1
|
Ibarrola J, Jaffe IZ. The Mineralocorticoid Receptor in the Vasculature: Friend or Foe? Annu Rev Physiol 2024; 86:49-70. [PMID: 37788489 DOI: 10.1146/annurev-physiol-042022-015223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Originally described as the renal aldosterone receptor that regulates sodium homeostasis, it is now clear that mineralocorticoid receptors (MRs) are widely expressed, including in vascular endothelial and smooth muscle cells. Ample data demonstrate that endothelial and smooth muscle cell MRs contribute to cardiovascular disease in response to risk factors (aging, obesity, hypertension, atherosclerosis) by inducing vasoconstriction, vascular remodeling, inflammation, and oxidative stress. Extrapolating from its role in disease, evidence supports beneficial roles of vascular MRs in the context of hypotension by promoting inflammation, wound healing, and vasoconstriction to enhance survival from bleeding or sepsis. Advances in understanding how vascular MRs become activated are also reviewed, describing transcriptional, ligand-dependent, and ligand-independent mechanisms. By synthesizing evidence describing how vascular MRs convert cardiovascular risk factors into disease (the vascular MR as a foe), we postulate that the teleological role of the MR is to coordinate responses to hypotension (the MR as a friend).
Collapse
Affiliation(s)
- Jaime Ibarrola
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA;
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA;
| |
Collapse
|
2
|
Faught E, Schaaf MJM. Molecular mechanisms of the stress-induced regulation of the inflammatory response in fish. Gen Comp Endocrinol 2024; 345:114387. [PMID: 37788784 DOI: 10.1016/j.ygcen.2023.114387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/10/2023] [Accepted: 09/30/2023] [Indexed: 10/05/2023]
Abstract
Stressors in the environment of aquatic organisms can profoundly affect their immune system. The stress response in fish involves the activation of the hypothalamus-pituitary-interrenal (HPI) axis, leading to the release of several stress hormones, among them glucocorticoids, such as cortisol, which bind and activate corticosteroid receptors, namely the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR). These receptors are highly expressed on immune cells, thereby allowing stress to have a potent effect that is classically considered to suppress immune function. In this review, we highlight the conserved structure and function of GR and MR among vertebrates and describe their role in modulating inflammation by regulating the expression of pro-inflammatory and anti-inflammatory genes. In particular, the involvement of MR during inflammation is reviewed, which in many studies has been shown to be immune-enhancing. In recent years, the use of zebrafish as a model organism has opened up new possibilities to study the effects of stress on inflammation, making it possible to investigate knockout lines for MR and/or GR, in combination with transgenic models with fluorescently labeled leukocyte subpopulations that enable the visualization and manipulation of these immune cells. The potential roles of other hormones of the HPI axis, such as corticotrophin-releasing hormone (Crh) and adrenocorticotropic hormone (Acth), in immune modulation are also discussed. Overall, this review highlights the need for further research to elucidate the specific roles of GR, MR and other stress hormones in regulating immune function in fish. Understanding these mechanisms will contribute to improving fish health and advancing our knowledge of stress signalling.
Collapse
Affiliation(s)
- Erin Faught
- Institute of Biology Leiden, Leiden University, The Netherlands
| | | |
Collapse
|
3
|
Martinez GJ, Appleton M, Kipp ZA, Loria AS, Min B, Hinds TD. Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries. Physiol Rev 2024; 104:473-532. [PMID: 37732829 PMCID: PMC11281820 DOI: 10.1152/physrev.00021.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/07/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRβ). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRβ has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.
Collapse
Affiliation(s)
- Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Malik Appleton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
4
|
Laera N, Malerba P, Vacanti G, Nardin S, Pagnesi M, Nardin M. Impact of Immunity on Coronary Artery Disease: An Updated Pathogenic Interplay and Potential Therapeutic Strategies. Life (Basel) 2023; 13:2128. [PMID: 38004268 PMCID: PMC10672143 DOI: 10.3390/life13112128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. It is a result of the buildup of atherosclerosis within the coronary arteries. The role of the immune system in CAD is complex and multifaceted. The immune system responds to damage or injury to the arterial walls by initiating an inflammatory response. However, this inflammatory response can become chronic and lead to plaque formation. Neutrophiles, macrophages, B lymphocytes, T lymphocytes, and NKT cells play a key role in immunity response, both with proatherogenic and antiatherogenic signaling pathways. Recent findings provide new roles and activities referring to endothelial cells and vascular smooth muscle cells, which help to clarify the intricate signaling crosstalk between the involved actors. Research is ongoing to explore immunomodulatory therapies that target the immune system to reduce inflammation and its contribution to atherosclerosis. This review aims to summarize the pathogenic interplay between immunity and CAD and the potential therapeutic strategies, and explore immunomodulatory therapies that target the immune system to reduce inflammation and its contribution to atherosclerosis.
Collapse
Affiliation(s)
- Nicola Laera
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Second Medicine Division, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Paolo Malerba
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Division of Medicine, Department of Medicine, ASST Spedali Civili di Montichiari, 25018 Montichiari, Italy
| | - Gaetano Vacanti
- Medical Clinic IV, Department of Cardiology, Municipal Hospital, 76133 Karlsruhe, Germany;
| | - Simone Nardin
- U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Department of Internal Medicine and Medical Sciences, School of Medicine, University of Genova, 16126 Genova, Italy
| | - Matteo Pagnesi
- Division of Cardiology, ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Matteo Nardin
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy;
- Third Medicine Division, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
5
|
Faught E, Schaaf MJM. The Mineralocorticoid Receptor Plays a Crucial Role in Macrophage Development and Function. Endocrinology 2023; 164:bqad127. [PMID: 37597174 PMCID: PMC10475750 DOI: 10.1210/endocr/bqad127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023]
Abstract
Stress and the attendant rise in glucocorticoids (GCs) results in a potent suppression of the immune system. To date, the anti-inflammatory role of GCs, via activation of the glucocorticoid receptor, has been well-characterized. However, cortisol, the primary GC in both fish and humans, also signals through the high-affinity mineralocorticoid receptor (MR), of which the immunomodulatory role is poorly understood. Here, we tested the hypothesis that MR is a key modulator of leukocyte function during inflammation. Using transgenic MR knockout zebrafish with fluorescently labelled leukocytes, we show that a loss of MR results in a global reduction in macrophage number during key development stages. This reduction was associated with impaired macrophage proliferation and responsivity to developmental distribution signals, as well as increased susceptibility to cell death. Using a tail fin amputation in zebrafish larvae as a model for localized inflammation, we further showed that MR knockout larvae display a reduced ability to produce more macrophages under periods of inflammation (emergency myelopoiesis). Finally, we treated wild-type larvae with an MR antagonist (eplerenone) during definitive hematopoiesis, when the macrophages had differentiated normally throughout the larvae. This pharmacological blockade of MR reduced the migration of macrophages toward a wound, which was associated with reduced macrophage Ccr2 signalling. Eplerenone treatment also abolished the cortisol-induced inhibition of macrophage migration, suggesting a role for MR in cortisol-mediated anti-inflammatory action. Taken together, our work reveals that MR is a key modulator of the innate immune response to inflammation under both basal and stressed conditions.
Collapse
Affiliation(s)
- Erin Faught
- Institute of Biology Leiden, Leiden University, Leiden 2333CC, The Netherlands
| | - Marcel J M Schaaf
- Institute of Biology Leiden, Leiden University, Leiden 2333CC, The Netherlands
| |
Collapse
|
6
|
Fujii W, Shibata S. Mineralocorticoid Receptor Antagonists for Preventing Chronic Kidney Disease Progression: Current Evidence and Future Challenges. Int J Mol Sci 2023; 24:ijms24097719. [PMID: 37175424 PMCID: PMC10178637 DOI: 10.3390/ijms24097719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/05/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Regulation and action of the mineralocorticoid receptor (MR) have been the focus of intensive research over the past 80 years. Genetic and physiological/biochemical analysis revealed how MR and the steroid hormone aldosterone integrate the responses of distinct tubular cells in the face of environmental perturbations and how their dysregulation compromises fluid homeostasis. In addition to these roles, the accumulation of data also provided unequivocal evidence that MR is involved in the pathophysiology of kidney diseases. Experimental studies delineated the diverse pathological consequences of MR overactivity and uncovered the multiple mechanisms that result in enhanced MR signaling. In parallel, clinical studies consistently demonstrated that MR blockade reduces albuminuria in patients with chronic kidney disease. Moreover, recent large-scale clinical studies using finerenone have provided evidence that the non-steroidal MR antagonist can retard the kidney disease progression in diabetic patients. In this article, we review experimental data demonstrating the critical importance of MR in mediating renal injury as well as clinical studies providing evidence on the renoprotective effects of MR blockade. We also discuss areas of future investigation, which include the benefit of non-steroidal MR antagonists in non-diabetic kidney disease patients, the identification of surrogate markers for MR signaling in the kidney, and the search for key downstream mediators whereby MR blockade confers renoprotection. Insights into these questions would help maximize the benefit of MR blockade in subjects with kidney diseases.
