1
|
Baumgartner TJ, Dvorak NM, Goode NA, Haghighijoo Z, Marosi M, Singh J, Singh AK, Laezza F. Axin-binding domain of glycogen synthase kinase 3β facilitates functional interactions with voltage-gated Na+ channel Nav1.6. J Biol Chem 2025:108162. [PMID: 39793889 DOI: 10.1016/j.jbc.2025.108162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/09/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Voltage-gated Na+ (Nav) channels are the primary determinants of the action potential in excitable cells. Nav channels rely on a wide and diverse array of intracellular protein-protein interactions (PPIs) to achieve their full function. Glycogen synthase kinase 3 β (GSK3β) has been previously identified as a modulator of Nav1.6-encoded currents and neuronal excitability through PPI formation with Nav1.6 and phosphorylation of its C-terminal domain (CTD). Here, we hypothesized that GSK3β functions as a scaffold in a regulatory PPI complex with Nav1.6 CTD. Mutagenesis screening using the split-luciferase complementation assay indicated that the axin-binding domain (ABD) of GSK3β (262-299) is necessary for complex formation between the Nav1.6 CTD and GSK3β, and that residues within this domain are drivers of GSK3β-mediated regulation of the channel. Overexpression of an ABD-GFP fusion construct in HEK293 cells stably expressing Nav1.6 significantly reduced Nav1.6 nanocluster density compared to GFP alone. In addition, overexpression of the ABD-GFP fusion construct ablates GSK3β-mediated potentiation of Nav1.6 encoded currents and alters channel kinetics. Finally, in vivo AAV-mediated overexpression of the ABD-GFP construct in the CA1 hippocampal region induced a reduction in maximal action potential firing and an increase in action potential current threshold in a manner resembling previously reported effects of GSK3β silencing in neurons. Taken together, these results not only suggest that GSK3β-mediated regulation of Nav1.6 extends beyond transient phosphorylation, but also implicates the ABD as a critical regulatory domain that facilitates GSK3β's functional effects on Nav1.6 and neuronal excitability.
Collapse
Affiliation(s)
- T J Baumgartner
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555
| | - N M Dvorak
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555
| | - N A Goode
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555
| | - Z Haghighijoo
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555
| | - M Marosi
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555
| | - J Singh
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555
| | - A K Singh
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555
| | - F Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555.
| |
Collapse
|
2
|
Dvorak NM, Wadsworth PA, Aquino-Miranda G, Wang P, Engelke DS, Zhou J, Nguyen N, Singh AK, Aceto G, Haghighijoo Z, Smith II, Goode N, Zhou M, Avchalumov Y, Troendle EP, Tapia CM, Chen H, Powell RT, Baumgartner TJ, Singh J, Koff L, Di Re J, Wadsworth AE, Marosi M, Azar MR, Elias K, Lehmann P, Mármol Contreras YM, Shah P, Gutierrez H, Green TA, Ulmschneider MB, D'Ascenzo M, Stephan C, Cui G, Do Monte FH, Zhou J, Laezza F. Enhanced motivated behavior mediated by pharmacological targeting of the FGF14/Na v1.6 complex in nucleus accumbens neurons. Nat Commun 2025; 16:110. [PMID: 39747162 PMCID: PMC11696184 DOI: 10.1038/s41467-024-55554-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Protein/protein interactions (PPI) play crucial roles in neuronal functions. Yet, their potential as drug targets for brain disorders remains underexplored. The fibroblast growth factor 14 (FGF14)/voltage-gated Na+ channel 1.6 (Nav1.6) complex regulates excitability of medium spiny neurons (MSN) of the nucleus accumbens (NAc), a central hub of reward circuitry that controls motivated behaviors. Here, we identified compound 1028 (IUPAC: ethyl 3-(2-(3-(hydroxymethyl)-1H-indol-1-yl)acetamido)benzoate), a brain-permeable small molecule that targets FGF14R117, a critical residue located within a druggable pocket at the FGF14/Nav1.6 PPI interface. We found that 1028 modulates FGF14/Nav1.6 complex assembly and depolarizes the voltage-dependence of Nav1.6 channel inactivation with nanomolar potency by modulating the intramolecular interaction between the III-IV linker and C-terminal domain of the Nav1.6 channel. Consistent with the compound's effects on Nav1.6 channel inactivation, 1028 enhances MSN excitability ex vivo and accumbal neuron firing rate in vivo in murine models. Systemic administration of 1028 maintains behavioral motivation preferentially during motivationally deficient conditions in murine models. These behavioral effects were abrogated by in vivo gene silencing of Fgf14 in the NAc and were accompanied by a selective reduction in accumbal dopamine levels during reward consumption in murine models. These findings underscore the potential to selectively regulate complex behaviors associated with neuropsychiatric disorders through targeting of PPIs in neurons.
Collapse
Affiliation(s)
- Nolan M Dvorak
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Paul A Wadsworth
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, Stanford Medicine, Stanford, CA, USA
| | - Guillermo Aquino-Miranda
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, TX, USA
| | - Pingyuan Wang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Douglas S Engelke
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, TX, USA
| | - Jingheng Zhou
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Nghi Nguyen
- High-Throughput Research and Screening Center, Texas A&M Health Science Center, Houston, TX, USA
| | - Aditya K Singh
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Giuseppe Aceto
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Zahra Haghighijoo
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Isabella I Smith
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, TX, USA
| | - Nana Goode
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mingxiang Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yosef Avchalumov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Evan P Troendle
- Department of Chemistry, King's College London 7 Trinity Street, London, UK
| | - Cynthia M Tapia
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Haiying Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Reid T Powell
- High-Throughput Research and Screening Center, Texas A&M Health Science Center, Houston, TX, USA
| | - Timothy J Baumgartner
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jully Singh
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Leandra Koff
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jessica Di Re
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ann E Wadsworth
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mate Marosi
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Marc R Azar
- Behavioral Pharma Inc., 505 Coast Blvd. South, Suite 212, La Jolla, CA, USA
| | - Kristina Elias
- Behavioral Pharma Inc., 505 Coast Blvd. South, Suite 212, La Jolla, CA, USA
| | - Paul Lehmann
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Poonam Shah
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Hector Gutierrez
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Thomas A Green
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Marcello D'Ascenzo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Clifford Stephan
- High-Throughput Research and Screening Center, Texas A&M Health Science Center, Houston, TX, USA
| | - Guohong Cui
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Fabricio H Do Monte
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, TX, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
3
|
Arratia LM, Bermudes-Contreras JD, Juarez-Monroy JA, Romero-Macías EA, Luna-Rojas JC, López-Hidalgo M, Vega AV, Zamorano-Carrillo A. Experimental and computational evidence that Calpain-10 binds to the carboxy terminus of Na V1.2 and Na V1.6. Sci Rep 2024; 14:6761. [PMID: 38514708 PMCID: PMC10957924 DOI: 10.1038/s41598-024-57117-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
Voltage-gated sodium channels (NaV) are pivotal proteins responsible for initiating and transmitting action potentials. Emerging evidence suggests that proteolytic cleavage of sodium channels by calpains is pivotal in diverse physiological scenarios, including ischemia, brain injury, and neuropathic pain associated with diabetes. Despite this significance, the precise mechanism by which calpains recognize sodium channels, especially given the multiple calpain isoforms expressed in neurons, remains elusive. In this work, we show the interaction of Calpain-10 with NaV's C-terminus through a yeast 2-hybrid assay screening of a mouse brain cDNA library and in vitro by GST-pulldown. Later, we also obtained a structural and dynamic hypothesis of this interaction by modeling, docking, and molecular dynamics simulation. These results indicate that Calpain-10 interacts differentially with the C-terminus of NaV1.2 and NaV1.6. Calpain-10 interacts with NaV1.2 through domains III and T in a stable manner. In contrast, its interaction with NaV1.6 involves domains II and III, which could promote proteolysis through the Cys-catalytic site and C2 motifs.
