai University, Tianjin 300071, China; (X.S.); (Y.G.)
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhuan Gao
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center, Nankai University, Tianjin 300071, China; (X.S.); (Y.G.)
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center, Nankai University, Tianjin 300071, China; (X.S.); (Y.G.)
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Su X, Zhang M, Qi H, Gao Y, Yang Y, Yun H, Zhang Q, Yang X, Zhang Y, He J, Fan Y, Wang Y, Guo P, Zhang C, Yang R. Gut microbiota-derived metabolite 3-idoleacetic acid together with LPS induces IL-35 + B cell generation. MICROBIOME 2022; 10:13. [PMID: 35074011 PMCID: PMC8785567 DOI: 10.1186/s40168-021-01205-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/01/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND IL-35-producing Bregs and Treg cells critically regulate chronic illnesses worldwide via mechanisms related to disrupting the gut microbiota composition. However, whether the gut microbiota regulates these IL-35+ cells remains elusive. We herein investigated the regulatory effects of the gut microbiota on IL-35+ cells by using genetically modified mouse models of obesity. RESULTS We first found that gut Reg4 promoted resistance to high-fat diet-induced obesity. Using 16S rRNA sequencing combined with LC-MS (liquid chromatography-mass spectrometry)/MS, we demonstrated that gut Reg4 associated with bacteria such as Lactobacillus promoted the generation of IL-35+ B cells through 3-idoleacetic acid (IAA) in the presence of LPS. HuREG4IECtg mice fed a high-fat diet exhibited marked IL-35+ cell accumulation in not only their adipose tissues but also their colons, whereas decreased IL-35+ cell accumulation was observed in the adipose and colon tissues of Reg4 knockout (KO) mice. We also found that Reg4 mediated HFD-induced obesity resistance via IL-35. Lower levels of IAA were also detected in the peripheral blood of individuals with obesity compared with nonobese subjects. Mechanistically, IAA together with LPS mediated IL-35+ B cells through PXR and TLR4. KO of PXR or TLR4 impaired the generation of IL-35+ B cells. CONCLUSION Together, IAA and LPS induce the generation of IL-35+ B cells through PXR and TLR4. Video Abstract.
Collapse
Affiliation(s)
- Xiaomin Su
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Minying Zhang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Houbao Qi
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yazheng Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Huan Yun
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Qianjing Zhang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiaorong Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yuan Zhang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jiangshan He
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yaqi Fan
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yuxue Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Pei Guo
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China.
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Tianjin, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
5
|
Ye C, Yano H, Workman CJ, Vignali DAA. Interleukin-35: Structure, Function and Its Impact on Immune-Related Diseases. J Interferon Cytokine Res 2021; 41:391-406. [PMID: 34788131 DOI: 10.1089/jir.2021.0147] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The balance between inflammatory and anti-inflammatory immune responses is maintained through immunoregulatory cell populations and immunosuppressive cytokines. Interleukin-35 (IL-35), an inhibitory cytokine that belongs to the IL-12 family, is capable of potently suppressing T cell proliferation and inducing IL-35-producing induced regulatory T cells (iTr35) to limit inflammatory responses. Over the past decade, a growing number of studies have indicated that IL-35 plays an important role in controlling immune-related disorders, including autoimmune diseases, infectious diseases, and cancer. In this review, we summarize the current knowledge about the biology of IL-35 and its contribution in different diseases, and we discuss the potential of and barriers to harnessing IL-35 as a clinical biomarker or immunotherapy.