Collapse
Affiliation(s)
- Wataru Fujii
- Division of Nephrology, Department of Internal Medicine, Graduate School of Medicine, Teikyo University, Tokyo 173-8605, Japan
| | - Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Graduate School of Medicine, Teikyo University, Tokyo 173-8605, Japan
| |
Collapse
|
7
|
Wolter NL, Jaffe IZ. Emerging vascular cell-specific roles for mineralocorticoid receptor: implications for understanding sex differences in cardiovascular disease. Am J Physiol Cell Physiol 2023; 324:C193-C204. [PMID: 36440858 PMCID: PMC9902217 DOI: 10.1152/ajpcell.00372.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
As growing evidence implicates extrarenal mineralocorticoid receptor (MR) in cardiovascular disease (CVD), recent studies have defined both cell- and sex-specific roles. MR is expressed in vascular smooth muscle (SMC) and endothelial cells (ECs). This review integrates published data from the past 5 years to identify novel roles for vascular MR in CVD, with a focus on understanding sex differences. Four areas are reviewed in which there is recently expanded understanding of the cell type- or sex-specific role of MR in 1) obesity-induced microvascular endothelial dysfunction, 2) vascular inflammation in atherosclerosis, 3) pulmonary hypertension, and 4) chronic kidney disease (CKD)-related CVD. The review focuses on preclinical data on each topic describing new mechanistic paradigms, cell type-specific mechanisms, sexual dimorphism if addressed, and clinical implications are then considered. New data support that MR drives vascular dysfunction induced by cardiovascular risk factors via sexually dimorphic mechanisms. In females, EC-MR contributes to obesity-induced endothelial dysfunction by regulating epithelial sodium channel expression and by inhibiting estrogen-induced nitric oxide production. In males with hyperlipidemia, EC-MR promotes large vessel inflammation by genomic regulation of leukocyte adhesion molecules, which is inhibited by the estrogen receptor. In pulmonary hypertension models, MRs in EC and SMC contribute to distinct components of disease pathologies including pulmonary vessel remodeling and RV dysfunction. Despite a female predominance in pulmonary hypertension, sex-specific roles for MR have not been explored. Vascular MR has also been directly implicated in CKD-related vascular dysfunction, independent of blood pressure. Despite these advances, sex differences in MR function remain understudied.
Collapse
Affiliation(s)
- Nicole L Wolter
- Molecular Cardiology Research Institute, https://ror.org/002hsbm82Tufts Medical Center, Boston, Massachusetts
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, https://ror.org/002hsbm82Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
8
|
Abstract
Besides the physiological regulation of water, sodium, and potassium homeostasis, aldosterone modulates several physiological and pathological processes in the cardiovascular system. At the vascular level, aldosterone excess stimulates endothelial dysfunction and infiltration of inflammatory cells, enhances the development of the atherosclerotic plaque, and favors plaque instability, arterial stiffness, and calcification. At the cardiac level, aldosterone increases cardiac inflammation, fibrosis, and myocardial hypertrophy. As a clinical consequence, high aldosterone levels are associated with enhanced risk of cardiovascular events and mortality, especially when aldosterone secretion is inappropriate for renin levels and sodium intake, as in primary aldosteronism. Several clinical trials showed that mineralocorticoid receptor antagonists reduce cardiovascular mortality in patients with heart failure and reduced ejection fraction, but inconclusive results were reported for other cardiovascular conditions, such as heart failure with preserved ejection fraction, myocardial infarction, and atrial fibrillation. In patients with primary aldosteronism, adrenalectomy or treatment with mineralocorticoid receptor antagonists significantly mitigate adverse aldosterone effects, reducing the risk of cardiovascular events, mortality, and incident atrial fibrillation. In this review, we will summarize the major preclinical and clinical studies investigating the cardiovascular damage mediated by aldosterone and the protective effect of mineralocorticoid receptor antagonists for the reduction of cardiovascular risk in patients with cardiovascular diseases and primary aldosteronism.
Collapse
Affiliation(s)
- Fabrizio Buffolo
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Italy
| | - Martina Tetti
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Italy
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Italy
| | - Silvia Monticone
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Italy
| |
Collapse
|
9
|
Howard ZM, Gomatam CK, Piepho AB, Rafael-Fortney JA. Mineralocorticoid Receptor Signaling in the Inflammatory Skeletal Muscle Microenvironments of Muscular Dystrophy and Acute Injury. Front Pharmacol 2022; 13:942660. [PMID: 35837290 PMCID: PMC9273774 DOI: 10.3389/fphar.2022.942660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a striated muscle degenerative disease due to loss of functional dystrophin protein. Loss of dystrophin results in susceptibility of muscle membranes to damage, leading to muscle degeneration and continuous inflammation and fibrosis that further exacerbate pathology. Long-term glucocorticoid receptor (GR) agonist treatment, the current standard-of-care for DMD, modestly improves prognosis but has serious side effects. The mineralocorticoid receptor (MR), a ligand-activated transcription factor present in many cell types, has been implicated as a therapeutic target for DMD. MR antagonists (MRAs) have fewer side effects than GR agonists and are used clinically for heart failure. MRA efficacy has recently been demonstrated for DMD cardiomyopathy and in preclinical studies, MRAs also alleviate dystrophic skeletal muscle pathology. MRAs lead to improvements in muscle force and membrane stability and reductions in degeneration, inflammation, and fibrosis in dystrophic muscles. Myofiber-specific MR knockout leads to most of these improvements, supporting an MR-dependent mechanism of action, but MRAs additionally stabilize myofiber membranes in an MR-independent manner. Immune cell MR signaling in dystrophic and acutely injured normal muscle contributes to wound healing, and myeloid-specific MR knockout is detrimental. More research is needed to fully elucidate MR signaling in striated muscle microenvironments. Direct comparisons of genomic and non-genomic effects of glucocorticoids and MRAs on skeletal muscles and heart will contribute to optimal temporal use of these drugs, since they compete for binding conserved receptors. Despite the advent of genetic medicines, therapies targeting inflammation and fibrosis will be necessary to achieve optimal patient outcomes.
Collapse
|
10
|
Hengel FE, Benitah JP, Wenzel UO. Mosaic theory revised: inflammation and salt play central roles in arterial hypertension. Cell Mol Immunol 2022; 19:561-576. [PMID: 35354938 PMCID: PMC9061754 DOI: 10.1038/s41423-022-00851-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
The mosaic theory of hypertension was advocated by Irvine Page ~80 years ago and suggested that hypertension resulted from the close interactions of different causes. Increasing evidence indicates that hypertension and hypertensive end-organ damage are not only mediated by the proposed mechanisms that result in hemodynamic injury. Inflammation plays an important role in the pathophysiology and contributes to the deleterious consequences of arterial hypertension. Sodium intake is indispensable for normal body function but can be detrimental when it exceeds dietary requirements. Recent data show that sodium levels also modulate the function of monocytes/macrophages, dendritic cells, and different T-cell subsets. Some of these effects are mediated by changes in the microbiome and metabolome due to high-salt intake. The purpose of this review is to propose a revised and extended version of the mosaic theory by summarizing and integrating recent advances in salt, immunity, and hypertension research. Salt and inflammation are placed in the middle of the mosaic because both factors influence each of the remaining pieces.
Collapse
|
11
|
Bauersachs J, Lother A. Mineralocorticoid receptor activation and antagonism in cardiovascular disease: cellular and molecular mechanisms. Kidney Int Suppl (2011) 2022; 12:19-26. [DOI: 10.1016/j.kisu.2021.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 02/08/2023] Open
|
12
|
Howard ZM, Rastogi N, Lowe J, Hauck JS, Ingale P, Gomatam C, Gomez-Sanchez CE, Gomez-Sanchez EP, Bansal SS, Rafael-Fortney JA. Myeloid mineralocorticoid receptors contribute to skeletal muscle repair in muscular dystrophy and acute muscle injury. Am J Physiol Cell Physiol 2022; 322:C354-C369. [PMID: 35044859 PMCID: PMC8858682 DOI: 10.1152/ajpcell.00411.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/22/2022]
Abstract
Suppressing mineralocorticoid receptor (MR) activity with MR antagonists is therapeutic for chronic skeletal muscle pathology in Duchenne muscular dystrophy (DMD) mouse models. Although mechanisms underlying clinical MR antagonist efficacy for DMD cardiomyopathy and other cardiac diseases are defined, mechanisms in skeletal muscles are not fully elucidated. Myofiber MR knockout improves skeletal muscle force and a subset of dystrophic pathology. However, MR signaling in myeloid cells is known to be a major contributor to cardiac efficacy. To define contributions of myeloid MR in skeletal muscle function and disease, we performed parallel assessments of muscle pathology, cytokine levels, and myeloid cell populations resulting from myeloid MR genetic knockout in muscular dystrophy and acute muscle injury. Myeloid MR knockout led to lower levels of C-C motif chemokine receptor 2 (CCR2)-expressing macrophages, resulting in sustained myofiber damage after acute injury of normal muscle. In acute injury, myeloid MR knockout also led to increased local muscle levels of the enzyme that produces the endogenous MR agonist aldosterone, further supporting important contributions of MR signaling in normal muscle repair. In muscular dystrophy, myeloid MR knockout altered cytokine levels differentially between quadriceps and diaphragm muscles, which contain different myeloid populations. Myeloid MR knockout led to higher levels of fibrosis in dystrophic diaphragm. These results support important contributions of myeloid MR signaling to skeletal muscle repair in acute and chronic injuries and highlight the useful information gained from cell-specific genetic knockouts to delineate mechanisms of pharmacological efficacy.
