1
|
Lee S. Modulation of amylin and calcitonin receptor activation by hybrid peptides. Peptides 2024; 182:171314. [PMID: 39454962 DOI: 10.1016/j.peptides.2024.171314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/03/2024] [Accepted: 10/23/2024] [Indexed: 10/28/2024]
Abstract
Calcitonin peptide hormone controls calcium homeostasis by activating the calcitonin receptor. When the calcitonin receptor forms a complex with an accessory protein, the complex functions as the receptors for another peptide hormone amylin. The amylin receptors are the drug target for diabetes and obesity treatment. Since human amylin can produce aggregates, rat amylin that does not form aggregates has been commonly used for research. Interestingly, calcitonin originated from salmons was reported to interact with human amylin receptors with higher affinity/potency than endogenous rat amylin. Here, the peptide hybrid was made of a rat amylin N-terminal fragment and a salmon calcitonin C-terminal fragment. This novel hybrid peptide showed higher potency for human amylin receptor 1/2 activation by 6- to 8-fold than endogenous rat amylin. To further examine the role of the peptide C-terminal fragment in receptor activation, another hybrid peptide was made where salmon calcitonin N-terminal 21 amino acids were fused with rat amylin C-terminal 11 amino acids. The rat amylin C-terminal fragment was previously reported to have relatively low affinity for calcitonin receptor extracellular domain. As expected, this calcitonin-amylin hybrid peptide decreased the potency for calcitonin receptor activation by 3-fold compared to salmon calcitonin. The hybrid strategy used in this study significantly changed the peptide potency for amylin and calcitonin receptor activation. These results provide insight into the role of peptide C-terminal fragments in modulating amylin and calcitonin receptor activation.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
2
|
Garelja M, Alexander T, Walker C, Hay D. Extracellular bimolecular fluorescence complementation for investigating membrane protein dimerization: a proof of concept using class B GPCRs. Biosci Rep 2024; 44:BSR20240449. [PMID: 39361899 PMCID: PMC11499381 DOI: 10.1042/bsr20240449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024] Open
Abstract
Bimolecular fluorescence complementation (BiFC) methodology uses split fluorescent proteins to detect interactions between proteins in living cells. To date, BiFC has been used to investigate receptor dimerization by splitting the fluorescent protein between the intracellular portions of different receptor components. We reasoned that attaching these split proteins to the extracellular N-terminus instead may improve the flexibility of this methodology and reduce the likelihood of impaired intracellular signal transduction. As a proof-of-concept, we used receptors for calcitonin gene-related peptide, which comprise heterodimers of either the calcitonin or calcitonin receptor-like receptor in complex with an accessory protein (receptor activity-modifying protein 1). We created fusion constructs in which split mVenus fragments were attached to either the C-termini or N-termini of receptor subunits. The resulting constructs were transfected into Cos7 and HEK293S cells, where we measured cAMP production in response to ligand stimulation, cell surface expression of receptor complexes, and BiFC fluorescence. Additionally, we investigated ligand-dependent internalization in HEK293S cells. We found N-terminal fusions were better tolerated with regards to cAMP signaling and receptor internalization. N-terminal fusions also allowed reconstitution of functional fluorescent mVenus proteins; however, fluorescence yields were lower than with C-terminal fusion. Our results suggest that BiFC methodologies can be applied to the receptor N-terminus, thereby increasing the flexibility of this approach, and enabling further insights into receptor dimerization.
Collapse
Affiliation(s)
- Michael L. Garelja
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Tyla I. Alexander
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Christopher S. Walker
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Debbie L. Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Lee S. Development of the novel amylin and calcitonin receptor activators by peptide mutagenesis. Arch Biochem Biophys 2024; 762:110191. [PMID: 39481742 DOI: 10.1016/j.abb.2024.110191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
The amylin peptide hormone receptor is the complex of the calcitonin peptide hormone receptor and an accessory protein. The calcitonin receptor activation controls calcium homeostasis, while it also functions as the main component of the amylin receptor. Amylin receptor activation in brains controls blood glucose and appetite. Currently, non-selective amylin and calcitonin receptor activators have been tested for body weight reduction to treat obesity. Here, multiple peptide activators for human amylin and calcitonin receptors were developed by introducing comprehensive mutagenesis to rat amylin peptide. The rat amylin peptide C-terminal fragment that interacts with amylin receptor extracellular domain was used to screen for affinity-enhancing mutations. Up to twelve mutational combinations were found to significantly increase peptide affinity both for amylin and calcitonin receptor extracellular domains by over 100-fold. Using these affinity-enhancing mutations, three representative rat amylin analogs with thirty-seven amino acids were made to test the potency increase for amylin and calcitonin receptor activation. All three mutated rat amylin analogs showed significant potency increases by 5- to 10-fold compared to endogenous rat amylin. These mutated peptide activators also showed higher potency for human amylin and calcitonin receptor activation than a clinically available amylin receptor activator pramlintide. These amylin and calcitonin receptor activators developed in this study may be useful as the valuable pharmacological tools that activate amylin receptors in cell-based systems.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
4
|
Gostynska SE, Karim JA, Ford BE, Gordon PH, Babin KM, Inoue A, Lambert NA, Pioszak AA. Amylin receptor subunit interactions are modulated by agonists and determine signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617487. [PMID: 39416010 PMCID: PMC11482831 DOI: 10.1101/2024.10.09.617487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Three amylin receptors (AMYRs) mediate the metabolic actions of the peptide hormone amylin and are drug targets for diabetes and obesity. AMY1R, AMY2R, and AMY3R are heterodimers consisting of the G protein-coupled calcitonin receptor (CTR) paired with a RAMP1, -2, or -3 accessory subunit, respectively, which increases amylin potency. Little is known about AMYR subunit interactions and their role in signaling. Here, we show that the AMYRs have distinct basal subunit equilibriums that are modulated by peptide agonists and determine the cAMP signaling phenotype. Using a novel biochemical assay that resolves the AMYR heterodimers and free subunits, we found that the AMY1/2R subunit equilibriums favored free CTR and RAMP1/2, and rat amylin and αCGRP agonists promoted subunit association. A stronger CTR-RAMP3 transmembrane domain interface yielded a more stable AMY3R, and human and salmon calcitonin agonists promoted AMY3R dissociation. Similar changes in subunit association-dissociation were observed in live cell membranes, and G protein coupling and cAMP signaling assays showed how these altered signaling. Our findings reveal regulation of heteromeric GPCR signaling through subunit interaction dynamics.
Collapse
Affiliation(s)
- Sandra E. Gostynska
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Jordan A. Karim
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Bailee E. Ford
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Peyton H. Gordon
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Katie M. Babin
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578. Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501. Japan
| | - Nevin A. Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA. 30912. USA
| | - Augen A. Pioszak
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| |
Collapse
|
5
|
Su L, Li G, Chow BKC, Cardoso JCR. Neuropeptides and receptors in the cephalochordate: A crucial model for understanding the origin and evolution of vertebrate neuropeptide systems. Mol Cell Endocrinol 2024; 592:112324. [PMID: 38944371 DOI: 10.1016/j.mce.2024.112324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/26/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Genomes and transcriptomes from diverse organisms are providing a wealth of data to explore the evolution and origin of neuropeptides and their receptors in metazoans. While most neuropeptide-receptor systems have been extensively studied in vertebrates, there is still a considerable lack of understanding regarding their functions in invertebrates, an extraordinarily diverse group that account for the majority of animal species on Earth. Cephalochordates, commonly known as amphioxus or lancelets, serve as the evolutionary proxy of the chordate ancestor. Their key evolutionary position, bridging the invertebrate to vertebrate transition, has been explored to uncover the origin, evolution, and function of vertebrate neuropeptide systems. Amphioxus genomes exhibit a high degree of sequence and structural conservation with vertebrates, and sequence and functional homologues of several vertebrate neuropeptide families are present in cephalochordates. This review aims to provide a comprehensively overview of the recent findings on neuropeptides and their receptors in cephalochordates, highlighting their significance as a model for understanding the complex evolution of neuropeptide signaling in vertebrates.
Collapse
Affiliation(s)
- Liuru Su
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| | - João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, 8005-139, Faro, Portugal.
| |
Collapse
|
6
|
Wu Y, Yuan C, Han P, Guo J, Wang Y, Chen C, Huang C, Zheng K, Qi Y, Li J, Xue Z, Lu F, Liang D, Gao J, Li X, Guo Q. Discovery of potential biomarkers for osteoporosis using LC/GC-MS metabolomic methods. Front Endocrinol (Lausanne) 2024; 14:1332216. [PMID: 38298188 PMCID: PMC10828954 DOI: 10.3389/fendo.2023.1332216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Purpose For early diagnosis of osteoporosis (OP), plasma metabolomics of OP was studied by untargeted LC/GC-MS in a Chinese elderly population to find possible diagnostic biomarkers. Methods A total of 379 Chinese community-dwelling older adults aged ≥65 years were recruited for this study. The BMD of the calcaneus was measured using quantitative ultrasound (QUS), and a T value ≤-2.5 was defined as OP. Twenty-nine men and 47 women with OP were screened, and 29 men and 36 women were matched according to age and BMI as normal controls using propensity matching. Plasma from these participants was first analyzed by untargeted LC/GC-MS, followed by FC and P values to screen for differential metabolites and heatmaps and box plots to differentiate metabolites between groups. Finally, metabolic pathway enrichment analysis of differential metabolites was performed based on KEGG, and pathways with P ≤ 0.05 were selected as enrichment pathways. Results We screened metabolites with FC>1.2 or FC<1/1.2 and P<0.05 and found 33 differential metabolites in elderly men and 30 differential metabolites in elderly women that could be potential biomarkers for OP. 2-Aminomuconic acid semialdehyde (AUC=0.72, 95% CI 0.582-0.857, P=0.004) is highly likely to be a biomarker for screening OP in older men. Tetradecanedioic acid (AUC=0.70, 95% CI 0.575-0.818, P=0.004) is highly likely to be a biomarker for screening OP in older women. Conclusion These findings can be applied to clinical work through further validation studies. This study also shows that metabolomic analysis has great potential for application in the early diagnosis and recurrence monitoring of OP in elderly individuals.