Collapse
Affiliation(s)
- Luis Manuel Arratia
- Carrera de Médico Cirujano, FES Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Edo. Mex, Mexico
- Laboratorio de Biofísica Computacional, Doctorado en Biotecnología, SEPI-ENMH Instituto Politécnico Nacional, Av. Guillermo Massieu Helguera 239, Fracc. La Escalera, Ticomán, Gustavo A. Madero, 07320, Mexico City, Mexico
| | - Juan David Bermudes-Contreras
- Laboratorio de Biofísica Computacional, Doctorado en Biotecnología, SEPI-ENMH Instituto Politécnico Nacional, Av. Guillermo Massieu Helguera 239, Fracc. La Escalera, Ticomán, Gustavo A. Madero, 07320, Mexico City, Mexico
| | - Jorge Armando Juarez-Monroy
- Laboratorio de Biofísica Computacional, Doctorado en Biotecnología, SEPI-ENMH Instituto Politécnico Nacional, Av. Guillermo Massieu Helguera 239, Fracc. La Escalera, Ticomán, Gustavo A. Madero, 07320, Mexico City, Mexico
| | - Erik Alan Romero-Macías
- Carrera de Médico Cirujano, FES Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Edo. Mex, Mexico
- Doctorado en Ciencias Biomédicas, FES Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla Edo, Mexico City, Mexico
| | - Julio Cesar Luna-Rojas
- Carrera de Médico Cirujano, FES Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Edo. Mex, Mexico
- Maestría en Neurobiología, FES Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla Edo, Mexico City, Mexico
| | - Marisol López-Hidalgo
- Laboratorio de Biofísica Computacional, Doctorado en Biotecnología, SEPI-ENMH Instituto Politécnico Nacional, Av. Guillermo Massieu Helguera 239, Fracc. La Escalera, Ticomán, Gustavo A. Madero, 07320, Mexico City, Mexico
| | - Ana Victoria Vega
- Carrera de Médico Cirujano, FES Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Edo. Mex, Mexico.
| | - Absalom Zamorano-Carrillo
- Laboratorio de Biofísica Computacional, Doctorado en Biotecnología, SEPI-ENMH Instituto Politécnico Nacional, Av. Guillermo Massieu Helguera 239, Fracc. La Escalera, Ticomán, Gustavo A. Madero, 07320, Mexico City, Mexico.
| |
Collapse
|
4
|
Dvorak NM, Domingo ND, Tapia CM, Wadsworth PA, Marosi M, Avchalumov Y, Fongsaran C, Koff L, Di Re J, Sampson CM, Baumgartner TJ, Wang P, Villarreal PP, Solomon OD, Stutz SJ, Aditi, Porter J, Gbedande K, Prideaux B, Green TA, Seeley EH, Samir P, Dineley KT, Vargas G, Zhou J, Cisneros I, Stephens R, Laezza F. TNFR1 signaling converging on FGF14 controls neuronal hyperactivity and sickness behavior in experimental cerebral malaria. J Neuroinflammation 2023; 20:306. [PMID: 38115011 PMCID: PMC10729485 DOI: 10.1186/s12974-023-02992-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Excess tumor necrosis factor (TNF) is implicated in the pathogenesis of hyperinflammatory experimental cerebral malaria (eCM), including gliosis, increased levels of fibrin(ogen) in the brain, behavioral changes, and mortality. However, the role of TNF in eCM within the brain parenchyma, particularly directly on neurons, remains underdefined. Here, we investigate electrophysiological consequences of eCM on neuronal excitability and cell signaling mechanisms that contribute to observed phenotypes. METHODS The split-luciferase complementation assay (LCA) was used to investigate cell signaling mechanisms downstream of tumor necrosis factor receptor 1 (TNFR1) that could contribute to changes in neuronal excitability in eCM. Whole-cell patch-clamp electrophysiology was performed in brain slices from eCM mice to elucidate consequences of infection on CA1 pyramidal neuron excitability and cell signaling mechanisms that contribute to observed phenotypes. Involvement of identified signaling molecules in mediating behavioral changes and sickness behavior observed in eCM were investigated in vivo using genetic silencing. RESULTS Exploring signaling mechanisms that underlie TNF-induced effects on neuronal excitability, we found that the complex assembly of fibroblast growth factor 14 (FGF14) and the voltage-gated Na+ (Nav) channel 1.6 (Nav1.6) is increased upon tumor necrosis factor receptor 1 (TNFR1) stimulation via Janus Kinase 2 (JAK2). On account of the dependency of hyperinflammatory experimental cerebral malaria (eCM) on TNF, we performed patch-clamp studies in slices from eCM mice and showed that Plasmodium chabaudi infection augments Nav1.6 channel conductance of CA1 pyramidal neurons through the TNFR1-JAK2-FGF14-Nav1.6 signaling network, which leads to hyperexcitability. Hyperexcitability of CA1 pyramidal neurons caused by infection was mitigated via an anti-TNF antibody and genetic silencing of FGF14 in CA1. Furthermore, knockdown of FGF14 in CA1 reduced sickness behavior caused by infection. CONCLUSIONS FGF14 may represent a therapeutic target for mitigating consequences of TNF-mediated neuroinflammation.
Collapse
Affiliation(s)
- Nolan M Dvorak
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Nadia D Domingo
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Cynthia M Tapia
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Paul A Wadsworth
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Mate Marosi
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Yosef Avchalumov
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Chanida Fongsaran
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Leandra Koff
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jessica Di Re
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Catherine M Sampson
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Timothy J Baumgartner
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Pingyuan Wang
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Paula P Villarreal
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Clinical Sciences Program, The Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Olivia D Solomon
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sonja J Stutz
- Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Aditi
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jacob Porter
- Department of Chemistry, University of Texas, Austin, TX, 78712, USA
| | - Komi Gbedande
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Immunity and Inflammation and Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07301, USA
| | - Brendan Prideaux
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Thomas A Green
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Erin H Seeley
- Department of Chemistry, University of Texas, Austin, TX, 78712, USA
| | - Parimal Samir
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kelley T Dineley
- Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Gracie Vargas
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jia Zhou
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Irma Cisneros
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Robin Stephens
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Center for Immunity and Inflammation and Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07301, USA.
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
5
|
Biadun M, Sochacka M, Karelus R, Baran K, Czyrek A, Otlewski J, Krowarsch D, Opalinski L, Zakrzewska M. FGF homologous factors are secreted from cells to induce FGFR-mediated anti-apoptotic response. FASEB J 2023; 37:e23043. [PMID: 37342898 DOI: 10.1096/fj.202300324r] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/10/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
FGF homologous factors (FHFs) are the least described group of fibroblast growth factors (FGFs). The FHF subfamily consists of four proteins: FGF11, FGF12, FGF13, and FGF14. Until recently, FHFs were thought to be intracellular, non-signaling molecules, despite sharing structural and sequence similarities with other members of FGF family that can be secreted and activate cell signaling by interacting with surface receptors. Here, we show that despite lacking a canonical signal peptide for secretion, FHFs are exported to the extracellular space. Furthermore, we propose that their secretion mechanism is similar to the unconventional secretion of FGF2. The secreted FHFs are biologically active and trigger signaling in cells expressing FGF receptors (FGFRs). Using recombinant proteins, we demonstrated their direct binding to FGFR1, resulting in the activation of downstream signaling and the internalization of the FHF-FGFR1 complex. The effect of receptor activation by FHF proteins is an anti-apoptotic response of the cell.
