1
|
Chen J, Mita Y, Noguchi N. Ethanol enhances selenoprotein P expression via ERK-FoxO3a axis in HepG2 cells. J Clin Biochem Nutr 2024; 75:125-132. [PMID: 39345286 PMCID: PMC11425072 DOI: 10.3164/jcbn.23-104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/25/2024] [Indexed: 10/01/2024] Open
Abstract
Drinking alcohol is considered one of the risk factors for development of diabetes mellitus. Recently, it was reported that selenoprotein P levels in blood are increased by ethanol intake. However, the mechanism by which ethanol increases selenoprotein P has not been elucidated. The expression of selenoprotein P protein and its mRNA were increased in a concentration- and time-dependent manner when human liver-derived HepG2 cells were treated with ethanol. Levels of AMPK and JNK proteins, which have been known to regulate selenoprotein P transcription, were unchanged by ethanol treatment. However, the amount of nuclear FoxO3a, a transcription factor of SeP, was increased. This was associated with dephosphorylation of ERK1 but not ERK2. It was found that ERK1 was dephosphorylated by activation of dual-specific phosphatase 5 and dual-specific phosphatase 6. However, the phosphorylation of MEK by ERK phosphokinase was not affected by ethanol treatment. These results suggest that the ethanol-induced increase in SeP levels occurs by enhanced transcription of SeP mRNA via the DUSP5/6-ERK1-FoxO3a pathway.
Collapse
Affiliation(s)
- Jian Chen
- The Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe 610-0394, Japan
| | - Yuichiro Mita
- The Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe 610-0394, Japan
| | - Noriko Noguchi
- The Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe 610-0394, Japan
| |
Collapse
|
2
|
Satpathy S, Panigrahi LL, Arakha M. The Role of Selenium Nanoparticles in Addressing Diabetic Complications: A Comprehensive Study. Curr Top Med Chem 2024; 24:1327-1342. [PMID: 38561614 DOI: 10.2174/0115680266299494240326083936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Diabetes, as an emerging epidemic, has put forward a significant spotlight on the evolving population worldwide grounded upon the remarkable affliction of healthcare along with economical conflict. Various studies suggested that, in modern society, lack of maintenance of a healthy life style leads to the occurrence of diabetes as insulin resistant, later having a damaging effect on the pancreatic β-cells, suggesting various complications. Furthermore, diabetes management is controversial owing to different opinions based on the prevention of complications. For this purpose, nanostructured materials (NSM) like selenium nanoparticles (SeNPs) have proved their efficiency in the therapeutic management of such serious diseases. This review offers an in- -depth idea regarding the pathophysiology, diagnosis and various conventional therapeutics of type 1 and type 2 diabetes, shedding light on Diabetic Nephropathy (DN), a case study of type 1 diabetes. Moreover, this review provides an exhaustive study by highlighting the economic and healthcare burdens associated with diabetes along with the controversies associated with conventional therapeutic management and the promising role of NSM like selenium nanoparticles (SeNPs), as a novel weapon for encountering such fatal diseases.
Collapse
Affiliation(s)
- Siddharth Satpathy
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Lipsa Leena Panigrahi
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Manoranjan Arakha
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| |
Collapse
|
3
|
Ando M, Suzuki K, Kitamoto R, Nakayama A, Watanabe N, Kawahara M. Differences in serum selenoprotein P profile between C57BL/6 and BALB/c mice fed high-fat diet. J Trace Elem Med Biol 2024; 81:127340. [PMID: 37984217 DOI: 10.1016/j.jtemb.2023.127340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND C57BL/6 mice generally show hyperglycaemia and insulin resistance when fed a high-fat diet (HFD) compared to those of BALB/c mice. However, whether these strains also show different expression profiles of selenoprotein P, a diabetes-related hepatokine, after HFD feeding is unclear. We investigated the effects of HFD on body weight, glucose metabolism, and plasma selenoprotein P levels in C57BL/6 and BALB/c mice. METHODS Male C57BL/6 and BALB/c mice aged seven weeks were divided into normal diet (ND) and HFD groups. Fasting body weights and blood sugar levels were measured weekly. Blood specimens were collected after 16 h of fasting (in weeks 7, 9, and 11) and after 24 h of subsequent refeeding (in weeks 9 and 11) to analyse plasma selenoprotein P and insulin levels. RESULTS The mean body weight of the HFD group was consistently higher than that of the ND group for both strains. However, a significant elevation in fasting plasma glucose levels from the early stage was observed only in the HFD group of C57BL/6 mice. In BALB/c mice, a difference in fasting glucose levels between the HFD and ND groups was observed after nine weeks. After seven, nine, and eleven weeks, the fasting plasma insulin levels were higher in the HFD group than in the ND group for both strains. During this period, plasma selenoprotein P levels in the HFD group were significantly higher than those in the ND group of C57BL/6 mice. However, BALB/c mice did not show a significant difference in plasma levels of selenoprotein P between the ND and HFD groups. After refeeding, the plasma insulin and selenoprotein P levels increased compared to those observed during fasting in the ND group for both strains. Elevation of insulin levels, but not of selenoprotein P levels, after refeeding was noticed in the HFD group for both strains. Plasma selenoprotein P level after refeeding was significantly lower than that during fasting in the HFD group of C57BL/6 mice. CONCLUSION Unlike C57BL/6 mice, BALB/c mice did not show elevated fasting plasma selenoprotein P levels despite HFD feeding. Additionally, the pattern of selenoprotein P levels in the plasma after refeeding differed between C57BL/6 and BALB/c mice. These differences in selenoprotein P expression among strains may be related to different susceptibilities of individuals to diabetes.
Collapse
Affiliation(s)
- Motozumi Ando
- Laboratory of Clinical Pharmacy, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho Chikusa-ku, Nagoya, Aichi 464-8650, Japan.
| | - Keiko Suzuki
- Laboratory of Clinical Pharmacy, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho Chikusa-ku, Nagoya, Aichi 464-8650, Japan.
| | - Riko Kitamoto
- Laboratory of Clinical Pharmacy, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho Chikusa-ku, Nagoya, Aichi 464-8650, Japan.
| | - Ayako Nakayama
- Laboratory of Clinical Pharmacy, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho Chikusa-ku, Nagoya, Aichi 464-8650, Japan.
| | - Norio Watanabe
- Laboratory of Clinical Pharmacy, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho Chikusa-ku, Nagoya, Aichi 464-8650, Japan.
| | - Masami Kawahara
- Laboratory of Clinical Pharmacy, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho Chikusa-ku, Nagoya, Aichi 464-8650, Japan.
| |
Collapse
|
4
|
Ye X, Toyama T, Taguchi K, Arisawa K, Kaneko T, Tsutsumi R, Yamamoto M, Saito Y. Sulforaphane decreases serum selenoprotein P levels through enhancement of lysosomal degradation independent of Nrf2. Commun Biol 2023; 6:1060. [PMID: 37857700 PMCID: PMC10587141 DOI: 10.1038/s42003-023-05449-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Selenoprotein P (SeP) is a major selenoprotein in serum predominantly produced in the liver. Excess SeP impairs insulin secretion from the pancreas and insulin sensitivity in skeletal muscle, thus inhibition of SeP could be a therapeutic strategy for type 2 diabetes. In this study, we examine the effect of sulforaphane (SFN), a phytochemical of broccoli sprouts and an Nrf2 activator, on SeP expression in vitro and in vivo. Treatment of HepG2 cells with SFN decreases inter- and intra-cellular SeP levels. SFN enhances lysosomal acidification and expression of V-ATPase, and inhibition of this process cancels the decrease of SeP by SFN. SFN activates Nrf2 in the cells, while Nrf2 siRNA does not affect the decrease of SeP by SFN or lysosomal acidification. These results indicate that SFN decreases SeP by enhancing lysosomal degradation, independent of Nrf2. Injection of SFN to mice results in induction of cathepsin and a decrease of SeP in serum. The findings from this study are expected to contribute to developing SeP inhibitors in the future, thereby contributing to treating and preventing diseases related to increased SeP.
Collapse
Affiliation(s)
- Xinying Ye
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Takashi Toyama
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
| | - Keiko Taguchi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kotoko Arisawa
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Takayuki Kaneko
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Ryouhei Tsutsumi
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
| |
Collapse
|
5
|
Dogaru CB, Duță C, Muscurel C, Stoian I. "Alphabet" Selenoproteins: Implications in Pathology. Int J Mol Sci 2023; 24:15344. [PMID: 37895024 PMCID: PMC10607139 DOI: 10.3390/ijms242015344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Selenoproteins are a group of proteins containing selenium in the form of selenocysteine (Sec, U) as the 21st amino acid coded in the genetic code. Their synthesis depends on dietary selenium uptake and a common set of cofactors. Selenoproteins accomplish diverse roles in the body and cell processes by acting, for example, as antioxidants, modulators of the immune function, and detoxification agents for heavy metals, other xenobiotics, and key compounds in thyroid hormone metabolism. Although the functions of all this protein family are still unknown, several disorders in their structure, activity, or expression have been described by researchers. They concluded that selenium or cofactors deficiency, on the one hand, or the polymorphism in selenoproteins genes and synthesis, on the other hand, are involved in a large variety of pathological conditions, including type 2 diabetes, cardiovascular, muscular, oncological, hepatic, endocrine, immuno-inflammatory, and neurodegenerative diseases. This review focuses on the specific roles of selenoproteins named after letters of the alphabet in medicine, which are less known than the rest, regarding their implications in the pathological processes of several prevalent diseases and disease prevention.