Collapse
Affiliation(s)
- Yahui Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Chunhua Yuan
- Comprehensive surgical rehabilitation ward, Shanghai Health Rehabilitation Hospital, Shanghai, China
| | - Peipei Han
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jiangling Guo
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Cheng Chen
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- School of Health, Fujian Medical University, Fujian, China
| | - Chuanjun Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Kai Zheng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yiqiong Qi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Jiajin Li
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Zhengjie Xue
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Fanchen Lu
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Dongyu Liang
- Clinical Research Center, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Jing Gao
- General Practice Clinic, Pujiang Community Health Service Center in Minhang District, Shanghai, China
| | - Xingyan Li
- Shanghai Hongkou District Jiangwan Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Qi Guo
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
7
|
Dergunova LV, Filippenkov IB, Limborska SA, Myasoedov NF. Neuroprotective Peptides and New Strategies for Ischemic Stroke Drug Discoveries. Genes (Basel) 2023; 14:genes14050953. [PMID: 37239313 DOI: 10.3390/genes14050953] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Ischemic stroke continues to be one of the leading causes of death and disability in the adult population worldwide. The currently used pharmacological methods for the treatment of ischemic stroke are not effective enough and require the search for new tools and approaches to identify therapeutic targets and potential neuroprotectors. Today, in the development of neuroprotective drugs for the treatment of stroke, special attention is paid to peptides. Namely, peptide action is aimed at blocking the cascade of pathological processes caused by a decrease in blood flow to the brain tissues. Different groups of peptides have therapeutic potential in ischemia. Among them are small interfering peptides that block protein-protein interactions, cationic arginine-rich peptides with a combination of various neuroprotective properties, shuttle peptides that ensure the permeability of neuroprotectors through the blood-brain barrier, and synthetic peptides that mimic natural regulatory peptides and hormones. In this review, we consider the latest achievements and trends in the development of new biologically active peptides, as well as the role of transcriptomic analysis in identifying the molecular mechanisms of action of potential drugs aimed at the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lyudmila V Dergunova
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Ivan B Filippenkov
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Svetlana A Limborska
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Nikolay F Myasoedov
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
8
|
Kotliar IB, Lorenzen E, Schwenk JM, Hay DL, Sakmar TP. Elucidating the Interactome of G Protein-Coupled Receptors and Receptor Activity-Modifying Proteins. Pharmacol Rev 2023; 75:1-34. [PMID: 36757898 PMCID: PMC9832379 DOI: 10.1124/pharmrev.120.000180] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/27/2022] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are known to interact with several other classes of integral membrane proteins that modulate their biology and pharmacology. However, the extent of these interactions and the mechanisms of their effects are not well understood. For example, one class of GPCR-interacting proteins, receptor activity-modifying proteins (RAMPs), comprise three related and ubiquitously expressed single-transmembrane span proteins. The RAMP family was discovered more than two decades ago, and since then GPCR-RAMP interactions and their functional consequences on receptor trafficking and ligand selectivity have been documented for several secretin (class B) GPCRs, most notably the calcitonin receptor-like receptor. Recent bioinformatics and multiplexed experimental studies suggest that GPCR-RAMP interactions might be much more widespread than previously anticipated. Recently, cryo-electron microscopy has provided high-resolution structures of GPCR-RAMP-ligand complexes, and drugs have been developed that target GPCR-RAMP complexes. In this review, we provide a summary of recent advances in techniques that allow the discovery of GPCR-RAMP interactions and their functional consequences and highlight prospects for future advances. We also provide an up-to-date list of reported GPCR-RAMP interactions based on a review of the current literature. SIGNIFICANCE STATEMENT: Receptor activity-modifying proteins (RAMPs) have emerged as modulators of many aspects of G protein-coupled receptor (GPCR)biology and pharmacology. The application of new methodologies to study membrane protein-protein interactions suggests that RAMPs interact with many more GPCRs than had been previously known. These findings, especially when combined with structural studies of membrane protein complexes, have significant implications for advancing GPCR-targeted drug discovery and the understanding of GPCR pharmacology, biology, and regulation.
Collapse
Affiliation(s)
- Ilana B Kotliar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Emily Lorenzen
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Jochen M Schwenk
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Debbie L Hay
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| |
Collapse
|
9
|
Chang CL, Cai Z, Hsu SYT. Gel-forming antagonist provides a lasting effect on CGRP-induced vasodilation. Front Pharmacol 2022; 13:1040951. [PMID: 36569288 PMCID: PMC9772450 DOI: 10.3389/fphar.2022.1040951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Migraine affects ∼15% of the adult population, and the standard treatment includes the use of triptans, ergotamines, and analgesics. Recently, CGRP and its receptor, the CLR/RAMP1 receptor complex, have been targeted for migraine treatment due to their critical roles in mediating migraine headaches. The effort has led to the approval of several anti-CGRP antibodies for chronic migraine treatment. However, many patients still suffer continuous struggles with migraine, perhaps due to the limited ability of anti-CGRP therapeutics to fully reduce CGRP levels or reach target cells. An alternative anti-CGRP strategy may help address the medical need of patients who do not respond to existing therapeutics. By serendipity, we have recently found that several chimeric adrenomedullin/adrenomedullin 2 peptides are potent CLR/RAMP receptor antagonists and self-assemble to form liquid gels. Among these analogs, the ADE651 analog, which potently inhibits CLR/RAMP1 receptor signaling, forms gels at a 6-20% level. Screening of ADE651 variants indicated that residues at the junctional region of this chimeric peptide are important for gaining the gel-forming capability. Gel-formation significantly slowed the passage of ADE651 molecules through Centricon filters. Consistently, subcutaneous injection of ADE651 gel in rats led to the sustained presence of ADE651 in circulation for >1 week. In addition, analysis of vascular blood flow in rat hindlimbs showed ADE651 significantly reduces CGRP-induced vasodilation. Because gel-forming antagonists could have direct and sustained access to target cells, ADE651 and related antagonists for CLR/RAMP receptors may represent promising candidates for targeting CGRP- and/or adrenomedullin-mediated headaches in migraine patients.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Taoyuan, Taiwan
| | - Zheqing Cai
- CL Laboratory LLC, Gaithersburg, MD, United States
| | - Sheau Yu Teddy Hsu
- Adepthera LLC, San Jose, CA, United States,*Correspondence: Sheau Yu Teddy Hsu,
| |
Collapse
|
10
|
Chang CL, Cai Z, Hsu SYT. Sustained Activation of CLR/RAMP Receptors by Gel-Forming Agonists. Int J Mol Sci 2022; 23:ijms232113408. [PMID: 36362188 PMCID: PMC9655119 DOI: 10.3390/ijms232113408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Adrenomedullin (ADM), adrenomedullin 2 (ADM2), and CGRP family peptides are important regulators of vascular vasotone and integrity, neurotransmission, and fetoplacental development. These peptides signal through CLR/RAMP1, 2, and 3 receptors, and protect against endothelial dysfunction in disease models. As such, CLR/RAMP receptor agonists are considered important therapeutic candidates for various diseases. Methods and Results: Based on the screening of a series of palmitoylated chimeric ADM/ADM2 analogs, we demonstrated a combination of lipidation and accommodating motifs at the hinge region of select peptides is important for gaining an enhanced receptor-activation activity and improved stimulatory effects on the proliferation and survival of human lymphatic endothelial cells when compared to wild-type peptides. In addition, by serendipity, we found that select palmitoylated analogs self-assemble to form liquid gels, and subcutaneous administration of an analog gel led to the sustained presence of the peptide in the circulation for >2 days. Consistently, subcutaneous injection of the analog gel significantly reduced the blood pressure in SHR rats and increased vasodilation in the hindlimbs of adult rats for days. Conclusions: Together, these data suggest gel-forming adrenomedullin analogs may represent promising candidates for the treatment of various life-threatening endothelial dysfunction-associated diseases such as treatment-resistant hypertension and preeclampsia, which are in urgent need of an effective drug.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Kweishan, Taoyuan 20878, Taiwan
| | - Zheqing Cai
- CL Laboratory LLC, Gaithersburg, MD 20878, USA
| | - Sheau Yu Teddy Hsu
- Adepthera LLC, San Jose, CA 95138, USA
- Correspondence: ; Tel.: +1-650-799-3496
| |
Collapse
|
11
|
Yang Y, Peng Z, Flores ER, Kleinerman ES. Pramlintide: A Novel Therapeutic Approach for Osteosarcoma through Metabolic Reprogramming. Cancers (Basel) 2022; 14:4310. [PMID: 36077845 PMCID: PMC9454976 DOI: 10.3390/cancers14174310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022] Open
Abstract
Despite aggressive combination chemotherapy and surgery, outcomes for patients with osteosarcoma have remained stagnant for more than 25 years, and numerous clinical trials have identified no new therapies. p53 deletion or mutation is found in more than 80% of osteosarcoma tumors. In p53-deficient cancers with structurally altered p63 and p73, interfering with tumor cell metabolism using Pramlintide (an FDA-approved drug for type 2 diabetes) results in tumor regression. Pramlintide response is mediated through upregulation of islet amyloid polypeptide (IAPP). Here, we showed that osteosarcoma cells have altered p63, p73, and p53, and decreased IAPP expression but have the two main IAPP receptors, CalcR and RAMP3, which inhibit glycolysis and induce apoptosis. We showed that in osteosarcoma cells with high- or mid-range glycolytic activity, Pramlintide decreased cell glycolysis, resulting in decreased proliferation and increased apoptosis in vitro. In contrast, Pramlintide had no effect in osteosarcoma cells with low glycolytic activity. Using a subcutaneous osteosarcoma mouse model, we showed that intratumoral injection of Pramlintide-induced tumor regression. Tumor sections showed increased apoptosis and a decrease in Ki-67 and HIF-1α. These data suggest that in osteosarcoma cells with altered p53, p63, and p73 and a high glycolytic function, Pramlintide therapy can modulate metabolic programming and inhibit tumor growth.
Collapse
Affiliation(s)
- Yuanzheng Yang
- Department of Pediatrics Research, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhanglong Peng
- Department of Pediatrics Research, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elsa R. Flores
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Eugenie S. Kleinerman
- Department of Pediatrics Research, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
12
|
Design, synthesis and preclinical evaluation of bio-conjugated amylinomimetic peptides as long-acting amylin receptor agonists. Eur J Med Chem 2022; 236:114330. [DOI: 10.1016/j.ejmech.2022.114330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/26/2022] [Accepted: 03/26/2022] [Indexed: 01/14/2023]
|
13
|
Lee S. Peptide ligand interaction with maltose-binding protein tagged to the calcitonin gene-related peptide receptor: The inhibitory role of receptor N-glycosylation. Peptides 2022; 150:170735. [PMID: 35007660 DOI: 10.1016/j.peptides.2022.170735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 11/21/2022]
Abstract
Calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) are peptide hormones and their receptors play a critical role in migraine progression and blood pressure control, respectively. CGRP and AM receptors are structurally related since they are the complex of the calcitonin receptor-like receptor (CLR) with the different types of receptor activity-modifying protein (RAMP). Several crystal structures of the CGRP and AM receptor extracellular domain (ECD) used maltose-binding protein (MBP) as a tag protein to facilitate crystallization. Unexpectedly, the recent crystal structures of CGRP receptor ECD showed that the N-terminal tag MBP located in proximity of bound/mutated peptide ligands. This study provided evidence that MBP N-terminally tagged to the CGRP receptor ECD formed chemical interaction with the mutated peptide ligands. Interestingly, N-glycosylation of the CGRP receptor ECD was predicted to prevent MBP docking to the mutated peptide ligands. I found that the N-glycosylation of CLR ECD N123 was the most critical for inhibiting MBP interaction with the mutated peptide ligands. The MBP tag protein interaction was also dependent on the sequence of the peptide ligands. In contrast to the CGRP receptor, the MBP tag was not involved in peptide ligand binding at AM receptor ECD. Here, I provided evidence that N-glycosylation of the CGRP receptor ECD inhibited the tag protein interaction suggesting an additional function of N-glycosylation in the MBP-fused CGRP receptor ECD. This study reveals the importance of using tag protein-free versions of the CGRP receptor for the accurate assessment of peptide binding affinity.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC 27268, USA.
| |
Collapse
|
14
|
Cao J, Belousoff MJ, Liang YL, Johnson RM, Josephs TM, Fletcher MM, Christopoulos A, Hay DL, Danev R, Wootten D, Sexton PM. A structural basis for amylin receptor phenotype. Science 2022; 375:eabm9609. [PMID: 35324283 DOI: 10.1126/science.abm9609] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amylin receptors (AMYRs) are heterodimers of the calcitonin (CT) receptor (CTR) and one of three receptor activity-modifying proteins (RAMPs), AMY1R, AMY2R, and AMY3R. Selective AMYR agonists and dual AMYR/CTR agonists are being developed as obesity treatments; however, the molecular basis for peptide binding and selectivity is unknown. We determined the structure and dynamics of active AMYRs with amylin, AMY1R with salmon CT (sCT), AMY2R with sCT or human CT (hCT), and CTR with amylin, sCT, or hCT. The conformation of amylin-bound complexes was similar for all AMYRs, constrained by the RAMP, and an ordered midpeptide motif that we call the bypass motif. The CT-bound AMYR complexes were distinct, overlapping the CT-bound CTR complexes. Our findings indicate that activation of AMYRs by CT-based peptides is distinct from their activation by amylin-based peptides. This has important implications for the development of AMYR therapeutics.