Collapse
Affiliation(s)
- Cheng Ye
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hiroshi Yano
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Ribeiro CRDA, Martinelli KG, de Mello VDM, Baptista BDS, Dias NST, Paiva IA, Lewis-Ximenez LL, Pinto LMDO, de Paula VS. Cytokine, Genotype, and Viral Load Profile in the Acute and Chronic Hepatitis B. Viral Immunol 2020; 33:620-627. [PMID: 33090087 DOI: 10.1089/vim.2020.0176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Several hepatitis B virus (HBV) factors, including viral load, genotype, genome mutations, and cytokine production, have been reported to be associated with different risks of progression of liver disease. The aim of this study was to verify if there is an association among the levels of cytokines (interleukin [IL]-35, IL-6, IL-17A, interferon [IFN]-γ) in the plasma, viral load, and the different genotypes of HBV in patients with acute or chronic hepatitis B. Methods: 49 serum samples, 20 from acute and 29 from chronic cases, were submitted to a real-time and nested-polymerase chain reaction to quantify, detect, and genotype HBV DNA. The cytokines IL-35, IL-6, IL-17A, and IFN-γ were detected by an enzyme-linked immunosorbent assay (ELISA). The median viral load was 3.15 log10 IU DNA/mL and 2.90 log10 IU DNA/mL for acute and chronic patients, respectively. Genotype A, D, E, and F were identified in chronic carriers of HBV infection, while only genotype A and F were identified in individuals with acute infection. IFN-γ (p = 0.024) and IL-17A (p = 0.046) levels were significantly increased in chronic patients and IL-6 and IL-35 were higher in patients with acute infection, however, without statistical difference. IL-17A and IFN-γ can be modulating proinflammatory effects and inducing hepatocellular damage, in chronic patients, and IL-6 and IL-35 may be involved in viral elimination and protection against chronicity during the acute phase of infection. These results can contribute to understanding of the complex regulatory mechanisms of the host antiviral response related to cytokine production during acute and chronic HBV infection.
Collapse
Affiliation(s)
| | | | | | - Bruna da Silva Baptista
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Natália Spitz Toledo Dias
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Iury Amancio Paiva
- Laboratory of Viral Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Lia Laura Lewis-Ximenez
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Vanessa Salete de Paula
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Hussain S, Xie YJ, Li D, Malik SI, Hou JC, Leung ELH, Fan XX. Current strategies against COVID-19. Chin Med 2020; 15:70. [PMID: 32665783 PMCID: PMC7344049 DOI: 10.1186/s13020-020-00353-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently was declared a pandemic by world health organization (WHO) Due to sudden outbreaks, currently, no completely effective vaccine or drug is clinically approved. Several therapeutic strategies can be envisaged to prevent further mortality and morbidity. Based on the past contribution of traditional Chinese medicines (TCM) and immune-based therapies as a treatment option in crucial pathogen outbreaks, we aimed to summarize potential therapeutic strategies that could be helpful to stop further spread of SARS-CoV-2 by effecting its structural components or modulation of immune responses. Several TCM with or without modification could be effective against the structural protein, enzymes, and nucleic acid should be tested from available libraries or to identify their immune-stimulatory activities to enhance several antiviral biological agents for effective elimination of SARS-CoV-2 from the host. TCM is not only effective in the direct inhibition of virus attachment and internalization in a cell but can also prevent their replication and can also help to boost up host immune response. Immune-modulatory effects of TCMs may lead to new medications and can guide us for the scientific validity of drug development. Besides, we also summarized the effective therapies in clinical for controlling inflammation. This review will be not only helpful for the current situation of COVID-19, but can also play a major role in such epidemics in the future.
