1
|
Li JL, Zhu CH, Tian MM, Liu Y, Ma L, Tao LJ, Zheng P, Yu JQ, Liu N. Negative allosteric modulator of Group Ⅰ mGluRs: Recent advances and therapeutic perspective for neuropathic pain. Neuroscience 2024; 560:406-421. [PMID: 39368605 DOI: 10.1016/j.neuroscience.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Neuropathic pain (NP) is a widespread public health problem that existing therapeutic treatments cannot manage adequately; therefore, novel treatment strategies are urgently required. G-protein-coupled receptors are important for intracellular signal transduction, and widely participate in physiological and pathological processes, including pain perception. Group I metabotropic glutamate receptors (mGluRs), including mGluR1 and mGluR5, are predominantly implicated in central sensitization, which can lead to hyperalgesia and allodynia. Many orthosteric site antagonists targeting Group I mGluRs have been found to alleviate NP, but their poor efficacy, low selectivity, and numerous side effects limit their development in NP treatment. Here we reviewed the advantages of Group I mGluRs negative allosteric modulators (NAMs) over orthosteric site antagonists based on allosteric modulation mechanism, and the challenges and opportunities of Group I mGluRs NAMs in NP treatment. This article aims to elucidate the advantages and future development potential of Group I mGluRs NAMs in the treatment of NP.
Collapse
Affiliation(s)
- Jia-Ling Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Chun-Hao Zhu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Miao-Miao Tian
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Yue Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Lin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Li-Jun Tao
- Department of Pharmacy, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750000, China
| | - Ping Zheng
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China.
| | - Jian-Qiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China.
| | - Ning Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China; School of Basic Medical Science, Ningxia Medical University, Yinchuan 750000, China.
| |
Collapse
|
2
|
Lu W, Yang X, Zhong W, Chen G, Guo X, Ye Q, Xu Y, Qi Z, Ye Y, Zhang J, Wang Y, Wang X, Wang S, Zhao Q, Zeng W, Huang J, Ma H, Xie J. METTL14-mediated m6A epitranscriptomic modification contributes to chemotherapy-induced neuropathic pain by stabilizing GluN2A expression via IGF2BP2. J Clin Invest 2024; 134:e174847. [PMID: 38319733 PMCID: PMC10940092 DOI: 10.1172/jci174847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Epigenetics is a biological process that modifies and regulates gene expression, affects neuronal function, and contributes to pain. However, the mechanism by which epigenetics facilitates and maintains chronic pain is poorly understood. We aimed to determine whether N6-methyladenosine (m6A) specifically modified by methyltransferase-like 14 (METTL14) alters neuronal activity and governs pain by sensitizing the GluN2A subunit of the N-methyl-d-aspartate receptor (NMDAR) in the dorsal root ganglion (DRG) neurons in a model of chemotherapy-induced neuropathic pain (CINP). Using dot blotting, immunofluorescence, gain/loss-of-function, and behavioral assays, we found that m6A levels were upregulated in L4-L6 DRG neurons in CINP in a DBP/METTL14-dependent manner, which was also confirmed in human DRGs. Blocking METTL14 reduced m6A methylation and attenuated pain hypersensitivity. Mechanistically, METTL14-mediated m6A modification facilitated the synaptic plasticity of DRG neurons by enhancing the GluN2A subunit of NMDAR, and inhibiting METTL14 blocked this effect. In contrast, overexpression of METTL14 upregulated m6A modifications, enhanced presynaptic NMDAR activity in DRG neurons, and facilitated pain sensation. Our findings reveal a previously unrecognized mechanism of METTL14-mediated m6A modification in DRG neurons to maintain neuropathic pain. Targeting these molecules may provide a new strategy for pain treatment.
Collapse
Affiliation(s)
- Weicheng Lu
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaohua Yang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Weiqiang Zhong
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Guojun Chen
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xinqi Guo
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qingqing Ye
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yixin Xu
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhenhua Qi
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yaqi Ye
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jingyun Zhang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuge Wang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xintong Wang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shu Wang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qiyue Zhao
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Weian Zeng
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Junting Huang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jingdun Xie
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Zhu C, Lan X, Wei Z, Yu J, Zhang J. Allosteric modulation of G protein-coupled receptors as a novel therapeutic strategy in neuropathic pain. Acta Pharm Sin B 2024; 14:67-86. [PMID: 38239234 PMCID: PMC10792987 DOI: 10.1016/j.apsb.2023.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/09/2023] [Accepted: 07/12/2023] [Indexed: 01/22/2024] Open
Abstract
Neuropathic pain is a debilitating pathological condition that presents significant therapeutic challenges in clinical practice. Unfortunately, current pharmacological treatments for neuropathic pain lack clinical efficacy and often lead to harmful adverse reactions. As G protein-coupled receptors (GPCRs) are widely distributed throughout the body, including the pain transmission pathway and descending inhibition pathway, the development of novel neuropathic pain treatments based on GPCRs allosteric modulation theory is gaining momentum. Extensive research has shown that allosteric modulators targeting GPCRs on the pain pathway can effectively alleviate symptoms of neuropathic pain while reducing or eliminating adverse effects. This review aims to provide a comprehensive summary of the progress made in GPCRs allosteric modulators in the treatment of neuropathic pain, and discuss the potential benefits and adverse factors of this treatment. We will also concentrate on the development of biased agonists of GPCRs, and based on important examples of biased agonist development in recent years, we will describe universal strategies for designing structure-based biased agonists. It is foreseeable that, with the continuous improvement of GPCRs allosteric modulation and biased agonist theory, effective GPCRs allosteric drugs will eventually be available for the treatment of neuropathic pain with acceptable safety.