Collapse
Affiliation(s)
| | | | - Corina Muscurel
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania (I.S.)
| | | |
Collapse
|
6
|
Ke J, Zhang DG, Liu SZ, Luo Z. Functional analysis of selenok, selenot and selenop promoters and their regulation by selenium in yellow catfish Pelteobagrus fulvidraco. Gene 2023; 873:147461. [PMID: 37149273 DOI: 10.1016/j.gene.2023.147461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
The selenok, selenot and selenop are three key selenoproteins involved in stress response. Our study, using the yellow catfish Pelteobagrus fulvidraco as the experimental animal, obtained the 1993-bp, 2000-bp and 1959-bp sequences of selenok, selenot and selenop promoters, respectively, and predicted the binding sites of several transcriptional factors on their promoters, such as Forkhead box O 4 (FoxO4), activating transcription factor 4 (ATF4), Kruppel-like factor 4 (KLF4) and nuclear factor erythroid 2-related factor 2 (NRF2). Selenium (Se) increased the activities of the selenok, selenot and selenop promoters. FoxO4 and Nrf2 can directly bind with selenok promoter and controlled selenok promoter activities positively; KLF4 and Nrf2 can directly bind with selenot promoter and controlled selenot promoter activities positively; FoxO4 and ATF4 can directly bind to selenop promoter and regulated selenop promoter activities positively. Se promoted FoxO4 and Nrf2 binding to selenok promoter, KLF4 and Nrf2 binding to selenot promoter, and FoxO4 and ATF4 binding to selenop promoter. Thus, we provide the first evidence for FoxO4 and Nrf2 bindnig elements in selenok promoter, KLF4 and Nrf2 binding elements in selenot promoter, and FoxO4 and ATF4 binding elements in selenop promoter, and offer novel insight into regulatory mechanism of these selenoproteins induced by Se.
Collapse
Affiliation(s)
- Jiang Ke
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China
| | - Dian-Guang Zhang
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China
| | - Sheng-Zan Liu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
7
|
Long-term feeding of Atlantic salmon with varying levels of dietary EPA + DHA alters the mineral status but does not affect the stress responses after mechanical delousing stress. Br J Nutr 2022; 128:2291-2307. [PMID: 35156914 PMCID: PMC9723492 DOI: 10.1017/s0007114522000514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Atlantic salmon were fed diets containing graded levels of EPA + DHA (1·0, 1·3, 1·6 and 3·5 % in the diet) and one diet with 1·3 % of EPA + DHA with reduced total fat content. Fish were reared in sea cages from about 275 g until harvest size (about 5 kg) and were subjected to delousing procedure (about 2·5 kg), with sampling pre-, 1 h and 24 h post-stress. Delousing stress affected plasma cortisol and hepatic mRNA expression of genes involved in oxidative stress and immune response, but with no dietary effects. Increasing EPA + DHA levels in the diet increased the trace mineral levels in plasma and liver during mechanical delousing stress period and whole body at harvest size. The liver Se, Zn, Fe, Cu, and Mn and plasma Se levels were increased in fish fed a diet high in EPA + DHA (3·5 %) upon delousing stress. Furthermore, increased dietary EPA + DHA caused a significant increase in mRNA expression of hepcidin antimicrobial peptide (HAMP), which is concurrent with downregulated transferrin receptor (TFR) expression levels. High dietary EPA + DHA also significantly increased the whole-body Zn, Se, and Mn levels at harvest size fish. Additionally, the plasma and whole-body Zn status increased, respectively, during stress and at harvest size in fish fed reduced-fat diet with less EPA + DHA. As the dietary upper limits of Zn and Se are legally added to the feeds and play important roles in maintaining fish health, knowledge on how the dietary fatty acid composition and lipid level affect body stores of these minerals is crucial for the aquaculture industry.
Collapse
|
8
|
Kamoshita K, Tajima-Shirasaki N, Ishii KA, Shirasaki T, Takayama H, Abuduwaili H, Abuduyimiti T, Oo HK, Yao X, Li Q, Galicia-Medina CM, Kaneko S, Takamura T. Forkhead box protein O1 (FoxO1) knockdown accelerates the eicosapentaenoic acid (EPA)-mediated Selenop downregulation independently of sterol regulatory element-binding protein-1c (SREBP-1c) in H4IIEC3 hepatocytes. Endocr J 2022; 69:907-918. [PMID: 35321982 DOI: 10.1507/endocrj.ej21-0392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Selenoprotein P is upregulated in type 2 diabetes, causing insulin and exercise resistance. We have previously reported that eicosapentaenoic acid (EPA) negatively regulates Selenop expression by suppressing Srebf1 in H4IIEC3 hepatocytes. However, EPA downregulated Srebf1 long before downregulating Selenop. Here, we report additional novel mechanisms for the Selenop gene regulation by EPA. EPA upregulated Foxo1 mRNA expression, which was canceled with the ERK1/2 inhibitor, but not with the PKA inhibitor. Foxo1 knockdown by siRNA initiated early suppression of Selenop, but not Srebf1, by EPA. However, EPA did not affect the nuclear translocation of the FoxO1 protein. Neither ERK1/2 nor PKA inhibitor affected FoxO1 nuclear translocation. In summary, FoxO1 knockdown accelerates the EPA-mediated Selenop downregulation independent of SREBP-1c in hepatocytes. EPA upregulates Foxo1 mRNA via the ERK1/2 pathway without altering its protein and nuclear translocation. These findings suggest redundant and conflicting transcriptional networks in the lipid-induced redox regulation.
Collapse
Affiliation(s)
- Kyoko Kamoshita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| | - Natsumi Tajima-Shirasaki
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| | - Kiyo-Aki Ishii
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
- Department of Integrative Medicine for Longevity, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Takayoshi Shirasaki
- Department of Advanced Medical Technology, Kanazawa University Graduate School of Health Medicine, Kanazawa 920-8641, Japan
| | - Hiroaki Takayama
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
- Life Sciences Division, Engineering and Technology Department, Kanazawa University, Kanazawa 920-8641, Japan
| | - Halimulati Abuduwaili
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| | - Tuerdiguli Abuduyimiti
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| | - Hein Ko Oo
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| | - Xingyu Yao
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| | - Qifang Li
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| | - Cynthia M Galicia-Medina
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| | - Shuichi Kaneko
- Department of System Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| |
Collapse
|
9
|
Yao X, Takayama H, Kamoshita K, Oo HK, Tanida R, Kato K, Ishii KA, Takamura T. Cyclosporine A Downregulates Selenoprotein P Expression via a Signal Transducer and Activator of Transcription 3-Forkhead Box Protein O1 Pathway in Hepatocytes In Vitro. J Pharmacol Exp Ther 2022. [PMID: 35906096 DOI: 10.1124/jpet.121.000467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cyclosporine A (CsA) is an immunosuppressant applied worldwide for preventing graft rejection and autoimmune diseases. However, CsA elevates oxidative stress, which can lead to liver injuries. The present study aimed to clarify the mechanisms underlying the CsA-mediated oxidative stress. Among the redox proteins, CsA concentration-dependently downregulated Selenop-encoding selenoprotein P, a major circulating antioxidant protein reducing reactive oxygen species, in hepatocytes cell lines and primary hepatocytes. The luciferase assay identified the CsA-responsive element in the SELENOP promoter containing a putative binding site for forkhead box protein O (FoxO) 1. The CsA-mediated suppression on the SELENOP promoter was independent of the nuclear factor of activated T-cell, a classic target repressed by CsA. A chromatin immunoprecipitation assay showed that CsA suppressed the FoxO1 binding to the SELENOP promoter. Foxo1 knockdown significantly downregulated Selenop expression in H4IIEC3 cells. Furthermore, CsA downregulated FoxO1 by inactivating its upstream signal transducer and activator of transcription 3 (STAT3). Knockdown of Stat3 downregulated Foxo1 and Selenop expression in hepatocytes. These findings revealed a novel mechanism underlying CsA-induced oxidative stress by downregulating the STAT3-FoxO1-Selenop pathway in hepatocytes. SIGNIFICANCE STATEMENT: This study shows that Cyclosporine A (CsA) downregulates Selenop, an antioxidant protein, by suppressing the signal transducer and activator of transcription 3-forkhead box protein O1 pathway in hepatocytes, possibly one of the causations of CsA-induced oxidative stress in hepatocytes. The present study sheds light on the previously unrecognized CsA-redox axis.