Collapse
Affiliation(s)
- Jianjun Cao
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia.,ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Matthew J Belousoff
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia.,ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Yi-Lynn Liang
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Rachel M Johnson
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia.,ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Tracy M Josephs
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia.,ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Madeleine M Fletcher
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia.,ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9054, New Zealand
| | - Radostin Danev
- Graduate School of Medicine, University of Tokyo, N415, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia.,ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Patrick M Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia.,ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| |
Collapse
|
15
|
Boccia L, Borner T, Ghidewon MY, Kulka P, Piffaretti C, Doebley SA, De Jonghe BC, Grill HJ, Lutz TA, Le Foll C. Hypophagia induced by salmon calcitonin, but not by amylin, is partially driven by malaise and is mediated by CGRP neurons. Mol Metab 2022; 58:101444. [PMID: 35091058 PMCID: PMC8873943 DOI: 10.1016/j.molmet.2022.101444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/07/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022] Open
Abstract
Objective The behavioral mechanisms and the neuronal pathways mediated by amylin and its long-acting analog sCT (salmon calcitonin) are not fully understood and it is unclear to what extent sCT and amylin engage overlapping or distinct neuronal subpopulations to reduce food intake. We here hypothesize that amylin and sCT recruit different neuronal population to mediate their anorectic effects. Methods Viral approaches were used to inhibit calcitonin gene-related peptide (CGRP) lateral parabrachial nucleus (LPBN) neurons and assess their role in amylin’s and sCT’s ability to decrease food intake in mice. In addition, to test the involvement of LPBN CGRP neuropeptidergic signaling in the mediation of amylin and sCT’s effects, a LPBN site-specific knockdown was performed in rats. To deeper investigate whether the greater anorectic effect of sCT compared to amylin is due do the recruitment of additional neuronal pathways related to malaise multiple and distinct animal models tested whether amylin and sCT induce conditioned avoidance, nausea, emesis, and conditioned affective taste aversion. Results Our results indicate that permanent or transient inhibition of CGRP neurons in LPBN blunts sCT-, but not amylin-induced anorexia and neuronal activation. Importantly, sCT but not amylin induces behaviors indicative of malaise including conditioned affective aversion, nausea, emesis, and conditioned avoidance; the latter mediated by CGRPLPBN neurons. Conclusions Together, the present study highlights that although amylin and sCT comparably decrease food intake, sCT is distinctive from amylin in the activation of anorectic neuronal pathways associated with malaise. CGRP neurons mediate the effect of the amylin agonist salmon calcitonin (sCT) on food intake. Amylin's hypophagic effect does not require CGRP neurons. sCT-induced anorexia but not amylin is associated with malaise.
Collapse
Affiliation(s)
- Lavinia Boccia
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich (UZH), 8057, Zurich, Switzerland
| | - Tito Borner
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, PA 19104, United States; Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Misgana Y Ghidewon
- Institute of Diabetes, Obesity and Metabolism and School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Patricia Kulka
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich (UZH), 8057, Zurich, Switzerland
| | - Chiara Piffaretti
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich (UZH), 8057, Zurich, Switzerland
| | - Sarah A Doebley
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, PA 19104, United States
| | - Bart C De Jonghe
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, PA 19104, United States; Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Harvey J Grill
- Institute of Diabetes, Obesity and Metabolism and School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich (UZH), 8057, Zurich, Switzerland
| | - Christelle Le Foll
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich (UZH), 8057, Zurich, Switzerland.
| |
Collapse
|
16
|
Mukherjee N, Lin L, Contreras CJ, Templin AT. β-Cell Death in Diabetes: Past Discoveries, Present Understanding, and Potential Future Advances. Metabolites 2021; 11:796. [PMID: 34822454 PMCID: PMC8620854 DOI: 10.3390/metabo11110796] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
β-cell death is regarded as a major event driving loss of insulin secretion and hyperglycemia in both type 1 and type 2 diabetes mellitus. In this review, we explore past, present, and potential future advances in our understanding of the mechanisms that promote β-cell death in diabetes, with a focus on the primary literature. We first review discoveries of insulin insufficiency, β-cell loss, and β-cell death in human diabetes. We discuss findings in humans and mouse models of diabetes related to autoimmune-associated β-cell loss and the roles of autoreactive T cells, B cells, and the β cell itself in this process. We review discoveries of the molecular mechanisms that underlie β-cell death-inducing stimuli, including proinflammatory cytokines, islet amyloid formation, ER stress, oxidative stress, glucotoxicity, and lipotoxicity. Finally, we explore recent perspectives on β-cell death in diabetes, including: (1) the role of the β cell in its own demise, (2) methods and terminology for identifying diverse mechanisms of β-cell death, and (3) whether non-canonical forms of β-cell death, such as regulated necrosis, contribute to islet inflammation and β-cell loss in diabetes. We believe new perspectives on the mechanisms of β-cell death in diabetes will provide a better understanding of this pathological process and may lead to new therapeutic strategies to protect β cells in the setting of diabetes.
Collapse
Affiliation(s)
- Noyonika Mukherjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
| | - Li Lin
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
| | - Christopher J. Contreras
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
- Department of Medicine, Roudebush Veterans Affairs Medical Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrew T. Templin
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
- Department of Medicine, Roudebush Veterans Affairs Medical Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Diabetes and Metabolic Diseases, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
17
|
Antistress Action of Melanocortin Derivatives Associated with Correction of Gene Expression Patterns in the Hippocampus of Male Rats Following Acute Stress. Int J Mol Sci 2021; 22:ijms221810054. [PMID: 34576218 PMCID: PMC8469576 DOI: 10.3390/ijms221810054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/19/2023] Open
Abstract
Natural melanocortins (MCs) have been used in the successful development of drugs with neuroprotective properties. Here, we studied the behavioral effects and molecular genetic mechanisms of two synthetic MC derivatives-ACTH(4-7)PGP (Semax) and ACTH(6-9)PGP under normal and acute restraint stress (ARS) conditions. Administration of Semax or ACTH(6-9)PGP (100 μg/kg) to rats 30 min before ARS attenuated ARS-induced behavioral alterations. Using high-throughput RNA sequencing (RNA-Seq), we identified 1359 differentially expressed genes (DEGs) in the hippocampus of vehicle-treated rats subjected to ARS, using a cutoff of >1.5 fold change and adjusted p-value (Padj) < 0.05, in samples collected 4.5 h after the ARS. Semax administration produced > 1500 DEGs, whereas ACTH(6-9)PGP administration led to <400 DEGs at 4.5 h after ARS. Nevertheless, ~250 overlapping DEGs were identified, and expression of these DEGs was changed unidirectionally by both peptides under ARS conditions. Modulation of the expression of genes associated with biogenesis, translation of RNA, DNA replication, and immune and nervous system function was produced by both peptides. Furthermore, both peptides upregulated the expression levels of many genes that displayed decreased expression after ARS, and vice versa, the MC peptides downregulated the expression levels of genes that were upregulated by ARS. Consequently, the antistress action of MC peptides may be associated with a correction of gene expression patterns that are disrupted during ARS.
Collapse
|
18
|
Lee S. Development of High Affinity Calcitonin Analog Fragments Targeting Extracellular Domains of Calcitonin Family Receptors. Biomolecules 2021; 11:biom11091364. [PMID: 34572577 PMCID: PMC8466238 DOI: 10.3390/biom11091364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 01/18/2023] Open
Abstract
The calcitonin and amylin receptors (CTR and AMY receptors) are the drug targets for osteoporosis and diabetes treatment, respectively. Salmon calcitonin (sCT) and pramlintide were developed as peptide drugs that activate these receptors. However, next-generation drugs with improved receptor binding profiles are desirable for more effective pharmacotherapy. The extracellular domain (ECD) of CTR was reported as the critical binding site for the C-terminal half of sCT. For the screening of high-affinity sCT analog fragments, purified CTR ECD was used for fluorescence polarization/anisotropy peptide binding assay. When three mutations (N26D, S29P, and P32HYP) were introduced to the sCT(22–32) fragment, sCT(22–32) affinity for the CTR ECD was increased by 21-fold. CTR was reported to form a complex with receptor activity-modifying protein (RAMP), and the CTR:RAMP complexes function as amylin receptors with increased binding for the peptide hormone amylin. All three types of functional AMY receptor ECDs were prepared and tested for the binding of the mutated sCT(22–32). Interestingly, the mutated sCT(22–32) also retained its high affinity for all three types of the AMY receptor ECDs. In summary, the mutated sCT(22–32) showing high affinity for CTR and AMY receptor ECDs could be considered for developing the next-generation peptide agonists.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC 27268, USA
| |
Collapse
|
19
|
Arrigoni S, Le Foll C, Cabak A, Lundh S, Raun K, John LM, Lutz TA. A selective role for receptor activity-modifying proteins in subchronic action of the amylin selective receptor agonist NN1213 compared with salmon calcitonin on body weight and food intake in male mice. Eur J Neurosci 2021; 54:4863-4876. [PMID: 34189795 PMCID: PMC8457108 DOI: 10.1111/ejn.15376] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022]
Abstract
The role of receptor activity‐modifying proteins (RAMPs) in modulating the pharmacological effects of an amylin receptor selective agonist (NN1213) or the dual amylin–calcitonin receptor agonist (DACRA), salmon calcitonin (sCT), was tested in three RAMP KO mouse models, RAMP1, RAMP3 and RAMP1/3 KO. Male wild‐type (WT) and knockout (KO) littermate mice were fed a 45% high‐fat diet for 20 weeks prior to the 3‐week treatment period. A decrease in body weight after NN1213 was observed in all WT mice, whereas sCT had no effect. The absence of RAMP1 had no significant effect on NN1213 efficacy, and sCT was still inactive. However, the absence of RAMP3 impeded NN1213 efficacy but improved sCT efficacy. Similar results were observed in RAMP1/3 KO suggesting that the amylin receptor 3 (AMY3 = CTR + RAMP3) is necessary for NN1213's maximal action on body weight and food intake and that the lack of AMY3 allowed sCT to be active. These results suggest that the chronic use of DACRA such as sCT can have unfavourable effect on body weight loss in mice (which differs from the situation in rats), whereas the use of the amylin receptor selective agonist does not. AMY3 seems to play a crucial role in modulating the action of these two compounds, but in opposite directions. The assessment of a long‐term effect of amylin and DACRA in different rodent models is necessary to understand potential physiological beneficial and unfavourable effects on weight loss before its transition to clinical trials.