Collapse
Affiliation(s)
- Chunhao Zhu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaobing Lan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zhiqiang Wei
- Medicinal Chemistry and Bioinformatics Center, Ocean University of China, Qingdao 266100, China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jian Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Zheng Z, Qiu Z, Xiong X, Nie A, Zhou W, Qiu H, Zhao H, Wu H, Guo J. Co-activation of NMDAR and mGluRs controls protein nanoparticle-induced osmotic pressure in neurotoxic edema. Biomed Pharmacother 2023; 169:115917. [PMID: 38006617 DOI: 10.1016/j.biopha.2023.115917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Glutamate stimuli and hyperactivation of its receptor are predominant determinants of ischemia-induced cytotoxic cerebral edema, which is closely associated with protein nanoparticle (PN)-induced increases in osmotic pressure. Herein, we investigated the electrochemical and mechanical mechanisms underlying the neuron swelling induced by PNs via the co-activation of N-methyl-D-aspartate receptor subunit (NMDAR) and excitatory metabotropic glutamate receptors (mGluRs). RESULTS We observed that co-activation of ionic glutamate receptor NMDAR and Group I metabotropic mGluRs promoted alteration of PN-induced membrane potential and increased intracellular osmosis, which was closely associated with calcium and voltage-dependent ion channels. In addition, activation of NMDAR-induced calmodulin (CaM) and mGluR downstream diacylglycerol (DAG)/protein kinase C α (PKCα) were observed to play crucial roles in cytotoxic hyperosmosis. The crosstalk between CaM and PKCα could upregulate the sensitivity and sustained opening of sulfonylurea receptor 1 (SUR1)-transient receptor potential cation channel subfamily M member 4 (TRPM4) and transmembrane protein 16 A (TMEM16A) channels, respectively, maintaining the massive Na+/Cl- influx, and the resultant neuron hyperosmosis and swelling. Intracellular PNs and Na+/Cl- influx were found to be as potential targets for cerebral edema treatment, using the neurocyte osmosis system and a cerebral ischemic rat model. CONCLUSIONS This study highlights PNs as a key factor in "electrochemistry-tension" signal transduction controlling Na+/Cl- ion channels and increased osmotic pressure in ischemia-induced cytotoxic edema. Moreover, enhanced sensitivity in both Na+ and Cl- ion channels also has a crucial role in cerebral edema.
Collapse
Affiliation(s)
- Zihui Zheng
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Zhaoshun Qiu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Xiyu Xiong
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Aobo Nie
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Wenzhao Zhou
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Huimin Qiu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Huanhuan Zhao
- Basic Medical Experiment Center, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Huiwen Wu
- Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China.
| | - Jun Guo
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
5
|
Xie RG, Xu GY, Wu SX, Luo C. Presynaptic glutamate receptors in nociception. Pharmacol Ther 2023; 251:108539. [PMID: 37783347 DOI: 10.1016/j.pharmthera.2023.108539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/19/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Chronic pain is a frequent, distressing and poorly understood health problem. Plasticity of synaptic transmission in the nociceptive pathways after inflammation or injury is assumed to be an important cellular basis for chronic, pathological pain. Glutamate serves as the main excitatory neurotransmitter at key synapses in the somatosensory nociceptive pathways, in which it acts on both ionotropic and metabotropic glutamate receptors. Although conventionally postsynaptic, compelling anatomical and physiological evidence demonstrates the presence of presynaptic glutamate receptors in the nociceptive pathways. Presynaptic glutamate receptors play crucial roles in nociceptive synaptic transmission and plasticity. They modulate presynaptic neurotransmitter release and synaptic plasticity, which in turn regulates pain sensitization. In this review, we summarize the latest understanding of the expression of presynaptic glutamate receptors in the nociceptive pathways, and how they contribute to nociceptive information processing and pain hypersensitivity associated with inflammation / injury. We uncover the cellular and molecular mechanisms of presynaptic glutamate receptors in shaping synaptic transmission and plasticity to mediate pain chronicity, which may provide therapeutic approaches for treatment of chronic pain.