Collapse
Affiliation(s)
- Xingyu Yao
- Department of Endocrinology and Metabolism, (X.Y., H.T., Ky.K., H.K.O., R.T., Ka.K., T.T.), Life Sciences Division, Engineering and Technology Department (H.T.), and Department of Integrative Medicine for Longevity (K.-A.I.), Graduate School of Medical Sciences, Kanazawa University, Kanazawa City, Ishikawa Prefecture, Japan
| | - Hiroaki Takayama
- Department of Endocrinology and Metabolism, (X.Y., H.T., Ky.K., H.K.O., R.T., Ka.K., T.T.), Life Sciences Division, Engineering and Technology Department (H.T.), and Department of Integrative Medicine for Longevity (K.-A.I.), Graduate School of Medical Sciences, Kanazawa University, Kanazawa City, Ishikawa Prefecture, Japan
| | - Kyoko Kamoshita
- Department of Endocrinology and Metabolism, (X.Y., H.T., Ky.K., H.K.O., R.T., Ka.K., T.T.), Life Sciences Division, Engineering and Technology Department (H.T.), and Department of Integrative Medicine for Longevity (K.-A.I.), Graduate School of Medical Sciences, Kanazawa University, Kanazawa City, Ishikawa Prefecture, Japan
| | - Hein Ko Oo
- Department of Endocrinology and Metabolism, (X.Y., H.T., Ky.K., H.K.O., R.T., Ka.K., T.T.), Life Sciences Division, Engineering and Technology Department (H.T.), and Department of Integrative Medicine for Longevity (K.-A.I.), Graduate School of Medical Sciences, Kanazawa University, Kanazawa City, Ishikawa Prefecture, Japan
| | - Ryota Tanida
- Department of Endocrinology and Metabolism, (X.Y., H.T., Ky.K., H.K.O., R.T., Ka.K., T.T.), Life Sciences Division, Engineering and Technology Department (H.T.), and Department of Integrative Medicine for Longevity (K.-A.I.), Graduate School of Medical Sciences, Kanazawa University, Kanazawa City, Ishikawa Prefecture, Japan
| | - Kaisei Kato
- Department of Endocrinology and Metabolism, (X.Y., H.T., Ky.K., H.K.O., R.T., Ka.K., T.T.), Life Sciences Division, Engineering and Technology Department (H.T.), and Department of Integrative Medicine for Longevity (K.-A.I.), Graduate School of Medical Sciences, Kanazawa University, Kanazawa City, Ishikawa Prefecture, Japan
| | - Kiyo-Aki Ishii
- Department of Endocrinology and Metabolism, (X.Y., H.T., Ky.K., H.K.O., R.T., Ka.K., T.T.), Life Sciences Division, Engineering and Technology Department (H.T.), and Department of Integrative Medicine for Longevity (K.-A.I.), Graduate School of Medical Sciences, Kanazawa University, Kanazawa City, Ishikawa Prefecture, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, (X.Y., H.T., Ky.K., H.K.O., R.T., Ka.K., T.T.), Life Sciences Division, Engineering and Technology Department (H.T.), and Department of Integrative Medicine for Longevity (K.-A.I.), Graduate School of Medical Sciences, Kanazawa University, Kanazawa City, Ishikawa Prefecture, Japan
| |
Collapse
|
10
|
Yao X, Takayama H, Kamoshita K, Oo HK, Tanida R, Kato K, Ishii KA, Takamura T. Cyclosporine A downregulates selenoprotein P expression via a STAT3-FoxO1 pathway in hepatocytes in vitro. J Pharmacol Exp Ther 2022; 382:199-207. [PMID: 35906096 DOI: 10.1124/jpet.121.001175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022] Open
Abstract
Cyclosporine A (CsA) is a worldwide applied immunosuppressant for preventing graft rejection and autoimmune diseases. However, CsA elevates oxidative stress leading to liver injuries. The present study aimed to clarify the mechanisms underlying the CsA-mediated oxidative stress. Among the redox proteins, CsA concentration-dependently downregulated Selenop encoding selenoprotein P (SeP), a major circulating antioxidant protein reducing reactive oxygen species (ROS), in hepatocytes cell lines and primary hepatocytes. The luciferase assay identified the CsA-responsive element in the SELENOP promoter containing a putative binding site for FoxO1. The CsA-mediated suppression on the SELENOP promoter was independent of NFAT, a classic target repressed by CsA. A ChIP assay showed that CsA suppressed the FoxO1 binding to the SELENOP promoter. Foxo1 knockdown significantly downregulated Selenop expression in H4IIEC3 cells. Furthermore, CsA downregulated FoxO1 by inactivating its upstream signal transducer and activator of transcription 3 (STAT3). Knockdown of Stat3 downregulated Foxo1 and Selenop expression in hepatocytes. These findings revealed a novel mechanism underlying CsA-induced oxidative stress via downregulating the STAT3-FoxO1-Selenop pathway in hepatocytes. Significance Statement Our study shows that CsA downregulates Selenop, an antioxidant protein, via suppressing the STAT3-FoxO1 pathway in hepatocytes, possibly one of the causations of CsA-induced oxidative stress in hepatocytes. The present study sheds light on the previously unrecognized CsA-redox axis.
Collapse
Affiliation(s)
- Xingyu Yao
- Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Japan
| | | | - Kyoko Kamoshita
- Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Japan
| | - Hein Ko Oo
- Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Japan
| | - Ryota Tanida
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Japan
| | - Kaisei Kato
- Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Japan
| | - Kiyo-Aki Ishii
- Integrative Medicine for Longevity, Kanazawa University Graduate School of Medical Sciences, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Japan
| |
Collapse
|
11
|
Gorini F, Vassalle C. Selenium and Selenoproteins at the Intersection of Type 2 Diabetes and Thyroid Pathophysiology. Antioxidants (Basel) 2022; 11:antiox11061188. [PMID: 35740085 PMCID: PMC9227825 DOI: 10.3390/antiox11061188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Type 2 diabetes (T2D) is considered one of the largest global public-health concerns, affecting approximately more than 400 million individuals worldwide. The pathogenesis of T2D is very complex and, among the modifiable risk factors, selenium (Se) has recently emerged as a determinant of T2D pathogenesis and progression. Selenium is considered an essential element with antioxidant properties, and is incorporated into the selenoproteins involved in the antioxidant response. Furthermore, deiodinases, the enzymes responsible for homeostasis and for controlling the activity of thyroid hormones (THs), contain Se. Given the crucial action of oxidative stress in the onset of insulin resistance (IR) and T2D, and the close connection between THs and glucose metabolism, Se may be involved in these fundamental relationships; it may cover a dual role, both as a protective factor and as a risk factor of T2D, depending on its basal plasma concentration and the individual’s diet intake. In this review we discuss the current evidence (from experimental, observational and randomized clinical studies) on how Se is associated with the occurrence of T2D and its influence on the relationship between thyroid pathophysiology, IR and T2D.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
- Correspondence:
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana Gabriele Monasterio, 56124 Pisa, Italy;
| |
Collapse
|
12
|
Kamoshita K, Tsugane H, Ishii KA, Takayama H, Yao X, Abuduwaili H, Tanida R, Taniguchi Y, Oo HK, Gafiyatullina G, Kaneko S, Matsugo S, Takamura T. Lauric acid impairs insulin-induced Akt phosphorylation by upregulating SELENOP expression via HNF4α induction. Am J Physiol Endocrinol Metab 2022; 322:E556-E568. [PMID: 35499234 DOI: 10.1152/ajpendo.00163.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 04/06/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022]
Abstract
Selenoprotein P (SeP; encoded by SELENOP in humans, Selenop in rodents) is a hepatokine that is upregulated in the liver of humans with type 2 diabetes. Excess SeP contributes to the onset of insulin resistance and various type 2 diabetes-related complications. We have previously reported that the long-chain saturated fatty acid, palmitic acid, upregulates Selenop expression, whereas the polyunsaturated fatty acids (PUFAs) downregulate it in hepatocytes. However, the effect of medium-chain fatty acids (MCFAs) on Selenop is unknown. Here we report novel mechanisms that underlie the lauric acid-mediated Selenop gene regulation in hepatocytes. Lauric acid upregulated Selenop expression in Hepa1-6 hepatocytes and mice liver. A luciferase promoter assay and computational analysis of transcription factor-binding sites identified the hepatic nuclear factor 4α (HNF4α) binding site in the SELENOP promoter. A chromatin immunoprecipitation (ChIP) assay showed that lauric acid increased the binding of HNF4α to the SELENOP promoter. The knockdown of Hnf4α using siRNA canceled the upregulation of lauric acid-induced Selenop. Thus, the lauric acid-induced impairment of Akt phosphorylation brought about by insulin was rescued by the knockdown of either Hnf4α or Selenop. These results provide new insights into the regulation of SeP by fatty acids and suggest that SeP may mediate MCFA-induced hepatic insulin signal reduction.