Collapse
Affiliation(s)
- Shahid Hussain
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR China
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Ya-Jia Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR China
| | - Dan Li
- Beijing Wante’er Biological Pharmaceutical Co., Ltd., No. 32 Yard, East 2nd Road, Yanqi Economic Development Zone, Huairou District, Beijing, China
| | - Shaukat Iqbal Malik
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Jin-cai Hou
- Beijing Wante’er Biological Pharmaceutical Co., Ltd., No. 32 Yard, East 2nd Road, Yanqi Economic Development Zone, Huairou District, Beijing, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR China
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR China
| |
Collapse
|
8
|
Yazdani Z, Rafiei A, Golpour M, Zafari P, Moonesi M, Ghaffari S. IL‐35, a double‐edged sword in cancer. J Cell Biochem 2019; 121:2064-2076. [DOI: 10.1002/jcb.29441] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Zahra Yazdani
- Department of Immunology, School of Medicine Mazandaran University of Medical Sciences Sari Iran
| | - Alireza Rafiei
- Department of Immunology, School of Medicine Mazandaran University of Medical Sciences Sari Iran
| | - Monireh Golpour
- Students Research Committee Mazandaran University of Medical Sciences Sari Iran
| | - Parisa Zafari
- Department of Immunology, School of Medicine Mazandaran University of Medical Sciences Sari Iran
- Students Research Committee Mazandaran University of Medical Sciences Sari Iran
| | - Mohammadreza Moonesi
- Department of Hematology, School of Medicine Tabriz University of Medical Science, Tabriz Iran
| | - Sasan Ghaffari
- Student Scientific Research Center Tehran University of Medical Sciences Tehran Iran
- Cell‐Based Therapies Research Center, Digestive Disease Research Institute Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
9
|
Guo Y, Cao W, Zhu Y. Immunoregulatory Functions of the IL-12 Family of Cytokines in Antiviral Systems. Viruses 2019; 11:v11090772. [PMID: 31443406 PMCID: PMC6784021 DOI: 10.3390/v11090772] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/05/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Members of the interleukin 12 (IL-12) family have been known to be inflammatory factors since their discovery. The IL-12 family consists of IL-12, IL-23, IL-27, IL-35, and a new member, IL-39, which has recently been identified and has not yet been studied extensively. Current literature has described the mechanisms of immunity of these cytokines and potential uses for therapy and medical cures. IL-12 was found first and is effective in combatting a wide range of naturally occurring viral infections through the upregulation of various cytokines to clear the infected cells. IL-23 has an essential function in immune networks, can induce IL-17 production, and can antagonize inhibition from IL-12 in the presence of T helper (Th) 17 cells, resulting in type II IFN (IFN-γ) regulation. IL-27 has a competitive relationship to IL-35 because they both include the same subunit, the Epstein–Barr virus-induced gene3 (EBi3). This review provides a simple introduction to the IL-12 family and focuses on their functions relevant to their actions to counteract viral infections.
Collapse
Affiliation(s)
- Yifei Guo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wei Cao
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
10
|
Zhou F, Zhu CL, Niu ZL, Xu FX, Song H, Liu XH. Influenza A virus inhibits influenza virus replication by inducing IL-37. J Clin Lab Anal 2018; 33:e22638. [PMID: 30098064 DOI: 10.1002/jcla.22638] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUNDS The influenza virus is one of the major pathogens that seriously affect human health. It can cause a strong immune response and trigger a series of complications. Interleukin 37 (IL-37) is a newly discovered cytokine that plays an important regulatory role in infection and immunity. To date, there have been few studies on the correlation between influenza virus infection and IL-37. METHODS Serum levels of IL-37 in 115 patients with influenza A virus (IAV) infection and 102 healthy subjects were measured by an enzyme-linked immunosorbent assay (ELISA). Real-time quantitative PCR (RT-qPCR) was used to detect differences in IL-37 expression in peripheral blood mononuclear cells (PBMCs) between IAV patients and healthy subjects. IL-37 expression was measured in A549 cells and PBMCs infected with IAV H3N2 using ELISA and RT-qPCR. After the H3N2-infected A549 cells were treated with human IL-37, the concentration of viral RNA was determined using RT-qPCR, and the titer of influenza virus was determined by a hemagglutination test. RESULTS The IL-37 levels in the sera and PBMCs of patients infected with IAV were higher than those of healthy subjects. The expression of IL-37 mRNA and protein in IAV-infected A549 cells and PBMCs was upregulated, and IL-37 protein was able to inhibit the replication of IAV RNA. CONCLUSION IAV-induced IL-37 expression inhibits IAV replication.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Key Laboratory for Intestinal and Colorectal Diseases, Hubei Clinical Center, Wuhan, China