Collapse
Affiliation(s)
- Rou-Gang Xie
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Sheng-Xi Wu
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| | - Ceng Luo
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
6
|
Jin D, Chen H, Zhou MH, Chen SR, Pan HL. mGluR5 from Primary Sensory Neurons Promotes Opioid-Induced Hyperalgesia and Tolerance by Interacting with and Potentiating Synaptic NMDA Receptors. J Neurosci 2023; 43:5593-5607. [PMID: 37451981 PMCID: PMC10401648 DOI: 10.1523/jneurosci.0601-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Aberrant activation of presynaptic NMDARs in the spinal dorsal horn is integral to opioid-induced hyperalgesia and analgesic tolerance. However, the signaling mechanisms responsible for opioid-induced NMDAR hyperactivity remain poorly identified. Here, we show that repeated treatment with morphine or fentanyl reduced monomeric mGluR5 protein levels in the dorsal root ganglion (DRG) but increased levels of mGluR5 monomers and homodimers in the spinal cord in mice and rats of both sexes. Coimmunoprecipitation analysis revealed that monomeric and dimeric mGluR5 in the spinal cord, but not monomeric mGluR5 in the DRG, directly interacted with GluN1. By contrast, mGluR5 did not interact with μ-opioid receptors in the DRG or spinal cord. Repeated morphine treatment markedly increased the mGluR5-GluN1 interaction and protein levels of mGluR5 and GluN1 in spinal synaptosomes. The mGluR5 antagonist MPEP reversed morphine treatment-augmented mGluR5-GluN1 interactions, GluN1 synaptic expression, and dorsal root-evoked monosynaptic EPSCs of dorsal horn neurons. Furthermore, CRISPR-Cas9-induced conditional mGluR5 knockdown in DRG neurons normalized mGluR5 levels in spinal synaptosomes and NMDAR-mediated EPSCs of dorsal horn neurons increased by morphine treatment. Correspondingly, intrathecal injection of MPEP or conditional mGluR5 knockdown in DRG neurons not only potentiated the acute analgesic effect of morphine but also attenuated morphine treatment-induced hyperalgesia and tolerance. Together, our findings suggest that opioid treatment promotes mGluR5 trafficking from primary sensory neurons to the spinal dorsal horn. Through dimerization and direct interaction with NMDARs, presynaptic mGluR5 potentiates and/or stabilizes NMDAR synaptic expression and activity at primary afferent central terminals, thereby maintaining opioid-induced hyperalgesia and tolerance.SIGNIFICANCE STATEMENT Opioids are essential analgesics for managing severe pain caused by cancer, surgery, and tissue injury. However, these drugs paradoxically induce pain hypersensitivity and tolerance, which can cause rapid dose escalation and even overdose mortality. This study demonstrates, for the first time, that opioids promote trafficking of mGluR5, a G protein-coupled glutamate receptor, from peripheral sensory neurons to the spinal cord; there, mGluR5 proteins dimerize and physically interact with NMDARs to augment their synaptic expression and activity. Through dynamic interactions, the two distinct glutamate receptors mutually amplify and sustain nociceptive input from peripheral sensory neurons to the spinal cord. Thus, inhibiting mGluR5 activity or disrupting mGluR5-NMDAR interactions could reduce opioid-induced hyperalgesia and tolerance and potentiate opioid analgesic efficacy.
Collapse
Affiliation(s)
- Daozhong Jin
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Meng-Hua Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
7
|
Wang H, Peng K, Curry RJ, Li D, Wang Y, Wang X, Lu Y. Group I metabotropic glutamate receptor-triggered temporally patterned action potential-dependent spontaneous synaptic transmission in mouse MNTB neurons. Hear Res 2023; 435:108822. [PMID: 37285615 PMCID: PMC10330867 DOI: 10.1016/j.heares.2023.108822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Rhythmic action potentials (AP) are generated via intrinsic ionic mechanisms in pacemaking neurons, producing synaptic responses of regular inter-event intervals (IEIs) in their targets. In auditory processing, evoked temporally patterned activities are induced when neural responses timely lock to a certain phase of the sound stimuli. Spontaneous spike activity, however, is a stochastic process, rendering the prediction of the exact timing of the next event completely based on probability. Furthermore, neuromodulation mediated by metabotropic glutamate receptors (mGluRs) is not commonly associated with patterned neural activities. Here, we report an intriguing phenomenon. In a subpopulation of medial nucleus of the trapezoid body (MNTB) neurons recorded under whole-cell voltage-clamp mode in acute mouse brain slices, temporally patterned AP-dependent glycinergic sIPSCs and glutamatergic sEPSCs were elicited by activation of group I mGluRs with 3,5-DHPG (200 µM). Auto-correlation analyses revealed rhythmogenesis in these synaptic responses. Knockout of mGluR5 largely eliminated the effects of 3,5-DHPG. Cell-attached recordings showed temporally patterned spikes evoked by 3,5-DHPG in potential presynaptic VNTB cells for synaptic inhibition onto MNTB. The amplitudes of sEPSCs enhanced by 3,5-DHPG were larger than quantal size but smaller than spike-driven calyceal inputs, suggesting that non-calyceal inputs to MNTB might be responsible for the temporally patterned sEPSCs. Finally, immunocytochemical studies identified expression and localization of mGluR5 and mGluR1 in the VNTB-MNTB inhibitory pathway. Our results imply a potential central mechanism underlying the generation of patterned spontaneous spike activity in the brainstem sound localization circuit.