Collapse
Affiliation(s)
- Soraya Arrigoni
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Andrea Cabak
- Global Research, Novo Nordisk AS, Måløv, Denmark
| | - Sofia Lundh
- Global Research, Novo Nordisk AS, Måløv, Denmark
| | - Kirsten Raun
- Global Research, Novo Nordisk AS, Måløv, Denmark
| | - Linu M John
- Global Research, Novo Nordisk AS, Måløv, Denmark
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Filippenkov IB, Dergunova LV, Limborska SA, Myasoedov NF. Neuroprotective Effects of Peptides in the Brain: Transcriptome Approach. BIOCHEMISTRY (MOSCOW) 2021; 85:279-287. [PMID: 32564732 DOI: 10.1134/s0006297920030037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The importance of studying the action mechanisms of drugs based on natural regulatory peptides is commonly recognized. Particular attention is paid to the peptide drugs that contribute to the restoration of brain functions after acute cerebrovascular accidents (stroke), which for many years continues to be one of the main problems and threats to human health. However, molecular genetic changes in the brain in response to ischemia, as well as the mechanisms of protective effects of peptides, have not been sufficiently studied. This limits the use of neuroprotective peptides and makes it difficult to develop new, more efficient drugs with targeted action on brain functions. Transcriptome analysis is a promising approach for studying the mechanisms of the damaging effects of cerebral ischemia and neuroprotective action of peptide drugs. Beside investigating the role of mRNAs in protein synthesis, the development of new neuroprotection strategies requires studying the involvement of regulatory RNAs in ischemia. Of greatest interest are microRNAs (miRNAs) and circular RNAs (circRNAs), which are expressed predominantly in the brain. CircRNAs can interact with miRNAs and diminish their activity, thereby inhibiting miRNA-mediated repression of mRNAs. It has become apparent that analysis of the circRNA/miRNA/mRNA system is essential for deciphering the mechanisms of brain damage and repair. Here, we present the results of studies on the ischemia-induced changes in the activity of genes and peptide-mediated alterations in the transcriptome profiles in experimental ischemia and formulate the basic principles of peptide regulation in the ischemia-induced damage.
Collapse
Affiliation(s)
- I B Filippenkov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | - L V Dergunova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - S A Limborska
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - N F Myasoedov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| |
Collapse
|
21
|
Garnett S, de Bruyns A, Provencher-Tom V, Dutchak K, Shu R, Dankort D. Metabolic Regulator IAPP (Amylin) Is Required for BRAF and RAS Oncogene-Induced Senescence. Mol Cancer Res 2021; 19:874-885. [PMID: 33500359 DOI: 10.1158/1541-7786.mcr-20-0879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/17/2020] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
Cellular senescence is characterized by a prolonged and predominantly irreversible cell-cycle arrest state, which is linked to loss of tissue function and aging in mammals. Moreover, in response to aberrant oncogenic signals such as those from oncogenic RAS or BRAF, senescence functions as an intrinsic tumor suppressor mechanism restraining tumor progression. In addition to this durable proliferative block, senescent cells adopt altered morphologies, transcriptional profiles, and metabolism, while often possessing unusual heterochromatin formation termed senescence-associated heterochromatic foci. To uncover genes that are required to permit proliferation in the face of sustained oncogene signaling, we conducted an shRNA-based genetic screen in primary cells expressing inducible BRAF. Here we show that depletion of a known glycolysis regulator, islet amylin polypeptide (IAPP also known as amylin), prevents RAS and BRAF oncogene-induced senescence (OIS) in human cells. Importantly, depletion of IAPP resulted in changes of the cells' metabolome and this metabolic reprogramming was associated with widespread alterations in chromatin modifications compared with senescent cells. Conversely, exogenous treatment of IAPP-depleted cells with amylin restored OIS. Together, our results demonstrate that the metabolic regulator IAPP is important regulator of OIS. Moreover, they suggest that IAPP analog treatment or activation of IAPP signaling in RAS/BRAF mutant tumors may have therapeutic potential through senescence induction. IMPLICATIONS: These findings demonstrate that IAPP is a novel metabolic regulator of oncogene-induced senescence and use of IAPP analogs may be therapeutically effective to restore growth arrest to BRAF and/or RAS mutant cancers.
Collapse
Affiliation(s)
- Sam Garnett
- Department of Biology, McGill University, Montréal QC, Canada
| | | | | | - Kendall Dutchak
- Department of Biology, McGill University, Montréal QC, Canada
| | - Ran Shu
- Department of Biology, McGill University, Montréal QC, Canada
| | - David Dankort
- Department of Biology, McGill University, Montréal QC, Canada. .,Goodman Cancer Research Centre, Montréal QC, Canada
| |
Collapse
|
22
|
Kalafateli AL, Aranäs C, Jerlhag E. Activation of the amylin pathway modulates cocaine-induced activation of the mesolimbic dopamine system in male mice. Horm Behav 2021; 127:104885. [PMID: 33166561 DOI: 10.1016/j.yhbeh.2020.104885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022]
Abstract
Besides food intake reduction, activation of the amylin pathway by salmon calcitonin (sCT), an amylin and calcitonin receptor agonist, inhibits alcohol-mediated behaviors in rodents. This involves brain areas processing reward, i.e. the laterodorsal (LDTg), ventral tegmental area (VTA) and nucleus accumbens (NAc). However, the effects of stimulation of the amylin pathway on behaviors caused by cocaine and the brain areas involved in these processes have not yet been investigated. We therefore explored in male mice, the effects of systemic administration of sCT on cocaine-induced locomotor stimulation, dopamine release in the NAc and cocaine reward, as well as reward-dependent memory of cocaine, in the conditioned place preference (CPP) paradigm. Moreover, the outcome of systemic sCT and cocaine co-administration for five days on locomotor activity was investigated. Lastly, the impact of sCT infusions into the LDTg, VTA, NAc shell or core on cocaine-evoked locomotor stimulation was explored. We found that sCT attenuated cocaine-induced locomotor stimulation and accumbal dopamine release, without altering cocaine's rewarding properties or reward-dependent memory retrieval in the CPP paradigm. Five days of cocaine administration caused locomotor stimulation in mice pre-treated with vehicle, but not with sCT. In mice infused with vehicle into the aforementioned reward-related areas, cocaine caused locomotor stimulation, a response that was not evident following sCT infusions. The current findings suggest a novel role for the amylinergic pathway as regulator of cocaine-evoked activation of the mesolimbic dopamine system, opening the way for the investigation of the amylin signalling in the modulation of other drugs of abuse.
Collapse
Affiliation(s)
- Aimilia Lydia Kalafateli
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Cajsa Aranäs
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
23
|
Lee S. Asn-linked N-acetylglucosamine of the amylin receptor 2 extracellular domain enhances peptide ligand affinity. FEBS Open Bio 2020; 11:195-206. [PMID: 33227824 PMCID: PMC7780097 DOI: 10.1002/2211-5463.13042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 11/07/2022] Open
Abstract
The calcitonin receptor (CTR) has a large extracellular domain (ECD) with multiple N‐glycosylation sites. An asparagine (Asn)‐linked N‐acetylglucosamine (GlcNAc) of CTR ECD N130 was previously reported to enhance peptide hormone binding affinity for CTR ECD. CTR forms a complex with an accessory protein RAMP, and the RAMP:CTR complex gains affinity for peptide hormone amylin as the amylin receptor (AMY). Although N‐glycosylation of AMY ECD was reported to enhance peptide hormone affinity, it remains underexplored which N‐glycosites of AMY ECD are responsible for peptide affinity enhancement and it is unclear whether an Asn‐linked GlcNAc of the N‐glycosites plays a critical role. Here, I investigated the role of the Asn‐linked GlcNAc of CTR N130 in the affinity of an antagonistic amylin analog (AC413) for AMY2 ECD (the RAMP2 ECD:CTR ECD complex). I used Endo H‐treated CTR ECD in which N‐glycans were trimmed to an Asn‐linked GlcNAc on each of the N‐glycosites. I incubated Endo H‐treated CTR ECD with excess of glycan‐free RAMP2 ECD to produce the RAMP2 ECD:CTR ECD complex. Using this coincubation system, I found that the RAMP2 ECD complex with Endo H‐treated CTR ECD with N130D mutation showed a fourfold decrease in AC413 affinity compared with the RAMP2 ECD complex with Endo H‐treated CTR ECD WT. In contrast, RAMP2 ECD N‐glycosylation did not affect peptide binding affinity. These results indicate that the Asn‐linked GlcNAc of CTR N130 is an important peptide affinity enhancer for AMY2 ECD and reveals a significant role of the Asn‐linked GlcNAc in AMY2 function.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Basic Pharmaceutical SciencesFred Wilson School of PharmacyHigh Point UniversityHigh PointNCUSA
| |
Collapse
|
24
|
Servizi S, Corrigan RR, Casadesus G. The Importance of Understanding Amylin Signaling Mechanisms for Therapeutic Development in the Treatment of Alzheimer's Disease. Curr Pharm Des 2020; 26:1345-1355. [PMID: 32188374 PMCID: PMC10088426 DOI: 10.2174/1381612826666200318151146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022]
Abstract
Type II Diabetes (T2D) is a major risk factor for Alzheimer's Disease (AD). These two diseases share several pathological features, including amyloid accumulation, inflammation, oxidative stress, cell death and cognitive decline. The metabolic hormone amylin and amyloid-beta are both amyloids known to self-aggregate in T2D and AD, respectively, and are thought to be the main pathogenic entities in their respective diseases. Furthermore, studies suggest amylin's ability to seed amyloid-beta aggregation, the activation of common signaling cascades in the pancreas and the brain, and the ability of amyloid beta to signal through amylin receptors (AMYR), at least in vitro. However, paradoxically, non-aggregating forms of amylin such as pramlintide are given to treat T2D and functional and neuroprotective benefits of amylin and pramlintide administration have been reported in AD transgenic mice. These paradoxical results beget a deeper study of the complex nature of amylin's signaling through the several AMYR subtypes and other receptors associated with amylin effects to be able to fully understand its potential role in mediating AD development and/or prevention. The goal of this review is to provide such critical insight to begin to elucidate how the complex nature of this hormone's signaling may explain its equally complex relationship with T2D and mechanisms of AD pathogenesis.
Collapse
Affiliation(s)
- Spencer Servizi
- School of Biomedical Sciences, Kent State University, Ohio, United States
| | - Rachel R Corrigan
- School of Biomedical Sciences, Kent State University, Ohio, United States
| | - Gemma Casadesus
- School of Biomedical Sciences, Kent State University, Ohio, United States.,Department of Biological Sciences, Kent State University, Ohio, United States
| |
Collapse
|
25
|
Molecular interaction of an antagonistic amylin analog with the extracellular domain of receptor activity-modifying protein 2 assessed by fluorescence polarization. Biophys Chem 2020; 267:106477. [PMID: 33137565 DOI: 10.1016/j.bpc.2020.106477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
The peptide hormone amylin receptor is a complex of the calcitonin receptor (CTR) and an accessory protein called receptor activity-modifying proteins (RAMPs). The soluble extracellular domain (ECD) of CTR is an important binding site of peptide hormone calcitonin. RAMPs also have an ECD and the association of CTR ECD with RAMP ECD enhances the affinity of peptide hormone amylin. However, the mechanism of how RAMP ECD association enhances amylin affinity remains elusive. Here, we report evidence supporting direct molecular interaction between an antagonistic amylin analog AC413 and RAMP2 ECD. We measured FITC-labeled peptide affinity for purified receptor ECD using fluorescence polarization (FP). We first found that RAMP2 ECD addition to maltose-binding protein (MBP)-tagged CTR ECD and an engineered MBP-tagged RAMP2 ECD-CTR ECD fusion protein (MBP-RAMP2-CTR ECD fusion) enhanced AC413 affinity. This suggests that these recombinant ECD systems represent functional amylin receptors. Interestingly, AC413 C-terminal residue Tyr25 (Y25) to Pro mutation eliminated its selective affinity for the MBP-RAMP2-CTR ECD fusion suggesting the critical role of the AC413 C-terminal residue in amylin receptor selectivity. Our structural model of the RAMP2 ECD:CTR ECD complex predicted molecular interaction of AC413 C-terminal residue Y25 with RAMP2 Glu101 (E101). Our FP peptide-binding assay showed that the RAMP2 E101A mutation of MBP-RAMP2-CTR ECD fusion decreased AC413 affinity by 7-fold, while the affinity of AC413 with the Y25P mutation was minimally changed. Consistently, AC413 binding affinity for the MBP-free RAMP2-CTR ECD fusion protein was also markedly decreased by the RAMP2 E101A mutation, while the affinity of AC413 with the Y25P mutation was moderately decreased. Together, our results support the molecular interaction between the AC413 C-terminal residue Y25 and RAMP2 E101 expanding our understanding of how the accessory protein RAMP2 enhances affinity of peptide hormone amylin for its receptor.
