1
|
Chang J, Zhang Y, Li Z, Ma Y, Hu X, Yang J, Zhang H. Biosynthesis of α-keto acids and resolution of chiral amino acids by l-amino acid deaminases from Proteus mirabilis. Protein Expr Purif 2024; 221:106518. [PMID: 38821452 DOI: 10.1016/j.pep.2024.106518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/24/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Chiral amino acids and their deamination products, α-keto acids, have important applications in food, medicine, and fine chemicals. In this study, two l-amino acid deaminase genes from Proteus mirabilis, PM473 of type Ⅰ and PM471 of type Ⅱ were cloned and expressed in Escherichia coli respectively, expected to achieve the chiral separation of amino acids. Extensive substrate preference testing showed that both deaminases had catalytic effects on the d-amino acid component of the D, l-amino acids, and PM473 has a wider catalytic range for amino acids. When D, L-Cys was used as the substrate, all L-Cys components and 75.1 % of D-Cys were converted to mercapto pyruvate, and the remaining D-Cys was a single chiral enantiomer. Molecular docking analysis showed that the interaction between the substrate and the key residues affected the stereoselectivity of enzymes. The compatibility of hydrophobicity between the binding pocket and substrate may be the basic factor that affects the substrate selectivity. This work provides an alternative method for the production of α-keto acids and the resolution of chiral amino acids.
Collapse
Affiliation(s)
- Junzhang Chang
- School of Food and Bioengineering, Hefei University of Technology, Feicui Road, No.420, Hefei, Anhui, China
| | - Yuxin Zhang
- School of Food and Bioengineering, Hefei University of Technology, Feicui Road, No.420, Hefei, Anhui, China.
| | - Zhiwei Li
- School of Food and Bioengineering, Hefei University of Technology, Feicui Road, No.420, Hefei, Anhui, China.
| | - Yunfeng Ma
- Anhui Anlito Biotechnology Co., Ltd., Lvan, Anhui, China.
| | - Xueqin Hu
- School of Food and Bioengineering, Hefei University of Technology, Feicui Road, No.420, Hefei, Anhui, China.
| | - Jingwen Yang
- School of Food and Bioengineering, Hefei University of Technology, Feicui Road, No.420, Hefei, Anhui, China; Anhui Anlito Biotechnology Co., Ltd., Lvan, Anhui, China.
| | - Hongbin Zhang
- School of Food and Bioengineering, Hefei University of Technology, Feicui Road, No.420, Hefei, Anhui, China.
| |
Collapse
|
2
|
Araseki H, Sugishima N, Chisuga T, Nakano S. Development of an Enzyme Cascade System for the Synthesis of Enantiomerically Pure D-Amino Acids Utilizing Ancestral L-Amino Acid Oxidase. Chembiochem 2024; 25:e202400036. [PMID: 38385659 DOI: 10.1002/cbic.202400036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 02/23/2024]
Abstract
Enantiomerically pure D-amino acids hold significant potential as precursors for synthesizing various fine chemicals, including peptide-based drugs and other pharmaceuticals. This study focuses on establishing an enzymatic cascade system capable of converting various L-amino acids into their D-isomers. The system integrates four enzymes: ancestral L-amino acid oxidase (AncLAAO-N4), D-amino acid dehydrogenase (DAADH), D-glucose dehydrogenase (GDH), and catalase. AncLAAO-N4 initiates the process by converting L-amino acids to corresponding keto acids, which are then stereo-selectively aminated to D-amino acids by DAADH using NADPH and NH4Cl. Concurrently, any generated H2O2 is decomposed into O2 and H2O by catalase, while GDH regenerates NADPH from D-glucose. Optimization of reaction conditions and substrate concentrations enabled the successful synthesis of five D-amino acids, including a D-Phe derivative, three D-Trp derivatives, and D-phenylglycine, all with high enantiopurity (>99 % ee) at a preparative scale (>100 mg). This system demonstrates a versatile approach for producing a diverse array of D-amino acids.
Collapse
Affiliation(s)
- Hayato Araseki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan for S.N
| | - Narumi Sugishima
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan for S.N
| | - Taichi Chisuga
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan for S.N
| | - Shogo Nakano
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan for S.N
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
3
|
Tian S, Zhao G, Lv G, Wu C, Su R, Wang F, Wang Z, Liu Y, Chen N, Li Y. Efficient Fermentative Production of d-Alanine and Other d-Amino Acids by Metabolically Engineered Corynebacterium glutamicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8039-8051. [PMID: 38545740 DOI: 10.1021/acs.jafc.4c00914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 04/11/2024]
Abstract
d-Amino acids (d-AAs) have wide applications in industries such as pharmaceutical, food, and cosmetics due to their unique properties. Currently, the production of d-AAs has relied on chemical synthesis or enzyme catalysts, and it is challenging to produce d-AAs via direct fermentation from glucose. We observed that Corynebacterium glutamicum exhibits a remarkable tolerance to high concentrations of d-Ala, a crucial characteristic for establishing a successful fermentation process. By optimizing meso-diaminopilmelate dehydrogenases in different C. glutamicum strains and successively deleting l-Ala biosynthetic pathways, we developed an efficient d-Ala fermentation system. The d-Ala titer was enhanced through systems metabolic engineering, which involved strengthening glucose assimilation and pyruvate supply, reducing the formation of organic acid byproducts, and attenuating the TCA cycle. During fermentation in a 5-L bioreactor, a significant accumulation of l-Ala was observed in the broth, which was subsequently diminished by introducing an l-amino acid deaminase. Ultimately, the engineered strain DA-11 produced 85 g/L d-Ala with a yield of 0.30 g/g glucose, accompanied by an optical purity exceeding 99%. The fermentation platform has the potential to be extended for the synthesis of other d-AAs, as demonstrated by the production of d-Val and d-Glu.
Collapse
Affiliation(s)
- Siyu Tian
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Guihong Zhao
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Gengcheng Lv
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Chen Wu
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Rui Su
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Feiao Wang
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Zeting Wang
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Yuexiang Liu
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Ning Chen
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Yanjun Li
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| |
Collapse
|
4
|
Kawamura Y, Ishida C, Miyata R, Miyata A, Hayashi S, Fujinami D, Ito S, Nakano S. Structural and functional analysis of hyper-thermostable ancestral L-amino acid oxidase that can convert Trp derivatives to D-forms by chemoenzymatic reaction. Commun Chem 2023; 6:200. [PMID: 37737277 PMCID: PMC10517122 DOI: 10.1038/s42004-023-01005-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/22/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Production of D-amino acids (D-AAs) on a large-scale enables to provide precursors of peptide therapeutics. In this study, we designed a novel L-amino acid oxidase, HTAncLAAO2, by ancestral sequence reconstruction, exhibiting high thermostability and long-term stability. The crystal structure of HTAncLAAO2 was determined at 2.2 Å by X-ray crystallography, revealing that the enzyme has an octameric form like a "ninja-star" feature. Enzymatic property analysis demonstrated that HTAncLAAO2 exhibits three-order larger kcat/Km values towards four L-AAs (L-Phe, L-Leu, L-Met, and L-Ile) than that of L-Trp. Through screening the variants, we obtained the HTAncLAAO2(W220A) variant, which shows a > 6-fold increase in kcat value toward L-Trp compared to the original enzyme. This variant applies to synthesizing enantio-pure D-Trp derivatives from L- or rac-forms at a preparative scale. Given its excellent properties, HTAncLAAO2 would be a starting point for designing novel oxidases with high activity toward various amines and AAs.