Collapse
Affiliation(s)
- Huimei Wang
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Kang Peng
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Rebecca J Curry
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA; School of Biomedical Sciences, Kent State University, Kent, OH, 44240, USA
| | - Dong Li
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Yuan Wang
- Department of Biomedical Science, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Xiaoyu Wang
- Department of Biomedical Science, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Yong Lu
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA; School of Biomedical Sciences, Kent State University, Kent, OH, 44240, USA.
| |
Collapse
|
8
|
Huang Y, Chen H, Jin D, Chen SR, Pan HL. NMDA Receptors at Primary Afferent-Excitatory Neuron Synapses Differentially Sustain Chemotherapy- and Nerve Trauma-Induced Chronic Pain. J Neurosci 2023; 43:3933-3948. [PMID: 37185237 PMCID: PMC10217996 DOI: 10.1523/jneurosci.0183-23.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
The spinal dorsal horn contains vesicular glutamate transporter-2 (VGluT2)-expressing excitatory neurons and vesicular GABA transporter (VGAT)-expressing inhibitory neurons, which normally have different roles in nociceptive transmission. Spinal glutamate NMDAR hyperactivity is a crucial mechanism of chronic neuropathic pain. However, it is unclear how NMDARs regulate primary afferent input to spinal excitatory and inhibitory neurons in neuropathic pain. Also, the functional significance of presynaptic NMDARs in neuropathic pain has not been defined explicitly. Here we showed that paclitaxel treatment or spared nerve injury (SNI) similarly increased the NMDAR-mediated mEPSC frequency and dorsal root-evoked EPSCs in VGluT2 dorsal horn neurons in male and female mice. By contrast, neither paclitaxel nor SNI had any effect on mEPSCs or evoked EPSCs in VGAT neurons. In mice with conditional Grin1 (gene encoding GluN1) KO in primary sensory neurons (Grin1-cKO), paclitaxel treatment failed to induce pain hypersensitivity. Unexpectedly, SNI still caused long-lasting pain hypersensitivity in Grin1-cKO mice. SNI increased the amplitude of puff NMDA currents in VGluT2 neurons and caused similar depolarizing shifts in GABA reversal potentials in WT and Grin1-cKO mice. Concordantly, spinal Grin1 knockdown diminished SNI-induced pain hypersensitivity. Thus, presynaptic NMDARs preferentially amplify primary afferent input to spinal excitatory neurons in neuropathic pain. Although presynaptic NMDARs are required for chemotherapy-induced pain hypersensitivity, postsynaptic NMDARs in spinal excitatory neurons play a dominant role in traumatic nerve injury-induced chronic pain. Our findings reveal the divergent synaptic connectivity and functional significance of spinal presynaptic and postsynaptic NMDARs in regulating cell type-specific nociceptive input in neuropathic pain with different etiologies.SIGNIFICANCE STATEMENT Spinal excitatory neurons relay input from nociceptors, whereas inhibitory neurons repress spinal nociceptive transmission. Chronic nerve pain is associated with aberrant NMDAR activity in the spinal dorsal horn. This study demonstrates, for the first time, that chemotherapy and traumatic nerve injury preferentially enhance the NMDAR activity at primary afferent-excitatory neuron synapses but have no effect on primary afferent input to spinal inhibitory neurons. NMDARs in primary sensory neurons are essential for chemotherapy-induced chronic pain, whereas nerve trauma causes pain hypersensitivity predominantly via postsynaptic NMDARs in spinal excitatory neurons. Thus, presynaptic and postsynaptic NMDARs at primary afferent-excitatory neuron synapses are differentially engaged in chemotherapy- and nerve injury-induced chronic pain and could be targeted respectively for treating these painful conditions.