Collapse
Affiliation(s)
- Martyna Biadun
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
- Department of Protein Biotechnology, Faculty of Biotchnology, University of Wroclaw, Wroclaw, Poland
| | - Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Radoslaw Karelus
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Karolina Baran
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Aleksandra Czyrek
- Department of Protein Biotechnology, Faculty of Biotchnology, University of Wroclaw, Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Daniel Krowarsch
- Department of Protein Biotechnology, Faculty of Biotchnology, University of Wroclaw, Wroclaw, Poland
| | - Lukasz Opalinski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
6
|
Sochacka M, Karelus R, Opalinski L, Krowarsch D, Biadun M, Otlewski J, Zakrzewska M. FGF12 is a novel component of the nucleolar NOLC1/TCOF1 ribosome biogenesis complex. Cell Commun Signal 2022; 20:182. [PMID: 36411431 PMCID: PMC9677703 DOI: 10.1186/s12964-022-01000-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022] Open
Abstract
Among the FGF proteins, the least characterized superfamily is the group of fibroblast growth factor homologous factors (FHFs). To date, the main role of FHFs has been primarily seen in the modulation of voltage-gated ion channels, but a full picture of the function of FHFs inside the cell is far from complete. In the present study, we focused on identifying novel FGF12 binding partners to indicate its intracellular functions. Among the identified proteins, a significant number were nuclear proteins, especially RNA-binding proteins involved in translational processes, such as ribosomal processing and modification. We have demonstrated that FGF12 is localized to the nucleolus, where it interacts with NOLC1 and TCOF1, proteins involved in the assembly of functional ribosomes. Interactions with both NOLC1 and TCOF1 are unique to FGF12, as other FHF proteins only bind to TCOF1. The formation of nucleolar FGF12 complexes with NOLC1 and TCOF1 is phosphorylation-dependent and requires the C-terminal region of FGF12. Surprisingly, NOLC1 and TCOF1 are unable to interact with each other in the absence of FGF12. Taken together, our data link FHF proteins to nucleoli for the first time and suggest a novel and unexpected role for FGF12 in ribosome biogenesis. Video Abstract.
Collapse
Affiliation(s)
- Martyna Sochacka
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Radoslaw Karelus
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Lukasz Opalinski
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Daniel Krowarsch
- grid.8505.80000 0001 1010 5103Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Martyna Biadun
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Jacek Otlewski
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Malgorzata Zakrzewska
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
7
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
8
|
Glycogen Synthase Kinase 3: Ion Channels, Plasticity, and Diseases. Int J Mol Sci 2022; 23:ijms23084413. [PMID: 35457230 PMCID: PMC9028019 DOI: 10.3390/ijms23084413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
Glycogen synthase kinase 3β (GSK3) is a multifaceted serine/threonine (S/T) kinase expressed in all eukaryotic cells. GSK3β is highly enriched in neurons in the central nervous system where it acts as a central hub for intracellular signaling downstream of receptors critical for neuronal function. Unlike other kinases, GSK3β is constitutively active, and its modulation mainly involves inhibition via upstream regulatory pathways rather than increased activation. Through an intricate converging signaling system, a fine-tuned balance of active and inactive GSK3β acts as a central point for the phosphorylation of numerous primed and unprimed substrates. Although the full range of molecular targets is still unknown, recent results show that voltage-gated ion channels are among the downstream targets of GSK3β. Here, we discuss the direct and indirect mechanisms by which GSK3β phosphorylates voltage-gated Na+ channels (Nav1.2 and Nav1.6) and voltage-gated K+ channels (Kv4 and Kv7) and their physiological effects on intrinsic excitability, neuronal plasticity, and behavior. We also present evidence for how unbalanced GSK3β activity can lead to maladaptive plasticity that ultimately renders neuronal circuitry more vulnerable, increasing the risk for developing neuropsychiatric disorders. In conclusion, GSK3β-dependent modulation of voltage-gated ion channels may serve as an important pharmacological target for neurotherapeutic development.
Collapse
|
9
|
Dvorak NM, Tapia CM, Singh AK, Baumgartner TJ, Wang P, Chen H, Wadsworth PA, Zhou J, Laezza F. Pharmacologically Targeting the Fibroblast Growth Factor 14 Interaction Site on the Voltage-Gated Na + Channel 1.6 Enables Isoform-Selective Modulation. Int J Mol Sci 2021; 22:ijms222413541. [PMID: 34948337 PMCID: PMC8708424 DOI: 10.3390/ijms222413541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023] Open
Abstract
Voltage-gated Na+ (Nav) channels are the primary molecular determinant of the action potential. Among the nine isoforms of the Nav channel α subunit that have been described (Nav1.1-Nav1.9), Nav1.1, Nav1.2, and Nav1.6 are the primary isoforms expressed in the central nervous system (CNS). Crucially, these three CNS Nav channel isoforms display differential expression across neuronal cell types and diverge with respect to their subcellular distributions. Considering these differences in terms of their localization, the CNS Nav channel isoforms could represent promising targets for the development of targeted neuromodulators. However, current therapeutics that target Nav channels lack selectivity, which results in deleterious side effects due to modulation of off-target Nav channel isoforms. Among the structural components of the Nav channel α subunit that could be pharmacologically targeted to achieve isoform selectivity, the C-terminal domains (CTD) of Nav channels represent promising candidates on account of displaying appreciable amino acid sequence divergence that enables functionally unique protein–protein interactions (PPIs) with Nav channel auxiliary proteins. In medium spiny neurons (MSNs) of the nucleus accumbens (NAc), a critical brain region of the mesocorticolimbic circuit, the PPI between the CTD of the Nav1.6 channel and its auxiliary protein fibroblast growth factor 14 (FGF14) is central to the generation of electrical outputs, underscoring its potential value as a site for targeted neuromodulation. Focusing on this PPI, we previously developed a peptidomimetic derived from residues of FGF14 that have an interaction site on the CTD of the Nav1.6 channel. In this work, we show that whereas the compound displays dose-dependent effects on the activity of Nav1.6 channels in heterologous cells, the compound does not affect Nav1.1 or Nav1.2 channels at comparable concentrations. In addition, we show that the compound correspondingly modulates the action potential discharge and the transient Na+ of MSNs of the NAc. Overall, these results demonstrate that pharmacologically targeting the FGF14 interaction site on the CTD of the Nav1.6 channel is a strategy to achieve isoform-selective modulation, and, more broadly, that sites on the CTDs of Nav channels interacted with by auxiliary proteins could represent candidates for the development of targeted therapeutics.
Collapse
|
10
|
Dvorak NM, Tapia CM, Baumgartner TJ, Singh J, Laezza F, Singh AK. Pharmacological Inhibition of Wee1 Kinase Selectively Modulates the Voltage-Gated Na + Channel 1.2 Macromolecular Complex. Cells 2021; 10:3103. [PMID: 34831326 PMCID: PMC8619224 DOI: 10.3390/cells10113103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Voltage-gated Na+ (Nav) channels are a primary molecular determinant of the action potential (AP). Despite the canonical role of the pore-forming α subunit in conferring this function, protein-protein interactions (PPI) between the Nav channel α subunit and its auxiliary proteins are necessary to reconstitute the full physiological activity of the channel and to fine-tune neuronal excitability. In the brain, the Nav channel isoforms 1.2 (Nav1.2) and 1.6 (Nav1.6) are enriched, and their activities are differentially regulated by the Nav channel auxiliary protein fibroblast growth factor 14 (FGF14). Despite the known regulation of neuronal Nav channel activity by FGF14, less is known about cellular signaling molecules that might modulate these regulatory effects of FGF14. To that end, and building upon our previous investigations suggesting that neuronal Nav channel activity is regulated by a kinase network involving GSK3, AKT, and Wee1, we interrogate in our current investigation how pharmacological inhibition of Wee1 kinase, a serine/threonine and tyrosine kinase that is a crucial component of the G2-M cell cycle checkpoint, affects the Nav1.2 and Nav1.6 channel macromolecular complexes. Our results show that the highly selective inhibitor of Wee1 kinase, called Wee1 inhibitor II, modulates FGF14:Nav1.2 complex assembly, but does not significantly affect FGF14:Nav1.6 complex assembly. These results are functionally recapitulated, as Wee1 inhibitor II entirely alters FGF14-mediated regulation of the Nav1.2 channel, but displays no effects on the Nav1.6 channel. At the molecular level, these effects of Wee1 inhibitor II on FGF14:Nav1.2 complex assembly and FGF14-mediated regulation of Nav1.2-mediated Na+ currents are shown to be dependent upon the presence of Y158 of FGF14, a residue known to be a prominent site for phosphorylation-mediated regulation of the protein. Overall, our data suggest that pharmacological inhibition of Wee1 confers selective modulatory effects on Nav1.2 channel activity, which has important implications for unraveling cellular signaling pathways that fine-tune neuronal excitability.