Collapse
Affiliation(s)
- Yui Kawamura
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Chiharu Ishida
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Ryo Miyata
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, 2217-14 Hayashi-cho, Takamatsu, Kagawa, 761-0395, Japan
| | - Azusa Miyata
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Seiichiro Hayashi
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daisuke Fujinami
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Sohei Ito
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Shogo Nakano
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
- PREST, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
5
|
Yang J, Wei W, Gao C, Song W, Gao C, Chen X, Liu J, Guo L, Liu L, Wu J. Efficient production of salvianic acid A from L-dihydroxyphenylalanine through a tri-enzyme cascade. BIORESOUR BIOPROCESS 2023; 10:31. [PMID: 38647923 PMCID: PMC10992476 DOI: 10.1186/s40643-023-00649-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/07/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2024] Open
Abstract
Salvianic acid A (SAA), used for treating cardiovascular and cerebrovascular diseases, possesses several pharmacological properties. However, the current methods for the enzymatic synthesis of SAA show low efficiency. Here, we constructed a three-enzyme cascade pathway in Escherichia coli BL21 (DE3) to produce SAA from L-dihydroxyphenylalanine (L-DOPA). The phenylpyruvate reductase (LaPPR) from Lactobacillus sp. CGMCC 9967 is a rate-limiting enzyme in this process. Therefore, we employed a mechanism-guided protein engineering strategy to shorten the transfer distances of protons and hydrides, generating an optimal LaPPR mutant, LaPPRMu2 (H89M/H143D/P256C), with a 2.8-fold increase in specific activity and 9.3-time increase in kcat/Km value compared to that of the wild type. Introduction of the mutant LaPPRMu2 into the cascade pathway and the optimization of enzyme levels and transformation conditions allowed the obtainment of the highest SAA titer (82.6 g L-1) ever reported in vivo, good conversion rate (91.3%), excellent ee value (99%) and the highest productivity (6.9 g L-1 h-1) from 90 g L-1 L-DOPA in 12 h. This successful strategy provides a potential new method for the industrial production of SAA.
Collapse
Affiliation(s)
- Jiahui Yang
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Wanqing Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Changzheng Gao
- Department of Cardiology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Wei Song
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
6
|
Huo J, Bai Y, Fan TP, Zheng X, Cai Y. Hydroxytyrosol production from l-DOPA by engineered Escherichia coli co-expressing l-amino acid deaminase, α-keto acid decarboxylase, aldehyde reductase and glucose dehydrogenase with NADH regeneration. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 10/31/2022]
|
7
|
Liu J, Wang K, Wang M, Deng H, Chen X, Shang Y, Liu X, Yu X. Efficient whole cell biotransformation of tyrosol from L-tyrosine by engineered Escherichia coli. Enzyme Microb Technol 2022; 160:110100. [PMID: 35872508 DOI: 10.1016/j.enzmictec.2022.110100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/26/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 11/03/2022]
Abstract
An engineered Escherichia coli was constructed by co-expressing L-amino acid deaminase, α-keto acid decarboxylase, alcohol dehydrogenase, and glucose dehydrogenase through two plasmids for tyrosol production. The activity of the rate-limiting enzyme L-amino acid deaminase from Cosenzaea myxofaciens (CmAAD) toward tyrosine was improved by structure-guided modification. The enzyme activity of triple mutant CmAAD V438G/K147V/R151E toward tyrosine was ~5.12-fold higher than that of the wild-type CmAAD. Secondly, the plasmid copy numbers and the gene orders were optimized to improve the titer of tyrosol. Finally, the recombinant strain CS-6 transformed 10 mM tyrosine into 9.56 ± 0.64 mM tyrosol at 45 ℃, and the space-time yield reached 0.478 mM·L-1·h-1. This study proposes a novel idea for the efficient and natural production of tyrosol, which has great potential for industrial application.
Collapse
Affiliation(s)
- Jinbin Liu
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Kaipeng Wang
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Mian Wang
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Huaxiang Deng
- Center for Synthetic Biochemistry, Institute of Synthetic Biology, Institutes of Advanced Technologies, Shenzhen, China
| | - Xiaodong Chen
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Yueling Shang
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Xiaochen Liu
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Xiaohong Yu
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| |
Collapse
|
8
|
Semi-Rational Design of Proteus mirabilis l-Amino Acid Deaminase for Expanding Its Substrate Specificity in α-Keto Acid Synthesis from l-Amino Acids. Catalysts 2022. [DOI: 10.3390/catal12020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022] Open
Abstract
l-amino acid deaminases (LAADs) are flavoenzymes that catalyze the stereospecific oxidative deamination of l-amino acids into α-keto acids, which are widely used in the pharmaceutical, food, chemical, and cosmetic industries. However, the substrate specificity of available LAADs is limited, and most substrates are concentrated on several bulky or basic l-amino acids. In this study, we employed a LAAD from Proteus mirabilis (PmiLAAD) and broadened its substrate specificity using a semi-rational design strategy. Molecular docking and alanine scanning identified F96, Q278, and E417 as key residues around the substrate-binding pocket of PmiLAAD. Site-directed saturation mutagenesis identified E417 as the key site for substrate specificity expansion. Expansion of the substrate channel with mutations of E417 (E417L, E417A) improved activity toward the bulky substrate l-Trp, and mutation of E417 to basic amino acids (E417K, E417H, E417R) enhanced the universal activity toward various l-amino acid substrates. The variant PmiLAADE417K showed remarkable catalytic activity improvement on seven substrates (l-Ala, l-Asp, l-Ile, l-Leu, l-Phe, l-Trp, and l-Val). The catalytic efficiency improvement obtained by E417 mutation may be attributed to the expansion of the entrance channel and its electrostatic interactions. These PmiLAAD variants with a broadened substrate spectrum can extend the application potential of LAADs.
Collapse
|
9
|
Kitani Y, Osaka Y, Ishizaki S. Seawater activates l-amino acid oxidase from the serum of the red-spotted grouper Epinephelusakaara. FISH & SHELLFISH IMMUNOLOGY 2022; 120:222-232. [PMID: 34838986 DOI: 10.1016/j.fsi.2021.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
l-amino acid oxidases (LAOs) catalyze the oxidative deamination of l-amino acid and generate α-keto acid, ammonia, and hydrogen peroxide as byproducts. LAOs showed the variety of bioactivity by the resulting hydrogen peroxide. The serum of the red-spotted grouper Epinephelus akaara contains an LAO (Ea-LAO) with the potential to kill bacterial pathogens Aeromonas salmonicida and Vibrio anguillarum via hydrogen peroxide. However, it is unknown how the grouper tolerates the harmful effects of the serum Ea-LAO byproducts. In this study, we analyzed the kinetics of fish LAOs to understand how they escape the toxicity of byproducts. The LAO activity of grouper serum was suppressed in low-salt solutions such as NaCl, CaCl2, MgCl2, and diluted seawater. The activity was non-linearly increased and fitted to the four-parameter log-logistic model. The EC50 of the seawater was calculated to have a 0.72-fold concentration. This result suggested that the Ea-LAO could be activated by mixing with seawater. The results of circular dichroism spectroscopy showed that the α helix content was estimated to be 12.1% and 5.3% in a salt-free buffer (inactive condition) and the original concentration of seawater (active condition), respectively, indicating that the secondary structure of the Ea-LAO in the active condition was randomized. In addition, the Ea-LAO showed reversible LAO activity regulation according to the salt concentration in the environment. Taken together, this indicates that the Ea-LAO is normally on standby as an inactive form, and it could activate as a host-defense molecule to avoid pathogen invasion via a wound when mixed with seawater.