Collapse
Affiliation(s)
- Kyoko Kamoshita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Hirohiko Tsugane
- Institute of Science and Engineering, Faculty of Natural System, Kanazawa University, Kanazawa, Japan
| | - Kiyo-Aki Ishii
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- Department of Integrative Medicine for Longevity, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroaki Takayama
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- Department of System Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Life Sciences Division, Engineering and Technology Department, Kanazawa University, Kanazawa, Japan
| | - Xingyu Yao
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Halimulati Abuduwaili
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Ryota Tanida
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Yasumasa Taniguchi
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Hein Ko Oo
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Guzel Gafiyatullina
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Shuichi Kaneko
- Department of System Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Seiichi Matsugo
- Institute of Science and Engineering, Faculty of Natural System, Kanazawa University, Kanazawa, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| |
Collapse
|
13
|
Oo SM, Oo HK, Takayama H, Ishii KA, Takeshita Y, Goto H, Nakano Y, Kohno S, Takahashi C, Nakamura H, Saito Y, Matsushita M, Okamatsu-Ogura Y, Saito M, Takamura T. Selenoprotein P-mediated reductive stress impairs cold-induced thermogenesis in brown fat. Cell Rep 2022; 38:110566. [PMID: 35354056 DOI: 10.1016/j.celrep.2022.110566] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 02/03/2022] [Accepted: 03/03/2022] [Indexed: 02/08/2023] Open
Abstract
Reactive oxygen species (ROS) activate uncoupler protein 1 (UCP1) in brown adipose tissue (BAT) under physiological cold exposure and noradrenaline (NA) stimulation to increase thermogenesis. However, the endogenous regulator of ROS in activated BAT and its role in pathological conditions remain unclear. We show that serum levels of selenoprotein P (SeP; encoded by SELENOP) negatively correlate with BAT activity in humans. Physiological cold exposure downregulates Selenop in BAT. Selenop knockout mice show higher rectal temperatures and UCP1 sulfenylation during cold exposure. SeP treatment to brown adipocytes eliminated the NA-induced mitochondrial ROS by upregulating glutathione peroxidase 4 and impaired cellular thermogenesis. A high-fat/high-sucrose diet elevates serum SeP levels and diminishes the elevated NA-induced thermogenesis in BAT-Selenop KO mice. Therefore, SeP is the intrinsic factor inducing reductive stress that impairs thermogenesis in BAT and may be a potential therapeutic target for obesity and diabetes.
Collapse
Affiliation(s)
- Swe Mar Oo
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Hein Ko Oo
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Hiroaki Takayama
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan; Life Sciences Division, Engineering and Technology Department, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kiyo-Aki Ishii
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan; Department of System Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Yumie Takeshita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Hisanori Goto
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Yujiro Nakano
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Susumu Kohno
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroyuki Nakamura
- Department of Environmental and Preventive Medicine, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masayuki Saito
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan.
| |
Collapse
|
14
|
Takeshita Y, Teramura C, Kamoshita K, Takayama H, Nakagawa H, Enyama Y, Ishii K, Tanaka T, Goto H, Nakano Y, Osada S, Tanaka Y, Tokuyama K, Takamura T. Effects of eicosapentaenoic acid on serum levels of selenoprotein P and organ-specific insulin sensitivity in humans with dyslipidemia and type 2 diabetes. J Diabetes Investig 2022; 13:532-542. [PMID: 34670012 PMCID: PMC8902388 DOI: 10.1111/jdi.13699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/26/2021] [Accepted: 10/10/2021] [Indexed: 11/30/2022] Open
Abstract
AIM Selenoprotein P (SeP, encoded by SELENOP in humans) is a hepatokine that causes insulin resistance in the liver and skeletal muscle. It was found that polyunsaturated fatty acid eicosapentaenoic acid (EPA) downregulates Selenop expression by inactivating SREBP-1c. The present study aimed to examine the effect of EPA for 12 weeks on circulating SeP levels and insulin sensitivity in humans with type 2 diabetes. METHODS A total of 20 participants with dyslipidemia and type 2 diabetes were randomly assigned to an EPA (900 mg, twice daily) group and a control group. The primary endpoint was a change in serum SeP levels. Organ-specific insulin sensitivity in the liver (HGP and %HGP), skeletal muscle (Rd), and adipose tissue (FFA and %FFA) were assessed using a hyperinsulinemic-euglycemic clamp study with stable isotope-labeled glucose infusion. RESULTS Serum SeP levels were not changed in either group at the end of the study. In the EPA group, the changes in SeP levels were positively correlated with the change in serum EPA levels (r = 0.709, P = 0.022). Treatment with EPA significantly enhanced %FFA but not %HGP and Rd. The change in serum EPA levels was significantly positively correlated with the change in %HGP, and negatively correlated with changes in Rd. CONCLUSIONS The change in serum EPA levels was positively correlated with serum SeP levels, hepatic insulin sensitivity, and negatively with skeletal muscle insulin sensitivity in humans with type 2 diabetes. The EPA-induced enhancement of hepatic insulin sensitivity might be associated with a mechanism independent of serum SeP levels.
Collapse
Affiliation(s)
- Yumie Takeshita
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Chisato Teramura
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Kyoko Kamoshita
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Hiroaki Takayama
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Hiromi Nakagawa
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Yasufumi Enyama
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Kiyo‐Aki Ishii
- Department of Integrative Medicine for LongevityKanazawa University Graduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Takeo Tanaka
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Hisanori Goto
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Yujiro Nakano
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Sachie Osada
- Department of Hospital PharmacyKanazawa University HospitalKanazawaJapan
| | - Yoshiaki Tanaka
- International Institute for Integrative Sleep MedicineUniversity of TsukubaIbarakiJapan
| | - Kumpei Tokuyama
- International Institute for Integrative Sleep MedicineUniversity of TsukubaIbarakiJapan
| | - Toshinari Takamura
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaJapan
| |
Collapse
|
15
|
Mita Y, Uchida R, Yasuhara S, Kishi K, Hoshi T, Matsuo Y, Yokooji T, Shirakawa Y, Toyama T, Urano Y, Inada T, Noguchi N, Saito Y. Identification of a novel endogenous long non-coding RNA that inhibits selenoprotein P translation. Nucleic Acids Res 2021; 49:6893-6907. [PMID: 34142161 PMCID: PMC8266573 DOI: 10.1093/nar/gkab498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/13/2021] [Accepted: 05/28/2021] [Indexed: 02/05/2023] Open
Abstract
Selenoprotein P (SELENOP) is a major plasma selenoprotein that contains 10 Sec residues, which is encoded by the UGA stop codon. The mRNA for SELENOP has the unique property of containing two Sec insertion sequence (SECIS) elements, which is located in the 3' untranslated region (3'UTR). Here, we coincidentally identified a novel gene, CCDC152, by sequence analysis. This gene was located in the antisense region of the SELENOP gene, including the 3'UTR region in the genome. We demonstrated that this novel gene functioned as a long non-coding RNA (lncRNA) that decreased SELENOP protein levels via translational rather than transcriptional, regulation. We found that the CCDC152 RNA interacted specifically and directly with the SELENOP mRNA and inhibited its binding to the SECIS-binding protein 2, resulting in the decrease of ribosome binding. We termed this novel gene product lncRNA inhibitor of SELENOP translation (L-IST). Finally, we found that epigallocatechin gallate upregulated L-IST in vitro and in vivo, to suppress SELENOP protein levels. Here, we provide a new regulatory mechanism of SELENOP translation by an endogenous long antisense ncRNA.