Collapse
Affiliation(s)
| | | | | | | | | | - Aditya K. Singh
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 75901, USA; (N.M.D.); (C.M.T.); (T.J.B.); (J.S.); (F.L.)
| |
Collapse
|
11
|
Singh AK, Dvorak NM, Tapia CM, Mosebarger A, Ali SR, Bullock Z, Chen H, Zhou J, Laezza F. Differential Modulation of the Voltage-Gated Na + Channel 1.6 by Peptides Derived From Fibroblast Growth Factor 14. Front Mol Biosci 2021; 8:742903. [PMID: 34557523 PMCID: PMC8452925 DOI: 10.3389/fmolb.2021.742903] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
The voltage-gated Na+ (Nav) channel is a primary molecular determinant of the initiation and propagation of the action potential. Despite the central role of the pore-forming α subunit in conferring this functionality, protein:protein interactions (PPI) between the α subunit and auxiliary proteins are necessary for the full physiological activity of Nav channels. In the central nervous system (CNS), one such PPI occurs between the C-terminal domain of the Nav1.6 channel and fibroblast growth factor 14 (FGF14). Given the primacy of this PPI in regulating the excitability of neurons in clinically relevant brain regions, peptides targeting the FGF14:Nav1.6 PPI interface could be of pre-clinical value. In this work, we pharmacologically evaluated peptides derived from FGF14 that correspond to residues that are at FGF14's PPI interface with the CTD of Nav1.6. These peptides, Pro-Leu-Glu-Val (PLEV) and Glu-Tyr-Tyr-Val (EYYV), which correspond to residues of the β12 sheet and β8-β9 loop of FGF14, respectively, were shown to inhibit FGF14:Nav1.6 complex assembly. In functional studies using whole-cell patch-clamp electrophysiology, PLEV and EYYV were shown to confer differential modulation of Nav1.6-mediated currents through mechanisms dependent upon the presence of FGF14. Crucially, these FGF14-dependent effects of PLEV and EYYV on Nav1.6-mediated currents were further shown to be dependent on the N-terminal domain of FGF14. Overall, these data suggest that the PLEV and EYYV peptides represent scaffolds to interrogate the Nav1.6 channel macromolecular complex in an effort to develop targeted pharmacological modulators.
Collapse
Affiliation(s)
- Aditya K Singh
- Department of Pharmacology and Toxicology, Galveston, TX, United States
| | - Nolan M Dvorak
- Department of Pharmacology and Toxicology, Galveston, TX, United States.,Pharmacology and Toxicology Graduate Program, Galveston, TX, United States.,Presidential Scholarship Program, University of Texas Medical Branch, Galveston, TX, United States
| | - Cynthia M Tapia
- Department of Pharmacology and Toxicology, Galveston, TX, United States.,Presidential Scholarship Program, University of Texas Medical Branch, Galveston, TX, United States
| | - Angela Mosebarger
- Department of Pharmacology and Toxicology, Galveston, TX, United States.,Pharmacology and Toxicology Graduate Program, Galveston, TX, United States.,Presidential Scholarship Program, University of Texas Medical Branch, Galveston, TX, United States
| | - Syed R Ali
- Department of Pharmacology and Toxicology, Galveston, TX, United States
| | - Zaniqua Bullock
- Department of Pharmacology and Toxicology, Galveston, TX, United States
| | - Haiying Chen
- Department of Pharmacology and Toxicology, Galveston, TX, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Galveston, TX, United States
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, Galveston, TX, United States
| |
Collapse
|
12
|
Zybura A, Hudmon A, Cummins TR. Distinctive Properties and Powerful Neuromodulation of Na v1.6 Sodium Channels Regulates Neuronal Excitability. Cells 2021; 10:1595. [PMID: 34202119 PMCID: PMC8307729 DOI: 10.3390/cells10071595] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (Navs) are critical determinants of cellular excitability. These ion channels exist as large heteromultimeric structures and their activity is tightly controlled. In neurons, the isoform Nav1.6 is highly enriched at the axon initial segment and nodes, making it critical for the initiation and propagation of neuronal impulses. Changes in Nav1.6 expression and function profoundly impact the input-output properties of neurons in normal and pathological conditions. While mutations in Nav1.6 may cause channel dysfunction, aberrant changes may also be the result of complex modes of regulation, including various protein-protein interactions and post-translational modifications, which can alter membrane excitability and neuronal firing properties. Despite decades of research, the complexities of Nav1.6 modulation in health and disease are still being determined. While some modulatory mechanisms have similar effects on other Nav isoforms, others are isoform-specific. Additionally, considerable progress has been made toward understanding how individual protein interactions and/or modifications affect Nav1.6 function. However, there is still more to be learned about how these different modes of modulation interact. Here, we examine the role of Nav1.6 in neuronal function and provide a thorough review of this channel's complex regulatory mechanisms and how they may contribute to neuromodulation.
Collapse
Affiliation(s)
- Agnes Zybura
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Andy Hudmon
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA;
| | - Theodore R. Cummins
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
13
|
Dvorak NM, Wadsworth PA, Wang P, Zhou J, Laezza F. Development of Allosteric Modulators of Voltage-Gated Na + Channels: A Novel Approach for an Old Target. Curr Top Med Chem 2021; 21:841-848. [PMID: 34036922 DOI: 10.2174/1568026621666210525105359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022]
Abstract
Given their primacy in governing the action potential (AP) of excitable cells, voltage-gated Na+ (Nav) channels are important pharmacological targets of therapeutics for a diverse array of clinical indications. Despite historically being a traditional drug target, therapeutics targeting Nav channels lack isoform selectivity, giving rise to off-target side effects. To develop isoform-selective modulators of Nav channels with improved target-specificity, the identification and pharmacological targeting of allosteric sites that display structural divergence among Nav channel isoforms represents an attractive approach. Despite the high homology among Nav channel α subunit isoforms (Nav1.1-Nav1.9), there is considerable amino acid sequence divergence among their constituent C-terminal domains (CTD), which enables structurally and functionally specific protein: protein interactions (PPI) with auxiliary proteins. Although pharmacological targeting of such PPI interfaces between the CTDs of Nav channels and auxiliary proteins represents an innovate approach for developing isoform-selective modulators of Nav channels, appreciable modulation of PPIs using small molecules has conventionally been difficult to achieve. After briefly discussing the challenges of modulating PPIs using small molecules, this current frontier review that follows subsequently expounds on approaches for circumventing such difficulties in the context of developing small molecule modulators of PPIs between transmembrane ion channels and their auxiliary proteins. In addition to broadly discussing such approaches, the implementation of such approaches is specifically discussed in the context of developing small molecule modulators between the CTD of Nav channels and auxiliary proteins. Developing allosteric modulators of ion channels by targeting their PPI interfaces with auxiliary proteins represents an innovative and promising strategy in ion channel drug discovery that could expand the "druggable genome" and usher in first-in-class PPI-targeting therapeutics for a multitude of channelopathies.