Collapse
Affiliation(s)
- Yuying Huang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Daozhong Jin
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
9
|
Feldthouse MG, Vyleta NP, Smith SM. PLC regulates spontaneous glutamate release triggered by extracellular calcium and readily releasable pool size in neocortical neurons. Front Cell Neurosci 2023; 17:1193485. [PMID: 37260580 PMCID: PMC10228687 DOI: 10.3389/fncel.2023.1193485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction Dynamic physiological changes in brain extracellular calcium ([Ca2+]o) occur when high levels of neuronal activity lead to substantial Ca2+ entry via ion channels reducing local [Ca2+]o. Perturbations of the extracellular microenvironment that increase [Ca2+]o are commonly used to study how [Ca2+] regulates neuronal activity. At excitatory synapses, the Ca2+-sensing receptor (CaSR) and other G-protein coupled receptors link [Ca2+]o and spontaneous glutamate release. Phospholipase C (PLC) is activated by G-proteins and is hypothesized to mediate this process. Methods Patch-clamping cultured neocortical neurons, we tested how spontaneous glutamate release was affected by [Ca2+]o and inhibition of PLC activity. We used hypertonic sucrose (HS) to evaluate the readily releasable pool (RRP) and test if it was affected by inhibition of PLC activity. Results Spontaneous glutamate release substantially increased with [Ca2+]o, and inhibition of PLC activity, with U73122, abolished this effect. PLC-β1 is an abundant isoform in the neocortex, however, [Ca2+]o-dependent spontaneous release was unchanged in PLC-β1 null mutants (PLC-β1-/-). U73122 completely suppressed this response in PLC-β1-/- neurons, indicating that this residual [Ca2+]o-sensitivity may be mediated by other PLC isoforms. The RRP size was substantially reduced after incubation in U73122, but not U73343. Phorbol esters increased RRP size after PLC inhibition. Discussion Together these data point to a strong role for PLC in mediating changes in spontaneous release elicited by [Ca2+]o and other extracellular cues, possibly by modifying the size of the RRP.
Collapse
Affiliation(s)
- Maya G. Feldthouse
- Section of Pulmonary and Critical Care Medicine and Research and Development, VA Portland Health Care System, Portland, OR, United States
| | - Nicholas P. Vyleta
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Stephen M. Smith
- Section of Pulmonary and Critical Care Medicine and Research and Development, VA Portland Health Care System, Portland, OR, United States
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
10
|
Wang X, Sela-Donenfeld D, Wang Y. Axonal and presynaptic FMRP: Localization, signal, and functional implications. Hear Res 2023; 430:108720. [PMID: 36809742 PMCID: PMC9998378 DOI: 10.1016/j.heares.2023.108720] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/22/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Fragile X mental retardation protein (FMRP) binds a selected set of mRNAs and proteins to guide neural circuit assembly and regulate synaptic plasticity. Loss of FMRP is responsible for Fragile X syndrome, a neuropsychiatric disorder characterized with auditory processing problems and social difficulty. FMRP actions in synaptic formation, maturation, and plasticity are site-specific among the four compartments of a synapse: presynaptic and postsynaptic neurons, astrocytes, and extracellular matrix. This review summarizes advancements in understanding FMRP localization, signals, and functional roles in axons and presynaptic terminals.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| |
Collapse
|
11
|
Sanaye MM, Kavishwar SA. Diabetic Neuropathy: Review on Molecular Mechanisms. Curr Mol Med 2023; 23:97-110. [PMID: 34397329 DOI: 10.2174/1566524021666210816093111] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/16/2022]
Abstract
Diabetic mellitus is a worldwide endocrine and metabolic disorder with insulin insensitivity or deficiency or both whose prevalence could rise up to 592 million by 2035. Consistent hyperglycemia leads to one of the most common comorbidities like Diabetic Peripheral Neuropathy (DPN). DPN is underlined with unpleasant sensory experience, such as tingling and burning sensation, hyperalgesia, numbness, etc. Globally, 50-60% of the diabetic population is suffering from such symptoms as microvascular complications. Consistent hyperglycemia during DM causes activation/inhibition of various pathways playing important role in the homeostasis of neurons and other cells. Disruption of these pathways results into apoptosis and mitochondrial dysfunctions, causing neuropathy. Among these, pathways like Polyol and PARP are some of the most intensively studied ones whereas those like Wnt pathway, Mitogen activated protein kinase (MAPK), mTOR pathway are comparatively newly discovered. Understanding of these pathways and their role in pathophysiology of DN underlines a few molecules of immense therapeutic value. The inhibitors or activators of these molecules can be of therapeutic importance in the management of DPN. This review, hence, focuses on these underlying molecular mechanisms intending to provide therapeutically effective molecular targets for the treatment of DPN.