| | - Cheng-Liang Zhu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Li Niu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng-Xia Xu
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, China
| | - Hui Song
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, China
| | - Xing-Hui Liu
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
11
|
Huang Q, Wang Y, Si C, Zhao D, Wang Y, Duan Y. Interleukin-35 Modulates the Imbalance Between Regulatory T Cells and T Helper 17 Cells in Enterovirus 71-Induced Hand, Foot, and Mouth Disease. J Interferon Cytokine Res 2017; 37:522-530. [PMID: 29172969 DOI: 10.1089/jir.2017.0080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Interleukin (IL)-35 modulates the imbalance between regulatory T cells (Tregs) and T helper (Th) 17 cells, which played vital roles in the pathogenesis of autoimmune and infectious diseases. However, the role of Tregs/Th17 cell imbalance and the regulatory functions of IL-35 have remained largely unknown in enterovirus 71 (EV71)-induced hand, foot, and mouth disease (HFMD). In this study, a total of 47 HFMD patients (30 with mild HFMD and 17 with severe HFMD) and 13 healthy individuals were enrolled. The frequencies of CD4+CD25+CD127dim/- Tregs and CD4+IL-17+ Th17 cells, as well as IL-35 expression levels, were measured. Cellular proliferation and cytokine production was also determined in purified Tregs following recombinant IL-35 stimulation. An imbalance between Tregs and Th17 cells was observed in children with severe HFMD, which manifested as a reduction in the Tregs population and an elevation in the Th17 population. Serum IL-35 concentrations were also decreased in case of severe HFMD, which correlated with the Tregs:Th17 cell ratios. Recombinant IL-35 stimulation increased the proportion of Tregs, but downregulated that of Th17 cells. Treatment with IL-35 enhanced Tregs suppressive function and IL-35 and IL-10 expression, but reduced IL-22 secretion in both healthy individuals and those with severe HFMD. The Tregs:Th17 cell ratio was increased in the convalescent patients, however, a significant reduction in serum IL-35 was not observed. Our findings indicated that EV71 infection shifted the Tregs:Th17 cell ratio through IL-35 by downregulating inhibitory cytokine production and reducing the cell-to-cell contact inhibition of effector T cells. Regulation of IL-35 as it relates to the Tregs/Th17 balance may play a critical role in the pathogenesis of EV71-associated HFMD.
Collapse
Affiliation(s)
- Qian Huang
- 1 Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University , Weihui, China
| | - Yanhua Wang
- 1 Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University , Weihui, China
| | - Changyun Si
- 2 Department of Infectious Diseases, The First Affiliated Hospital of Xinxiang Medical University , Weihui, China
| | - De'an Zhao
- 1 Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University , Weihui, China
| | - Yanping Wang
- 2 Department of Infectious Diseases, The First Affiliated Hospital of Xinxiang Medical University , Weihui, China
| | - Yuxiu Duan
- 2 Department of Infectious Diseases, The First Affiliated Hospital of Xinxiang Medical University , Weihui, China
| |
Collapse
|
12
|
Shao X, Ma J, Jia S, Yang L, Wang W, Jin Z. Interleukin-35 Suppresses Antiviral Immune Response in Chronic Hepatitis B Virus Infection. Front Cell Infect Microbiol 2017; 7:472. [PMID: 29181338 PMCID: PMC5693856 DOI: 10.3389/fcimb.2017.00472] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022] Open
Abstract
The mechanisms of hepatitis B virus (HBV) persistent infection are not completely understood. Interleukin (IL)-35, which is a newly identified cytokine belongs to IL-12 family, has been demonstrated to induce immunotolerance. Thus, the aim of current study was to investigate the role of IL-35 during chronic HBV infection. A total of 61 patients with chronic HBV infection [37 chronic hepatitis B (CHB) and 24 asymptomatic HBV carriers (ASC)] and 20 healthy individuals were enrolled. IL-35 concentration as well as the modulatory function of IL-35 on CD4+CD25+CD127dim/− regulatory T cells (Tregs) and on HBV antigen-specific CD8+ T cells was investigated. IL-35 expression was significantly increased in both CHB and ASC, and was positively correlated with the levels of HBV DNA. Inhibition of viral replication induced the reduction in serum levels of IL-35. IL-35 stimulation led to inhibition of proinflammatory cytokine productions and elevation of apoptosis in peripheral blood mononuclear cells (PBMCs), but not in HepG2.2.15 cells. Moreover, IL-35 stimulation not only robustly inhibited cellular proliferation, but also up-regulated the production of IL-10 and IL-35 in a HBV antigen-specific and non-specific manner in Tregs/CD4+CD25− T cells coculture system, which indicated enhancement of suppressive function of Tregs. Furthermore, IL-35 also reduced both cytolytic activity (direct lysis of HepG2.2.15 cells) and noncytolytic function (IFN-γ and TNF-α production) of HBV antigen-specific CD8+ T cells. The current data suggested that IL-35 contributed to maintain viral persistence by suppressing antiviral immune responses and reducing inflammatory responses in chronic HBV infection.