Collapse
Affiliation(s)
- Yoichiro Kitani
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi Mu 4-1, Noto-Cho, Ishikawa, 927-0553, Japan.
| | - Yuto Osaka
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi Mu 4-1, Noto-Cho, Ishikawa, 927-0553, Japan
| | - Shoichiro Ishizaki
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477, Japan
| |
Collapse
|
10
|
Wu Y, Zhang S, Song W, Liu J, Chen X, Hu G, Zhou Y, Liu L, Wu J. Enhanced Catalytic Efficiency of L‐amino Acid Deaminase Achieved by a Shorter Hydride Transfer Distance. ChemCatChem 2021. [DOI: 10.1002/cctc.202101067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yaoyun Wu
- School of Pharmaceutical Science Jiangnan University Wuxi 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 P. R. China
| | - Sheng Zhang
- Tianrui Chemical Co. Ltd Department of Chemistry Quzhou 324400 P. R. China
| | - Wei Song
- School of Pharmaceutical Science Jiangnan University Wuxi 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 P. R. China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 P. R. China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 P. R. China
| | - Guipeng Hu
- School of Pharmaceutical Science Jiangnan University Wuxi 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 P. R. China
| | - Yiwen Zhou
- School of Pharmaceutical Science Jiangnan University Wuxi 214122 P. R. China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 P. R. China
| | - Jing Wu
- School of Pharmaceutical Science Jiangnan University Wuxi 214122 P. R. China
| |
Collapse
|
11
|
Xiong T, Bai Y, Fan TP, Zheng X, Cai Y. Biosynthesis of phenylpyruvic acid from l-phenylalanine using chromosomally engineered Escherichia coli. Biotechnol Appl Biochem 2021; 69:1909-1916. [PMID: 34554609 DOI: 10.1002/bab.2256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/22/2020] [Accepted: 09/14/2021] [Indexed: 11/09/2022]
Abstract
The efficiency of whole-cell biotransformation is often affected by the genetic instability of plasmid-based expression systems, which require selective pressure to maintain the stability of the plasmids. To circumvent this shortcoming, we constructed a chromosome engineering strain for the synthesis of phenylpyruvic acid (PPA) from l-phenylalanine. First, l-amino acid deaminase (pmLAAD) from Proteus myxofaciens was incorporated into Escherichia coli BL21 (DE3) chromosome and the copy numbers of pmLAAD were increased by chemically induced chromosomal evolution (CIChE). Fifty-nine copies of pmLAAD were obtained in E. coli BL8. The PPA titer of E. coli BL8 reached 2.22 g/L at 6 h. Furthermore, the deletion of lacI improved PPA production. In the absence of isopropyl-β-d-thiogalactopyranoside, the resulting strain, E. coli BL8△recA△lacI, produced 2.65 g/L PPA at 6 h and yielded a 19.37% increase in PPA production compared to E. coli BL8△recA. Finally, the engineered E. coli BL8△recA△lacI strain achieved 19.14 g/L PPA at 24 h in a 5-L bioreactor.
Collapse
Affiliation(s)
- Tianzhen Xiong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
12
|
Semi-rational design of L-amino acid deaminase for production of pyruvate and D-alanine by Escherichia coli whole-cell biocatalyst. Amino Acids 2021; 53:1361-1371. [PMID: 34417892 DOI: 10.1007/s00726-021-03067-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/29/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
In our previous study, one-step pyruvate and D-alanine production from D,L-alanine by a whole-cell biocatalyst Escherichia coli expressing L-amino acid deaminase (Pm1) derived from Proteus mirabilis was investigated. However, due to the low catalytic efficiency of Pm1, the pyruvate titer was relatively low. Here, semi-rational design based on site-directed saturation mutagenesis was carried out to improve the catalytic efficiency of Pm1. A novel high-throughput screening (HTS) method for pyruvate based on 2,4-dinitrophenylhydrazine indicator was then established. The catalytic efficiency (kcat/Km) of the mutant V437I screened out by this method was 1.88 times higher than wild type. Next, to improve the growth of the engineered strain BLK07, the genes encoding for Xpk and Fbp were integrated into its genome to construct non-oxidative glycolysis (NOG) pathway. Finally, the CRISPR/Cas9 system was used to integrate the N6-pm1-V437I gene into the genome of BLK07. Pyruvic acid titer of the plasmid-free strain reached 42.20 g/L with an L-alanine conversion rate of 77.62% and a D-alanine resolution of 82.4%. This work would accelerate the industrial production of pyruvate and D-alanine by biocatalysis, and the HTS method established here could be used to screen other Pm1 mutants with high pyruvate titers.
Collapse
|
13
|
Pickl M, Marín-Valls R, Joglar J, Bujons J, Clapés P. Chemoenzymatic Production of Enantiocomplementary 2-Substituted 3-Hydroxycarboxylic Acids from L-α-Amino Acids. Adv Synth Catal 2021; 363:2866-2876. [PMID: 34276272 PMCID: PMC7611260 DOI: 10.1002/adsc.202100145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2021] [Indexed: 12/14/2022]
Abstract
A two-enzyme cascade reaction plus in situ oxidative decarboxylation for the transformation of readily available canonical and non-canonical L-α-amino acids into 2-substituted 3-hydroxy-carboxylic acid derivatives is described. The biocatalytic cascade consisted of an oxidative deamination of L-α-amino acids by an L-α-amino acid deaminase from Cosenzaea myxofaciens, rendering 2-oxoacid intermediates, with an ensuing aldol addition reaction to formaldehyde, catalyzed by metal-dependent (R)- or (S)-selective carboligases namely 2-oxo-3-deoxy-l-rhamnonate aldolase (YfaU) and ketopantoate hydroxymethyltransferase (KPHMT), respectively, furnishing 3-substituted 4-hydroxy-2-oxoacids. The overall substrate conversion was optimized by balancing biocatalyst loading and amino acid and formaldehyde concentrations, yielding 36-98% aldol adduct formation and 91- 98% ee for each enantiomer. Subsequent in situ follow-up chemistry via hydrogen peroxide-driven oxidative decarboxylation afforded the corresponding 2-substituted 3-hydroxycarboxylic acid derivatives.