Collapse
|
26
|
Distributed amylin receptor signaling and its influence on motivated behavior. Physiol Behav 2020; 222:112958. [DOI: 10.1016/j.physbeh.2020.112958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/11/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
|
27
|
Dergunova LV, Filippenkov IB, Limborska SA, Myasoedov NF. Pharmacotranscriptomics of peptide drugs with neuroprotective properties. Med Res Rev 2020; 41:754-769. [PMID: 32638434 DOI: 10.1002/med.21704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 01/05/2023]
Abstract
Here we present a review of studies on the effects of peptides with neuroprotective properties on gene transcription in nerve cells. The few published works in this area clearly demonstrate massive changes in cell transcriptomes induced by peptides under normal conditions and under conditions of experimental brain ischemia. These changes significantly affect signaling and metabolic pathways, affecting various body systems and confirming the multiple target actions of peptides. The importance of noncoding RNAs in the regulation of these processes is shown, and we discuss the prospects of research for determining the main mechanisms of peptide regulation, which is necessary for the further development of drugs with targeted neuroprotective effects.
Collapse
Affiliation(s)
- Lyudmila V Dergunova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ivan B Filippenkov
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana A Limborska
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai F Myasoedov
- Department of Chemistry of Physiologically Active Compounds, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
28
|
Si Z, Zhou S, Shen Z, Luan F. High-Throughput Metabolomics Discovers Metabolic Biomarkers and Pathways to Evaluating the Efficacy and Exploring Potential Mechanisms of Osthole Against Osteoporosis Based on UPLC/Q-TOF-MS Coupled With Multivariate Data Analysis. Front Pharmacol 2020; 11:741. [PMID: 32670052 PMCID: PMC7326133 DOI: 10.3389/fphar.2020.00741] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
Postmenopausal osteoporosis (PMOP) is the most common metabolic bone illness among the elderly especially in postmenopausal women resulting from a reduction in bone mineral density, but there is no effective drug at present. The study was aimed at evaluating efficacy of osthole against osteoporosis using high-throughput metabolomics method. The blood samples for illustrating the pathological mechanism of PMOP and exploring the efficacy of osthole treatment (ST) were collected to perform metabolites and metabolic profiles and pathways analysis using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) and pattern recognition methods. In addition, backbone weight, the bone density, and some vital biochemical indexes were also detected. A total of 28 metabolites were identified as biomarkers for ovariectomized-osteoporosis model, and ST could significantly regulate 19 of them including lysine, linoleic acid, 3-hydroxybutyric acid, prostaglandin F2a, taurocholic acid, LysoPC(15:0), l-carnitine, glucose, arginine, citric acid, corticosterone, ornithine, tryptophan, arachidonic acid, Cer(d18:0/18:0), glutamine, uric acid, 8-HETE, estriol, which mainly related with 13 metabolic pathways, such as linoleic acid metabolism, starch, and sucrose metabolism, arachidonic acid metabolism, alanine, aspartate and glutamate metabolism, arginine and proline metabolism, citrate cycle (TCA cycle), and arginine biosynthesis. The ovariectomized model (OVX) rats display a significant decrease bone density, TGF-β1, NO, and NOS level, and a significant increase bone weight, IL-6, TNF-α, and Ca 2+ level. These parameters in the ST rats were evidently improved as compared to the OVX group. ST effectively mitigated ovariectomy-induced osteoporosis in rats by affecting endogenous metabolite-related metabolic mechanism and showed the natural alternative with potential for the treatment of PMOP.
Collapse
Affiliation(s)
- Zhenxing Si
- Emergency Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shifeng Zhou
- Emergency Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zilong Shen
- Orthopedic Department, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feiyu Luan
- Emergency Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
29
|
Lee SM, Jeong Y, Simms J, Warner ML, Poyner DR, Chung KY, Pioszak AA. Calcitonin Receptor N-Glycosylation Enhances Peptide Hormone Affinity by Controlling Receptor Dynamics. J Mol Biol 2020; 432:1996-2014. [PMID: 32035902 DOI: 10.1016/j.jmb.2020.01.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/27/2019] [Accepted: 01/27/2020] [Indexed: 02/09/2023]
Abstract
The class B G protein-coupled receptor (GPCR) calcitonin receptor (CTR) is a drug target for osteoporosis and diabetes. N-glycosylation of asparagine 130 in its extracellular domain (ECD) enhances calcitonin hormone affinity with the proximal GlcNAc residue mediating this effect through an unknown mechanism. Here, we present two crystal structures of salmon calcitonin-bound, GlcNAc-bearing CTR ECD at 1.78 and 2.85 Å resolutions and analyze the mechanism of the glycan effect. The N130 GlcNAc does not contact the hormone. Surprisingly, the structures are nearly identical to a structure of hormone-bound, N-glycan-free ECD, which suggested that the GlcNAc might affect CTR dynamics not observed in the static crystallographic snapshots. Hydrogen-deuterium exchange mass spectrometry and molecular dynamics simulations revealed that glycosylation stabilized a β-sheet adjacent to the N130 GlcNAc and the N-terminal α-helix near the peptide-binding site while increasing flexibility of the peptide-binding site turret loop. These changes due to N-glycosylation increased the ligand on-rate and decreased its off-rate. The glycan effect extended to RAMP-CTR amylin receptor complexes and was also conserved in the related CGRP receptor. These results reveal that N-glycosylation can modulate GPCR function by altering receptor dynamics.
Collapse
Affiliation(s)
- Sang-Min Lee
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Present Address: Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, 27268, USA
| | - Yejin Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - John Simms
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - Margaret L Warner
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - David R Poyner
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Augen A Pioszak
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
30
|
Pioszak AA, Hay DL. RAMPs as allosteric modulators of the calcitonin and calcitonin-like class B G protein-coupled receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 88:115-141. [PMID: 32416865 DOI: 10.1016/bs.apha.2020.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Receptor activity-modifying proteins (RAMPs) are a family of three single span transmembrane proteins in humans that interact with many GPCRs and can modulate their function. RAMPs were discovered as key components of the calcitonin gene-related peptide and adrenomedullin receptors. They are required for transport of this class B GPCR, calcitonin receptor-like receptor (CLR), to the cell surface and determine its peptide ligand binding preferences. Soon thereafter RAMPs were shown to modulate the binding of calcitonin and amylin peptides to the related calcitonin receptor (CTR) and in the years since an ever-growing number of RAMP-interacting receptors have been identified including most if not all of the 15 class B GPCRs and several GPCRs from other families. Studies of CLR, CTR, and a handful of other GPCRs revealed that RAMPs are able to modulate various aspects of receptor function including trafficking, ligand binding, and signaling. Here, we review RAMP interactions and functions with an emphasis on class B receptors for which our understanding is most advanced. A key focus is to discuss recent evidence that RAMPs serve as endogenous allosteric modulators of CLR and CTR. We discuss structural studies of RAMP-CLR complexes and CTR and biochemical and pharmacological studies that collectively have significantly expanded our understanding of the mechanistic basis for RAMP modulation of these class B GPCRs. Last, we consider the implications of these findings for drug development targeting RAMP-CLR/CTR complexes.
Collapse
Affiliation(s)
- Augen A Pioszak
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
| | - Debbie L Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
31
|
Kalafateli AL, Aranäs C, Jerlhag E. Effects of sub-chronic amylin receptor activation on alcohol-induced locomotor stimulation and monoamine levels in mice. Psychopharmacology (Berl) 2020; 237:3249-3257. [PMID: 32651639 PMCID: PMC7561575 DOI: 10.1007/s00213-020-05607-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 07/03/2020] [Indexed: 12/16/2022]
Abstract
RATIONALE Amylin receptors consist of the calcitonin receptor (CTR) and one of three receptor activity-modifying proteins (RAMPs). The identification of amylin receptors in areas processing reward, namely laterodorsal tegmental area (LDTg), ventral tegmental area (VTA), and nucleus accumbens (NAc), has attributed them a role as reward regulators. Indeed, acute activation of amylin receptors by the amylin receptor agonist salmon calcitonin (sCT) attenuates alcohol-induced behaviours in rodents. OBJECTIVES The effects of long-term administration of sCT on alcohol-related behaviours and the molecular mechanisms underlying these processes are not yet elucidated. To fill this knowledge gap, we investigated the effects of sub-chronic sCT treatment on the locomotor stimulatory responses to alcohol in mice and the molecular pathways involved. METHODS We assessed the behavioural effects of sub-chronic sCT treatment by means of locomotor activity experiments in mice. We used western blot to identify changes of the CTR levels and ex vivo biochemical analysis to detect changes in monoamines and their metabolites. RESULTS After discontinuation for 5 days of sCT treatment, alcohol did not induce locomotor stimulation in mice pre-treated with sCT when compared with vehicle, without altering secondary behavioural parameters of the locomotor activity experiment or the protein levels of the CTR in reward-related areas in the same set of animals. Moreover, repeated sCT treatment altered monoaminergic neurotransmission in various brain areas, including increased serotonin and decreased dopamine turnover in the VTA. Lastly, we identified a differential effect of repeated sCT and acute alcohol administration on alcohol-induced locomotion in mice, where sCT initially attenuated and later increased this alcohol response. It was further found that this treatment combination did not affect secondary behavioural parameters measured in this locomotor activity experiments. CONCLUSIONS These data suggest that sub-chronic sCT treatment differentially alters the ability of alcohol to cause locomotor stimulation, possibly through molecular mechanisms involving various neurotransmitter systems and not the CTR levels per se.
Collapse
Affiliation(s)
- Aimilia Lydia Kalafateli
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, POB 431, SE-405 30 Gothenburg, Sweden
| | - Cajsa Aranäs
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, POB 431, SE-405 30 Gothenburg, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, POB 431, SE-405 30, Gothenburg, Sweden.
| |
Collapse
|
32
|
Boyle CN, Le Foll C. Amylin and Leptin interaction: Role During Pregnancy, Lactation and Neonatal Development. Neuroscience 2019; 447:136-147. [PMID: 31846753 DOI: 10.1016/j.neuroscience.2019.11.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/08/2019] [Accepted: 11/21/2019] [Indexed: 01/04/2023]
Abstract
Amylin is co-secreted with insulin by pancreatic β-cells in response to a meal and produced by neurons in discrete hypothalamic brain areas. Leptin is proportionally secreted by the adipose tissue. Both hormones control food intake and energy homeostasis post-weaning in rodents. While amylin's main site of action is located in the area postrema (AP) and leptin's is located in the mediobasal hypothalamus, both hormones can also influence the other's signaling pathway; amylin has been shown enhance hypothalamic leptin signaling, and amylin signaling in the AP may rely on functional leptin receptors to modulate its effects. These two hormones also play major roles during other life periods. During pregnancy, leptin levels rise as a result of an increase in fat depot resulting in gestational leptin-resistance to prepare the maternal body for the metabolic needs during fetal development. The role of amylin is far less studied during pregnancy and lactation, though amylin levels seem to be elevated during pregnancy relative to insulin. Whether amylin and leptin interact during pregnancy and lactation remains to be assessed. Lastly, during brain development, amylin and leptin are major regulators of cell birth during embryogenesis and act as neurotrophic factors in the neonatal period. This review will highlight the role of amylin and leptin, and their possible interaction, during these dynamic time periods of pregnancy, lactation, and early development.