Collapse
MESH Headings
- Aldosterone/metabolism
- Animals
- Barium Compounds
- Chlorides
- Cytokines/genetics
- Cytokines/metabolism
- Diaphragm/immunology
- Diaphragm/metabolism
- Diaphragm/pathology
- Disease Models, Animal
- Female
- Fibrosis
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Mice, Inbred mdx
- Mice, Knockout
- Muscular Diseases/chemically induced
- Muscular Diseases/immunology
- Muscular Diseases/metabolism
- Muscular Diseases/pathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/immunology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Quadriceps Muscle/immunology
- Quadriceps Muscle/metabolism
- Quadriceps Muscle/pathology
- Receptors, CCR2/genetics
- Receptors, CCR2/metabolism
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Zachary M Howard
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Neha Rastogi
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jeovanna Lowe
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - J Spencer Hauck
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Pratham Ingale
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Chetan Gomatam
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Celso E Gomez-Sanchez
- Jackson Department of Veterans Affairs Medical Center, Jackson, Mississippi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Elise P Gomez-Sanchez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Shyam S Bansal
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jill A Rafael-Fortney
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
13
|
Barrera-Chimal J, Bonnard B, Jaisser F. Roles of Mineralocorticoid Receptors in Cardiovascular and Cardiorenal Diseases. Annu Rev Physiol 2022; 84:585-610. [PMID: 35143332 DOI: 10.1146/annurev-physiol-060821-013950] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mineralocorticoid receptor (MR) activation in the heart and vessels leads to pathological effects, such as excessive extracellular matrix accumulation, oxidative stress, and sustained inflammation. In these organs, the MR is expressed in cardiomyocytes, fibroblasts, endothelial cells, smooth muscle cells, and inflammatory cells. We review the accumulating experimental and clinical evidence that pharmacological MR antagonism has a positive impact on a battery of cardiac and vascular pathological states, including heart failure, myocardial infarction, arrhythmic diseases, atherosclerosis, vascular stiffness, and cardiac and vascular injury linked to metabolic comorbidities and chronic kidney disease. Moreover, we present perspectives on optimization of the use of MR antagonists in patients more likely to respond to such therapy and review the evidence suggesting that novel nonsteroidal MR antagonists offer an improved safety profile while retaining their cardiovascular protective effects. Finally, we highlight future therapeutic applications of MR antagonists in cardiovascular injury.
Collapse
Affiliation(s)
- Jonatan Barrera-Chimal
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Fisiología Cardiovascular y Trasplante Renal, Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Benjamin Bonnard
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France;
| | - Frederic Jaisser
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France; .,INSERM Centre d'Investigations Cliniques-Plurithématique 1433, UMR 1116, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN INI-CRCT), Université de Lorraine, Nancy, France
| |
Collapse
|
14
|
Carvajal CA, Tapia-Castillo A, Pérez JA, Fardella CE. Primary Aldosteronism, Aldosterone, and Extracellular Vesicles. Endocrinology 2022; 163:6433012. [PMID: 34918071 DOI: 10.1210/endocr/bqab240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 01/02/2023]
Abstract
Primary aldosteronism (PA) is an endocrine related condition leading to arterial hypertension due to inappropriately high and unregulated aldosterone concentration. Recently, a broad spectrum of PA has been recognized, which brings new challenges associated with early identification of this condition that affect renal epithelial and extrarenal tissues. Reports have shown the potential role of extracellular vesicles (EVs) and EV cargo as novel and complementary biomarkers in diagnosis and prognosis of PA. In vivo and in vitro studies have identified specific EV surface antigens, EV-proteins, and EV microRNAs that can be useful to develop novel diagnostic algorithms to detect, confirm, or follow up the PA. Moreover, the study of EVs in the field of PA provides further insight in the pathophysiological mechanism of the PA disease.
Collapse
Affiliation(s)
- Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandra Tapia-Castillo
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge A Pérez
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos E Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
15
|
van der Heijden CDCC, Bode M, Riksen NP, Wenzel UO. The role of the mineralocorticoid receptor in immune cells in in cardiovascular disease. Br J Pharmacol 2021; 179:3135-3151. [PMID: 34935128 DOI: 10.1111/bph.15782] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/22/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022] Open
Abstract
Chronic low-grade inflammation and immune cell activation are important mechanisms in the pathophysiology of cardiovascular disease (CVD). Therefore, targeted immunosuppression is a promising novel therapy to lower cardiovascular risk. In this review, we identify the mineralocorticoid receptor (MR) on immune cells as a potential target to modulate inflammation. The MR is present in almost all cells of the cardiovascular system, including immune cells. Activation of the MR in innate and adaptive immune cells induces inflammation which can contribute to CVD, by inducing endothelial dysfunction and hypertension. Moreover, it accelerates atherosclerotic plaque formation and destabilization and impairs tissue regeneration after ischemic events. Identifying the molecular targets for these non-renal actions of the MR provide promising novel cardiovascular drug targets for mineralocorticoid receptor antagonists (MRAs), which are currently mainly applied in hypertension and heart failure.
Collapse
Affiliation(s)
| | - Marlies Bode
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, GA, Nijmegen, The Netherlands.,Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, GA, The Netherlands
| | - Ulrich O Wenzel
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Man JJ, Lu Q, Moss ME, Carvajal B, Baur W, Garza AE, Freeman R, Anastasiou M, Ngwenyama N, Adler GK, Alcaide P, Jaffe IZ. Myeloid Mineralocorticoid Receptor Transcriptionally Regulates P-Selectin Glycoprotein Ligand-1 and Promotes Monocyte Trafficking and Atherosclerosis. Arterioscler Thromb Vasc Biol 2021; 41:2740-2755. [PMID: 34615372 PMCID: PMC8601161 DOI: 10.1161/atvbaha.121.316929] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
Objective MR (mineralocorticoid receptor) activation associates with increased risk of cardiovascular ischemia while MR inhibition reduces cardiovascular-related mortality and plaque inflammation in mouse atherosclerosis. MR in myeloid cells (My-MR) promotes inflammatory cell infiltration into injured tissues and atherosclerotic plaque inflammation by unclear mechanisms. Here, we examined the role of My-MR in leukocyte trafficking and the impact of sex. Approach and Results We confirm in vivo that My-MR deletion (My-MR-KO) in ApoE-KO mice decreased plaque size. Flow cytometry revealed fewer plaque macrophages with My-MR-KO. By intravital microscopy, My-MR-KO significantly attenuated monocyte slow-rolling and adhesion to mesenteric vessels and decreased peritoneal infiltration of myeloid cells in response to inflammatory stimuli in male but not female mice. My-MR-KO mice had significantly less PSGL1 (P-selectin glycoprotein ligand 1) mRNA in peritoneal macrophages and surface PSGL1 protein on circulating monocytes in males. In vitro, MR activation with aldosterone significantly increased PSGL1 mRNA only in monocytes from MR-intact males. Similarly, aldosterone induced, and MR antagonist spironolactone inhibited, PSGL1 expression in human U937 monocytes. Mechanistically, aldosterone stimulated MR binding to a predicted MR response element in intron-1 of the PSGL1 gene by ChIP-qPCR. Reporter assays demonstrated that this PSGL1 MR response element is necessary and sufficient for aldosterone-activated, MR-dependent transcriptional activity. Conclusions These data identify PSGL1 as a My-MR target gene that drives leukocyte trafficking to enhance atherosclerotic plaque inflammation. These novel and sexually dimorphic findings provide insight into increased ischemia risk with MR activation, cardiovascular protection in women, and the role of MR in atherosclerosis and tissue inflammation.