Collapse
Affiliation(s)
- Nolan M Dvorak
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, United States
| | - Paul A Wadsworth
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, United States
| | - Pingyuan Wang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, United States
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, United States
| |
Collapse
|
14
|
Bioluminescence Methodology for Ion Channel Studies. Methods Mol Biol 2020. [PMID: 33119853 DOI: 10.1007/978-1-0716-0818-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
As key players in cell function, ion channels are important targets for drug discovery and therapeutic development against a wide range of health conditions. Thus, developing assays to reconstitute ion channel macromolecular complexes in physiological conditions and screen for chemical modifiers of protein-protein interactions within these complexes is timely in drug discovery campaigns. For most ion channels, expressing their pore-forming subunit in heterologous mammalian cells has now become a routine procedure. However, reconstituting protein-channel complexes in physiological environments is still challenging, limiting our ability to identify tools and probes based on allosteric mechanisms, which could lead to more targeted and precise modulation of the channel function. Here, we describe the assay development steps to stably reconstitute the interaction between voltage-gated Na+ (Nav) channel Nav1.6 and its accessory protein, fibroblast growth factor 14 (FGF14) using the split-luciferase complementation assay (LCA), followed by assay miniaturization and optimization in 384-well plates for in-cell high-throughput screening (HTS) against protein-channel interactions. This optimized LCA can subsequently be used for rapid estimation of hit potency and efficacy via dose-dependency studies, enabling ranking of hits prior to more labor-intensive validation studies. Lastly, we introduce the methodology for rapid functional hit validation studies using semi-automated planar patch-clamp electrophysiology. Our robust, in-cell HTS platform can be adapted to any suitable ion channel complex to explore regulatory pathways of cellular signaling using kinase inhibitors, as well as to screen small molecules for probe development and drug repurposing toward new targets/areas of medicine. Overall, the flexibility of this assay allows users to broadly explore therapeutic options for channelopathy-associated diseases at a fast pace, enabling rapid hypothesis generation in early phase drug discovery campaigns and narrowing down targets prior to more labor-intensive in vivo studies.
Collapse
|
15
|
Wang P, Wadsworth PA, Dvorak NM, Singh AK, Chen H, Liu Z, Zhou R, Holthauzen LMF, Zhou J, Laezza F. Design, Synthesis, and Pharmacological Evaluation of Analogues Derived from the PLEV Tetrapeptide as Protein-Protein Interaction Modulators of Voltage-Gated Sodium Channel 1.6. J Med Chem 2020; 63:11522-11547. [PMID: 33054193 DOI: 10.1021/acs.jmedchem.0c00531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The voltage-gated Na+ (Nav) channel is the molecular determinant of excitability. Disruption of protein-protein interactions (PPIs) between Nav1.6 and fibroblast growth factor 14 (FGF14) leads to impaired excitability of neurons in clinically relevant brain areas associated with channelopathies. Here, we designed, synthesized, and pharmacologically characterized new peptidomimetics based on a PLEV tetrapeptide scaffold derived from the FGF14:Nav1.6 PPI interface. Addition of an N-terminal 1-adamantanecarbonyl pharmacophore significantly improved peptidomimetic inhibitory potency. Surface plasmon resonance studies revealed that while this moiety was sufficient to confer binding to FGF14, altering the C-terminal moiety from methoxy (21a) to π bond-containing (23a and 23b) or cycloalkane substituents (23e) abrogated the binding to Nav1.6. Whole-cell patch-clamp electrophysiology subsequently revealed that 21a had functionally relevant interactions with both the C-terminal tail of Nav1.6 and FGF14. Collectively, these findings support that 21a (PW0564) may serve as a promising lead to develop target-selective neurotherapeutics by modulating protein-channel interactions.
Collapse
|
16
|
Wadsworth PA, Singh AK, Nguyen N, Dvorak NM, Tapia CM, Russell WK, Stephan C, Laezza F. JAK2 regulates Nav1.6 channel function via FGF14 Y158 phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118786. [PMID: 32599005 PMCID: PMC7984254 DOI: 10.1016/j.bbamcr.2020.118786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Protein interactions between voltage-gated sodium (Nav) channels and accessory proteins play an essential role in neuronal firing and plasticity. However, a surprisingly limited number of kinases have been identified as regulators of these molecular complexes. We hypothesized that numerous as-of-yet unidentified kinases indirectly regulate the Nav channel via modulation of the intracellular fibroblast growth factor 14 (FGF14), an accessory protein with numerous unexplored phosphomotifs and required for channel function in neurons. METHODS Here we present results from an in-cell high-throughput screening (HTS) against the FGF14: Nav1.6 complex using >3000 diverse compounds targeting an extensive range of signaling pathways. Regulation by top kinase targets was then explored using in vitro phosphorylation, biophysics, mass-spectrometry and patch-clamp electrophysiology. RESULTS Compounds targeting Janus kinase 2 (JAK2) were over-represented among HTS hits. Phosphomotif scans supported by mass spectrometry revealed FGF14Y158, a site previously shown to mediate both FGF14 homodimerization and interactions with Nav1.6, as a JAK2 phosphorylation site. Following inhibition of JAK2, FGF14 homodimerization increased in a manner directly inverse to FGF14:Nav1.6 complex formation, but not in the presence of the FGF14Y158A mutant. Patch-clamp electrophysiology revealed that through Y158, JAK2 controls FGF14-dependent modulation of Nav1.6 channels. In hippocampal CA1 pyramidal neurons, the JAK2 inhibitor Fedratinib reduced firing by a mechanism that is dependent upon expression of FGF14. CONCLUSIONS These studies point toward a novel mechanism by which levels of JAK2 in neurons could directly influence firing and plasticity by controlling the FGF14 dimerization equilibrium, and thereby the availability of monomeric species for interaction with Nav1.6.
Collapse
Affiliation(s)
- Paul A Wadsworth
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Aditya K Singh
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Nghi Nguyen
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, USA
| | - Nolan M Dvorak
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Cynthia M Tapia
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Clifford Stephan
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, USA
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA; Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
17
|
Bidirectional Modulation of the Voltage-Gated Sodium (Nav1.6) Channel by Rationally Designed Peptidomimetics. Molecules 2020; 25:molecules25153365. [PMID: 32722255 PMCID: PMC7435778 DOI: 10.3390/molecules25153365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 01/25/2023] Open
Abstract
Disruption of protein:protein interactions (PPIs) that regulate the function of voltage-gated Na+ (Nav) channels leads to neural circuitry aberrations that have been implicated in numerous channelopathies. One example of this pathophysiology is mediated by dysfunction of the PPI between Nav1.6 and its regulatory protein fibroblast growth factor 14 (FGF14). Thus, peptides derived from FGF14 might exert modulatory actions on the FGF14:Nav1.6 complex that are functionally relevant. The tetrapeptide Glu-Tyr-Tyr-Val (EYYV) mimics surface residues of FGF14 at the β8–β9 loop, a structural region previously implicated in its binding to Nav1.6. Here, peptidomimetics derived from EYYV (6) were designed, synthesized, and pharmacologically evaluated to develop probes with improved potency. Addition of hydrophobic protective groups to 6 and truncation to a tripeptide (12) produced a potent inhibitor of FGF14:Nav1.6 complex assembly. Conversely, addition of hydrophobic protective groups to 6 followed by addition of an N-terminal benzoyl substituent (19) produced a potentiator of FGF14:Nav1.6 complex assembly. Subsequent functional evaluation using whole-cell patch-clamp electrophysiology confirmed their inverse activities, with 12 and 19 reducing and increasing Nav1.6-mediated transient current densities, respectively. Overall, we have identified a negative and positive allosteric modulator of Nav1.6, both of which could serve as scaffolds for the development of target-selective neurotherapeutics.