Collapse
Affiliation(s)
- Mathias Pickl
- Department of Chemical Biology. Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18–26, 08034 Barcelona, Spain
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Roser Marín-Valls
- Department of Chemical Biology. Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18–26, 08034 Barcelona, Spain
| | - Jesús Joglar
- Department of Chemical Biology. Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18–26, 08034 Barcelona, Spain
| | - Jordi Bujons
- Department of Chemical Biology. Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18–26, 08034 Barcelona, Spain
| | - Pere Clapés
- Department of Chemical Biology. Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18–26, 08034 Barcelona, Spain
| |
Collapse
|
14
|
Characterization of an engineered live bacterial therapeutic for the treatment of phenylketonuria in a human gut-on-a-chip. Nat Commun 2021; 12:2805. [PMID: 33990606 PMCID: PMC8121789 DOI: 10.1038/s41467-021-23072-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/28/2020] [Accepted: 04/12/2021] [Indexed: 01/01/2023] Open
Abstract
Engineered bacteria (synthetic biotics) represent a new class of therapeutics that leverage the tools of synthetic biology. Translational testing strategies are required to predict synthetic biotic function in the human body. Gut-on-a-chip microfluidics technology presents an opportunity to characterize strain function within a simulated human gastrointestinal tract. Here, we apply a human gut-chip model and a synthetic biotic designed for the treatment of phenylketonuria to demonstrate dose-dependent production of a strain-specific biomarker, to describe human tissue responses to the engineered strain, and to show reduced blood phenylalanine accumulation after administration of the engineered strain. Lastly, we show how in vitro gut-chip models can be used to construct mechanistic models of strain activity and recapitulate the behavior of the engineered strain in a non-human primate model. These data demonstrate that gut-chip models, together with mechanistic models, provide a framework to predict the function of candidate strains in vivo.
Collapse
|
15
|
Luo Z, Yu S, Zeng W, Zhou J. Comparative analysis of the chemical and biochemical synthesis of keto acids. Biotechnol Adv 2021; 47:107706. [PMID: 33548455 DOI: 10.1016/j.biotechadv.2021.107706] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/10/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022]
Abstract
Keto acids are essential organic acids that are widely applied in pharmaceuticals, cosmetics, food, beverages, and feed additives as well as chemical synthesis. Currently, most keto acids on the market are prepared via chemical synthesis. The biochemical synthesis of keto acids has been discovered with the development of metabolic engineering and applied toward the production of specific keto acids from renewable carbohydrates using different metabolic engineering strategies in microbes. In this review, we provide a systematic summary of the types and applications of keto acids, and then summarize and compare the chemical and biochemical synthesis routes used for the production of typical keto acids, including pyruvic acid, oxaloacetic acid, α-oxobutanoic acid, acetoacetic acid, ketoglutaric acid, levulinic acid, 5-aminolevulinic acid, α-ketoisovaleric acid, α-keto-γ-methylthiobutyric acid, α-ketoisocaproic acid, 2-keto-L-gulonic acid, 2-keto-D-gluconic acid, 5-keto-D-gluconic acid, and phenylpyruvic acid. We also describe the current challenges for the industrial-scale production of keto acids and further strategies used to accelerate the green production of keto acids via biochemical routes.
Collapse
Affiliation(s)
- Zhengshan Luo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
16
|
Kitani Y, Nagashima Y. l-Amino acid oxidase as a fish host-defense molecule. FISH & SHELLFISH IMMUNOLOGY 2020; 106:685-690. [PMID: 32822860 DOI: 10.1016/j.fsi.2020.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/10/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
An l-amino acid oxidase (LAO) is an amino acid metabolism enzyme that also performs a variety of biological activities. Recently, LAOs have been discovered to be deeply involved in innate immunity in fish because of their antibacterial and antiparasitic activity. The determinant of potent antibacterial/antiparasitic activity is the H2O2 byproduct of LAO enzymatic activity that utilizes the l-amino acid as a substrate. In addition, fish LAOs are upregulated by pathogenic bacteria or parasite infection. Furthermore, some fish LAOs show that the target specificity depends on the virulence of the bacteria. All results reflect that LAOs are new innate immune molecules. This review also describes the potential of the immunomodulatory functions of fish LAOs, not only the innate immune function by a direct oxidation attack of H2O2.
Collapse
Affiliation(s)
- Yoichiro Kitani
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi Mu 4-1 Noto-Cho, Ishikawa, 927-0553, Japan.
| | - Yuji Nagashima
- Department of Agro-Food Science, Niigata Agro-Food University, Hirakidai 2416, Tainai, Niigata, 995-2702, Japan
| |
Collapse
|
17
|
Recent advances in biocatalytic derivatization of L-tyrosine. Appl Microbiol Biotechnol 2020; 104:9907-9920. [PMID: 33067683 DOI: 10.1007/s00253-020-10949-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/18/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 01/29/2023]
Abstract
L-Tyrosine is an aromatic, polar, non-essential amino acid that contains a highly reactive α-amino, α-carboxyl, and phenolic hydroxyl group. Derivatization of these functional groups can produce chemicals, such as L-3,4-dihydroxyphenylalanine, tyramine, 4-hydroxyphenylpyruvic acid, and benzylisoquinoline alkaloids, which are widely employed in the pharmaceutical, food, and cosmetics industries. In this review, we summarize typical L-tyrosine derivatizations catalyzed by enzymatic biocatalysts, as well as the strategies and challenges associated with their production processes. Finally, we discuss future perspectives pertaining to the enzymatic production of L-tyrosine derivatives.Key points• Summary of recent advances in enzyme-catalyzed L-tyrosine derivatization.• Highlights of relevant strategies involved in L-tyrosine derivatives biosynthesis.• Future perspectives on industrial applications of L-tyrosine derivatization.
Collapse
|
18
|
Liu K, Gong M, Lv X, Li J, Du G, Liu L. Biotransformation and chiral resolution of d,l-alanine into pyruvate and d-alanine with a whole-cell biocatalyst expressing l-amino acid deaminase. Biotechnol Appl Biochem 2020; 67:668-676. [PMID: 32822096 DOI: 10.1002/bab.2011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/16/2020] [Accepted: 08/14/2020] [Indexed: 01/09/2023]
Abstract
Pyruvate is an important pharmaceutical intermediate and is widely used in food, nutraceuticals, and pharmaceuticals. However, high environmental pollution caused by chemical synthesis or complex separation process of microbial fermentation methods constrain the supply of pyruvate. Here, one-step pyruvate and d-alanine production from d,l-alanine by whole-cell biocatalysis was investigated. First, l-amino acid deaminase (Pm1) from Proteus mirabilis was expressed in Escherichia coli, resulting in pyruvate titer of 12.01 g/L. Then, N-terminal coding sequences were introduced to the 5'-end of the pm1 gene to enhance the expression of Pm1 and the pyruvate titer increased to 15.13 g/L. Next, product utilization by the biocatalyst was prevented by knocking out the pyruvate uptake transporters (cstA, btsT) and the pyruvate metabolic pathway genes pps, poxB, pflB, ldhA, and aceEF using CRISPR/Cas9, yielding 30.88 g/L pyruvate titer. Finally, by optimizing the reaction conditions, the pyruvate titer was further enhanced to 43.50 g/L in 8 H with a 79.99% l-alanine conversion rate; meanwhile, the resolution of d-alanine reached 84.0%. This work developed a whole-cell biocatalyst E. coli strain for high-yield, high-efficiency, and low-pollution pyruvate and d-alanine production, which has great potential for the commercial application in the future.