Collapse
MESH Headings
- Adult
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Cell Adhesion/drug effects
- Disease Models, Animal
- Female
- HEK293 Cells
- Humans
- Hypoglycemia/drug therapy
- Hypoglycemia/genetics
- Hypoglycemia/metabolism
- Leukocyte Rolling/drug effects
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/pathology
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Middle Aged
- Mineralocorticoid Receptor Antagonists/therapeutic use
- Monocytes/drug effects
- Monocytes/metabolism
- Monocytes/pathology
- Randomized Controlled Trials as Topic
- Receptors, Mineralocorticoid/drug effects
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Sex Factors
- Signal Transduction
- Spironolactone/therapeutic use
- Transcription, Genetic
- Transendothelial and Transepithelial Migration
- Treatment Outcome
- U937 Cells
- Young Adult
- Mice
Collapse
Affiliation(s)
- Joshua J Man
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| | - Qing Lu
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - M. Elizabeth Moss
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| | - Brigett Carvajal
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Wendy Baur
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Amanda E Garza
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Marina Anastasiou
- Department of Immunology, Tufts University School of Medicine, Boston, MA
- Department of Internal Medicine, University of Crete Medical School, Crete, Greece
| | - Njabulo Ngwenyama
- Department of Immunology, Tufts University School of Medicine, Boston, MA
| | - Gail K Adler
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| |
Collapse
|
17
|
Menon DP, Qi G, Kim SK, Moss ME, Penumatsa KC, Warburton RR, Toksoz D, Wilson J, Hill NS, Jaffe IZ, Preston IR. Vascular cell-specific roles of mineralocorticoid receptors in pulmonary hypertension. Pulm Circ 2021; 11:20458940211025240. [PMID: 34211700 PMCID: PMC8216367 DOI: 10.1177/20458940211025240] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022] Open
Abstract
Abnormalities that characterize pulmonary arterial hypertension include impairment in the structure and function of pulmonary vascular endothelial and smooth muscle cells. Aldosterone levels are elevated in human pulmonary arterial hypertension and in experimental pulmonary hypertension, while inhibition of the aldosterone-binding mineralocorticoid receptor attenuates pulmonary hypertension in multiple animal models. We explored the role of mineralocorticoid receptor in endothelial and smooth muscle cells in using cell-specific mineralocorticoid receptor knockout mice exposed to sugen/hypoxia-induced pulmonary hypertension. Treatment with the mineralocorticoid receptor inhibitor spironolactone significantly reduced right ventricular systolic pressure. However, this is not reproduced by selective mineralocorticoid receptor deletion in smooth muscle cells or endothelial cells. Similarly, spironolactone attenuated the increase in right ventricular cardiomyocyte area independent of vascular mineralocorticoid receptor with no effect on right ventricular weight or interstitial fibrosis. Right ventricular perivascular fibrosis was significantly decreased by spironolactone and this was reproduced by specific deletion of mineralocorticoid receptor from endothelial cells. Endothelial cell-mineralocorticoid receptor deletion attenuated the sugen/hypoxia-induced increase in the leukocyte-adhesion molecule, E-selectin, and collagen IIIA1 in the right ventricle. Spironolactone also significantly reduced pulmonary arteriolar muscularization, independent of endothelial cell-mineralocorticoid receptor or smooth muscle cell-mineralocorticoid receptor. Finally, the degree of pulmonary perivascular inflammation was attenuated by mineralocorticoid receptor antagonism and was fully reproduced by smooth muscle cell-specific mineralocorticoid receptor deletion. These studies demonstrate that in the sugen/hypoxia pulmonary hypertension model, systemic-mineralocorticoid receptor blockade significantly attenuates the disease and that mineralocorticoid receptor has cell-specific effects, with endothelial cell-mineralocorticoid receptor contributing to right ventricular perivascular fibrosis and smooth muscle cell-mineralocorticoid receptor participating in pulmonary vascular inflammation. As mineralocorticoid receptor antagonists are being investigated to treat pulmonary arterial hypertension, these findings support novel mechanisms and potential mineralocorticoid receptor targets that mediate therapeutic benefits in patients.
Collapse
Affiliation(s)
- Divya P. Menon
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, MA, USA
| | - Guanming Qi
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, MA, USA
| | - Seung K. Kim
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
- Department of Sports Science, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - M. Elizabeth Moss
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Krishna C. Penumatsa
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, MA, USA
| | - Rod R. Warburton
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, MA, USA
| | - Deniz Toksoz
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, MA, USA
| | - Jamie Wilson
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, MA, USA
| | - Nicholas S. Hill
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, MA, USA
| | - Iris Z. Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Ioana R. Preston
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
18
|
Zang X, Cheng M, Zhang X, Chen X. Targeting macrophages using nanoparticles: a potential therapeutic strategy for atherosclerosis. J Mater Chem B 2021; 9:3284-3294. [PMID: 33881414 DOI: 10.1039/d0tb02956d] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Atherosclerosis is one of the leading causes of vascular diseases, with high morbidity and mortality worldwide. Macrophages play a critical role in the development and local inflammatory responses of atherosclerosis, contributing to plaque rupture and thrombosis. Considering their central roles, macrophages have gained considerable attention as a therapeutic target to attenuate atherosclerotic progression and stabilize existing plaques. Nanoparticle-based delivery systems further provide possibilities to selectively and effectively deliver therapeutic agents into intraplaque macrophages. Although challenges are numerous and clinical application is still distant, the design and development of macrophage-targeting nanoparticles will generate new knowledge and experiences to improve therapeutic outcomes and minimize toxicity. Hence, the review aims to discuss various strategies for macrophage modulation and the development and evaluation of macrophage targeting nanomedicines for anti-atherosclerosis.
Collapse
Affiliation(s)
- Xinlong Zang
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, P. R. China.
| | | | | | | |
Collapse
|
19
|
Matarese G, Norata GD. Hormonal control of trained immunity: aldosterone at the crossroad between activation of innate immunity and cardiovascular diseases. Cardiovasc Res 2020; 116:256-257. [PMID: 31346597 DOI: 10.1093/cvr/cvz191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II" and Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli 80131, Italy
| | - Giuseppe Danilo Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences (DisFeB), Università Degli Studi di Milano, via Balzaretti 9, Milan 20133, Italy.,SISA Centre for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo 20092, Italy
| |
Collapse
|
20
|
Fraccarollo D, Thomas S, Scholz CJ, Hilfiker-Kleiner D, Galuppo P, Bauersachs J. Macrophage Mineralocorticoid Receptor Is a Pleiotropic Modulator of Myocardial Infarct Healing. Hypertension 2019; 73:102-111. [PMID: 30543467 PMCID: PMC6291261 DOI: 10.1161/hypertensionaha.118.12162] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Myocardial infarction (MI) is a major cause of death worldwide. Here, we identify the macrophage MR (mineralocorticoid receptor) as a crucial pathogenic player in cardiac wound repair after MI. Seven days after left coronary artery ligation, mice with myeloid cell-restricted MR deficiency compared with WT (wild type) controls displayed improved cardiac function and remodeling associated with enhanced infarct neovascularization and scar maturation. Gene expression profiling of heart-resident and infarct macrophages revealed that MR deletion drives macrophage differentiation in the ischemic microenvironment toward a phenotype outside the M1/M2 paradigm, with regulation of multiple interrelated factors controlling wound healing and tissue repair. Mechanistic and functional data suggest that inactivation of the macrophage MR promotes myocardial infarct healing through enhanced efferocytosis of neutrophils, the suppression of free radical formation, and the modulation of fibroblast activation state. Crucially, targeted delivery of MR antagonists to macrophages, with a single administration of RU28318 or eplerenone-containing liposomes at the onset of MI, improved the healing response and protected against cardiac remodeling and functional deterioration, offering an effective and unique therapeutic strategy for cardiac repair.
Collapse
Affiliation(s)
- Daniela Fraccarollo
- From the Department of Cardiology and Angiology, Hannover Medical School, Germany (D.F., S.T., D.H.-K., P.G., J.B.)
| | - Svenja Thomas
- From the Department of Cardiology and Angiology, Hannover Medical School, Germany (D.F., S.T., D.H.-K., P.G., J.B.)
| | | | - Denise Hilfiker-Kleiner
- From the Department of Cardiology and Angiology, Hannover Medical School, Germany (D.F., S.T., D.H.-K., P.G., J.B.)
| | - Paolo Galuppo
- From the Department of Cardiology and Angiology, Hannover Medical School, Germany (D.F., S.T., D.H.-K., P.G., J.B.)
| | - Johann Bauersachs
- From the Department of Cardiology and Angiology, Hannover Medical School, Germany (D.F., S.T., D.H.-K., P.G., J.B.)
| |
Collapse
|
21
|
Moss ME, Carvajal B, Jaffe IZ. The endothelial mineralocorticoid receptor: Contributions to sex differences in cardiovascular disease. Pharmacol Ther 2019; 203:107387. [PMID: 31271793 PMCID: PMC6848769 DOI: 10.1016/j.pharmthera.2019.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease remains the leading cause of death for both men and women. The observation that premenopausal women are protected from cardiovascular disease relative to age-matched men, and that this protection is lost with menopause, has led to extensive study of the role of sex steroid hormones in the pathogenesis of cardiovascular disease. However, the molecular basis for sex differences in cardiovascular disease is still not fully understood, limiting the ability to tailor therapies to male and female patients. Therefore, there is a growing need to investigate molecular pathways outside of traditional sex hormone signaling to fully understand sex differences in cardiovascular disease. Emerging evidence points to the mineralocorticoid receptor (MR), a steroid hormone receptor activated by the adrenal hormone aldosterone, as one such mediator of cardiovascular disease risk, potentially serving as a sex-dependent link between cardiovascular risk factors and disease. Enhanced activation of the MR by aldosterone is associated with increased risk of cardiovascular disease. Emerging evidence implicates the MR specifically within the endothelial cells lining the blood vessels in mediating some of the sex differences observed in cardiovascular pathology. This review summarizes the available clinical and preclinical literature concerning the role of the MR in the pathophysiology of endothelial dysfunction, hypertension, atherosclerosis, and heart failure, with a special emphasis on sex differences in the role of endothelial-specific MR in these pathologies. The available data regarding the molecular mechanisms by which endothelial-specific MR may contribute to sex differences in cardiovascular disease is also summarized. A paradigm emerges from synthesis of the literature in which endothelial-specific MR regulates vascular function in a sex-dependent manner in response to cardiovascular risk factors to contribute to disease. Limitations in this field include the relative paucity of women in clinical trials and, until recently, the nearly exclusive use of male animals in preclinical investigations. Enhanced understanding of the sex-specific roles of endothelial MR could lead to novel mechanistic insights underlying sex differences in cardiovascular disease incidence and outcomes and could identify additional therapeutic targets to effectively treat cardiovascular disease in men and women.