Collapse
|
18
|
Singh AK, Wadsworth PA, Tapia CM, Aceto G, Ali SR, Chen H, D'Ascenzo M, Zhou J, Laezza F. Mapping of the FGF14:Nav1.6 complex interface reveals FLPK as a functionally active peptide modulating excitability. Physiol Rep 2020; 8:e14505. [PMID: 32671946 PMCID: PMC7363588 DOI: 10.14814/phy2.14505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
The voltage-gated sodium (Nav) channel complex is comprised of pore-forming α subunits (Nav1.1-1.9) and accessory regulatory proteins such as the intracellular fibroblast growth factor 14 (FGF14). The cytosolic Nav1.6 C-terminal tail binds directly to FGF14 and this interaction modifies Nav1.6-mediated currents with effects on intrinsic excitability in the brain. Previous studies have identified the FGF14V160 residue within the FGF14 core domain as a hotspot for the FGF14:Nav1.6 complex formation. Here, we used three short amino acid peptides around FGF14V160 to probe for the FGF14 interaction with the Nav1.6 C-terminal tail and to evaluate the activity of the peptide on Nav1.6-mediated currents. In silico docking predicts FLPK to bind to FGF14V160 with the expectation of interfering with the FGF14:Nav1.6 complex formation, a phenotype that was confirmed by the split-luciferase assay (LCA) and surface plasmon resonance (SPR), respectively. Whole-cell patch-clamp electrophysiology studies demonstrate that FLPK is able to prevent previously reported FGF14-dependent phenotypes of Nav1.6 currents, but that its activity requires the FGF14 N-terminal tail, a domain that has been shown to contribute to Nav1.6 inactivation independently from the FGF14 core domain. In medium spiny neurons in the nucleus accumbens, where both FGF14 and Nav1.6 are abundantly expressed, FLPK significantly increased firing frequency by a mechanism consistent with the ability of the tetrapeptide to interfere with Nav1.6 inactivation and potentiate persistent Na+ currents. Taken together, these results indicate that FLPK might serve as a probe for characterizing molecular determinants of neuronal excitability and a peptide scaffold to develop allosteric modulators of Nav channels.
Collapse
Affiliation(s)
- Aditya K. Singh
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
| | - Paul A. Wadsworth
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
- M.D.‐Ph.D. Combined Degree ProgramUniversità Cattolica del Sacro CuoreRomeItaly
- Biochemistry and Molecular Biology Graduate ProgramUniversità Cattolica del Sacro CuoreRomeItaly
| | - Cynthia M. Tapia
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
- NIEHS Environmental Toxicology Training ProgramUniversità Cattolica del Sacro CuoreRomeItaly
| | - Giuseppe Aceto
- Institute of Human PhysiologyUniversità Cattolica del Sacro CuoreRomeItaly
- Department of NeuroscienceUniversità Cattolica del Sacro CuoreRomeItaly
- Fondazione Policlinico Universitario A. GemelliIRCCSRomeItaly
| | - Syed R. Ali
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
| | - Haiying Chen
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
| | - Marcello D'Ascenzo
- Institute of Human PhysiologyUniversità Cattolica del Sacro CuoreRomeItaly
- Department of NeuroscienceUniversità Cattolica del Sacro CuoreRomeItaly
- Fondazione Policlinico Universitario A. GemelliIRCCSRomeItaly
| | - Jia Zhou
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
- Center for Addiction ResearchUniversity of Texas Medical BranchGalvestonTXUSA
| | - Fernanda Laezza
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
- Center for Addiction ResearchUniversity of Texas Medical BranchGalvestonTXUSA
- Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTXUSA
| |
Collapse
|
19
|
Jaworski T. Control of neuronal excitability by GSK-3beta: Epilepsy and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118745. [PMID: 32450268 DOI: 10.1016/j.bbamcr.2020.118745] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/22/2022]
Abstract
Glycogen synthase kinase 3beta (GSK-3β) is an enzyme with a variety of cellular functions in addition to the regulation of glycogen metabolism. In the central nervous system, different intracellular signaling pathways converge on GSK-3β through a cascade of phosphorylation events that ultimately control a broad range of neuronal functions in the development and adulthood. In mice, genetically removing or increasing GSK-3β cause distinct functional and structural neuronal phenotypes and consequently affect cognition. Precise control of GSK-3β activity is important for such processes as neuronal migration, development of neuronal morphology, synaptic plasticity, excitability, and gene expression. Altered GSK-3β activity contributes to aberrant plasticity within neuronal circuits leading to neurological, psychiatric disorders, and neurodegenerative diseases. Therapeutically targeting GSK-3β can restore the aberrant plasticity of neuronal networks at least in animal models of these diseases. Although the complete repertoire of GSK-3β neuronal substrates has not been defined, emerging evidence shows that different ion channels and their accessory proteins controlling excitability, neurotransmitter release, and synaptic transmission are regulated by GSK-3β, thereby supporting mechanisms of synaptic plasticity in cognition. Dysregulation of ion channel function by defective GSK-3β activity sustains abnormal excitability in the development of epilepsy and other GSK-3β-linked human diseases.
Collapse
Affiliation(s)
- Tomasz Jaworski
- Laboratory of Animal Models, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
20
|
Li Q, Zhai Z, Li J. Fibroblast growth factor homologous factors are potential ion channel modifiers associated with cardiac arrhythmias. Eur J Pharmacol 2020; 871:172920. [PMID: 31935396 DOI: 10.1016/j.ejphar.2020.172920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/10/2019] [Accepted: 01/10/2020] [Indexed: 12/27/2022]
Abstract
Stable electrical activity in cardiac myocytes is the basis of maintaining normal myocardial systolic and diastolic function. Cardiac ionic currents and their associated regulatory proteins are crucial to myocyte excitability and heart function. Fibroblast growth factor homologous factors (FHFs) are intracellular noncanonical fibroblast growth factors (FGFs) that are incapable of activating FGF receptors. The main functions of FHFs are to regulate ion channels and influence excitability, which are processes involved in sustaining normal cardiac function. In addition to their regulatory effect on ion channels, FHFs can be regulators of cardiac hypertrophic signaling and alter signaling pathways, including the protein kinase, NF<kappa>B, and p53 pathways, which are related to the pathological processes of heart diseases. This review emphasizes FHF-mediated regulation of cardiac excitability and the association of FHFs with cardiac arrhythmias and explores the idea that abnormal FHFs may be an unrecognized cause of cardiac disorders.
Collapse
Affiliation(s)
- Qing Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhenyu Zhai
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Juxiang Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
21
|
Wadsworth PA, Folorunso O, Nguyen N, Singh AK, D'Amico D, Powell RT, Brunell D, Allen J, Stephan C, Laezza F. High-throughput screening against protein:protein interaction interfaces reveals anti-cancer therapeutics as potent modulators of the voltage-gated Na + channel complex. Sci Rep 2019; 9:16890. [PMID: 31729429 PMCID: PMC6858373 DOI: 10.1038/s41598-019-53110-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/28/2019] [Indexed: 11/09/2022] Open
Abstract
Multiple voltage-gated Na+ (Nav) channelopathies can be ascribed to subtle changes in the Nav macromolecular complex. Fibroblast growth factor 14 (FGF14) is a functionally relevant component of the Nav1.6 channel complex, a causative link to spinocerebellar ataxia 27 (SCA27) and an emerging risk factor for neuropsychiatric disorders. Yet, how this protein:channel complex is regulated in the cell is still poorly understood. To search for key cellular pathways upstream of the FGF14:Nav1.6 complex, we have developed, miniaturized and optimized an in-cell assay in 384-well plates by stably reconstituting the FGF14:Nav1.6 complex using the split-luciferase complementation assay. We then conducted a high-throughput screening (HTS) of 267 FDA-approved compounds targeting known mediators of cellular signaling. Of the 65 hits initially detected, 24 were excluded based on counter-screening and cellular toxicity. Based on target analysis, potency and dose-response relationships, 5 compounds were subsequently repurchased for validation and confirmed as hits. Among those, the tyrosine kinase inhibitor lestaurtinib was highest ranked, exhibiting submicromolar inhibition of FGF14:Nav1.6 assembly. While providing evidence for a robust in-cell HTS platform that can be adapted to search for any channelopathy-associated regulatory proteins, these results lay the potential groundwork for repurposing cancer drugs for neuropsychopharmacology.