Collapse
Affiliation(s)
- Christina N Boyle
- Institute of Veterinary Physiology, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | - Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| |
Collapse
|
33
|
The BDNF Protein and its Cognate mRNAs in the Rat Spinal Cord during Amylin-induced Reversal of Morphine Tolerance. Neuroscience 2019; 422:54-64. [PMID: 31689388 DOI: 10.1016/j.neuroscience.2019.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022]
Abstract
The pancreatic peptide, Amylin (AMY), reportedly affects nociception in rodents. Here, we investigated the potential effect of AMY on the tolerance to morphine and on the expression of BDNF at both levels of protein and RNA in the lumbar spinal cord of morphine tolerant rats. Animals in both groups of control and test received a single daily dose of intrathecal (i.t.) morphine for 10 days. Rats in the test group received AMY (1, 10 and 60 pmoles) in addition to morphine from days 6 to10. Morphine tolerance was established at day 5. AMY alone showed enduring antinociceptive effects for 10 days. Real-Time PCR, western blotting and ELISA were used respectively to assess levels of BDNF transcripts and their encoded proteins. Rats tolerant to i.t. morphine showed increased expression of exons I, IV, and IX of the BDNF gene, and had elevated levels of pro-BDNF and BDNF protein in their lumbar spinal cord. AMY, when co-administered with morphine from days 6 to 10, reversed morphine tolerance and adversely affected the morphine-induced expression of the BDNF gene at both levels of protein and mRNAs containing exons I, IV and IX. AMY alone increased levels of exons I and IV transcripts. Levels of pro-BDNF and BDNF proteins remained unchanged in the lumbar spinal cord of rats treated by AMY alone. These results suggest that i.t. AMY not only abolished morphine tolerance, but also reduced the morphine induced increase in the expression of both BDNF transcripts and protein in the lumbar spinal cord.
Collapse
|
34
|
Pham V, Zhu Y, Dal Maso E, Reynolds CA, Deganutti G, Atanasio S, Hick CA, Yang D, Christopoulos A, Hay DL, Furness SGB, Wang MW, Wootten D, Sexton PM. Deconvoluting the Molecular Control of Binding and Signaling at the Amylin 3 Receptor: RAMP3 Alters Signal Propagation through Extracellular Loops of the Calcitonin Receptor. ACS Pharmacol Transl Sci 2019; 2:183-197. [PMID: 32219220 PMCID: PMC7088965 DOI: 10.1021/acsptsci.9b00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Indexed: 12/18/2022]
Abstract
Amylin is coexpressed with insulin in pancreatic islet β-cells and has potent effects on gastric emptying and food intake. The effect of amylin on satiation has been postulated to involve AMY3 receptors (AMY3R) that are heteromers of the calcitonin receptor (CTR) and receptor activity-modifying protein 3 (RAMP3). Understanding the molecular control of signaling through the AMY3R is thus important for peptide drug targeting of this receptor. We have previously used alanine scanning mutagenesis to study the contribution of the extracellular surface of the CTR to binding and signaling initiated by calcitonin (CT) and related peptides (Dal Maso, E., et al. (2019) The molecular control of calcitonin receptor signaling. ACS Pharmacol. Transl. Sci. 2, 31-51). That work revealed ligand- and pathway-specific effects of mutation, with extracellular loops (ECLs) 2 and 3 particularly important in the distinct propagation of signaling mediated by individual peptides. In the current study, we have used equivalent alanine scanning of ECL2 and ECL3 of the CTR in the context of coexpression with RAMP3 to form AMY3Rs, to examine functional affinity and efficacy of peptides in cAMP accumulation and extracellular signal-regulated kinase (ERK) phosphorylation (pERK). The effect of mutation was determined on representatives of the three major distinct classes of CT peptide, salmon CT (sCT), human CT (hCT), and porcine CT (pCT), as well as rat amylin (rAmy) or human α-CGRP (calcitonin gene-related peptide, hCGRP) whose potency is enhanced by RAMP interaction. We demonstrate that the dynamic nature of CTR ECL2 and ECL3 in propagation of signaling is fundamentally altered when complexed with RAMP3 to form the AMY3R, despite only having predicted direct interactions with ECL2. Moreover, the work shows that the role of these loops in receptor signaling is highly peptide dependent, illustrating that even subtle changes to peptide sequence may change signaling output downstream of the receptor.
Collapse
Affiliation(s)
- Vi Pham
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Yue Zhu
- The
National Center for Drug Screening and CAS Key Laboratory of Receptor
Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Emma Dal Maso
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | | | - Giuseppe Deganutti
- School
of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K.
| | - Silvia Atanasio
- School
of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K.
| | - Caroline A. Hick
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Dehua Yang
- The
National Center for Drug Screening and CAS Key Laboratory of Receptor
Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Arthur Christopoulos
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Debbie L. Hay
- The
University of Auckland, School of Biological
Sciences, 3 Symonds Street, Auckland 1142, New Zealand
| | - Sebastian G. B. Furness
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Ming-Wei Wang
- The
National Center for Drug Screening and CAS Key Laboratory of Receptor
Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Denise Wootten
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Patrick M. Sexton
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| |
Collapse
|
35
|
Chang CL, Hsu SYT. Development of chimeric and bifunctional antagonists for CLR/RAMP receptors. PLoS One 2019; 14:e0216996. [PMID: 31150417 PMCID: PMC6544337 DOI: 10.1371/journal.pone.0216996] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/02/2019] [Indexed: 11/26/2022] Open
Abstract
CGRP, adrenomedullin (ADM), and adrenomedullin 2 (ADM2) family peptides are
important neuropeptides and hormones for the regulation of neurotransmission,
vasotone, cardiovascular morphogenesis, vascular integrity, and feto‒placental
development. These peptides signal through CLR/RAMP1, 2 and 3 receptor
complexes. CLR/RAMP1, or CGRP receptor, antagonists have been developed for the
treatment of migraine headache and osteoarthritis pain; whereas CLR/RAMP2, or
ADM receptor, antagonists are being developed for the treatment of tumor
growth/metastasis. Based on the finding that an acylated chimeric ADM/ADM2
analog potently stimulates CLR/RAMP1 and 2 signaling, we hypothesized that the
binding domain of this analog could have potent inhibitory activity on CLR/RAMP
receptors. Consistent with this hypothesis, we showed that acylated truncated
ADM/ADM2 analogs of 27–31 residues exhibit potent antagonistic activity toward
CLR/RAMP1 and 2. On the other hand, nonacylated analogs have minimal activity.
Further truncation at the junctional region of these chimeric analogs led to the
generation of CLR/RAMP1-selective antagonists. A 17-amino-acid analog
(Antagonist 2–4) showed 100-fold selectivity for CLR/RAMP1 and was >100-fold
more potent than the classic CGRP receptor antagonist CGRP8-37. In addition, we
showed (1) a lysine residue in the Antagonist 2–4 is important for enhancing the
antagonistic activity, (2) an analog consisted of an ADM sequence motif and a
12-amino-acid binding domain of CGRP exhibits potent CLR/RAMP1-inhibitory
activity, and (3) a chimeric analog consisted of a somatostatin analog and an
ADM antagonist exhibits dual activities on somatostatin and CLR/RAMP receptors.
Because the blockage of CLR/RAMP signaling prevents migraine pain and suppresses
tumor growth/metastasis, further studies of these analogs, which presumably have
better access to the tumor microenvironment and nerve endings at the trigeminal
ganglion and synovial joints as compared to antibody-based therapies, may lead
to the development of better anti-CGRP therapy and alternative antiangiogenesis
therapy. Likewise, the use of bifunctional somatostatin-ADM antagonist analogs
could be a promising strategy for the treatment of high-grade neuroendocrine
tumors by targeting an antiangiogenesis agent to the neuroendocrine tumor
microenvironment.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital
Linkou Medical Center, Chang Gung University, Kweishan, Taoyuan,
Taiwan
| | | |
Collapse
|
36
|
Abstract
The canonical CGRP receptor is a complex between calcitonin receptor-like receptor (CLR), a family B G-protein-coupled receptor (GPCR) and receptor activity-modifying protein 1 (RAMP1). A third protein, receptor component protein (RCP) is needed for coupling to Gs. CGRP can interact with other RAMP-receptor complexes, particularly the AMY1 receptor formed between the calcitonin receptor (CTR) and RAMP1. Crystal structures are available for the binding of CGRP27-37 [D31,P34,F35] to the extracellular domain (ECD) of CLR and RAMP1; these show that extreme C-terminal amide of CGRP interacts with W84 of RAMP1 but the rest of the analogue interacts with CLR. Comparison with the crystal structure of a fragment of the allied peptide adrenomedullin bound to the ECD of CLR/RAMP2 confirms the importance of the interaction of the ligand C-terminus and the RAMP in determining pharmacology specificity, although the RAMPs probably also have allosteric actions. A cryo-electron microscope structure of calcitonin bound to the full-length CTR associated with Gs gives important clues as to the structure of the complete receptor and suggests that the N-terminus of CGRP makes contact with His5.40b, high on TM5 of CLR. However, it is currently not known how the RAMPs interact with the TM bundle of any GPCR. Major challenges remain in understanding how the ECD and TM domains work together to determine ligand specificity, and how G-proteins influence this and the role of RCP. It seems likely that allosteric mechanisms are particularly important as are the dynamics of the receptors.
Collapse
Affiliation(s)
- John Simms
- School of Life and Health Science, Aston University, Birmingham, UK
- Coventry University, Coventry, UK
| | - Sarah Routledge
- School of Life and Health Science, Aston University, Birmingham, UK
| | - Romez Uddin
- School of Life and Health Science, Aston University, Birmingham, UK
| | - David Poyner
- School of Life and Health Science, Aston University, Birmingham, UK.
| |
Collapse
|
37
|
Gingell JJ, Hendrikse ER, Hay DL. New Insights into the Regulation of CGRP-Family Receptors. Trends Pharmacol Sci 2019; 40:71-83. [DOI: 10.1016/j.tips.2018.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 11/29/2022]
|
38
|
Akter R, Bower RL, Abedini A, Schmidt AM, Hay DL, Raleigh DP. Amyloidogenicity, Cytotoxicity, and Receptor Activity of Bovine Amylin: Implications for Xenobiotic Transplantation and the Design of Nontoxic Amylin Variants. ACS Chem Biol 2018; 13:2747-2757. [PMID: 30086232 DOI: 10.1021/acschembio.8b00690] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Islet amyloid formation contributes to β-cell death and dysfunction in type-2 diabetes and to the failure of islet transplants. Amylin (islet amyloid polypeptide, IAPP), a normally soluble 37 residue polypeptide hormone produced in the pancreatic β-cells, is responsible for amyloid formation in type-2 diabetes and is deficient in type-1 diabetes. Amylin normally plays an adaptive role in metabolism, and the development of nontoxic, non-amyloidogenic, bioactive variants of human amylin are of interest for use as adjuncts to insulin therapy. Naturally occurring non-amyloidogenic variants are of interest for xenobiotic transplantation and because they can provide clues toward understanding the amyloidogenicity of human amylin. The sequence of amylin is well-conserved among species, but sequence differences strongly correlate with in vitro amyloidogenicity and with islet amyloid formation in vivo. Bovine amylin differs from the human peptide at 10 positions and is one of the most divergent among known amylin sequences. We show that bovine amylin oligomerizes but is not toxic to cultured β-cells and that it is considerably less amyloidogenic than the human polypeptide and is only a low-potency agonist at human amylin-responsive receptors. The bovine sequence contains several nonconservative substitutions relative to human amylin, including His to Pro, Ser to Pro, and Asn to Lys replacements. The effect of these substitutions is analyzed in the context of wild-type human amylin; the results provide insight into their role in receptor activation, the mode of assembly of human amylin, and the design of soluble amylin analogues.