Collapse
Affiliation(s)
- Ke Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Mengyue Gong
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xueqin Lv
- Science Center for Future Foods, Jiangnan University, Wuxi, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Long Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
19
|
Pei S, Ruan X, Liu J, Song W, Chen X, Luo Q, Liu L, Wu J. Enhancement of α-ketoisovalerate production by relieving the product inhibition of l-amino acid deaminase from Proteus mirabilis. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023]
|
20
|
Liu J, Bai Y, Fan TP, Zheng X, Cai Y. Unveiling the Multipath Biosynthesis Mechanism of 2-Phenylethanol in Proteus mirabilis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7684-7690. [PMID: 32608230 DOI: 10.1021/acs.jafc.0c02918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/11/2023]
Abstract
Proteus mirabilis could convert l-phenylalanine into 2-phenylethanol (2-PE) via the Ehrlich pathway, the amino acid deaminase pathway, and the aromatic amino acid decarboxylase pathway. The aromatic amino acid decarboxylase pathway was proved for the first time in P. mirabilis. In this pathway, l-aromatic amino acid transferase demonstrated a unique catalytic property, transforming 2-penylethylamine into phenylacetaldehyde. Eleven enzymes were supposed to involve in 2-phenylethanol synthesis. The mRNA expression levels of 11 genes were assessed over time by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in vivo. As a result, the expression of 11 genes was significantly increased, suggesting that P. mirabilis could transform l-phenylalanine into 2-phenylethanol via three pathways under aerobic conditions; nine genes were significantly overexpressed, suggesting that P. mirabilis could synthesize 2-phenylethanol via the Ehrlich pathway under anaerobic conditions. This study reveals the multipath synthetic metabolism for 2-phenylethanol in P. mirabilis and will enrich the new ideas for natural (2-PE) synthesis.
Collapse
Affiliation(s)
- Jinbin Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, Shanxi 710069, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1T, U.K
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, Shanxi 710069, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
21
|
Zeng B, Lai Y, Liu L, Cheng J, Zhang Y, Yuan J. Engineering Escherichia coli for High-Yielding Hydroxytyrosol Synthesis from Biobased l-Tyrosine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7691-7696. [PMID: 32578426 DOI: 10.1021/acs.jafc.0c03065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/11/2023]
Abstract
Hydroxytyrosol (HT) is a natural antioxidant with many associated health benefits. In this study, we established efficient enzymatic cascades for the synthesis of HT from biobased l-tyrosine. First, a dopamine-mediated route for HT production was investigated. The combination of native hydroxylase (HpaBC) from Escherichia coli and l-DOPA decarboxylase (DODC) from Pseudomonas putida could efficiently convert 5 mM l-tyrosine into dopamine with conversion above 90%. However, further incorporation of monoamine oxidase (MAO) from Micrococcus luteus and phenylacetaldehyde reductase (PAR) from Solanum lycopersicum only resulted in 3.47 mM HT with 69.4% conversion. Therefore, a second enzyme cascade that comprises HpaBC from E. coli, l-amino acid deaminase (LAAD) from Proteus mirabilis, α-keto acid decarboxylase (ARO10) from Saccharomyces cerevisiae, and PAR from S. lycopersicum was designed. This enzymatic route showed higher catalytic activity and efficiently synthesized HT. The 24.27 mM HT was obtained from 25 mM l-tyrosine with a high conversion of 97.1%, and 32.35 mM HT was produced using 50 mM l-tyrosine, which represents the highest HT titer using l-tyrosine as a substrate reported to date. In summary, we have developed a green and sustainable platform for efficient HT enzymatic synthesis.
Collapse
Affiliation(s)
- Baiyun Zeng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Yumeng Lai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Lijun Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Jie Cheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Fujian 361102, P. R. China
| | - Yang Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| |
Collapse
|
22
|
Pollegioni L, Rosini E, Molla G. Advances in Enzymatic Synthesis of D-Amino Acids. Int J Mol Sci 2020; 21:E3206. [PMID: 32369969 PMCID: PMC7247363 DOI: 10.3390/ijms21093206] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/10/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 01/02/2023] Open
Abstract
In nature, the D-enantiomers of amino acids (D-AAs) are not used for protein synthesis and during evolution acquired specific and relevant physiological functions in different organisms. This is the reason for the surge in interest and investigations on these "unnatural" molecules observed in recent years. D-AAs are increasingly used as building blocks to produce pharmaceuticals and fine chemicals. In past years, a number of methods have been devised to produce D-AAs based on enantioselective enzymes. With the aim to increase the D-AA derivatives generated, to improve the intrinsic atomic economy and cost-effectiveness, and to generate processes at low environmental impact, recent studies focused on identification, engineering and application of enzymes in novel biocatalytic processes. The aim of this review is to report the advances in synthesis of D-AAs gathered in the past few years based on five main classes of enzymes. These enzymes have been combined and thus applied to multi-enzymatic processes representing in vitro pathways of alternative/exchangeable enzymes that allow the generation of an artificial metabolism for D-AAs synthetic purposes.
Collapse
Affiliation(s)
| | | | - Gianluca Molla
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (L.P.); (E.R.)
| |
Collapse
|
23
|
Liu L, Zhu Y, Chen Y, Chen H, Fan C, Mo Q, Yuan J. One‐Pot Cascade Biotransformation for Efficient Synthesis of Benzyl Alcohol and Its Analogs. Chem Asian J 2020; 15:1018-1021. [DOI: 10.1002/asia.201901680] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/04/2019] [Revised: 01/31/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Lijun Liu
- State Key Laboratory of Cellular Stress Biology School of Life SciencesXiamen University Fujian Xiamen 361102 P. R. China
| | - Yuling Zhu
- State Key Laboratory of Cellular Stress Biology School of Life SciencesXiamen University Fujian Xiamen 361102 P. R. China
| | - Yufen Chen
- State Key Laboratory of Cellular Stress Biology School of Life SciencesXiamen University Fujian Xiamen 361102 P. R. China
| | - Huiyu Chen
- State Key Laboratory of Cellular Stress Biology School of Life SciencesXiamen University Fujian Xiamen 361102 P. R. China
| | - Cong Fan
- State Key Laboratory of Cellular Stress Biology School of Life SciencesXiamen University Fujian Xiamen 361102 P. R. China
| | - Qiwen Mo
- State Key Laboratory of Cellular Stress Biology School of Life SciencesXiamen University Fujian Xiamen 361102 P. R. China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology School of Life SciencesXiamen University Fujian Xiamen 361102 P. R. China
| |
Collapse
|
24
|
Active Expression of Membrane-Bound L-Amino Acid Deaminase from Proteus mirabilis in Recombinant Escherichia coli by Fusion with Maltose-Binding Protein for Enhanced Catalytic Performance. Catalysts 2020. [DOI: 10.3390/catal10020215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022] Open
Abstract
L-amino acid deaminases (LAADs) are membrane flavoenzymes that catalyze the deamination of neutral and aromatic L-amino acids to α-keto acids and ammonia. LAADs can be used to develop many important biotechnological applications. However, the transmembrane α-helix of LAADs restricts its soluble active expression and purification from a heterologous host, such as Escherichia coli. Herein, through fusion with the maltose-binding protein (MBP) tag, the recombinant E. coli BL21 (DE3)/pET-21b-MBP-PmLAAD was constructed and the LAAD from Proteus mirabilis (PmLAAD) was actively expressed as a soluble protein. After purification, the purified MBP-PmLAAD was obtained. Then, the catalytic activity of the MBP-PmLAAD fusion protein was determined and compared with the non-fused PmLAAD. After fusion with the MBP-tag, the catalytic efficiency of the MBP-PmLAAD cell lysate was much higher than that of the membrane-bound PmLAAD whole cells. The soluble MBP-PmLAAD cell lysate catalyzed the conversion of 100 mM L-phenylalanine (L-Phe) to phenylpyruvic acid (PPA) with a 100% yield in 6 h. Therefore, the fusion of the MBP-tag not only improved the soluble expression of the PmLAAD membrane-bound protein, but also increased its catalytic performance.