Collapse
Affiliation(s)
- M Elizabeth Moss
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States of America; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America
| | - Brigett Carvajal
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States of America; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States of America; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America.
| |
Collapse
|
22
|
Hodge MX, Reece SW, Madenspacher JH, Gowdy KM. In Vivo Assessment of Alveolar Macrophage Efferocytosis Following Ozone Exposure. J Vis Exp 2019. [PMID: 31710036 DOI: 10.3791/60109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ozone (O3) is a criteria air pollutant that exacerbates and increases the incidence of chronic pulmonary diseases. O3 exposure is known to induce pulmonary inflammation, but little is known regarding how exposure alters processes important to the resolution of inflammation. Efferocytosis is a resolution process, whereby macrophages phagocytize apoptotic cells. The purpose of this protocol is to measure alveolar macrophage efferocytosis following O3-induced lung injury and inflammation. Several methods have been described for measuring efferocytosis; however, most require ex vivo manipulations. Described in detail here is a protocol to measure in vivo alveolar macrophage efferocytosis 24 h after O3 exposure, which avoids ex vivo manipulation of macrophages and serves as a simple technique that can be used to accurately represent perturbations in this resolution process. The protocol is a technically non-intensive and relatively inexpensive method that involves whole-body O3 inhalation followed by oropharyngeal aspiration of apoptotic cells (i.e., Jurkat T cells) while under general anesthesia. Alveolar macrophage efferocytosis is then measured by light microscopy evaluation of macrophages collected from bronchoalveolar (BAL) lavage. Efferocytosis is finally measured by calculating an efferocytic index. Collectively, the outlined methods quantify efferocytic activity in the lung in vivo while also serving to analyze the negative health effects of O3 or other inhaled insults.
Collapse
Affiliation(s)
- Myles X Hodge
- Department of Pharmacology and Toxicology, East Carolina University
| | - Sky W Reece
- Department of Pharmacology and Toxicology, East Carolina University
| | | | - Kymberly M Gowdy
- Department of Pharmacology and Toxicology, East Carolina University;
| |
Collapse
|
23
|
Suárez-Rivero JM, Pastor-Maldonado CJ, de la Mata M, Villanueva-Paz M, Povea-Cabello S, Álvarez-Córdoba M, Villalón-García I, Suárez-Carrillo A, Talaverón-Rey M, Munuera M, Sánchez-Alcázar JA. Atherosclerosis and Coenzyme Q 10. Int J Mol Sci 2019; 20:ijms20205195. [PMID: 31635164 PMCID: PMC6834161 DOI: 10.3390/ijms20205195] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is the most common cause of cardiac deaths worldwide. Classically, atherosclerosis has been explained as a simple arterial lipid deposition with concomitant loss of vascular elasticity. Eventually, this condition can lead to consequent blood flow reduction through the affected vessel. However, numerous studies have demonstrated that more factors than lipid accumulation are involved in arterial damage at the cellular level, such as inflammation, autophagy impairment, mitochondrial dysfunction, and/or free-radical overproduction. In order to consider the correction of all of these pathological changes, new approaches in atherosclerosis treatment are necessary. Ubiquinone or coenzyme Q10 is a multifunctional molecule that could theoretically revert most of the cellular alterations found in atherosclerosis, such as cholesterol biosynthesis dysregulation, impaired autophagy flux and mitochondrial dysfunction thanks to its redox and signaling properties. In this review, we will show the latest advances in the knowledge of the relationships between coenzyme Q10 and atherosclerosis. In addition, as atherosclerosis phenotype is closely related to aging, it is reasonable to believe that coenzyme Q10 supplementation could be beneficial for both conditions.
Collapse
Affiliation(s)
- Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| | - Carmen J Pastor-Maldonado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| | - Mario de la Mata
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| | - Marina Villanueva-Paz
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| | - Manuel Munuera
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| |
Collapse
|
24
|
van der Heijden CDCC, Deinum J, Joosten LAB, Netea MG, Riksen NP. The mineralocorticoid receptor as a modulator of innate immunity and atherosclerosis. Cardiovasc Res 2019; 114:944-953. [PMID: 29668907 DOI: 10.1093/cvr/cvy092] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/12/2018] [Indexed: 12/22/2022] Open
Abstract
The mineralocorticoid receptor (MR) is a member of the nuclear receptor steroid-binding family. The classical MR ligand aldosterone controls electrolyte and fluid homeostasis after binding in renal epithelial cells. However, more recent evidence suggests that activation of extrarenal MRs by aldosterone negatively impacts cardiovascular health independent of its effects on blood pressure: high levels of aldosterone associate with an increased cardiovascular event rate, where MR antagonists exert beneficial effects on cardiovascular mortality. The most important cause for cardiovascular events is atherosclerosis that is currently considered a low-grade inflammatory disorder of the arterial wall. In this inflammatory process, the innate immune system plays a deciding role, with the monocyte-derived macrophage being the most abundant cell in the atherosclerotic plaque. Intriguingly, both monocytes and macrophages express the MR, and a growing body of evidence shows that these cells are skewed into a pro-inflammatory and pro-atherosclerotic phenotype via MR stimulation. In this review, we detail the current perspective on the role of the monocyte and macrophage MR in atherosclerosis development and provide a comprehensive framework of the effects of MR activation of the innate immune system that might drive the pro-atherosclerotic outcome.
Collapse
Affiliation(s)
- Charlotte D C C van der Heijden
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Jaap Deinum
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Carl-Troll-Straβe 31, 53115 Bonn, Germany
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
25
|
Moss ME, Lu Q, Iyer SL, Engelbertsen D, Marzolla V, Caprio M, Lichtman AH, Jaffe IZ. Endothelial Mineralocorticoid Receptors Contribute to Vascular Inflammation in Atherosclerosis in a Sex-Specific Manner. Arterioscler Thromb Vasc Biol 2019; 39:1588-1601. [PMID: 31294624 DOI: 10.1161/atvbaha.119.312954] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE MR (mineralocorticoid receptor) activation is associated with cardiovascular ischemia in humans. This study explores the role of the MR in atherosclerotic mice of both sexes and identifies a sex-specific role for endothelial cell (EC)-MR in vascular inflammation. Approach and Results: In the AAV-PCSK9 (adeno-associated virus-proprotein convertase subtilisin/kexin type 9) mouse atherosclerosis model, MR inhibition attenuated vascular inflammation in males but not females. Further studies comparing male and female littermates with intact MR or EC-MR deletion revealed that although EC-MR deletion did not affect plaque size in either sex, it reduced aortic arch inflammation specifically in male mice as measured by flow cytometry. Moreover, MR-intact females had larger plaques but were protected from vascular inflammation compared with males. Intravital microscopy of the mesenteric vasculature demonstrated that EC-MR deletion attenuated TNFα (tumor necrosis factor α)-induced leukocyte slow rolling and adhesion in males, while females exhibited fewer leukocyte-endothelial interactions with no additional effect of EC-MR deletion. These effects corresponded with decreased TNFα-induced expression of the endothelial adhesion molecules ICAM-1 (intercellular adhesion molecule-1) and E-selectin in males with EC-MR deletion compared with MR-intact males and females of both genotypes. These observations were also consistent with MR and estrogen regulation of ICAM-1 transcription and E-selectin expression in primary cultured mouse ECs and human umbilical vein ECs. CONCLUSIONS In male mice, EC-MR deletion attenuates leukocyte-endothelial interactions, plaque inflammation, and expression of E-selectin and ICAM-1, providing a potential mechanism by which the MR promotes vascular inflammation. In females, plaque inflammation and leukocyte-endothelial interactions are decreased relative to males and EC-MR deletion is not protective.
Collapse
Affiliation(s)
- M Elizabeth Moss
- From the Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (M.E.M., Q.L., S.L.I., I.Z.J.)
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA (M.E.M., I.Z.J.)
| | - Qing Lu
- From the Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (M.E.M., Q.L., S.L.I., I.Z.J.)
| | - Surabhi L Iyer
- From the Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (M.E.M., Q.L., S.L.I., I.Z.J.)
| | - Daniel Engelbertsen
- Department of Pathology, Brigham and Women's Hospital, Boston, MA (D.E., A.H.L.)
| | - Vincenzo Marzolla
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy (V.M., M.C.)
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy (V.M., M.C.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (M.C.)
| | - Andrew H Lichtman
- Department of Pathology, Brigham and Women's Hospital, Boston, MA (D.E., A.H.L.)
| | - Iris Z Jaffe
- From the Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (M.E.M., Q.L., S.L.I., I.Z.J.)
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA (M.E.M., I.Z.J.)
| |
Collapse
|
26
|
Biwer LA, Wallingford MC, Jaffe IZ. Vascular Mineralocorticoid Receptor: Evolutionary Mediator of Wound Healing Turned Harmful by Our Modern Lifestyle. Am J Hypertens 2019; 32:123-134. [PMID: 30380007 DOI: 10.1093/ajh/hpy158] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/30/2018] [Indexed: 12/28/2022] Open
Abstract
The mineralocorticoid receptor (MR) is indispensable for survival through its critical role in maintaining blood pressure in response to sodium scarcity or bleeding. Activation of MR by aldosterone in the kidney controls water and electrolyte homeostasis. This review summarizes recent advances in our understanding of MR function, specifically in vascular endothelial and smooth muscle cells. The evolving roles for vascular MR are summarized in the areas of (i) vascular tone regulation, (ii) thrombosis, (iii) inflammation, and (iv) vascular remodeling/fibrosis. Synthesis of the data supports the concept that vascular MR does not contribute substantially to basal homeostasis but rather, MR is poised to be activated when the vasculature is damaged to coordinate blood pressure maintenance and wound healing. Specifically, MR activation in the vascular wall promotes vasoconstriction, inflammation, and exuberant vascular remodeling with fibrosis. A teleological model is proposed in which these functions of vascular MR may have provided a critical evolutionary survival advantage in the face of mechanical vascular injury with bleeding. However, modern lifestyle is characterized by physical inactivity and high fat/high sodium diet resulting in diffuse vascular damage. Under these modern conditions, diffuse, persistent and unregulated activation of vascular MR contributes to post-reproductive cardiovascular disease in growing populations with hypertension, obesity, and advanced age.