Collapse
Affiliation(s)
- Rehana Akter
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Rebekah L. Bower
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand
| | - Andisheh Abedini
- Diabetes Research Program, NYU School of Medicine, 522 First Avenue, New York, New York 10016, United States
| | - Ann Marie Schmidt
- Diabetes Research Program, NYU School of Medicine, 522 First Avenue, New York, New York 10016, United States
| | - Debbie L. Hay
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand
| | - Daniel P. Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
39
|
Roehrkasse AM, Booe JM, Lee SM, Warner ML, Pioszak AA. Structure-function analyses reveal a triple β-turn receptor-bound conformation of adrenomedullin 2/intermedin and enable peptide antagonist design. J Biol Chem 2018; 293:15840-15854. [PMID: 30139742 DOI: 10.1074/jbc.ra118.005062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/20/2018] [Indexed: 12/26/2022] Open
Abstract
The cardioprotective vasodilator peptide adrenomedullin 2/intermedin (AM2/IMD) and the related adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) signal through three heterodimeric receptors comprising the calcitonin receptor-like class B G protein-coupled receptor (CLR) and a variable receptor activity-modifying protein (RAMP1, -2, or -3) that determines ligand selectivity. The CGRP receptor (RAMP1:CLR) favors CGRP binding, whereas the AM1 (RAMP2:CLR) and AM2 (RAMP3:CLR) receptors favor AM binding. How AM2/IMD binds the receptors and how RAMPs modulate its binding is unknown. Here, we show that AM2/IMD binds the three purified RAMP-CLR extracellular domain (ECD) complexes with a selectivity profile that is distinct from those of CGRP and AM. AM2/IMD bound all three ECD complexes but preferred the CGRP and AM2 receptor complexes. A 2.05 Å resolution crystal structure of an AM2/IMD antagonist fragment-bound RAMP1-CLR ECD complex revealed that AM2/IMD binds the complex through a unique triple β-turn conformation that was confirmed by peptide and receptor mutagenesis. Comparisons of the receptor-bound conformations of AM2/IMD, AM, and a high-affinity CGRP analog revealed differences that may have implications for biased signaling. Guided by the structure, enhanced-affinity AM2/IMD antagonist variants were developed, including one that discriminates the AM1 and AM2 receptors with ∼40-fold difference in affinities and one stabilized by an intramolecular disulfide bond. These results reveal differences in how the three peptides engage the receptors, inform development of AM2/IMD-based pharmacological tools and therapeutics, and provide insights into RAMP modulation of receptor pharmacology.
Collapse
Affiliation(s)
- Amanda M Roehrkasse
- From the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Jason M Booe
- From the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Sang-Min Lee
- From the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Margaret L Warner
- From the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Augen A Pioszak
- From the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
40
|
Lutz TA, Coester B, Whiting L, Dunn-Meynell AA, Boyle CN, Bouret SG, Levin BE, Le Foll C. Amylin Selectively Signals Onto POMC Neurons in the Arcuate Nucleus of the Hypothalamus. Diabetes 2018; 67:805-817. [PMID: 29467172 PMCID: PMC5910000 DOI: 10.2337/db17-1347] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/09/2018] [Indexed: 02/05/2023]
Abstract
Amylin phosphorylates ERK (p-ERK) in the area postrema to reduce eating and synergizes with leptin to phosphorylate STAT3 in the arcuate (ARC) and ventromedial (VMN) hypothalamic nuclei to reduce food intake and body weight. The current studies assessed potential amylin and amylin-leptin ARC/VMN interactions on ERK signaling and their roles in postnatal hypothalamic pathway development. In amylin knockout mice, the density of agouti-related protein (AgRP)-immunoreactive (IR) fibers in the hypothalamic paraventricular nucleus (PVN) was increased, while the density of α-melanocyte-stimulating hormone (αMSH) fibers was decreased. In mice deficient of the amylin receptor components RAMP1/3, both AgRP and αMSH-IR fiber densities were decreased, while only αMSH-IR fiber density was decreased in rats injected neonatally in the ARC/VMN with an adeno-associated virus short hairpin RNA against the amylin core receptor. Amylin induced p-ERK in ARC neurons, 60% of which was present in POMC-expressing neurons, with none in NPY neurons. An amylin-leptin interaction was shown by an additive effect on ARC ERK signaling in neonatal rats and a 44% decrease in amylin-induced p-ERK in the ARC of leptin receptor-deficient and of ob/ob mice. Together, these results suggest that amylin directly acts, through a p-ERK-mediated process, on POMC neurons to enhance ARC-PVN αMSH pathway development.
Collapse
Affiliation(s)
- Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Bernd Coester
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Lynda Whiting
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | | | - Christina N Boyle
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Sebastien G Bouret
- Developmental Neuroscience Program, The Saban Research Institute, Children's Hospital Los Angeles, Department of Pediatrics, University of Southern California, Los Angeles, CA
- INSERM U1172, Jean-Pierre Aubert Research Center, Lille, France
| | - Barry E Levin
- Department of Neurology, Rutgers New Jersey Medical School, Newark, NJ
| | - Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Bower RL, Yule L, Rees TA, Deganutti G, Hendrikse ER, Harris PWR, Kowalczyk R, Ridgway Z, Wong AG, Swierkula K, Raleigh DP, Pioszak AA, Brimble MA, Reynolds CA, Walker CS, Hay DL. Molecular Signature for Receptor Engagement in the Metabolic Peptide Hormone Amylin. ACS Pharmacol Transl Sci 2018; 1:32-49. [PMID: 32219203 DOI: 10.1021/acsptsci.8b00002] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Indexed: 11/30/2022]
Abstract
The pancreatic peptide hormone, amylin, plays a critical role in the control of appetite, and synergizes with other key metabolic hormones such as glucagon-like peptide 1 (GLP-1). There is opportunity to develop potent and long-acting analogues of amylin or hybrids between these and GLP-1 mimetics for treating obesity. To achieve this, interrogation of how the 37 amino acid amylin peptide engages with its complex receptor system is required. We synthesized an extensive library of peptides to profile the human amylin sequence, determining the role of its disulfide loop, amidated C-terminus and receptor "capture" and "activation" regions in receptor signaling. We profiled four signaling pathways with different ligands at multiple receptor subtypes, in addition to exploring selectivity determinants between related receptors. Distinct roles for peptide subregions in receptor binding and activation were identified, resulting in peptides with greater activity than the native sequence. Enhanced peptide activity was preserved in the brainstem, the major biological target for amylin. Interpretation of our data using full-length active receptor models supported by molecular dynamics, metadynamics, and supervised molecular dynamics simulations guided the synthesis of a potent dual agonist of GLP-1 and amylin receptors. The data offer new insights into the function of peptide amidation, how allostery drives peptide-receptor interactions, and provide a valuable resource for the development of novel amylin agonists for treating diabetes and obesity.
Collapse
Affiliation(s)
- Rebekah L Bower
- School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand
| | - Lauren Yule
- School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand.,School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand.,School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand
| | - Tayla A Rees
- School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand
| | - Giuseppe Deganutti
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Erica R Hendrikse
- School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand
| | - Paul W R Harris
- School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand.,School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand.,School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand
| | - Renata Kowalczyk
- School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand.,School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand
| | - Zachary Ridgway
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Amy G Wong
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Katarzyna Swierkula
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Daniel P Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States.,Department of Structural and Molecular Biology, University College London, London WC1E 6BT, U.K
| | - Augen A Pioszak
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Margaret A Brimble
- School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand.,School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand
| | - Christopher A Reynolds
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Christopher S Walker
- School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand
| | - Debbie L Hay
- School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand.,School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
42
|
Booe JM, Warner ML, Roehrkasse AM, Hay DL, Pioszak AA. Probing the Mechanism of Receptor Activity-Modifying Protein Modulation of GPCR Ligand Selectivity through Rational Design of Potent Adrenomedullin and Calcitonin Gene-Related Peptide Antagonists. Mol Pharmacol 2018; 93:355-367. [PMID: 29363552 PMCID: PMC5832325 DOI: 10.1124/mol.117.110916] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/19/2018] [Indexed: 01/01/2023] Open
Abstract
Binding of the vasodilator peptides adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) to the class B G protein-coupled receptor calcitonin receptor-like receptor (CLR) is modulated by receptor activity-modifying proteins (RAMPs). RAMP1 favors CGRP, whereas RAMP2 and RAMP3 favor AM. Crystal structures of peptide-bound RAMP1/2-CLR extracellular domain (ECD) heterodimers suggested RAMPs alter ligand preference through direct peptide contacts and allosteric modulation of CLR. Here, we probed this dual mechanism through rational structure-guided design of AM and CGRP antagonist variants. Variants were characterized for binding to purified RAMP1/2-CLR ECD and for antagonism of the full-length CGRP (RAMP1:CLR), AM1 (RAMP2:CLR), and AM2 (RAMP3:CLR) receptors. Short nanomolar affinity AM(37-52) and CGRP(27-37) variants were obtained through substitutions including AM S45W/Q50W and CGRP K35W/A36S designed to stabilize their β-turn. K46L and Y52F substitutions designed to exploit RAMP allosteric effects and direct peptide contacts, respectively, yielded AM variants with selectivity for the CGRP receptor over the AM1 receptor. AM(37-52) S45W/K46L/Q50W/Y52F exhibited nanomolar potency at the CGRP receptor and micromolar potency at AM1 A 2.8-Å resolution crystal structure of this variant bound to the RAMP1-CLR ECD confirmed that it bound as designed. CGRP(27-37) N31D/S34P/K35W/A36S exhibited potency and selectivity comparable to the traditional antagonist CGRP(8-37). Giving this variant the ability to contact RAMP2 through the F37Y substitution increased affinity for AM1, but it still preferred the CGRP receptor. These potent peptide antagonists with altered selectivity inform the development of AM/CGRP-based pharmacological tools and support the hypothesis that RAMPs alter CLR ligand selectivity through allosteric effects and direct peptide contacts.
Collapse
Affiliation(s)
- Jason M Booe
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (J.M.B., M.L.W., A.M.R., A.A.P.) and School of Biological Sciences, University of Auckland, Auckland, New Zealand (D.L.H.)
| | - Margaret L Warner
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (J.M.B., M.L.W., A.M.R., A.A.P.) and School of Biological Sciences, University of Auckland, Auckland, New Zealand (D.L.H.)
| | - Amanda M Roehrkasse
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (J.M.B., M.L.W., A.M.R., A.A.P.) and School of Biological Sciences, University of Auckland, Auckland, New Zealand (D.L.H.)
| | - Debbie L Hay
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (J.M.B., M.L.W., A.M.R., A.A.P.) and School of Biological Sciences, University of Auckland, Auckland, New Zealand (D.L.H.)
| | - Augen A Pioszak
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (J.M.B., M.L.W., A.M.R., A.A.P.) and School of Biological Sciences, University of Auckland, Auckland, New Zealand (D.L.H.)
| |
Collapse
|
43
|
Functional characterisation of G protein-coupled receptors. Methods 2018; 147:213-220. [PMID: 29510249 DOI: 10.1016/j.ymeth.2018.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/11/2022] Open
Abstract
Characterisation of receptors can involve either assessment of their ability to bind ligands or measure receptor activation as a result of agonist or inverse agonist interactions. This review focuses on G protein-coupled receptors (GPCRs), examining techniques that can be applied to both receptors in membranes and after solubilisation. Radioligand binding remains a widely used technique, although there is increasing use of fluorescent ligands. These can be used in a variety of experimental designs, either directly monitoring ligand itself with techniques such as fluorescence polarisation or indirectly via resonance energy transfer (fluorescence/Forster resonance energy transfer, FRET and bioluminescence resonance energy transfer, BRET). Label free techniques such as isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR) are also increasingly being used. For GPCRs, the main measure of receptor activation is to investigate the association of the G protein with the receptor. The chief assay measures the receptor-stimulated binding of GTP or a suitable analogue to the receptor. The direct association of the G protein with the receptor has been investigated via resonance energy techniques. These have also been used to measure ligand-induced conformational changes within the receptor; a variety of experimental techniques are available to incorporate suitable donors and acceptors within the receptor.