Collapse
|
25
|
Marcone GL, Binda E, Rosini E, Abbondi M, Pollegioni L. Antibacterial Properties of D-Amino Acid Oxidase: Impact on the Food Industry. Front Microbiol 2019; 10:2786. [PMID: 31849918 PMCID: PMC6902632 DOI: 10.3389/fmicb.2019.02786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2019] [Accepted: 11/15/2019] [Indexed: 11/23/2022] Open
Affiliation(s)
| | - Elisa Binda
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Monica Abbondi
- D-Amino Acids International Reference Center, Gerenzano, Italy
- Fondazione Istituto Insubrico Ricerca per la Vita, Gerenzano, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Fondazione Istituto Insubrico Ricerca per la Vita, Gerenzano, Italy
| |
Collapse
|
26
|
Nshimiyimana P, Liu L, Du G. Engineering of L-amino acid deaminases for the production of α-keto acids from L-amino acids. Bioengineered 2019; 10:43-51. [PMID: 30876377 PMCID: PMC6527072 DOI: 10.1080/21655979.2019.1595990] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/21/2019] [Revised: 03/10/2019] [Accepted: 03/12/2019] [Indexed: 10/27/2022] Open
Abstract
α-keto acids are organic compounds that contain an acid group and a ketone group. L-amino acid deaminases are enzymes that catalyze the oxidative deamination of amino acids for the formation of their corresponding α-keto acids and ammonia. α-keto acids are synthesized industrially via chemical processes that are costly and use harsh chemicals. The use of the directed evolution technique, followed by the screening and selection of desirable variants, to evolve enzymes has proven to be an effective way to engineer enzymes with improved performance. This review presents recent studies in which the directed evolution technique was used to evolve enzymes, with an emphasis on L-amino acid deaminases for the whole-cell biocatalysts production of α-keto acids from their corresponding L-amino acids. We discuss and highlight recent cases where the engineered L-amino acid deaminases resulted in an improved production yield of phenylpyruvic acid, α-ketoisocaproate, α-ketoisovaleric acid, α-ketoglutaric acid, α-keto-γ-methylthiobutyric acid, and pyruvate.
Collapse
Affiliation(s)
- Project Nshimiyimana
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
27
|
Xiong T, Jiang J, Bai Y, Fan TP, Zhao Y, Zheng X, Cai Y. Biosynthesis of D-danshensu from L-DOPA using engineered Escherichia coli whole cells. Appl Microbiol Biotechnol 2019; 103:6097-6105. [PMID: 31187210 DOI: 10.1007/s00253-019-09947-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/27/2018] [Revised: 08/06/2018] [Accepted: 08/25/2018] [Indexed: 10/26/2022]
Abstract
D-Danshensu (D-DSS), a traditional Chinese medicine, is used to treat cardiovascular and cerebrovascular diseases. However, current isolation protocols for D-DSS both natural and synthetic are not ideal; therefore, in this study, we have developed a whole-cell biotransformation method to produce D-DSS from L-DOPA. This was done by co-expressing L-amino acid deaminase (aadL), D-lactate dehydrogenase (ldhD), and glucose dehydrogenase (gdh). To begin to optimize the production of D-DSS, varying copy number plasmids were used to express each of the required genes. The resulting strain, Escherichia coli ALG7, which strongly overexpressed aadL, ldhD, and weakly overexpressed gdh, yielded a 378% increase in D-DSS production compared to E. coli ALG1. Furthermore, the optimal reaction conditions for the production of D-DSS were found to be a pH of 7.5, temperature at 35 °C, and 50 g/L wet cells for 12 h. Under these optimized conditions, the D-DSS amount achieved 119.1 mM with an excellent ee (> 99.9%) and a productivity of 9.9 mM/h.
Collapse
Affiliation(s)
- Tianzhen Xiong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jing Jiang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1T, UK
| | - Ye Zhao
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
28
|
Xiong T, Jia P, Jiang J, Bai Y, Fan TP, Zheng X, Cai Y. One-pot, three-step cascade synthesis of D-danshensu using engineered Escherichia coli whole cells. J Biotechnol 2019; 300:48-54. [PMID: 31125578 DOI: 10.1016/j.jbiotec.2019.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
D-danshensu (D-DSS), extracted from the plant Salvia miltiorrhiza (Danshen), is widely used to treat cardiovascular and cerebrovascular diseases. Here we engineered Escherichia coli strains to produce D-DSS from catechol, pyruvate and ammonia by one-pot biotransformation. Tyrosin-phenol lyase (TPL), L-amino acid deaminase (aadL), D-lactate dehydrogenase (ldhD) and glucose dehydrogenase (gdh) genes were overexpressed in Escherichia coli strain. First, the expression of genes was regulated by different copy number plasmids combination, the result of E. coli TALG6, with strong overexpression of TPL, aadL, ldhD and moderate overexpression of gdh, exhibited 253.7% increase D-DSS production compared to E. coli TALG1. Second, the optimum concentration of catechol was found to be 50 mM. Finally, a fed-batch biotransformation strategy was proposed, namely the amount of catechol was added to 50 mM every 2 h. The total production of D-DSS reached 55.35 mM within 14 h, which was 1.7 times that without feeding.