Collapse
MESH Headings
- Animals
- Cardiovascular Diseases/epidemiology
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Cardiovascular Diseases/physiopathology
- Diet, High-Fat
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Evolution, Molecular
- Hemodynamics
- Humans
- Life Style
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Receptors, Mineralocorticoid/metabolism
- Risk Factors
- Sedentary Behavior
- Signal Transduction
- Sodium, Dietary/adverse effects
- Vascular Remodeling
- Wound Healing
Collapse
Affiliation(s)
- Lauren A Biwer
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Mary C Wallingford
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Wang F, Zhang Z, Fang A, Jin Q, Fang D, Liu Y, Wu J, Tan X, Wei Y, Jiang C, Song X. Macrophage Foam Cell-Targeting Immunization Attenuates Atherosclerosis. Front Immunol 2019; 9:3127. [PMID: 30687328 PMCID: PMC6335275 DOI: 10.3389/fimmu.2018.03127] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 12/18/2018] [Indexed: 02/05/2023] Open
Abstract
Background: Macrophage foam cells (FCs) play a crucial role in the initiation and progression of atherosclerosis. Reducing the formation or inducing the removal of FCs could ameliorate atherosclerosis. The present study examined whether the whole-cell vaccination using FCs could be used as novel prevention and treatment strategies to battle atherosclerosis. Methods: ApoE−/− mice with initial or established atherosclerosis were subcutaneously immunized three times with FCs in Freund's adjuvant. Results: Immunization with FCs resulted in an overt reduction of atherosclerotic lesion in the whole aorta and the aortic root with enhanced lesion stability. Subsequent study in mechanism showed that FCs vaccination dramatically increased CD4+ T cell and CD8+ T cell populations. Immunization with FCs significantly raised the plasma FCs-specific IgG antibodies. Of note, the FCs immune plasma could selectively recognize and bind to FC. FCs immune plasma significantly blocked the process of FCs formation, finally reduced the accumulation of FCs in plaque. Additionally, it was observed that FCs immunization down-regulated the expression level of atherosclerosis related pro-inflammatory cytokines, including IFN-γ, MCP-1, and IL-6 and enhanced the lesion stability with a significant increase in TGF-β1 level and collagen content. Conclusions: These findings demonstrate that the whole-cell vaccination using FCs significantly decreased lesion development and positively modulated lesion progression and stability by targeting FCs. The whole-cell FCs vaccine might represent a potential novel strategy for development of new antibodies and vaccines to the prevention or treatment of atherosclerosis.
Collapse
Affiliation(s)
- Fazhan Wang
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Zhi Zhang
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China.,School of Chemical and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong, China
| | - Aiping Fang
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China.,West China School of Public Health, Sichuan University, Chengdu, China
| | - Quansheng Jin
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Dailong Fang
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Yongmei Liu
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Jinhui Wu
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Xiaoyue Tan
- Department of Pathology/Collaborative Innovation Center of Biotherapy, Medical School of Nankai University, Tianjin, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Chunling Jiang
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Xiangrong Song
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Young MJ, Adler GK. Aldosterone, the Mineralocorticoid Receptor and Mechanisms of Cardiovascular Disease. VITAMINS AND HORMONES 2019; 109:361-385. [DOI: 10.1016/bs.vh.2018.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Gorini S, Kim SK, Infante M, Mammi C, La Vignera S, Fabbri A, Jaffe IZ, Caprio M. Role of Aldosterone and Mineralocorticoid Receptor in Cardiovascular Aging. Front Endocrinol (Lausanne) 2019; 10:584. [PMID: 31507534 PMCID: PMC6716354 DOI: 10.3389/fendo.2019.00584] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 08/09/2019] [Indexed: 12/28/2022] Open
Abstract
The mineralocorticoid receptor (MR) was originally identified as a regulator of blood pressure, able to modulate renal sodium handling in response to its principal ligand aldosterone. MR is expressed in several extra-renal tissues, including the heart, vasculature, and adipose tissue. More recent studies have shown that extra-renal MR plays a relevant role in the control of cardiovascular and metabolic functions and has recently been implicated in the pathophysiology of aging. MR activation promotes vasoconstriction and acts as a potent pro-fibrotic agent in cardiovascular remodeling. Aging is associated with increased arterial stiffness and vascular tone, and modifications of arterial structure and function are responsible for these alterations. MR activation contributes to increase blood pressure with aging by regulating myogenic tone, vasoconstriction, and vascular oxidative stress. Importantly, aging represents an important contributor to the increased prevalence of cardiometabolic syndrome. In the elderly, dysregulation of MR signaling is associated with hypertension, obesity, and diabetes, representing an important cause of increased cardiovascular risk. Clinical use of MR antagonists is limited by the adverse effects induced by MR blockade in the kidney, raising the risk of hyperkalaemia in older patients with reduced renal function. Therefore, there is an unmet need for the enhanced understanding of the role of MR in aging and for development of novel specific MR antagonists in the context of cardiovascular rehabilitation in the elderly, in order to reduce relevant side effects.
Collapse
Affiliation(s)
- Stefania Gorini
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Seung Kyum Kim
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
- Department of Sports Science, Seoul National University of Science and Technology, Seoul, South Korea
| | - Marco Infante
- Unit of Endocrinology and Metabolic Diseases, Department of Systems Medicine, CTO A. Alesini Hospital, ASL Roma 2, University of Rome Tor Vergata, Rome, Italy
| | - Caterina Mammi
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Andrea Fabbri
- Unit of Endocrinology and Metabolic Diseases, Department of Systems Medicine, CTO A. Alesini Hospital, ASL Roma 2, University of Rome Tor Vergata, Rome, Italy
| | - Iris Z. Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
- *Correspondence: Massimiliano Caprio
| |
Collapse
|
30
|
Wang X, Liu X, Xie Z, Tian J, Huang X, Zhang R, Chen S, Hou J, Yu B. Small HDL subclass is associated with coronary plaque stability: An optical coherence tomography study in patients with coronary artery disease. J Clin Lipidol 2018; 13:326-334.e2. [PMID: 30665770 DOI: 10.1016/j.jacl.2018.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND The role of high-density lipoprotein (HDL) subclasses in atherosclerotic diseases remains an open question. Previous clinical trials have attempted to explore the predictive effect of HDL subspecies on cardiovascular risk. However, no studies have assessed the connections between these subclasses and characteristics of plaque microstructure. OBJECTIVE To investigate the relationship of HDL subclasses and coronary plaque stability assessed by optical coherence tomography (OCT). METHODS Morphological characteristics of 160 nontarget lesions from 85 patients with coronary artery disease were assessed by OCT. HDL subclass profiles were analyzed using nondenaturing polyacrylamide gel electrophoresis. RESULTS The plasma levels of small HDL subclass (percentage or concentration) were found to be positively associated with fibrous cap thickness (r = 0.232, P = .007; r = 0.243, P = .005) and negatively with maximum lipid arc (r = -0.240, P = .005; r = -0.252, P = .003) and lipid core length (r = -0.350, P < .001; r = -0.367, P < .001). Multivariate logistic regression analysis showed the small HDL subclass (percentage or concentration) (odds ratio [OR]: 0.457, 95% confidence interval [CI]: 0.214-0.974, P = .043; OR: 0.438, 95% CI: 0.204-0.938, P = .034) to be an independent factor in predicting OCT-detected thin-cap fibroatheroma of nontarget lesions. CONCLUSION High levels of small HDL are associated with coronary nontarget plaque stability. Our findings suggest that the small HDL subtype might represent the atheroprotective activity of HDL.
Collapse
Affiliation(s)
- Xuedong Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Xinxin Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Zulong Xie
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Xingtao Huang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Ruoxi Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Shuyuan Chen
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Jingbo Hou
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China.
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China.
| |
Collapse
|
31
|
Huang Z, Tian G, Cheng S, Zhao D, Zhang Y, Jia Y, Zhou F. Polydatin Attenuates Atherosclerosis in ApoE -∕- Mice through PBEF Mediated Reduction of Cholesterol Deposition. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1841-1859. [PMID: 30537866 DOI: 10.1142/s0192415x18500921] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cholesterol metabolism becomes imbalanced during the formation of macrophage-derived foam cells. Pre-B-cell colony-enhancing factor (PBEF) has recently been found to affect lipid deposition and inflammation in atherosclerosis. Here, we aimed to study the effects and molecular mechanism of Polydatin on atherosclerosis in ApoE-knockout (ApoE -∕- ) mice. Thirty ApoE -∕- mice were fed a high-fat diet (HFD) for 12 weeks, and then treated with Polydatin for another 12 weeks. Whole aortas and cryosections were stained with oil red O. Blood lipid, PBEF and cytokine levels were measured by ELISA. The mRNAs of cholesterol metabolism-related genes were determined by qRT-PCR and protein levels by Western blotting. Cell cholesterol content and viability were determined in macrophages and RAW 264.7 cells. PBEF siRNA was used to study the effect of Polydatin on cholesterol metabolism in macrophages incubated with ox-LDL. Polydatin lowered blood lipids and decreased atherosclerotic lesions in ApoE -∕- mice. The expression of cytokines and the mRNA of cholesterol metabolism-related genes were markedly regulated by Polydatin. Meanwhile, PBEF mRNA and protein were both greatly down-regulated by Polydatin. In vitro, Polydatin protected RAW 264.7 cells treated by ox-LDL and inhibited cholesterol uptake by macrophages. The PBEF siRNA result indicates that Polydatin can modulate cholesterol metabolism in macrophages, partly through down-regulation of PBEF. In conclusion, Polydatin relieves atherosclerosis injury in ApoE -∕- mice, mainly through down-regulation of PBEF and inhibition of PBEF-inducing cholesterol deposits in macrophages.