Collapse
|
44
|
Abstract
Amylin is a 37 amino acid peptide hormone that is closely related to calcitonin gene-related peptide (CGRP). Amylin and CGRP share a receptor and are reported to have several similar biological actions. Given the important role of CGRP in migraine and intense efforts to develop drugs against this target, it is important to consider potential areas of overlap between the amylin and CGRP systems. This short review provides a brief introduction to amylin biology, the use of an amylin analog to treat diabetes, and consideration of whether amylin could have any role in headache disorders. Finally, this review informs readers about the AMY1 (amylin subtype 1) receptor, which is a dual receptor for amylin and CGRP and potentially plays a role in the bioactivity of both of these peptides.
Collapse
Affiliation(s)
- Debbie L Hay
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1142, New Zealand
| |
Collapse
|
45
|
Suzuki H, Yamamoto T. Localization of amylin-like immunoreactivity in the striped velvet gecko pancreas. Anat Histol Embryol 2018; 47:159-166. [PMID: 29315753 DOI: 10.1111/ahe.12337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/22/2017] [Indexed: 12/23/2022]
Abstract
Immunohistochemical techniques were employed to investigate the distribution of amylin-like immunoreactive cells in the pancreas of gecko Homopholis fasciata. Four types of endocrine cells were distinguished: insulin immunoreactive (B cells), pancreatic polypeptide immunoreactive (PP cells), glucagon and pancreatic polypeptide immunoreactive (A/PP cells) and somatostatin immunoreactive cells (D cells). Pancreatic islets contained B, A/PP and D cells, whereas extrainsular regions contained B, D and PP cells. In the pancreatic islets, amylin-like immunoreactive cells corresponded to B cells, but not to A/PP or D cells. In the extrainsular regions, amylin-like immunoreactive cells corresponded to either B or PP cells. Amylin secreted from intrainsular B cells may regulate pancreatic hormone secretion in an autocrine and/or a paracrine fashion. On the other hand, amylin secreted from extrainsular PP and B cells, and/or intrainsular B cells may participate in the modulation of calcium homoeostasis in an endocrine fashion.
Collapse
Affiliation(s)
- H Suzuki
- Brain Functions and Neuroscience Unit, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Japan.,Department of Biology, University of Teacher Education Fukuoka, Munakata, Fukuoka, Japan
| | - T Yamamoto
- Brain Functions and Neuroscience Unit, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| |
Collapse
|
46
|
Hay DL, Garelja ML, Poyner DR, Walker CS. Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25. Br J Pharmacol 2017; 175:3-17. [PMID: 29059473 DOI: 10.1111/bph.14075] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 12/19/2022] Open
Abstract
The calcitonin/CGRP family of peptides includes calcitonin, α and β CGRP, amylin, adrenomedullin (AM) and adrenomedullin 2/intermedin (AM2/IMD). Their receptors consist of one of two GPCRs, the calcitonin receptor (CTR) or the calcitonin receptor-like receptor (CLR). Further diversity arises from heterodimerization of these GPCRs with one of three receptor activity-modifying proteins (RAMPs). This gives the CGRP receptor (CLR/RAMP1), the AM1 and AM2 receptors (CLR/RAMP2 or RAMP3) and the AMY1, AMY2 and AMY3 receptors (CTR/RAMPs1-3 complexes, respectively). Apart from the CGRP receptor, there are only peptide antagonists widely available for these receptors, and these have limited selectivity, thus defining the function of each receptor in vivo remains challenging. Further challenges arise from the probable co-expression of CTR with the CTR/RAMP complexes and species-dependent splice variants of the CTR (CT(a) and CT(b) ). Furthermore, the AMY1(a) receptor is activated equally well by both amylin and CGRP, and the preferred receptor for AM2/IMD has been unclear. However, there are clear therapeutic rationales for developing agents against the various receptors for these peptides. For example, many agents targeting the CGRP system are in clinical trials, and pramlintide, an amylin analogue, is an approved therapy for insulin-requiring diabetes. This review provides an update on the pharmacology of the calcitonin family of peptides by members of the corresponding subcommittee of the International Union of Basic and Clinical Pharmacology and colleagues.
Collapse
Affiliation(s)
- Debbie L Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Michael L Garelja
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - David R Poyner
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | | |
Collapse
|
47
|
Amylin Receptor: A Potential Therapeutic Target for Alzheimer's Disease. Trends Mol Med 2017; 23:709-720. [PMID: 28694141 DOI: 10.1016/j.molmed.2017.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/08/2017] [Accepted: 06/14/2017] [Indexed: 01/29/2023]
Abstract
Alzheimer'sdisease (AD) is a progressive neurodegenerative disorder, characterized by senile plaques constituting extracellular deposits of β-amyloid (Aβ) fibrils. Since Aβ accumulation in the brain is considered an early event preceding, by decades, cognitive dysfunction, disease-modifying treatments are aimed at facilitating clearance of this protein from the brain or ameliorating its toxic effects. Recent studies have identified the amylin receptor as a capable mediator of the deleterious actions of Aβ and furthermore, administration of amylin receptor-based peptides has been shown to improve spatial memory and learning in transgenic mouse models of AD. Here, by discussing available evidence, we posit that the amylin receptor could be considered a potential therapeutic target for AD, and present the rationale for using amylin receptor antagonists to treat this debilitating condition.
Collapse
|
48
|
Routledge SJ, Ladds G, Poyner DR. The effects of RAMPs upon cell signalling. Mol Cell Endocrinol 2017; 449:12-20. [PMID: 28390954 DOI: 10.1016/j.mce.2017.03.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/01/2017] [Accepted: 03/24/2017] [Indexed: 12/29/2022]
Abstract
G protein-coupled receptors (GPCRs) play a vital role in signal transduction. It is now clear that numerous other molecules within the cell and at the cell surface interact with GPCRs to modulate their signalling properties. Receptor activity modifying proteins (RAMPs) are a group of single transmembrane domain proteins which have been predominantly demonstrated to interact with Family B GPCRs, but interactions with Family A and C receptors have recently begun to emerge. These interactions can influence cell surface expression, ligand binding preferences and G protein-coupling, thus modulating GPCR signal transduction. There is still a great deal of research to be conducted into the effects of RAMPs on GPCR signalling; their effects upon Family B GPCRs are still not fully documented, in addition to their potential interactions with Family A and C GPCRs. New interactions could have a significant impact on the development of therapeutics.
Collapse
Affiliation(s)
- Sarah J Routledge
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom.
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - David R Poyner
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| |
Collapse
|
49
|
Lee SM, Booe JM, Gingell JJ, Sjoelund V, Hay DL, Pioszak AA. N-Glycosylation of Asparagine 130 in the Extracellular Domain of the Human Calcitonin Receptor Significantly Increases Peptide Hormone Affinity. Biochemistry 2017; 56:3380-3393. [PMID: 28614667 DOI: 10.1021/acs.biochem.7b00256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The calcitonin receptor (CTR) is a class B G protein-coupled receptor that is activated by the peptide hormones calcitonin and amylin. Calcitonin regulates bone remodeling through CTR, whereas amylin regulates blood glucose and food intake by activating CTR in complex with receptor activity-modifying proteins (RAMPs). These receptors are targeted clinically for the treatment of osteoporosis and diabetes. Here, we define the role of CTR N-glycosylation in hormone binding using purified calcitonin and amylin receptor extracellular domain (ECD) glycoforms and fluorescence polarization/anisotropy and isothermal titration calorimetry peptide-binding assays. N-Glycan-free CTR ECD produced in Escherichia coli exhibited ∼10-fold lower peptide affinity than CTR ECD produced in HEK293T cells, which yield complex N-glycans, or in HEK293S GnTI- cells, which yield core N-glycans (Man5GlcNAc2). PNGase F-catalyzed removal of N-glycans at N73, N125, and N130 in the CTR ECD decreased peptide affinity ∼10-fold, whereas Endo H-catalyzed trimming of the N-glycans to single GlcNAc residues had no effect on peptide binding. Similar results were observed for an amylin receptor RAMP2-CTR ECD complex. Characterization of peptide-binding affinities of purified N → Q CTR ECD glycan site mutants combined with PNGase F and Endo H treatment strategies and mass spectrometry to define the glycan species indicated that a single GlcNAc residue at CTR N130 was responsible for the peptide affinity enhancement. Molecular modeling suggested that this GlcNAc functions through an allosteric mechanism rather than by directly contacting the peptide. These results reveal an important role for N-linked glycosylation in the peptide hormone binding of a clinically relevant class B GPCR.
Collapse
Affiliation(s)
- Sang-Min Lee
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center , 975 NE 10th Street BRC 462B, Oklahoma City, Oklahoma 73104, United States
| | - Jason M Booe
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center , 975 NE 10th Street BRC 462B, Oklahoma City, Oklahoma 73104, United States
| | | | - Virginie Sjoelund
- Proteomics Division of the Laboratory for Molecular Biology and Cytometry Research, University of Oklahoma Health Sciences Center , 975 NE 10th Street, Oklahoma City, Oklahoma 73104, United States
| | | | - Augen A Pioszak
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center , 975 NE 10th Street BRC 462B, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
50
|
Cao F, Gamble AB, Onagi H, Howes J, Hennessy JE, Gu C, Morgan JAM, Easton CJ. Detection of Biosynthetic Precursors, Discovery of Glycosylated Forms, and Homeostasis of Calcitonin in Human Cancer Cells. Anal Chem 2017; 89:6992-6999. [PMID: 28590120 DOI: 10.1021/acs.analchem.7b00457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The peptide hormone calcitonin is intimately connected with human cancer development and proliferation. Its biosynthesis is reasoned to proceed via glycine-, α-hydroxyglycine-, glycyllysine-, and glycyllysyllysine-extended precursors; however, as a result of the limitations of current analytical methods, until now, there has been no procedure capable of detecting these individual species in cell or tissue samples. Therefore, their presence and dynamics in cancer had not been established. Here, we report the first methodology for the separation, detection, and quantification of calcitonin and each of its precursors in human cancer cells. We also report the discovery and characterization of O-glycosylated calcitonin and its analogous biosynthetic precursors. Through direct and simultaneous analysis of the glycosylated and nonglycosylated species, we interrogate the hormone biosynthesis. This shows that the cellular calcitonin level is maintained to mitigate effects of biosynthetic enzyme inhibitors that substantially change the proportions of calcitonin-related species released into the culture medium.
Collapse
Affiliation(s)
- Feihua Cao
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Allan B Gamble
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Hideki Onagi
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Joanna Howes
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - James E Hennessy
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Chen Gu
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Jeremy A M Morgan
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Christopher J Easton
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| |
Collapse
|