Collapse
Affiliation(s)
- Tianzhen Xiong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Pu Jia
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jing Jiang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1T, UK
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
29
|
Asano Y, Yasukawa K. Identification and development of amino acid oxidases. Curr Opin Chem Biol 2019; 49:76-83. [DOI: 10.1016/j.cbpa.2018.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 12/23/2022]
|
30
|
Parmeggiani F, Rué Casamajo A, Walton CJW, Galman JL, Turner NJ, Chica RA. One-Pot Biocatalytic Synthesis of Substituted d-Tryptophans from Indoles Enabled by an Engineered Aminotransferase. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00739] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
Affiliation(s)
- Fabio Parmeggiani
- Manchester Institute of Biotechnology (MIB), School of Chemistry, University of Manchester, 131 Princess Street, M1 7DN, Manchester, United Kingdom
| | - Arnau Rué Casamajo
- Manchester Institute of Biotechnology (MIB), School of Chemistry, University of Manchester, 131 Princess Street, M1 7DN, Manchester, United Kingdom
| | - Curtis J. W. Walton
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, K1N 6N5, Ottawa, Ontario, Canada
- Centre for Catalysis Research and Innovation, University of Ottawa, 30 Marie-Curie, K1N 6N5, Ottawa, Ontario, Canada
| | - James L. Galman
- Manchester Institute of Biotechnology (MIB), School of Chemistry, University of Manchester, 131 Princess Street, M1 7DN, Manchester, United Kingdom
| | - Nicholas J. Turner
- Manchester Institute of Biotechnology (MIB), School of Chemistry, University of Manchester, 131 Princess Street, M1 7DN, Manchester, United Kingdom
| | - Roberto A. Chica
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, K1N 6N5, Ottawa, Ontario, Canada
- Centre for Catalysis Research and Innovation, University of Ottawa, 30 Marie-Curie, K1N 6N5, Ottawa, Ontario, Canada
| |
Collapse
|
31
|
Properties of l-amino acid deaminase: En route to optimize bioconversion reactions. Biochimie 2019; 158:199-207. [DOI: 10.1016/j.biochi.2019.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/15/2018] [Accepted: 01/18/2019] [Indexed: 12/24/2022]
|
32
|
Isabella VM, Ha BN, Castillo MJ, Lubkowicz DJ, Rowe SE, Millet YA, Anderson CL, Li N, Fisher AB, West KA, Reeder PJ, Momin MM, Bergeron CG, Guilmain SE, Miller PF, Kurtz CB, Falb D. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat Biotechnol 2018; 36:857-864. [DOI: 10.1038/nbt.4222] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/04/2017] [Accepted: 07/20/2018] [Indexed: 01/01/2023]
|
33
|
Zhu L, Feng G, Ge F, Song P, Wang T, Liu Y, Tao Y, Zhou Z. One-Pot Enzymatic Synthesis of D-Arylalanines Using Phenylalanine Ammonia Lyase and L-Amino Acid Deaminase. Appl Biochem Biotechnol 2018; 187:75-89. [PMID: 29882193 DOI: 10.1007/s12010-018-2794-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/22/2018] [Accepted: 05/23/2018] [Indexed: 11/27/2022]
Abstract
The phenylalanine ammonia-lyase (AvPAL) from Anabaena variabilis catalyzes the amination of substituent trans-cinnamic acid (t-CA) to produce racemic D,L-enantiomer arylalanine mixture owing to its low stereoselectivity. To produce high optically pure D-arylalanine, a modified AvPAL with high D-selectivity is expected. Based on the analyses of catalytic mechanism and structure, the Asn347 residue in the active site was proposed to control stereoselectivity. Therefore, Asn347 was mutated to construct mutant AvPAL-N347A, the stereoselectivity of AvPAL-N347A for D-enantiomer arylalanine was 2.3-fold higher than that of wild-type AvPAL (WtPAL). Furthermore, the residual L-enantiomer product in reaction solution could be converted into the D-enantiomer product through stereoselective oxidation by PmLAAD and nonselective reduction by reducing agent NH3BH3. At optimal conditions, the conversion rate of t-CA and optical purity (enantiomeric excess (eeD)) of D-phenylalanine reached 82% and exceeded 99%, respectively. The two enzymes displayed activity toward a broad range of substrate and could be used to efficiently synthesize D-arylalanine with different groups on the phenyl ring. Among these D-arylalanines, the yield of m-nitro-D-phenylalanine was highest and reached 96%, and the eeD exceeded 99%. This one-pot synthesis using AvPAL and PmLAAD has prospects for industrial application.
Collapse
Affiliation(s)
- Longbao Zhu
- School of Biochemical Engineering, Anhui Polytechnic University, 8 Zheshan Road, Wuhu, Anhui, 241000, People's Republic of China
| | - Guoqiang Feng
- School of Biochemical Engineering, Anhui Polytechnic University, 8 Zheshan Road, Wuhu, Anhui, 241000, People's Republic of China
| | - Fei Ge
- School of Biochemical Engineering, Anhui Polytechnic University, 8 Zheshan Road, Wuhu, Anhui, 241000, People's Republic of China
| | - Ping Song
- School of Biochemical Engineering, Anhui Polytechnic University, 8 Zheshan Road, Wuhu, Anhui, 241000, People's Republic of China
| | - Taotao Wang
- School of Biochemical Engineering, Anhui Polytechnic University, 8 Zheshan Road, Wuhu, Anhui, 241000, People's Republic of China
| | - Yi Liu
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China.
| | - Yugui Tao
- School of Biochemical Engineering, Anhui Polytechnic University, 8 Zheshan Road, Wuhu, Anhui, 241000, People's Republic of China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| |
Collapse
|
34
|
Liu J, Jiang J, Bai Y, Fan TP, Zhao Y, Zheng X, Cai Y. Mimicking a New 2-Phenylethanol Production Pathway from Proteus mirabilis JN458 in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3498-3504. [PMID: 29560727 DOI: 10.1021/acs.jafc.8b00627] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/22/2023]
Abstract
Bacteria rarely produce natural 2-phenylethanol. We verified a new pathway from Proteus mirabilis JN458 to produce 2-phenylethanol using Escherichia coli to coexpress l-amino acid deaminase, α-keto acid decarboxylase, and alcohol dehydrogenase from P. mirabilis. Based on this pathway, a glucose dehydrogenase coenzyme regeneration system was constructed. The optimal conditions of biotransformation by the recombinant strain E-pAEAKaG were at 40 °C and pH 7.0. Finally, the recombinant strain E-pAEAKaG produced 3.21 ± 0.10 g/L 2-phenylethanol in M9 medium containing 10 g/L l-phenylalanine after a 16 h transformation. Furthermore, when the concentration of l-phenylalanine was 4 g/L (24 mM), the production of 2-phenylethanol reached 2.88 ± 0.18 g/L and displayed a higher conversion rate of 97.38 mol %.
Collapse
Affiliation(s)
- Jinbin Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , China
| | - Jing Jiang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , China
| | - Yajun Bai
- College of Life Sciences , Northwest University , Xi'an , Shanxi 710069 , China
| | - Tai-Ping Fan
- Department of Pharmacology , University of Cambridge , Cambridge CB2 1T , U.K
| | - Ye Zhao
- College of Life Sciences , Northwest University , Xi'an , Shanxi 710069 , China
| | - Xiaohui Zheng
- College of Life Sciences , Northwest University , Xi'an , Shanxi 710069 , China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , China
| |
Collapse
|
35
|
Melis R, Rosini E, Pirillo V, Pollegioni L, Molla G. In vitro evolution of an l-amino acid deaminase active on l-1-naphthylalanine. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01380b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
l-Amino acid deaminase from Proteus myxofaciens (PmaLAAD) is a promising biocatalyst for enantioselective biocatalysis that can be exploited to produce optically pure d-amino acids or α-keto acids.