Collapse
Affiliation(s)
- Mrinal M Sanaye
- Department of Pharmacology, Prin. K.M. Kundnani College of Pharmacy, Mumbai-400005, India
| | - Samruddhi A Kavishwar
- Department of Pharmacology, Prin. K.M. Kundnani College of Pharmacy, Mumbai-400005, India
| |
Collapse
|
12
|
Towards a mechanistic understanding of axon transport and endocytic changes underlying paclitaxel-induced peripheral neuropathy. Exp Neurol 2023; 359:114258. [PMID: 36279934 DOI: 10.1016/j.expneurol.2022.114258] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022]
Abstract
Paclitaxel is a common chemotherapeutic agent widely used to treat solid cancer. However, it frequently causes peripheral sensory neuropathy, resulting in sensory abnormalities and pain in patients receiving treatment for cancer. As one of the most widely used chemotherapeutics, many preclinical studies on paclitaxel-induced peripheral neuropathy (PIPN) have been performed. Yet, there remain no effective options for treatment or prevention. Due to paclitaxel's ability to bind to and stabilize microtubules, a change in microtubule dynamics and subsequent disruptions in axonal transport has been predicted as a major underlying cause of paclitaxel-induced toxicity. However, the systemic understanding of PIPN mechanisms is largely incomplete, and various phenotypes have not been directly attributed to microtubule-related effects. This review aims to provide an overview of the literature involving paclitaxel-induced alteration in microtubule dynamics, axonal transport, and endocytic changes. It also aims to provide insights into how the microtubule-mediated hypothesis may relate to various phenotypes reported in PIPN studies.
Collapse
|
13
|
Chen SR, Chen H, Jin D, Pan HL. Brief Opioid Exposure Paradoxically Augments Primary Afferent Input to Spinal Excitatory Neurons via α2δ-1-Dependent Presynaptic NMDA Receptors. J Neurosci 2022; 42:9315-9329. [PMID: 36379705 PMCID: PMC9794381 DOI: 10.1523/jneurosci.1704-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022] Open
Abstract
Treatment with opioids not only inhibits nociceptive transmission but also elicits a rebound and persistent increase in primary afferent input to the spinal cord. Opioid-elicited long-term potentiation (LTP) from TRPV1-expressing primary afferents plays a major role in opioid-induced hyperalgesia and analgesic tolerance. Here, we determined whether opioid-elicited LTP involves vesicular glutamate transporter-2 (VGluT2) or vesicular GABA transporter (VGAT) neurons in the spinal dorsal horn of male and female mice and identified underlying signaling mechanisms. Spinal cord slice recordings revealed that µ-opioid receptor (MOR) stimulation with DAMGO initially inhibited dorsal root-evoked EPSCs in 87% VGluT2 neurons and subsequently induced LTP in 49% of these neurons. Repeated morphine treatment increased the prevalence of VGluT2 neurons displaying LTP with a short onset latency. In contrast, DAMGO inhibited EPSCs in 46% VGAT neurons but did not elicit LTP in any VGAT neurons even in morphine-treated mice. Spinal superficial laminae were densely innervated by MOR-containing nerve terminals and were occupied by mostly VGluT2 neurons and few VGAT neurons. Furthermore, conditional Grin1 knockout in dorsal root ganglion neurons diminished DAMGO-elicited LTP in lamina II neurons and attenuated hyperalgesia and analgesic tolerance induced by repeated treatment with morphine. In addition, DAMGO-elicited LTP in VGluT2 neurons was abolished by protein kinase C inhibition, gabapentin, Cacna2d1 knockout, or disrupting the α2δ-1-NMDA receptor interaction with an α2δ-1 C terminus peptide. Thus, brief MOR stimulation distinctively potentiates nociceptive primary afferent input to excitatory dorsal horn neurons via α2δ-1-coupled presynaptic NMDA receptors, thereby causing hyperalgesia and reducing analgesic actions of opioids.SIGNIFICANCE STATEMENT Opioid drugs are potent analgesics for treating severe pain and are commonly used during general anesthesia. However, opioid use often induces pain hypersensitivity, rapid loss of analgesic efficacy, and dose escalation, which can cause dependence, addiction, and even overdose fatality. This study demonstrates for the first time that brief opioid exposure preferentially augments primary sensory input to genetically identified glutamatergic excitatory, but not GABAergic/glycinergic inhibitory, neurons in nociceptive dorsal horn circuits. This opioid-elicited synaptic plasticity is cell type specific and mediated by protein kinase C-dependent and α2δ-1-dependent activation of NMDA receptors at primary sensory nerve terminals. These findings elucidate how intraoperative use of opioids for preemptive analgesia paradoxically aggravates postoperative pain and increases opioid consumption and suggest new strategies to improve opioid analgesic efficacy.
Collapse
Affiliation(s)
- Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Daozhong Jin
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
14
|
Velasco-González R, Coffeen U. Neurophysiopathological Aspects of Paclitaxel-induced Peripheral Neuropathy. Neurotox Res 2022; 40:1673-1689. [PMID: 36169871 DOI: 10.1007/s12640-022-00582-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 12/31/2022]
Abstract
Chemotherapy is widely used as a primary treatment or adjuvant therapy for cancer. Anti-microtubule agents (such as paclitaxel and docetaxel) are used for treating many types of cancer, either alone or in combination. However, their use has negative consequences that restrict the treatment's ability to continue. The principal negative effect is the so-called chemotherapy-induced peripheral neuropathy (CIPN). CIPN is a complex ailment that depends on diversity in the mechanisms of action of the different chemotherapy drugs, which are not fully understood. In this paper, we review several neurophysiological and pathological characteristics, such as morphological changes, changes in ion channels, mitochondria and oxidative stress, cell death, changes in the immune response, and synaptic control, as well as the characteristics of neuropathic pain produced by paclitaxel.