Collapse
Affiliation(s)
- Yuichiro Mita
- The Systems Life Sciences laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 610-0394, Japan
| | - Risa Uchida
- The Systems Life Sciences laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 610-0394, Japan
| | - Sayuri Yasuhara
- The Systems Life Sciences laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 610-0394, Japan
| | - Kohei Kishi
- The Systems Life Sciences laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 610-0394, Japan
| | - Takayuki Hoshi
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Yoshitaka Matsuo
- Laboratory of Gene Regulation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Tadashi Yokooji
- The Systems Life Sciences laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 610-0394, Japan
| | - Yoshino Shirakawa
- The Systems Life Sciences laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 610-0394, Japan
| | - Takashi Toyama
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Yasuomi Urano
- The Systems Life Sciences laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 610-0394, Japan
| | - Toshifumi Inada
- Laboratory of Gene Regulation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Noriko Noguchi
- The Systems Life Sciences laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 610-0394, Japan
| | - Yoshiro Saito
- The Systems Life Sciences laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 610-0394, Japan
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
16
|
Ma APY, Yeung CLS, Tey SK, Mao X, Wong SWK, Ng TH, Ko FCF, Kwong EML, Tang AHN, Ng IOL, Cai SH, Yun JP, Yam JWP. Suppression of ACADM-Mediated Fatty Acid Oxidation Promotes Hepatocellular Carcinoma via Aberrant CAV1/SREBP1 Signaling. Cancer Res 2021; 81:3679-3692. [PMID: 33975883 DOI: 10.1158/0008-5472.can-20-3944] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/24/2021] [Accepted: 04/27/2021] [Indexed: 12/24/2022]
Abstract
Lipid accumulation exacerbates tumor development, as it fuels the proliferative growth of cancer cells. The role of medium-chain acyl-CoA dehydrogenase (ACADM), an enzyme that catalyzes the first step of mitochondrial fatty acid oxidation, in tumor biology remains elusive. Therefore, investigating its mode of dysregulation can shed light on metabolic dependencies in cancer development. In hepatocellular carcinoma (HCC), ACADM was significantly underexpressed, correlating with several aggressive clinicopathologic features observed in patients. Functionally, suppression of ACADM promoted HCC cell motility with elevated triglyceride, phospholipid, and cellular lipid droplet levels, indicating the tumor suppressive ability of ACADM in HCC. Sterol regulatory element-binding protein-1 (SREBP1) was identified as a negative transcriptional regulator of ACADM. Subsequently, high levels of caveolin-1 (CAV1) were observed to inhibit fatty acid oxidation, which revealed its role in regulating lipid metabolism. CAV1 expression negatively correlated with ACADM and its upregulation enhanced nuclear accumulation of SREBP1, resulting in suppressed ACADM activity and contributing to increased HCC cell aggressiveness. Administration of an SREBP1 inhibitor in combination with sorafenib elicited a synergistic antitumor effect and significantly reduced HCC tumor growth in vivo. These findings indicate that deregulation of fatty acid oxidation mediated by the CAV1/SREBP1/ACADM axis results in HCC progression, which implicates targeting fatty acid metabolism to improve HCC treatment. SIGNIFICANCE: This study identifies tumor suppressive effects of ACADM in hepatocellular carcinoma and suggests promotion of β-oxidation to diminish fatty acid availability to cancer cells could be used as a therapeutic strategy.
Collapse
Affiliation(s)
- Angel P Y Ma
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cherlie L S Yeung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sze Keong Tey
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaowen Mao
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Samuel W K Wong
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tung Him Ng
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Frankie C F Ko
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ernest M L Kwong
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Alexander H N Tang
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Irene Oi-Lin Ng
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Shao Hang Cai
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Ping Yun
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Judy W P Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. .,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
17
|
Zhang DG, Zhao T, Xu XJ, Lv WH, Luo Z. Dietary Marginal and Excess Selenium Increased Triglycerides Deposition, Induced Endoplasmic Reticulum Stress and Differentially Influenced Selenoproteins Expression in the Anterior and Middle Intestines of Yellow Catfish Pelteobagrus fulvidraco. Antioxidants (Basel) 2021; 10:antiox10040535. [PMID: 33805536 PMCID: PMC8067157 DOI: 10.3390/antiox10040535] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Selenium (Se) is an essential micro-mineral and plays important roles in antioxidant responses, and also influences lipid metabolism and selenoprotein expression in vertebrates, but the effects and mechanism remain unknown. The study was undertaken to decipher the insights into dietary Se influencing lipid metabolism and selenoprotein expression in the anterior and middle intestine (AI and MI) of yellow catfish Pelteobagrus fulvidraco. Yellow catfish (weight: 8.27 ± 0.03 g) were fed a 0.03- (M-Se), 0.25- (A-Se), or 6.39- (E-Se) mg Se/kg diet for 12 wk. AI and MI were analyzed for triglycerides (TGs) and Se concentrations, histochemistry and immunofluorescence, enzyme activities, and gene and protein levelsassociated with antioxidant responses, lipid metabolism, endoplasmic reticulum (ER) stress, and selenoproteome. Compared to the A-Se group, M-Se and E-Se diets significantly decreased weight gain (WG) and increased TGs concentration in the AI and MI. In the AI, compared with A-Se group, M-Se and E-Se diets significantly increased activities of fatty acid synthase, expression of lipogenic genes, and suppressed lipolysis. In the MI, compared to the A-Se group, M-Se and E-Se diets significantly increased activities of lipogenesis and expression of lipogenic genes. Compared with A-Se group, E-Se diet significantly increased glutathione peroxidase (GPX) activities in the AI and MI, and M-Se diet did not significantly reduce GPX activities in the AI and MI. Compared with the A- Se group, E-Se diet significantly increased glutathione peroxidase (GPX) activities in the plasma and liver, and M-Se diet significantly reduced GPX activities in the plasma and liver. Compared with the A-Se group, M-Se and E-Se groups also increased glucose-regulated protein 78 (GRP78, ER stress marker) protein expression of the intestine. Dietary Se supplementation also differentially influenced the expression of the 28 selenoproteins in the AI and MI, many of which possessed antioxidant characteristics. Compared with the A-Se group, the M-Se group significantly decreased mRNA levels of txnrd2 and txnrd3, but made no difference on mRNA levels of these seven GPX proteins in the MI. Moreover, we characterized sterol regulatory element binding protein 1c (SREBP1c) binding sites of three ER-resident proteins (selenom, selenon, and selenos) promoters, and found that Se positively controlled selenom, selenon, and selenos expression via SREBP1c binding to the selenom, selenon, and selenos promoter. Thus, dietary marginal and excess Se increased TGs deposition of yellow catfish P. fulvidraco, which might be mediated by ER-resident selenoproteins expression and ER stress.
Collapse
Affiliation(s)
- Dian-Guang Zhang
- Key Laboratory of Freshwater Animal Breeding, Fishery College, Huazhong Agricultural University, Ministry of Agriculture, Wuhan 430070, China; (D.-G.Z.); (T.Z.); (X.-J.X.); (W.-H.L.)
| | - Tao Zhao
- Key Laboratory of Freshwater Animal Breeding, Fishery College, Huazhong Agricultural University, Ministry of Agriculture, Wuhan 430070, China; (D.-G.Z.); (T.Z.); (X.-J.X.); (W.-H.L.)
| | - Xiao-Jian Xu
- Key Laboratory of Freshwater Animal Breeding, Fishery College, Huazhong Agricultural University, Ministry of Agriculture, Wuhan 430070, China; (D.-G.Z.); (T.Z.); (X.-J.X.); (W.-H.L.)
| | - Wu-Hong Lv
- Key Laboratory of Freshwater Animal Breeding, Fishery College, Huazhong Agricultural University, Ministry of Agriculture, Wuhan 430070, China; (D.-G.Z.); (T.Z.); (X.-J.X.); (W.-H.L.)
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Fishery College, Huazhong Agricultural University, Ministry of Agriculture, Wuhan 430070, China; (D.-G.Z.); (T.Z.); (X.-J.X.); (W.-H.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: or ; Tel.: +86-27-8728-2113; Fax: +86-27-8728-2114
| |
Collapse
|
18
|
Isobe Y, Asakura H, Tsujiguchi H, Kannon T, Takayama H, Takeshita Y, Ishii KA, Kanamori T, Hara A, Yamashita T, Tajima A, Kaneko S, Nakamura H, Takamura T. Alcohol Intake Is Associated With Elevated Serum Levels of Selenium and Selenoprotein P in Humans. Front Nutr 2021; 8:633703. [PMID: 33693023 PMCID: PMC7937717 DOI: 10.3389/fnut.2021.633703] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/21/2021] [Indexed: 01/21/2023] Open
Abstract
Selenoprotein P is a hepatokine with antioxidative properties that eliminate a physiologic burst of reactive oxygen species required for intracellular signal transduction. Serum levels of selenoprotein P are elevated during aging and in people with type 2 diabetes, non-alcoholic fatty liver disease, and hepatitis C. However, how serum levels of full-length selenoprotein P are regulated largely remains unknown, especially in the general population. To understand the significance of serum selenoprotein P levels in the general population, we evaluated intrinsic and environmental factors associated with serum levels of full-length selenoprotein P in 1,183 subjects participating in the Shika-health checkup cohort. Serum levels of selenium were positively correlated with liver enzymes and alcohol intake and negatively correlated with body mass index. Serum levels of selenoprotein P were positively correlated with age, liver enzymes, and alcohol intake. In multiple regression analyses, alcohol intake was positively correlated with serum levels of both selenium and selenoprotein P independently of age, gender, liver enzymes, and fatty liver on ultrasonography. In conclusion, alcohol intake is associated with elevated serum levels of selenium and selenoprotein P independently of liver enzyme levels and liver fat in the general population. Moderate alcohol intake may exert beneficial or harmful effects on health, at least partly by upregulating selenoprotein P. These findings increase our understanding of alcohol-mediated redox regulation and form the basis for the adoption of appropriate drinking guidelines.