Collapse
Affiliation(s)
- Zhiyong Huang
- * The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, P. R. China
| | - Guangyong Tian
- * The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, P. R. China
| | - Saibo Cheng
- † School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Dandan Zhao
- † School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yu Zhang
- ‡ Department of Traditional Chinese Medicine, Xinyang Central Hospital, Xinyang, Henan 46400, P. R. China
| | - Yuhua Jia
- † School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Fenghua Zhou
- † School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
32
|
Parker BM, Wertz SL, Pollard CM, Desimine VL, Maning J, McCrink KA, Lymperopoulos A. Novel Insights into the Crosstalk between Mineralocorticoid Receptor and G Protein-Coupled Receptors in Heart Adverse Remodeling and Disease. Int J Mol Sci 2018; 19:ijms19123764. [PMID: 30486399 PMCID: PMC6320977 DOI: 10.3390/ijms19123764] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022] Open
Abstract
The mineralocorticoid hormone aldosterone regulates sodium and potassium homeostasis but also adversely modulates the maladaptive process of cardiac adverse remodeling post-myocardial infarction. Through activation of its mineralocorticoid receptor (MR), a classic steroid hormone receptor/transcription factor, aldosterone promotes inflammation and fibrosis of the heart, the vasculature, and the kidneys. This is why MR antagonists reduce morbidity and mortality of heart disease patients and are part of the mainstay pharmacotherapy of advanced human heart failure. A plethora of animal studies using cell type⁻specific targeting of the MR gene have established the importance of MR signaling and function in cardiac myocytes, vascular endothelial and smooth muscle cells, renal cells, and macrophages. In terms of its signaling properties, the MR is distinct from nuclear receptors in that it has, in reality, two physiological hormonal agonists: not only aldosterone but also cortisol. In fact, in several tissues, including in the myocardium, cortisol is the primary hormone activating the MR. There is a considerable amount of evidence indicating that the effects of the MR in each tissue expressing it depend on tissue- and ligand-specific engagement of molecular co-regulators that either activate or suppress its transcriptional activity. Identification of these co-regulators for every ligand that interacts with the MR in the heart (and in other tissues) is of utmost importance therapeutically, since it can not only help elucidate fully the pathophysiological ramifications of the cardiac MR's actions, but also help design and develop novel better MR antagonist drugs for heart disease therapy. Among the various proteins the MR interacts with are molecules involved in cardiac G protein-coupled receptor (GPCR) signaling. This results in a significant amount of crosstalk between GPCRs and the MR, which can affect the latter's activity dramatically in the heart and in other cardiovascular tissues. This review summarizes the current experimental evidence for this GPCR-MR crosstalk in the heart and discusses its pathophysiological implications for cardiac adverse remodeling as well as for heart disease therapy. Novel findings revealing non-conventional roles of GPCR signaling molecules, specifically of GPCR-kinase (GRK)-5, in cardiac MR regulation are also highlighted.
Collapse
Affiliation(s)
- Barbara M Parker
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Shelby L Wertz
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Celina M Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Victoria L Desimine
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
- Present address: Jackson Memorial Hospital, Miami, FL 33136, USA.
| | - Katie A McCrink
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
- Present address: Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
33
|
Buonafine M, Bonnard B, Jaisser F. Mineralocorticoid Receptor and Cardiovascular Disease. Am J Hypertens 2018; 31:1165-1174. [PMID: 30192914 DOI: 10.1093/ajh/hpy120] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
Activation of the mineralocorticoid receptor (MR) in the distal nephron by its ligand, aldosterone, plays an important role in sodium reabsorption and blood pressure regulation. However, expression of the MR goes beyond the kidney. It is expressed in a variety of other tissues in which its activation could lead to tissue injury. Indeed, MR activation in the cardiovascular (CV) system has been shown to promote hypertension, fibrosis, and inflammation. Pharmacological blockade of the MR has protective effects in several animal models of CV disease. Furthermore, the use of MR antagonists is beneficial for heart failure patients, preventing mortality and morbidity. A better understanding of the implications of the MR in the setting of CV diseases is critical for refining treatments and improving patient care. The mechanisms involved in the deleterious effects of MR activation are complex and include oxidative stress, inflammation, and fibrosis. This review will discuss the pathological role of the MR in the CV system and the major mechanisms underlying it.
Collapse
Affiliation(s)
- Mathieu Buonafine
- INSERM, UMRS, Centre de Recherche des Cordeliers, Sorbonne University, Paris, France
- Paris Descartes University, Paris, France
| | - Benjamin Bonnard
- INSERM, UMRS, Centre de Recherche des Cordeliers, Sorbonne University, Paris, France
- Paris Descartes University, Paris, France
| | - Frédéric Jaisser
- INSERM, UMRS, Centre de Recherche des Cordeliers, Sorbonne University, Paris, France
- Paris Descartes University, Paris, France
- INSERM, Clinical Investigation Centre, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT, RHU Fight-HF, Nancy, France
| |
Collapse
|
34
|
Hayakawa T, Minemura T, Onodera T, Shin J, Okuno Y, Fukuhara A, Otsuki M, Shimomura I. Impact of MR on mature adipocytes in high-fat/high-sucrose diet-induced obesity. J Endocrinol 2018; 239:63–71. [PMID: 30307154 DOI: 10.1530/joe-18-0026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Active glucocorticoid levels are elevated in the adipose tissue of obesity due to the enzyme 11 beta-hydroxysteroid dehydrogenase type 1. Glucocorticoids can bind and activate both glucocorticoid receptor (GR) and mineralocorticoid receptor (MR), and pharmacological blockades of MR prevent high-fat diet-induced obesity and glucose intolerance. To determine the significance of MR in adipocytes, we generated adipocyte-specific MR-knockout mice (AdipoMR-KO) and fed them high-fat/high-sucrose diet. We found that adipocyte-specific deletion of MR did not affect the body weight, fat weight, glucose tolerance or insulin sensitivity. While liver weight was slightly reduced in AdipoMR-KO, there were no significant differences in the mRNA expression levels of genes associated with lipogenesis, lipolysis, adipocytokines and oxidative stress in adipose tissues between the control and AdipoMR-KO mice. The results indicated that MR in mature adipocytes plays a minor role in the regulation of insulin resistance and inflammation in high-fat/high-sucrose diet-induced obese mice.
Collapse
Affiliation(s)
- Tomoaki Hayakawa
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomomi Minemura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshiharu Onodera
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jihoon Shin
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Diabetes Care Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yosuke Okuno
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsunori Fukuhara
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Adipose Management, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Michio Otsuki
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
35
|
Moss ME, DuPont JJ, Iyer SL, McGraw AP, Jaffe IZ. No Significant Role for Smooth Muscle Cell Mineralocorticoid Receptors in Atherosclerosis in the Apolipoprotein-E Knockout Mouse Model. Front Cardiovasc Med 2018; 5:81. [PMID: 30038907 PMCID: PMC6046374 DOI: 10.3389/fcvm.2018.00081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022] Open
Abstract
Objective: Elevated levels of the hormone aldosterone are associated with increased risk of myocardial infarction and stroke in humans and increased progression and inflammation of atherosclerotic plaques in animal models. Aldosterone acts through the mineralocorticoid receptor (MR) which is expressed in vascular smooth muscle cells (SMCs) where it promotes SMC calcification and chemokine secretion in vitro. The objective of this study is to explore the role of the MR specifically in SMCs in the progression of atherosclerosis and the associated vascular inflammation in vivo in the apolipoprotein E knockout (ApoE−/−) mouse model. Methods and Results: Male ApoE−/− mice were bred with mice in which MR could be deleted specifically from SMCs by tamoxifen injection. The resulting atheroprone SMC-MR-KO mice were compared to their MR-Intact littermates after high fat diet (HFD) feeding for 8 or 16 weeks or normal diet for 12 months. Body weight, tail cuff blood pressure, heart and spleen weight, and serum levels of glucose, cholesterol, and aldosterone were measured for all mice at the end of the treatment period. Serial histologic sections of the aortic root were stained with Oil Red O to assess plaque size, lipid content, and necrotic core area; with PicroSirius Red for quantification of collagen content; by immunofluorescent staining with anti-Mac2/Galectin-3 and anti-smooth muscle α-actin antibodies to assess inflammation and SMC marker expression; and with Von Kossa stain to detect plaque calcification. In the 16-week HFD study, these analyses were also performed in sections from the brachiocephalic artery. Flow cytometry of cell suspensions derived from the aortic arch was also performed to quantify vascular inflammation after 8 and 16 weeks of HFD. Deletion of the MR specifically from SMCs did not significantly change plaque size, lipid content, necrotic core, collagen content, inflammatory staining, actin staining, or calcification, nor were there differences in the extent of vascular inflammation between MR-Intact and SMC-MR-KO mice in the three experiments. Conclusion: SMC-MR does not directly contribute to the formation, progression, or inflammation of atherosclerotic plaques in the ApoE−/− mouse model of atherosclerosis. This indicates that the MR in non-SMCs mediates the pro-atherogenic effects of MR activation.