Collapse
Affiliation(s)
- Roberta Melis
- Dipartimento di Biotecnologie e Scienze della Vita
- Università degli Studi dell'Insubria
- 21100 Varese
- Italy
| | - Elena Rosini
- Dipartimento di Biotecnologie e Scienze della Vita
- Università degli Studi dell'Insubria
- 21100 Varese
- Italy
| | - Valentina Pirillo
- Dipartimento di Biotecnologie e Scienze della Vita
- Università degli Studi dell'Insubria
- 21100 Varese
- Italy
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita
- Università degli Studi dell'Insubria
- 21100 Varese
- Italy
| | - Gianluca Molla
- Dipartimento di Biotecnologie e Scienze della Vita
- Università degli Studi dell'Insubria
- 21100 Varese
- Italy
| |
Collapse
|
36
|
Walton CJW, Parmeggiani F, Barber JEB, McCann JL, Turner NJ, Chica RA. Engineered Aminotransferase for the Production of d
-Phenylalanine Derivatives Using Biocatalytic Cascades. ChemCatChem 2017. [DOI: 10.1002/cctc.201701068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
Affiliation(s)
- Curtis J. W. Walton
- Department of Chemistry and Biomolecular Sciences; Centre for Catalysis Research and Innovation; University of Ottawa; 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| | - Fabio Parmeggiani
- Manchester Institute of Biotechnology; School of Chemistry; University of Manchester; 131 Princess Street M1 7DN Manchester United Kingdom
| | - Janet E. B. Barber
- Department of Chemistry and Biomolecular Sciences; Centre for Catalysis Research and Innovation; University of Ottawa; 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| | - Jenna L. McCann
- Department of Chemistry and Biomolecular Sciences; Centre for Catalysis Research and Innovation; University of Ottawa; 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| | - Nicholas J. Turner
- Manchester Institute of Biotechnology; School of Chemistry; University of Manchester; 131 Princess Street M1 7DN Manchester United Kingdom
| | - Roberto A. Chica
- Department of Chemistry and Biomolecular Sciences; Centre for Catalysis Research and Innovation; University of Ottawa; 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
37
|
Rosini E, Melis R, Molla G, Tessaro D, Pollegioni L. Deracemization and Stereoinversion of α-Amino Acids byl-Amino Acid Deaminase. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700806] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022]
Affiliation(s)
- Elena Rosini
- Department of Biotechnology and Life Sciences; Università degli Studi dell'Insubria; via J.H. Dunant 3 21100 Varese Italy
- The Protein Factory; Politecnico di Milano and Università degli Studi dell'Insubria; via Mancinelli 7 20131 Milano Italy
| | - Roberta Melis
- Department of Biotechnology and Life Sciences; Università degli Studi dell'Insubria; via J.H. Dunant 3 21100 Varese Italy
- The Protein Factory; Politecnico di Milano and Università degli Studi dell'Insubria; via Mancinelli 7 20131 Milano Italy
| | - Gianluca Molla
- Department of Biotechnology and Life Sciences; Università degli Studi dell'Insubria; via J.H. Dunant 3 21100 Varese Italy
- The Protein Factory; Politecnico di Milano and Università degli Studi dell'Insubria; via Mancinelli 7 20131 Milano Italy
| | - Davide Tessaro
- The Protein Factory; Politecnico di Milano and Università degli Studi dell'Insubria; via Mancinelli 7 20131 Milano Italy
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; p.zza Leonardo da Vinci 32 20133 Milano Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences; Università degli Studi dell'Insubria; via J.H. Dunant 3 21100 Varese Italy
- The Protein Factory; Politecnico di Milano and Università degli Studi dell'Insubria; via Mancinelli 7 20131 Milano Italy
| |
Collapse
|
38
|
Molla G, Melis R, Pollegioni L. Breaking the mirror: l-Amino acid deaminase, a novel stereoselective biocatalyst. Biotechnol Adv 2017; 35:657-668. [DOI: 10.1016/j.biotechadv.2017.07.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/10/2017] [Revised: 07/04/2017] [Accepted: 07/30/2017] [Indexed: 12/27/2022]
|
39
|
Membrane binding of the insertion sequence of Proteus vulgaris L-amino acid deaminase stabilizes protein structure and increases catalytic activity. Sci Rep 2017; 7:13719. [PMID: 29057984 PMCID: PMC5651824 DOI: 10.1038/s41598-017-14238-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2017] [Accepted: 10/06/2017] [Indexed: 12/13/2022] Open
Abstract
Proteus vulgaris L-amino acid deaminase (pvLAAD) belongs to a class of bacterial membrane-bound LAADs mainly express in genus Proteus, Providencia and Morganella. These LAADs employ a non-cleavable N-terminal twin-arginine translocation (Tat) peptide to transport across membrane and bind to bacterial surface. Recent studies revealed that a hydrophobic insertion sequence (INS) in these LAADs also interacts with bacterial membrane. However, the functional significance of INS-membrane interaction is not clear. In this study, we made site-directed mutagenesis on the surface-exposed hydrophobic residues of pvLAAD INS, and we found that these mutations impaired the INS-membrane interaction but did not affect pvLAAD activity in the solution. We further found that when cell membrane is present, the catalytic activity can be increased by 8~10 folds for wild-type but not INS-mutated pvLAAD, indicating that the INS-membrane interaction is necessary for increasing activity of pvLAAD. Molecular dynamic (MD) simulations suggested that INS is flexible in the solution, and its conformational dynamics could lead to substrate channel distortion. Circular dichroism (CD) spectroscopy experiments indicated that bacterial membrane was able to maintain the conformation of INS. Our study suggests the function of the membrane binding of INS is to stabilize pvLAAD structure and increase its catalytic activity.
Collapse
|
40
|
Schrittwieser JH, Velikogne S, Hall M, Kroutil W. Artificial Biocatalytic Linear Cascades for Preparation of Organic Molecules. Chem Rev 2017; 118:270-348. [DOI: 10.1021/acs.chemrev.7b00033] [Citation(s) in RCA: 371] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Affiliation(s)
- Joerg H. Schrittwieser
- Institute
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Stefan Velikogne
- ACIB
GmbH, Department of Chemistry, University of Graz, Heinrichstrasse
28, 8010 Graz, Austria
| | - Mélanie Hall
- Institute
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria
- ACIB
GmbH, Department of Chemistry, University of Graz, Heinrichstrasse
28, 8010 Graz, Austria
| |
Collapse
|
41
|
Li R, Sakir HG, Li J, Shin HD, Du G, Chen J, Liu L. Rational molecular engineering of l-amino acid deaminase for production of α-ketoisovaleric acid from l-valine by Escherichia coli. RSC Adv 2017. [DOI: 10.1039/c6ra26972a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
The targeted modification of enzymatic efficiency can drive an increased production of desired metabolites.
Collapse
Affiliation(s)
- Ruoxi Li
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Hossain Gazi Sakir
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Hyun-dong Shin
- School of Chemical and Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta 30332
- USA
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Long Liu
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|
42
|
Hossain GS, Shin HD, Li J, Du G, Chen J, Liu L. Transporter engineering and enzyme evolution for pyruvate production from d/l-alanine with a whole-cell biocatalyst expressing l-amino acid deaminase from Proteus mirabilis. RSC Adv 2016. [DOI: 10.1039/c6ra16507a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
Pyruvate, which has been widely used in the food, pharmaceutical, and agrochemical industries, can be produced by “one-step pyruvate production” method from d/l-alanine with a whole-cell E. coli biocatalyst expressing l-amino acid deaminase (pm1) from Proteus mirabilis.
Collapse
Affiliation(s)
- Gazi Sakir Hossain
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Hyun-dong Shin
- School of Chemical and Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Long Liu
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|