Collapse
Affiliation(s)
- Paul A Wadsworth
- MD/PhD Combined Degree Program and Biochemistry and Molecular Biology Graduate Program, The University of Texas Medical Branch, Galveston, Texas, 77555, USA.,Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Oluwarotimi Folorunso
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Nghi Nguyen
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, 77030, USA
| | - Aditya K Singh
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Daniela D'Amico
- Neuroscience Graduate Program, The University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Reid T Powell
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, 77030, USA
| | - David Brunell
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, 77030, USA
| | - John Allen
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Clifford Stephan
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, 77030, USA
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, 77555, USA.
| |
Collapse
|
22
|
White HV, Brown ST, Bozza TC, Raman IM. Effects of FGF14 and Na Vβ4 deletion on transient and resurgent Na current in cerebellar Purkinje neurons. J Gen Physiol 2019; 151:1300-1318. [PMID: 31558566 PMCID: PMC6829560 DOI: 10.1085/jgp.201912390] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/03/2019] [Indexed: 11/20/2022] Open
Abstract
Voltage-gated Na channels of Purkinje cells are specialized to maintain high availability during high-frequency repetitive firing. They enter fast-inactivated states relatively slowly and undergo a voltage-dependent open-channel block by an intracellular protein (or proteins) that prevents stable fast inactivation and generates resurgent Na current. These properties depend on the pore-forming α subunits, as well as modulatory subunits within the Na channel complex. The identity of the factors responsible for open-channel block remains a question. Here we investigate the effects of genetic mutation of two Na channel auxiliary subunits highly expressed in Purkinje cells, NaVβ4 and FGF14, on modulating Na channel blocked as well as inactivated states. We find that although both NaVβ4 and the FGF14 splice variant FGF14-1a contain sequences that can generate resurgent-like currents when applied to Na channels in peptide form, deletion of either protein, or both proteins simultaneously, does not eliminate resurgent current in acutely dissociated Purkinje cell bodies. Loss of FGF14 expression does, however, reduce resurgent current amplitude and leads to an acceleration and stabilization of inactivation that is not reversed by application of the site-3 toxin, anemone toxin II (ATX). Tetrodotoxin (TTX) sensitivity is higher for resurgent than transient components of Na current, and loss of FGF14 preferentially affects a highly TTX-sensitive subset of Purkinje α subunits. The data suggest that NaV1.6 channels, which are known to generate the majority of Purkinje cell resurgent current, bind TTX with high affinity and are modulated by FGF14 to facilitate open-channel block.
Collapse
Affiliation(s)
- Hayley V White
- Department of Neurobiology, Northwestern University, Evanston, IL.,Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL
| | - Spencer T Brown
- Department of Neurobiology, Northwestern University, Evanston, IL.,Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL
| | - Thomas C Bozza
- Department of Neurobiology, Northwestern University, Evanston, IL.,Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL
| | - Indira M Raman
- Department of Neurobiology, Northwestern University, Evanston, IL .,Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL
| |
Collapse
|
23
|
Sex-Specific Proteomic Changes Induced by Genetic Deletion of Fibroblast Growth Factor 14 (FGF14), a Regulator of Neuronal Ion Channels. Proteomes 2019; 7:proteomes7010005. [PMID: 30678040 PMCID: PMC6473632 DOI: 10.3390/proteomes7010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
Fibroblast growth factor 14 (FGF14) is a member of the intracellular FGFs, which is a group of proteins involved in neuronal ion channel regulation and synaptic transmission. We previously demonstrated that male Fgf14−/− mice recapitulate the salient endophenotypes of synaptic dysfunction and behaviors that are associated with schizophrenia (SZ). As the underlying etiology of SZ and its sex-specific onset remain elusive, the Fgf14−/− model may provide a valuable tool to interrogate pathways related to disease mechanisms. Here, we performed label-free quantitative proteomics to identify enriched pathways in both male and female hippocampi from Fgf14+/+ and Fgf14−/− mice. We discovered that all of the differentially expressed proteins measured in Fgf14−/− animals, relative to their same-sex wildtype counterparts, are associated with SZ based on genome-wide association data. In addition, measured changes in the proteome were predominantly sex-specific, with the male Fgf14−/− mice distinctly enriched for pathways associated with neuropsychiatric disorders. In the male Fgf14−/− mouse, we found molecular characteristics that, in part, may explain a previously described neurotransmission and behavioral phenotype. This includes decreased levels of ALDH1A1 and protein kinase A (PRKAR2B). ALDH1A1 has been shown to mediate an alternative pathway for gamma-aminobutyric acid (GABA) synthesis, while PRKAR2B is essential for dopamine 2 receptor signaling, which is the basis of current antipsychotics. Collectively, our results provide new insights in the role of FGF14 and support the use of the Fgf14−/− mouse as a useful preclinical model of SZ for generating hypotheses on disease mechanisms, sex-specific manifestation, and therapy.
Collapse
|
24
|
Liu Z, Wadsworth P, Singh AK, Chen H, Wang P, Folorunso O, Scaduto P, Ali SR, Laezza F, Zhou J. Identification of peptidomimetics as novel chemical probes modulating fibroblast growth factor 14 (FGF14) and voltage-gated sodium channel 1.6 (Nav1.6) protein-protein interactions. Bioorg Med Chem Lett 2018; 29:413-419. [PMID: 30587448 DOI: 10.1016/j.bmcl.2018.12.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 11/26/2022]
Abstract
The voltage-gated sodium (Nav) channel is the molecular determinant of action potential in neurons. Protein-protein interactions (PPI) between the intracellular Nav1.6 C-tail and its regulatory protein fibroblast growth factor 14 (FGF14) provide an ideal and largely untapped opportunity for development of neurochemical probes. Based on a previously identified peptide FLPK, mapped to the FGF14:FGF14 PPI interface, we have designed and synthesized a series of peptidomimetics with the intent of increasing clogP values and improving cell permeability relative to the parental lead peptide. In-cell screening using the split-luciferase complementation (LCA) assay identified ZL0177 (13) as the most potent inhibitor of the FGF14:Nav1.6 channel complex assembly with an apparent IC50 of 11 μM. Whole-cell patch-clamp recordings demonstrated that ZL0177 significantly reduced Nav1.6-mediated transient current density and induced a depolarizing shift of the channel voltage-dependence of activation. Docking studies revealed strong interactions between ZL0177 and Nav1.6, mediated by hydrogen bonds, cation-π interactions and hydrophobic contacts. All together these results suggest that ZL0177 retains some key features of FGF14-dependent modulation of Nav1.6 currents. Overall, ZL0177 provides a chemical scaffold for developing Nav channel modulators as pharmacological probes with therapeutic potential of interest for a broad range of CNS and PNS disorders.