Collapse
Affiliation(s)
- M Elizabeth Moss
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States.,Department of Developmental, Molecular, and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Jennifer J DuPont
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Surabhi L Iyer
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Adam P McGraw
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States.,Department of Developmental, Molecular, and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
36
|
Shen ZX, Yang QZ, Li C, Du LJ, Sun XN, Liu Y, Sun JY, Gu HH, Sun YM, Wang J, Duan SZ. Myeloid peroxisome proliferator-activated receptor gamma deficiency aggravates myocardial infarction in mice. Atherosclerosis 2018; 274:199-205. [PMID: 29800789 DOI: 10.1016/j.atherosclerosis.2018.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND AND AIMS Agonists of peroxisome proliferator-activated receptor gamma (Pparγ) have been demonstrated to reduce the risk of myocardial infarction (MI) in clinical trials and animal experiments. However, the cellular and molecular mechanisms are not completely understood. We aimed to reveal the functions of myeloid Pparγ in MI and explore the potential mechanisms in this study. METHODS Myeloid Pparγ knockout (MPGKO) mice (n = 12) and control mice (n = 8) underwent coronary artery ligation to induce MI. Another cohort of MPGKO mice and control mice underwent coronary artery ligation and were then treated with IgG or neutralizing antibodies against interleukin (IL)-1β. Infarct size was determined by TTC staining and cardiac function was measured using echocardiography. Conditioned media from GW9662- or vehicle-treated macrophages were used to treat H9C2 cardiomyocyte cell line. Gene expression was analyzed using quantitative PCR. Reactive oxygen species were measured using flow cytometry. RESULTS Myeloid Pparγ deficiency significantly increased myocardial infarct size. Cardiac hypertrophy was also exacerbated in MPGKO mice, with upregulation of β-myosin heavy chain (Mhc) and brain natriuretic peptide (Bnp) and downregulation of α-Mhc in the non-infarcted zone. Conditioned media from GW9662-treated macrophages increased expression of β-Mhc and Bnp in H9C2 cells. Echocardiographic measurements showed that MPGKO mice had worsen cardiac dysfunction after MI. Myeloid Pparγ deficiency increased gene expression of NADPH oxidase subunits (Nox2 and Nox4) in the non-infarcted zone after MI. Conditioned media from GW9662-treated macrophages increased reactive oxygen species in H9C2 cells. Expression of inflammatory genes such as IL-1β and IL-6 was upregulated in the non-infarcted zone of MPGKO mice after MI. With the injection of neutralizing antibodies against IL-1β, control mice and MPGKO mice had comparable cardiac function and expression of inflammatory genes after MI. CONCLUSIONS Myeloid Pparγ deficiency exacerbates MI, likely through increased oxidative stress and cardiac inflammation.
Collapse
Affiliation(s)
- Zhu-Xia Shen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Department of Cardiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Qing-Zhen Yang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chao Li
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lin-Juan Du
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xue-Nan Sun
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Jian-Yong Sun
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Hui-Hui Gu
- Department of Cardiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Yu-Min Sun
- Department of Cardiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Jun Wang
- Department of Cardiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
| |
Collapse
|
37
|
Yurdagul A, Doran AC, Cai B, Fredman G, Tabas IA. Mechanisms and Consequences of Defective Efferocytosis in Atherosclerosis. Front Cardiovasc Med 2018. [PMID: 29379788 DOI: 10.3389/fcvm.2017.00086e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Efficient clearance of apoptotic cells, termed efferocytosis, critically regulates normal homeostasis whereas defective uptake of apoptotic cells results in chronic and non-resolving inflammatory diseases, such as advanced atherosclerosis. Monocyte-derived macrophages recruited into developing atherosclerotic lesions initially display efficient efferocytosis and temper inflammatory responses, processes that restrict plaque progression. However, during the course of plaque development, macrophages undergo cellular reprogramming that reduces efferocytic capacity, which results in post-apoptotic necrosis of apoptotic cells and inflammation. Furthermore, defective efferocytosis in advanced atherosclerosis is a major driver of necrotic core formation, which can trigger plaque rupture and acute thrombotic cardiovascular events. In this review, we discuss the molecular and cellular mechanisms that regulate efferocytosis, how efferocytosis promotes the resolution of inflammation, and how defective efferocytosis leads to the formation of clinically dangerous atherosclerotic plaques.
Collapse
Affiliation(s)
- Arif Yurdagul
- Department of Medicine, Columbia University, New York, NY, United States.,Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.,Department of Physiology, Columbia University, New York, NY, United States
| | - Amanda C Doran
- Department of Medicine, Columbia University, New York, NY, United States.,Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.,Department of Physiology, Columbia University, New York, NY, United States
| | - Bishuang Cai
- Department of Medicine, Columbia University, New York, NY, United States.,Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.,Department of Physiology, Columbia University, New York, NY, United States
| | - Gabrielle Fredman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Ira A Tabas
- Department of Medicine, Columbia University, New York, NY, United States.,Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.,Department of Physiology, Columbia University, New York, NY, United States
| |
Collapse
|
38
|
Yurdagul A, Doran AC, Cai B, Fredman G, Tabas IA. Mechanisms and Consequences of Defective Efferocytosis in Atherosclerosis. Front Cardiovasc Med 2018; 4:86. [PMID: 29379788 PMCID: PMC5770804 DOI: 10.3389/fcvm.2017.00086] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022] Open
Abstract
Efficient clearance of apoptotic cells, termed efferocytosis, critically regulates normal homeostasis whereas defective uptake of apoptotic cells results in chronic and non-resolving inflammatory diseases, such as advanced atherosclerosis. Monocyte-derived macrophages recruited into developing atherosclerotic lesions initially display efficient efferocytosis and temper inflammatory responses, processes that restrict plaque progression. However, during the course of plaque development, macrophages undergo cellular reprogramming that reduces efferocytic capacity, which results in post-apoptotic necrosis of apoptotic cells and inflammation. Furthermore, defective efferocytosis in advanced atherosclerosis is a major driver of necrotic core formation, which can trigger plaque rupture and acute thrombotic cardiovascular events. In this review, we discuss the molecular and cellular mechanisms that regulate efferocytosis, how efferocytosis promotes the resolution of inflammation, and how defective efferocytosis leads to the formation of clinically dangerous atherosclerotic plaques.
Collapse
Affiliation(s)
- Arif Yurdagul
- Department of Medicine, Columbia University, New York, NY, United States.,Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.,Department of Physiology, Columbia University, New York, NY, United States
| | - Amanda C Doran
- Department of Medicine, Columbia University, New York, NY, United States.,Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.,Department of Physiology, Columbia University, New York, NY, United States
| | - Bishuang Cai
- Department of Medicine, Columbia University, New York, NY, United States.,Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.,Department of Physiology, Columbia University, New York, NY, United States
| | - Gabrielle Fredman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Ira A Tabas
- Department of Medicine, Columbia University, New York, NY, United States.,Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.,Department of Physiology, Columbia University, New York, NY, United States
| |
Collapse
|
39
|
Belden Z, Deiuliis JA, Dobre M, Rajagopalan S. The Role of the Mineralocorticoid Receptor in Inflammation: Focus on Kidney and Vasculature. Am J Nephrol 2017; 46:298-314. [PMID: 29017166 PMCID: PMC6863172 DOI: 10.1159/000480652] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND The remarkable success of clinical trials in mineralocorticoid receptor (MR) inhibition in heart failure has driven research on the physiological and pathological role(s) of nonepithelial MR expression. MR is widely expressed in the cardiovascular system and is a major determinant of endothelial function, smooth muscle tone, vascular remodeling, fibrosis, and blood pressure. An important new dimension is the appreciation of the role MR plays in immune cells and target organ damage in the heart, kidney and vasculature, and in the development of insulin resistance. SUMMARY The mechanism for MR activation in tissue injury continues to evolve with the evidence to date suggesting that activation of MR results in a complex repertoire of effects involving both macrophages and T cells. MR is an important transcriptional regulator of macrophage phenotype and function. Another important feature of MR activation is that it can occur even with normal or low aldosterone levels in pathological conditions. Tissue-specific conditional models of MR expression in myeloid cells, endothelial cells, smooth muscle cells and cardiomyocytes have been very informative and have firmly demonstrated a critical role of MR as a key pathophysiologic variable in cardiac hypertrophy, transition to heart failure, adipose inflammation, and atherosclerosis. Finally, the central nervous system activation of MR in permeable regions of the blood-brain barrier may play a role in peripheral inflammation. Key Message: Ongoing clinical trials will help clarify the role of MR blockade in conditions, such as atherosclerosis and chronic kidney disease.
Collapse
Affiliation(s)
- Zachary Belden
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jeffrey A. Deiuliis
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mirela Dobre
- Division of Nephrology and Hypertension, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sanjay Rajagopalan
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|