Collapse
Affiliation(s)
- Yuki Isobe
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hiroki Asakura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hiromasa Tsujiguchi
- Department of Environmental and Preventive Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takayuki Kannon
- Department of Bioinformatics and Genomics, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hiroaki Takayama
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yumie Takeshita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kiyo-Aki Ishii
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takehiro Kanamori
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Akinori Hara
- Department of Environmental and Preventive Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Tatsuya Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hiroyuki Nakamura
- Department of Environmental and Preventive Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
19
|
Izar MCDO, Lottenberg AM, Giraldez VZR, Santos Filho RDD, Machado RM, Bertolami A, Assad MHV, Saraiva JFK, Faludi AA, Moreira ASB, Geloneze B, Magnoni CD, Scherr C, Amaral CK, Araújo DBD, Cintra DEC, Nakandakare ER, Fonseca FAH, Mota ICP, Santos JED, Kato JT, Beda LMM, Vieira LP, Bertolami MC, Rogero MM, Lavrador MSF, Nakasato M, Damasceno NRT, Alves RJ, Lara RS, Costa RP, Machado VA. Position Statement on Fat Consumption and Cardiovascular Health - 2021. Arq Bras Cardiol 2021; 116:160-212. [PMID: 33566983 PMCID: PMC8159504 DOI: 10.36660/abc.20201340] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Ana Maria Lottenberg
- Hospital Israelita Albert Einstein (HIAE) - Faculdade Israelita de Ciências da Saúde Albert Einstein (FICSAE), São Paulo, SP - Brasil
- Faculdade de Medicina da Universidade de São Paulo, Laboratório de Lípides (LIM10),São Paulo, São Paulo, SP - Brasil
| | - Viviane Zorzanelli Rocha Giraldez
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP),São Paulo, São Paulo, SP - Brasil
| | - Raul Dias Dos Santos Filho
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP),São Paulo, São Paulo, SP - Brasil
| | - Roberta Marcondes Machado
- Faculdade de Medicina da Universidade de São Paulo, Laboratório de Lípides (LIM10),São Paulo, São Paulo, SP - Brasil
| | - Adriana Bertolami
- Instituto Dante Pazzanese de Cardiologia, São Paulo, São Paulo, SP - Brasil
| | | | | | - André Arpad Faludi
- Instituto Dante Pazzanese de Cardiologia, São Paulo, São Paulo, SP - Brasil
| | | | - Bruno Geloneze
- Universidade Estadual de Campinas (UNICAMP), Campinas, SP - Brasil
| | | | | | | | | | | | | | | | | | | | | | - Lis Mie Misuzawa Beda
- Faculdade de Medicina da Universidade de São Paulo, Laboratório de Lípides (LIM10),São Paulo, São Paulo, SP - Brasil
| | | | | | | | | | - Miyoko Nakasato
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP),São Paulo, São Paulo, SP - Brasil
| | | | - Renato Jorge Alves
- Santa Casa de Misericórdia de São Paulo, São Paulo, São Paulo, SP - Brasil
| | - Roberta Soares Lara
- Núcleo de Alimentação e Nutrição da Sociedade Brasileira de Cardiologia, Rio de Janeiro, RJ - Brasil
| | | | | |
Collapse
|
20
|
Rodríguez MJ, Herrera F, Donoso W, Castillo I, Orrego R, González DR, Zúñiga-Hernández J. Pro-Resolving Lipid Mediator Resolvin E1 Mitigates the Progress of Diethylnitrosamine-Induced Liver Fibrosis in Sprague-Dawley Rats by Attenuating Fibrogenesis and Restricting Proliferation. Int J Mol Sci 2020; 21:ijms21228827. [PMID: 33266360 PMCID: PMC7700193 DOI: 10.3390/ijms21228827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis is a complex process associated to most types of chronic liver disease, which is characterized by a disturbance of hepatic tissue architecture and the excessive accumulation of extracellular matrix. Resolvin E1 (RvE1) is a representative member of the eicosapentaenoic omega-3 lipid derivatives, and is a drug candidate of the growing family of endogenous resolvins. Considering the aforementioned, the main objective of this study was to analyze the hepatoprotective effect of RvE1 in a rat model of liver fibrosis. Male Sprague-Dawley rats received diethylnitrosamine (DEN, 70 mg/mg body weight intraperitoneally (i.p)) as an inductor of liver fibrosis once weekly and RvE1(100 ng/body weight i.p) twice weekly for four weeks. RvE1 suppressed the alterations induced by DEN, normalizing the levels of alanine aminotransferase (ALT), albumin, and lactate dehydrogenase (LDH), and ameliorated DEN injury by decreasing the architecture distortion, inflammatory infiltration, necrotic areas, and microsteatosis. RvE1 also limited DEN-induced proliferation through a decrease in Ki67-positive cells and cyclin D1 protein expression, which is related to an increase of the levels of cleaved caspase-3. Interestingly, we found that RvE1 promotes higher nuclear translocation of nuclear factor κB (NF-κB)p65 than DEN. RvE1 also increased the levels of nuclear the nuclear factor erythroid 2-related factor 2 (Nrf2), but with no antioxidant effect, measured as an increase in glutathione disulfide (GSSG) and a decrease in the ratio of glutathione (GSH)/GSSG. Taken together, these results suggest that RvE1 modulates the fibrogenesis, steatosis, and cell proliferation in a model of DEN induced fibrosis.
Collapse
Affiliation(s)
- Maria José Rodríguez
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.); (D.R.G.)
- Programa de Doctorado en Ciencias Mención Investigación y Desarrollo de Productos Bioactivos, Instituto de Química de los Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - Francisca Herrera
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.); (D.R.G.)
| | - Wendy Donoso
- Departamento de Estomatología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile;
| | - Iván Castillo
- Unidad de Anatomía Patológica, Hospital Regional de Talca, Talca 3460001, Chile;
- Centro Oncológico, Facultad de Medicina, Universidad Católica del Maule, Talca 3466706, Chile
| | - Roxana Orrego
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile;
| | - Daniel R. González
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.); (D.R.G.)
| | - Jessica Zúñiga-Hernández
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.); (D.R.G.)
- Correspondence: ; Tel.: +56-71-241-8855
| |
Collapse
|
21
|
Omega-3 polyunsaturated fatty acids: anti-inflammatory and anti-hypertriglyceridemia mechanisms in cardiovascular disease. Mol Cell Biochem 2020; 476:993-1003. [PMID: 33179122 DOI: 10.1007/s11010-020-03965-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease (CVD) is the world's most recognized and notorious cause of death. It is known that increased triglyceride-rich lipoproteins (TRLs) and remnants of triglyceride-rich lipoproteins (RLP) are the major risk factor for CVD. Furthermore, hypertriglyceridemia commonly leads to a reduction in HDL and an increase in atherogenic small dense low-density lipoprotein (sdLDL or LDL-III) levels. Thus, the evidence shows that Ω-3 fatty acids (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have a beneficial effect on CVD through reprogramming of TRL metabolism, reducing inflammatory mediators (cytokines and leukotrienes), and modulation of cell adhesion molecules. Therefore, the purpose of this review is to provide the molecular mechanism related to the beneficial effect of Ω-3 PUFA on the lowering of plasma TAG levels and other atherogenic lipoproteins. Taking this into account, this study also provides the TRL lowering and anti-inflammatory mechanism of Ω-3 PUFA metabolites such as RvE1 and RvD2 as a cardioprotective function.
Collapse
|
22
|
Abstract
Selenoprotein P (SeP) is one of the 25 human selenocysteine (Sec)-containing proteins, and is generally thought to function as a plasma carrier of the trace element selenium in the body. Recent studies, however, indicate unsuspected pivotal roles of SeP in human diseases, particularly in type 2 diabetes mellitus (T2DM) and pulmonary arterial hypertension (PAH). In this review, we will summarize the characteristics of SeP and recent advances in the field, especially focusing on the emerging roles of SeP in pathophysiological conditions. We will also discuss potential medical/pharmaceutical applications targeting SeP.