Collapse
Affiliation(s)
- Roberto Velasco-González
- Laboratorio de Neurofisiología Integrativa, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Ciudad de México, México.,Maestría en Ciencias Biológicas, UNAM, Ciudad de México, México
| | - Ulises Coffeen
- Laboratorio de Neurofisiología Integrativa, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Ciudad de México, México.
| |
Collapse
|
15
|
Pregabalin for chemotherapy-induced neuropathy: background and rationale for further study. Support Care Cancer 2022; 30:8845-8853. [PMID: 35953729 DOI: 10.1007/s00520-022-07317-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/02/2022] [Indexed: 01/05/2023]
Abstract
Chemotherapy-induced neuropathy is difficult to manage, and the pain associated with neuropathy is poorly responsive to gabapentin in a randomized trial. Duloxetine is the only drug that has been found to be effective in reducing pain from chemotherapy neuropathy. In this qualitative review, the use of pregabalin for chemotherapy-induced neuropathy is discussed including the rationale and pharmacological reasons why pregabalin should be considered in a large, randomized placebo-controlled trial.
Collapse
|
16
|
Jin D, Chen H, Huang Y, Chen SR, Pan HL. δ-Opioid receptors in primary sensory neurons tonically restrain nociceptive input in chronic pain but do not enhance morphine analgesic tolerance. Neuropharmacology 2022; 217:109202. [PMID: 35917874 DOI: 10.1016/j.neuropharm.2022.109202] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/10/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022]
Abstract
δ-Opioid receptors (DORs, encoded by the Oprd1 gene) are expressed throughout the peripheral and central nervous system, and DOR stimulation reduces nociception. Previous studies suggest that DORs promote the development of analgesic tolerance of μ-opioid receptor (MOR) agonists. It is uncertain whether DORs expressed in primary sensory neurons are involved in regulating chronic pain and MOR agonist-induced tolerance. In this study, we generated Oprd1 conditional knockout (Oprd1-cKO) mice by crossing Advillin-Cre mice with Oprd1-floxed mice. DOR expression in the dorsal root ganglion was diminished in Oprd1-cKO mice. Systemic or intrathecal injection of the DOR agonist SNC-80 produced analgesia in wild-type (WT), but not Oprd1-cKO, mice. In contrast, intracerebroventricular injection of SNC-80 produced a similar analgesic effect in WT and Oprd1-cKO mice. However, morphine-induced analgesia, hyperalgesia, or analgesic tolerance did not differ between WT and Oprd1-cKO mice. Compared with WT mice, Oprd1-cKO mice showed increased mechanical and heat hypersensitivity after nerve injury or tissue inflammation. Furthermore, blocking DORs with naltrindole increased nociceptive sensitivity induced by nerve injury or tissue inflammation in WT, but not Oprd1-cKO, mice. In addition, naltrindole potentiated glutamatergic input from primary afferents to spinal dorsal horn neurons increased by nerve injury or CFA in WT mice; this effect was absent in Oprd1-cKO mice. Our findings indicate that DORs in primary sensory neurons are critically involved in the analgesic effect of DOR agonists but not morphine-induced analgesic tolerance. Presynaptic DORs at primary afferent central terminals constitutively inhibit inflammatory and neuropathic pain by restraining glutamatergic input to spinal dorsal horn neurons.
Collapse
Affiliation(s)
- Daozhong Jin
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuying Huang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Mazzitelli M, Presto P, Antenucci N, Meltan S, Neugebauer V. Recent Advances in the Modulation of Pain by the Metabotropic Glutamate Receptors. Cells 2022; 11:2608. [PMID: 36010684 PMCID: PMC9406805 DOI: 10.3390/cells11162608] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 01/22/2023] Open
Abstract
Metabotropic glutamate receptors (mGluR or mGlu) are G-protein coupled receptors activated by the binding of glutamate, the main classical neurotransmitter of the nervous system. Eight different mGluR subtypes (mGluR1-8) have been cloned and are classified in three groups based on their molecular, pharmacological and signaling properties. mGluRs mediate several physiological functions such as neuronal excitability and synaptic plasticity, but they have also been implicated in numerous pathological conditions including pain. The availability of new and more selective allosteric modulators together with the canonical orthosteric ligands and transgenic technologies has led to significant advances in our knowledge about the role of the specific mGluR subtypes in the pathophysiological mechanisms of various diseases. Although development of successful compounds acting on mGluRs for clinical use has been scarce, the subtype-specific-pharmacological manipulation might be a compelling approach for the treatment of several disorders in humans, including pain; this review aims to summarize and update on preclinical evidence for the roles of different mGluRs in the pain system and discusses knowledge gaps regarding mGluR-related sex differences and neuroimmune signaling in pain.