Collapse
Affiliation(s)
- Zhiqing Liu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Galveston, TX 77555, United States
| | - Paul Wadsworth
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Galveston, TX 77555, United States
| | - Aditya K Singh
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Galveston, TX 77555, United States
| | - Haiying Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Galveston, TX 77555, United States
| | - Pingyuan Wang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Galveston, TX 77555, United States
| | - Oluwarotimi Folorunso
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Galveston, TX 77555, United States
| | - Pietro Scaduto
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Galveston, TX 77555, United States
| | - Syed R Ali
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Galveston, TX 77555, United States
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Galveston, TX 77555, United States.
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Galveston, TX 77555, United States.
| |
Collapse
|
25
|
Ali SR, Liu Z, Nenov MN, Folorunso O, Singh A, Scala F, Chen H, James TF, Alshammari M, Panova-Elektronova NI, White MA, Zhou J, Laezza F. Functional Modulation of Voltage-Gated Sodium Channels by a FGF14-Based Peptidomimetic. ACS Chem Neurosci 2018; 9:976-987. [PMID: 29359916 DOI: 10.1021/acschemneuro.7b00399] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Protein-protein interactions (PPI) offer unexploited opportunities for CNS drug discovery and neurochemical probe development. Here, we present ZL181, a novel peptidomimetic targeting the PPI interface of the voltage-gated Na+ channel Nav1.6 and its regulatory protein fibroblast growth factor 14 (FGF14). ZL181 binds to FGF14 and inhibits its interaction with the Nav1.6 channel C-tail. In HEK-Nav1.6 expressing cells, ZL181 acts synergistically with FGF14 to suppress Nav1.6 current density and to slow kinetics of fast inactivation, but antagonizes FGF14 modulation of steady-state inactivation that is regulated by the N-terminal tail of the protein. In medium spiny neurons in the nucleus accumbens, ZL181 suppresses excitability by a mechanism that is dependent upon expression of FGF14 and is consistent with a state-dependent inhibition of FGF14. Overall, ZL181 and derivatives could lay the ground for developing allosteric modulators of Nav channels that are of interest for a broad range of CNS disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Musaad Alshammari
- King Saud University Graduate Studies Abroad Program, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | |
Collapse
|
26
|
Hsu WCJ, Wildburger NC, Haidacher SJ, Nenov MN, Folorunso O, Singh AK, Chesson BC, Franklin WF, Cortez I, Sadygov RG, Dineley KT, Rudra JS, Taglialatela G, Lichti CF, Denner L, Laezza F. PPARgamma agonists rescue increased phosphorylation of FGF14 at S226 in the Tg2576 mouse model of Alzheimer's disease. Exp Neurol 2017; 295:1-17. [PMID: 28522250 DOI: 10.1016/j.expneurol.2017.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/13/2017] [Accepted: 05/13/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cognitive impairment in humans with Alzheimer's disease (AD) and in animal models of Aβ-pathology can be ameliorated by treatments with the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARγ) agonists, such as rosiglitazone (RSG). Previously, we demonstrated that in the Tg2576 animal model of AD, RSG treatment rescued cognitive deficits and reduced aberrant activity of granule neurons in the dentate gyrus (DG), an area critical for memory formation. METHODS We used a combination of mass spectrometry, confocal imaging, electrophysiology and split-luciferase assay and in vitro phosphorylation and Ingenuity Pathway Analysis. RESULTS Using an unbiased, quantitative nano-LC-MS/MS screening, we searched for potential molecular targets of the RSG-dependent rescue of DG granule neurons. We found that S226 phosphorylation of fibroblast growth factor 14 (FGF14), an accessory protein of the voltage-gated Na+ (Nav) channels required for neuronal firing, was reduced in Tg2576 mice upon treatment with RSG. Using confocal microscopy, we confirmed that the Tg2576 condition decreased PanNav channels at the AIS of the DG, and that RSG treatment of Tg2576 mice reversed the reduction in PanNav channels. Analysis from previously published data sets identified correlative changes in action potential kinetics in RSG-treated T2576 compared to untreated and wildtype controls. In vitro phosphorylation and mass spectrometry confirmed that the multifunctional kinase GSK-3β, a downstream target of insulin signaling highly implicated in AD, phosphorylated FGF14 at S226. Assembly of the FGF14:Nav1.6 channel complex and functional regulation of Nav1.6-mediated currents by FGF14 was impaired by a phosphosilent S226A mutation. Bioinformatics pathway analysis of mass spectrometry and biochemistry data revealed a highly interconnected network encompassing PPARγ, FGF14, SCN8A (Nav 1.6), and the kinases GSK-3 β, casein kinase 2β, and ERK1/2. CONCLUSIONS These results identify FGF14 as a potential PPARγ-sensitive target controlling Aβ-induced dysfunctions of neuronal activity in the DG underlying memory loss in early AD.
Collapse
Affiliation(s)
- Wei-Chun J Hsu
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Biochemistry and Molecular Biology Graduate Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; M.D./Ph.D. Combined Degree Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Norelle C Wildburger
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Neuroscience Graduate Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States
| | - Sigmund J Haidacher
- Department of Internal Medicine, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Miroslav N Nenov
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Oluwarotimi Folorunso
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Aditya K Singh
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Brent C Chesson
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Whitney F Franklin
- Neuroscience Graduate Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Department of Neurology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Ibdanelo Cortez
- Neuroscience Graduate Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Rovshan G Sadygov
- Biochemistry and Molecular Biology Graduate Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Sealy Center for Molecular Medicine, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Kelly T Dineley
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Department of Neurology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Center for Addiction Research, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Jay S Rudra
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Giulio Taglialatela
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Department of Neurology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Cheryl F Lichti
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Larry Denner
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Department of Internal Medicine, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Center for Addiction Research, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Center for Addiction Research, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Center for Biomedical Engineering, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States.
| |
Collapse
|
27
|
Di Re J, Wadsworth PA, Laezza F. Intracellular Fibroblast Growth Factor 14: Emerging Risk Factor for Brain Disorders. Front Cell Neurosci 2017; 11:103. [PMID: 28469558 PMCID: PMC5396478 DOI: 10.3389/fncel.2017.00103] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/28/2017] [Indexed: 01/31/2023] Open
Abstract
The finely tuned regulation of neuronal firing relies on the integrity of ion channel macromolecular complexes. Minimal disturbances of these tightly regulated networks can lead to persistent maladaptive plasticity of brain circuitry. The intracellular fibroblast growth factor 14 (FGF14) belongs to the nexus of proteins interacting with voltage-gated Na+ (Nav) channels at the axonal initial segment. Through isoform-specific interactions with the intracellular C-terminal tail of neuronal Nav channels (Nav1.1, Nav1.2, Nav1.6), FGF14 controls channel gating, axonal targeting and phosphorylation in neurons effecting excitability. FGF14 has been also involved in synaptic transmission, plasticity and neurogenesis in the cortico-mesolimbic circuit with cognitive and affective behavioral outcomes. In translational studies, interest in FGF14 continues to rise with a growing list of associative links to diseases of the cognitive and affective domains such as neurodegeneration, depression, anxiety, addictive behaviors and recently schizophrenia, suggesting its role as a converging node in the etiology of complex brain disorders. Yet, a full understanding of FGF14 function in neurons is far from being complete and likely to involve other functions unrelated to the direct regulation of Nav channels. The goal of this Mini Review article is to provide a summary of studies on the emerging role of FGF14 in complex brain disorders.
Collapse
Affiliation(s)
- Jessica Di Re
- Neuroscience Graduate Program, University of Texas Medical BranchGalveston, TX, USA.,Department of Pharmacology and Toxicology, University of Texas Medical BranchGalveston, TX, USA
| | - Paul A Wadsworth
- Biochemistry and Molecular Biology Graduate Program, The University of Texas Medical BranchGalveston, TX, USA
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical BranchGalveston, TX, USA.,Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical BranchGalveston, TX, USA.,Center for Addiction Research, The University of Texas Medical BranchGalveston, TX, USA
| |
Collapse
|