Collapse
Affiliation(s)
- Ryouhei Tsutsumi
- Laboratory of Metabolism and Molecular Biology, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Yoshiro Saito
- Laboratory of Metabolism and Molecular Biology, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
23
|
Takamura T. Hepatokine Selenoprotein P-Mediated Reductive Stress Causes Resistance to Intracellular Signal Transduction. Antioxid Redox Signal 2020; 33:517-524. [PMID: 32295394 PMCID: PMC7409583 DOI: 10.1089/ars.2020.8087] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Significance: Selenoprotein P functions as a redox protein through its intrinsic thioredoxin domain and by distributing selenium to intracellular glutathione peroxidases, that is, glutathione peroxidase 1 and 4. Recent Advances: Selenoprotein P was rediscovered as a hepatokine that causes the pathology of type 2 diabetes and aging-related diseases, including exercise resistance in the skeletal muscle, insulin secretory failure in pancreatic β cells, angiogenesis resistance in vascular endothelial cells, and myocardial ischemic-reperfusion injury. It was unexpected for the antioxidant selenoprotein P to cause insulin resistance, because oxidative stress associated with obesity and fatty liver is a causal factor for hepatic insulin resistance. Critical Issues: Oxidative stress induced by the accumulation of reactive oxygen species (ROS) has a causal role in the development of insulin resistance, whereas ROS themselves function as intracellular second messengers that promote insulin signal transduction. ROS act both positively and negatively in insulin signaling depending on their concentrations. It might be possible that selenoprotein P causes "reductive stress" by eliminating a physiological ROS burst that is required for insulin signal transduction, thereby causing insulin resistance. In a large-scale intervention study, selenium supplementation that upregulates selenoprotein P was paradoxically associated with an increased risk for diabetes in humans. This review discusses the molecular mechanisms underlying the selenoprotein P-mediated resistance to angiogenesis and to exercise. Future Directions: Selenoprotein P may be the first identified intrinsic factor that induces reductive stress, causing resistance to intracellular signal transduction, which may be the therapeutic target against sedentary-lifestyle-associated diseases, such as diabetes and obesity.
Collapse
Affiliation(s)
- Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
24
|
Higher Serum Selenoprotein P Level as a Novel Inductor of Metabolic Complications in Psoriasis. Int J Mol Sci 2020; 21:ijms21134594. [PMID: 32605214 PMCID: PMC7370132 DOI: 10.3390/ijms21134594] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Selenoprotein P (SeP), a member of hepatokines, is involved in the development of various metabolic diseases closely related to psoriasis, but it has not been explored in that dermatosis so far. The study aimed to evaluate the clinical value of serum SeP concentrations in patients with psoriasis and its interplay between disease activity, metabolic or inflammatory parameters and systemic therapy. The study included thirty-three patients with flared plaque-type psoriasis and fifteen healthy volunteers. Blood samples were collected before and after three months of treatment with methotrexate or acitretin. Serum SeP levels were evaluated using the immune–enzymatic method. SeP concentration was significantly higher in patients with psoriasis than in the controls (p < 0.05). Further, in patients with severe psoriasis, SeP was significantly increased, compared with the healthy volunteers before treatment, and significantly decreased after (p < 0.05, p = 0.041, respectively). SeP positively correlated with C-reactive protein and platelets and negatively with red blood counts (p = 0.008, p = 0.013, p = 0.022, respectively). Therapy resulted in a significant decrease in SeP level. Selenoprotein P may be a novel indicator of inflammation and the metabolic complications development in psoriatics, especially with severe form or with concomitant obesity. Classic systemic therapy has a beneficial effect on reducing the risk of comorbidities by inhibiting SeP.
Collapse
|
25
|
Saito Y. Selenoprotein P as a significant regulator of pancreatic β cell function. J Biochem 2020; 167:119-124. [PMID: 31373634 DOI: 10.1093/jb/mvz061] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/01/2019] [Indexed: 02/05/2023] Open
Abstract
Selenoprotein P (SeP; encoded by SELENOP) is selenium (Se)-rich plasma protein that is mainly produced in the liver. SeP functions as a Se-transport protein to deliver Se from the liver to other tissues, such as the brain and testis. The protein plays a pivotal role in Se metabolism and antioxidative defense, and it has been identified as a 'hepatokine' that causes insulin resistance in type 2 diabetes. SeP levels are increased in type 2 diabetes patients, and excess SeP impairs insulin signalling, promoting insulin resistance. Furthermore, increased levels of SeP disturb the functioning of pancreatic β cells and inhibit insulin secretion. This review focuses on the biological function of SeP and the molecular mechanisms associated with the adverse effects of excess SeP on pancreatic β cells' function, particularly with respect to redox reactions. Interactions between the liver and pancreas are also discussed.
Collapse
Affiliation(s)
- Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, C301, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
26
|
Saito Y. Selenoprotein P as an in vivo redox regulator: disorders related to its deficiency and excess. J Clin Biochem Nutr 2019; 66:1-7. [PMID: 32001950 PMCID: PMC6983434 DOI: 10.3164/jcbn.19-31] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/19/2019] [Indexed: 01/08/2023] Open
Abstract
Selenoprotein P (encoded by SELENOP) contains the essential trace element selenium in the form of selenocysteine, which is an analog of cysteine that contains selenium instead of sulfur. Selenoprotein P is a major selenium-containing protein in human plasma and is mainly synthesized in the liver. It functions as a selenium-transporter to maintain antioxidative selenoenzymes in several tissues, such as the brain and testis, and plays a pivotal role in selenium-metabolism and antioxidative defense. A decrease of selenoprotein P and selenoproteins causes various dysfunctions related to oxidative stress. On the other hand, recent studies indicate that excess selenoprotein P exacerbates glucose metabolism and promotes type 2 diabetes. This review focuses on the biological functions of selenoprotein P, particularly its role in selenium-metabolism and antioxidative defense. Furthermore, the effects of excess selenoprotein P on glucose metabolism, and resulting diseases are described. The development of a therapeutic agent that targets excess selenoprotein P is discussed.
Collapse
Affiliation(s)
- Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
27
|
Xiang R, Fan LL, Huang H, Chen YQ, He W, Guo S, Li JJ, Jin JY, Du R, Yan R, Xia K. Increased Reticulon 3 (RTN3) Leads to Obesity and Hypertriglyceridemia by Interacting With Heat Shock Protein Family A (Hsp70) Member 5 (HSPA5). Circulation 2019; 138:1828-1838. [PMID: 29716941 DOI: 10.1161/circulationaha.117.030718] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Reticulon 3 (RTN3) is an endoplasmic reticulum protein that has previously been shown to play a role in neurodegenerative diseases, but little is known about its role in lipid metabolism. METHODS Obese patients (n=149), hypertriglyceridemic patients (n=343), and healthy control subjects (n=84) were enrolled to assess their levels of RTN3. To explore the pathophysiological roles of RTN3 in the control of lipid metabolism, we used transgenic mice overexpressing the wild-type human RTN3 gene, the RTN3-null transgenic mouse model, and multiple Caenorhabditis legans strains for molecular characterization. The underlying mechanisms were studied with 3T3L1 cell cultures in vitro. RESULTS We report that overexpressed RTN3 in mice induces obesity and higher accumulation of triglycerides. Increased RTN3 expression is also found in patients with obesity and hypertriglyceridemia. We reveal that RTN3 plays critical roles in regulating the biosynthesis and storage of triglycerides and in controlling lipid droplet expansion. Mechanistically, RTN3 regulates these events through its interactions with heat shock protein family A (Hsp70) member 5, and this enhanced interaction increases sterol regulatory element-binding protein 1c and AMP-activated kinase activity. CONCLUSIONS This study provides evidence for a role of RTN3 in inducing obesity and triglyceride accumulation and suggests that inhibiting the expression of RTN3 in fat tissue may be a novel therapeutic approach to treat obesity and hypertriglyceridemia.
Collapse
Affiliation(s)
- Rong Xiang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China (R.X., L.-l.F., H.H., S.G., J.-J.L., J.-y.J., R.D., K.X.)
| | - Liang-Liang Fan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China (R.X., L.-l.F., H.H., S.G., J.-J.L., J.-y.J., R.D., K.X.)
| | - Hao Huang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China (R.X., L.-l.F., H.H., S.G., J.-J.L., J.-y.J., R.D., K.X.)
| | - Ya-Qin Chen
- Department of Cardiology, Second Xiangya Hospital of Central South University, Changsha, China (Y.-q.C.)
| | - Wanxia He
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, OH (W.H., R.Y.)
| | - Shuai Guo
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China (R.X., L.-l.F., H.H., S.G., J.-J.L., J.-y.J., R.D., K.X.)
| | - Jing-Jing Li
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China (R.X., L.-l.F., H.H., S.G., J.-J.L., J.-y.J., R.D., K.X.)
| | - Jie-Yuan Jin
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China (R.X., L.-l.F., H.H., S.G., J.-J.L., J.-y.J., R.D., K.X.)
| | - Ran Du
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China (R.X., L.-l.F., H.H., S.G., J.-J.L., J.-y.J., R.D., K.X.)