Collapse
Affiliation(s)
- Xue Shao
- Department of Hepatopancreatobiliary Medicine, Second Hospital, Jilin University, Changchun, China
| | - Jingting Ma
- Department of Hepatopancreatobiliary Medicine, Second Hospital, Jilin University, Changchun, China
| | - Shengnan Jia
- Department of Hepatopancreatobiliary Medicine, Second Hospital, Jilin University, Changchun, China
| | - Lanlan Yang
- Department of Hepatopancreatobiliary Medicine, Second Hospital, Jilin University, Changchun, China
| | - Wudong Wang
- Department of Hepatopancreatobiliary Medicine, Second Hospital, Jilin University, Changchun, China
| | - Zhenjing Jin
- Department of Hepatopancreatobiliary Medicine, Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
13
|
Liu S, Zhang Q, Shao X, Wang W, Zhang C, Jin Z. An immunosuppressive function of interleukin-35 in chronic hepatitis C virus infection. Int Immunopharmacol 2017. [PMID: 28644966 DOI: 10.1016/j.intimp.2017.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Interleukin (IL)-35, a newly identified member of the IL-12 cytokine family, has been reported to suppress inflammation and induce immunotolerance. However, little is known regarding the role of IL-35 during chronic hepatitis C virus (HCV) infection. Herein, we measured the serum IL-35 concentration of 73 patients with hepatitis C and 22 healthy individuals, as well as further investigated the modulatory function of IL-35 on CD4+CD25+CD127dim/- regulatory T cells (Tregs) and on hepatocytes infected with HCV in cell culture (HCVcc). IL-35 expression was significantly increased in patients with chronic hepatitis C and was positively correlated with the levels of HCV RNA. Inhibition of viral replication led to decreases in the serum levels of IL-35. IL-35 stimulation not only elevated the percentage of Tregs but also robustly inhibited cellular proliferation and up-regulated the production of anti-inflammatory cytokines (e.g., IL-10 and IL-35) in a HCV-specific and non-specific manner, which indicates enhancement of the suppressive function of Tregs. Although IL-35 did not exert anti-HCV activity in HCVcc-infected Huh7.5 cells, it reduced inflammatory cytokine secretion from Huh7.5 cells. This was probably via inhibition of the STAT1 and STAT3 signaling pathways, which could suppress subsequent liver damage due to chronic hepatitis C. The current data suggested that IL-35 contributes to persistent HCV infection by inhibiting antiviral immune activity. Moreover, IL-35 might also protect against HCV-induced liver injury by down-regulating the expression of proinflammatory cytokines. Thus, the immunosuppressive properties of IL-35 might play contradictory roles in maintaining viral persistence and reducing the inflammatory responses in chronic HCV infection.
Collapse
Affiliation(s)
- Siqi Liu
- Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, China
| | - Qian Zhang
- Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, China
| | - Xue Shao
- Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, China
| | - Wenrui Wang
- Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, China
| | - Chuanhui Zhang
- Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, China
| | - Zhenjing Jin
- Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, China.
| |
Collapse
|