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, OH (W.H., R.Y.)
| | - Kun Xia
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China (R.X., L.-l.F., H.H., S.G., J.-J.L., J.-y.J., R.D., K.X.)
| |
Collapse
|
28
|
Echeverría F, Valenzuela R, Bustamante A, Álvarez D, Ortiz M, Espinosa A, Illesca P, Gonzalez-Mañan D, Videla LA. High-fat diet induces mouse liver steatosis with a concomitant decline in energy metabolism: attenuation by eicosapentaenoic acid (EPA) or hydroxytyrosol (HT) supplementation and the additive effects upon EPA and HT co-administration. Food Funct 2019; 10:6170-6183. [PMID: 31501836 DOI: 10.1039/c9fo01373c] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High-fat-diet (HFD) feeding is associated with liver oxidative stress (OS), n-3 long-chain polyunsaturated fatty acid (n-3 LCPUFA) depletion, hepatic steatosis and mitochondrial dysfunction. Our hypothesis is that the HFD-induced liver injury can be attenuated by the combined supplementation of n-3 LCPUFA eicosapentaenoic acid (EPA) and the antioxidant hydroxytyrosol (HT). The C57BL/6J mice were administered an HFD (60% fat, 20% protein, 20% carbohydrates) or control diet (CD; 10% fat, 20% protein, 70% carbohydrates), with or without EPA (50 mg kg-1 day-1), HT (5 mg kg-1 day-1), or EPA + HT (50 and 5 mg kg-1 day-1, respectively) for 12 weeks. We measured the body and liver weights and dietary and energy intakes along with liver histology, FA composition, steatosis score and associated transcription factors, mitochondrial functions and metabolic factors related to energy sensing through the AMP-activated protein kinase (AMPK) and PPAR-γ coactivator-1α (PGC-1α) cascade. It was found that the HFD significantly induced liver steatosis, with a 66% depletion of n-3 LCPUFAs and a 100% increase in n-6/n-3 LCPUFA ratio as compared to the case of CD (p < 0.05). These changes were concomitant with (i) a 95% higher lipogenic and 70% lower FA oxidation signaling, (ii) a 40% diminution in mitochondrial respiratory capacity and (iii) a 56% lower ATP content. HFD-induced liver steatosis was also associated with (iv) a depressed mRNA expression of AMPK-PGC-1α signaling components, nuclear respiratory factor-2 (NRF-2) and β-ATP synthase. These HFD effects were significantly attenuated by the combined EPA + HT supplementation in an additive manner. These results suggested that EPA and HT co-administration partly prevented HFD-induced liver steatosis, thus strengthening the importance of combined interventions in hepatoprotection in non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Francisca Echeverría
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Andrés Bustamante
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Daniela Álvarez
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Macarena Ortiz
- Nutrition and Dietetics School, Faculty of Health Sciences, Catholic University of Maule, Curicó, Chile
| | - Alejandra Espinosa
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Paola Illesca
- Biochemistry Department, Faculty of Biochemistry, University of Litoral, Santa Fe, Argentina
| | | | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
29
|
Golzari MH, Javanbakht MH, Ghaedi E, Mohammadi H, Djalali M. Effect of Eicosapentaenoic Acid Supplementation on Paraoxonase 2 Gene Expression in Patients with Type 2 Diabetes Mellitus: a Randomized Double-blind Clinical Trial. Clin Nutr Res 2019; 8:17-27. [PMID: 30746344 PMCID: PMC6355950 DOI: 10.7762/cnr.2019.8.1.17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is recognized as one of the most prevalent metabolic diseases, and it is mostly associated with oxidative stress, atherosclerosis and dyslipidemia. Paraoxonase 2 (PON2) due to its antioxidant properties may play a role in the atherosclerosis development. Although long-chain omega-3 polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA) have been shown to reduce the risk of cardiovascular disease, the exact mechanism of action is still unknown. Our goal in this study was to determine the effect of EPA administration on gene expression of PON2 in patients with T2DM. Present study was a randomized, controlled double-blind trial. Thirty-six patients with T2DM were randomly allocated to receive 2 g/day EPA (n = 18) or placebo (n = 18) for 8 weeks. There were no significant differences between 2 groups concerning demographic or biochemical variables, and dietary intakes as well (p > 0.05). However, patients received EPA showed a significant increase in the gene expression of PON2 compared with placebo group (p = 0.027). In addition, high-density lipoprotein cholesterol increased and fasting blood sugar decreased significantly after EPA supplementation compared with control group. Taken together, supplementation with 2 g/day EPA could be atheroprotective via the upregulation of PON2 in patients with T2DM. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03258840.
Collapse
Affiliation(s)
- Mohammad Hassan Golzari
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran 14155-6446, Iran
| | - Mohammad Hassan Javanbakht
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran 14155-6446, Iran
| | - Ehsan Ghaedi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran 14155-6446, Iran
| | - Hamed Mohammadi
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mahmoud Djalali
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran 14155-6446, Iran
| |
Collapse
|
30
|
Moody L, Xu GB, Chen H, Pan YX. Epigenetic regulation of carnitine palmitoyltransferase 1 (Cpt1a) by high fat diet. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:141-152. [PMID: 30605728 DOI: 10.1016/j.bbagrm.2018.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/22/2018] [Accepted: 12/27/2018] [Indexed: 12/15/2022]
Abstract
Carnitine palmitoyltransferase 1 (Cpt1a) is a rate-limiting enzyme that mediates the transport of fatty acids into the mitochondria for subsequent beta-oxidation. The objective of this study was to uncover how diet mediates the transcriptional regulation of Cpt1a. Pregnant Sprague Dawley rats were exposed to either a high-fat (HF) or low-fat control diet during gestation and lactation. At weaning, male offspring received either a HF or control diet, creating 4 groups: lifelong control diet (C/C; n = 12), perinatal HF diet (HF/C; n = 9), post-weaning HF diet (C/HF; n = 10), and lifelong HF diet (HF/HF; n = 10). Only HF/HF animals had higher hepatic Cpt1a mRNA expression than C/C. Epigenetic analysis revealed reduced DNA methylation (DNAMe) and increased histone 3 lysine 4 dimethylation (H3K4Me2) upstream and within the promoter of Cpt1a in the HF/HF group. This was accompanied by increased peroxisome proliferator activated receptor alpha (PPARα) and CCAAT/enhancer binding protein beta (C/EBPβ) binding directly downstream of the Cpt1a transcription start site within the first intron. Findings were confirmed in rat hepatoma H4IIEC3 cells treated with non-esterified fatty acid (NEFA). After 12 h of NEFA treatment, there was an enrichment of SWI/SNF related matrix associated actin dependent regulator of chromatin subfamily D member 1 (BAF60a or SMARCD1) in the first intron of Cpt1a. We conclude that dietary fat elevates hepatic Cpt1a expression via a highly coordinated transcriptional mechanism involving increased H3K4Me2, reduced DNAMe, and recruitment of C/EBPβ, PPARα, PGC1α, and BAF60a to the gene.
Collapse
Affiliation(s)
- Laura Moody
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America.
| | - Guanying Bianca Xu
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America.
| | - Hong Chen
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America.
| | - Yuan-Xiang Pan
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America; Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America.
| |
Collapse
|
31
|
Maternal selenium status is profoundly involved in metabolic fetal programming by modulating insulin resistance, oxidative balance and energy homeostasis. Eur J Nutr 2018; 58:3171-3181. [PMID: 30506446 DOI: 10.1007/s00394-018-1861-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/14/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE High and low levels of selenium (Se) have been related to metabolic disorders in dams and in their offspring. Their relationship to oxidative balance and to AMP-activated protein kinase (AMPK) is some of the mechanisms proposed. The aim of this study is to acquire information about how Se is involved in metabolic programming. METHODS Three experimental groups of dam rats were used: control (Se: 0.1 ppm), Se supplemented (Se: 0.5 ppm) and Se deficient (Se: 0.01 ppm). At the end of lactation, the pups' metabolic profile, oxidative balance, Se levels, selenoproteins and IRS-1 hepatic expression, as well as hepatic AMPK activation were measured. RESULTS The experimental groups present deep changes in Se homeostasis, selenoproteins and IRS-1 hepatic expression, oxidative balance, AMPK activation ratio and insulin levels. They do, however, have different metabolic profiles. CONCLUSIONS High- and low-Se diets are linked to insulin resistance, yet the mechanisms involved are completely opposite.
Collapse
|
32
|
Bornhorst J, Kipp AP, Haase H, Meyer S, Schwerdtle T. The crux of inept biomarkers for risks and benefits of trace elements. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Chen S, Hu Z, He H, Liu X. Fatty acid elongase7 is regulated via SP1 and is involved in lipid accumulation in bovine mammary epithelial cells. J Cell Physiol 2018; 233:4715-4725. [DOI: 10.1002/jcp.26255] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/05/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Si Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture; College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi P.R. China
| | - Zhigang Hu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture; College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi P.R. China
| | - Hua He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture; College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi P.R. China
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi P.R. China
| | - Xiaolin Liu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture; College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi P.R. China
| |
Collapse
|