Collapse
Affiliation(s)
- Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Shakira Meltan
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
18
|
Li Y, Kang J, Xu Y, Li N, Jiao Y, Wang C, Wang C, Wang G, Yu Y, Yuan J, Zhang L. Artesunate Alleviates Paclitaxel-Induced Neuropathic Pain in Mice by Decreasing Metabotropic Glutamate Receptor 5 Activity and Neuroinflammation in Primary Sensory Neurons. Front Mol Neurosci 2022; 15:902572. [PMID: 35694442 PMCID: PMC9184756 DOI: 10.3389/fnmol.2022.902572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022] Open
Abstract
Experimental studies on the pathogenetic process of paclitaxel-induced neuropathic pain (PINP) have been initially carried out, but PINP still has no effective therapy. Recently reported studies have highlighted the involvement of glutamate receptors and neuroinflammation in peripheral and central nociceptive transmission in PINP. Artesunate is a first-line antimalarial drug with established efficacy in alleviating pain in a variety of pathologies. The current work assessed whether artesunate inhibits PINP by modulating metabotropic glutamate receptor 5 (mGluR5) and neuroinflammation in mice. The anti-hyperalgesic effect of artesunate was verified by assessing mechanical frequency and thermal latency in the paw withdrawal test as well as spontaneous pain. The expression levels of mGluR5, pain-related receptors and neuroinflammatory markers in dorsal root ganglion (DRG) were examined. In addition, treatment with CHPG and 2-methyl-6-(phenyl ethynyl) pyridine (MPEP) (mGluR5 agonist and antagonist, respectively) was performed to determine mGluR5’s role in the anti-hyperalgesic properties of artesunate. We demonstrated artesunate prevented PINP in a dose-dependent manner, while exerting a clear anti-hyperalgesic effect on already existing PINP. Artesunate normalized paclitaxel-related expression changes in DRG mGluR5, NR1, and GluA2, as well as six paclitaxel related neuroinflammation markers. Intrathecal application of MPEP treated PINP by reversing NR1 and GluA2 expression changes but had no effects on chemokines and inflammatory factors. Furthermore, artesunate treatment reversed acute pain following CHPG application. In conclusion, this study revealed that artesunate alleviates paclitaxel-induced hyperalgesia and spontaneous pain by decreasing DRG mGluR5 expression and neuroinflammation in the mouse model of PINP.
Collapse
Affiliation(s)
- Yize Li
- Department of Anesthesiology, Tianjin Research Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiamin Kang
- Department of Anesthesiology, Tianjin Research Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Xu
- Department of Anesthesiology, Tianjin Research Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Nan Li
- Department of Anesthesiology, Tianjin Research Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Jiao
- Department of Anesthesiology, Tianjin Research Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chenxu Wang
- Department of Anesthesiology, Tianjin Research Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunyan Wang
- Department of Anesthesiology, Tianjin Research Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guolin Wang
- Department of Anesthesiology, Tianjin Research Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Research Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingjing Yuan
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Jingjing Yuan,
| | - Linlin Zhang
- Department of Anesthesiology, Tianjin Research Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Linlin Zhang,
| |
Collapse
|
19
|
Xia J, Dou Y, Mei Y, Munoz FM, Gao R, Gao X, Li D, Osei-Owusu P, Schiffenhaus J, Bekker A, Tao YX, Hu H. Orai1 is a crucial downstream partner of group I metabotropic glutamate receptor signaling in dorsal horn neurons. Pain 2022; 163:652-664. [PMID: 34252911 PMCID: PMC8741882 DOI: 10.1097/j.pain.0000000000002396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Group I metabotropic glutamate receptors (group I mGluRs) have been implicated in several central nervous system diseases including chronic pain. It is known that activation of group I mGluRs results in the production of inositol triphosphate (IP3) and diacylglycerol that leads to activation of extracellular signal-regulated kinases (ERKs) and an increase in neuronal excitability, but how group I mGluRs mediate this process remains unclear. We previously reported that Orai1 is responsible for store-operated calcium entry and plays a key role in central sensitization. However, how Orai1 is activated under physiological conditions is unknown. Here, we tested the hypothesis that group I mGluRs recruit Orai1 as part of its downstream signaling pathway in dorsal horn neurons. We demonstrate that neurotransmitter glutamate induces STIM1 puncta formation, which is not mediated by N-Methyl-D-aspartate (NMDA) or α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Glutamate-induced Ca2+ entry in the presence of NMDA or AMPA receptor antagonists is eliminated in Orai1-deficient neurons. Dihydroxyphenylglycine (DHPG) (an agonist of group I mGluRs)-induced Ca2+ entry is abolished by Orai1 deficiency, but not affected by knocking down of transient receptor potential cation channel 1 (TRPC1) or TRPC3. Dihydroxyphenylglycine-induced activation of ERKs and modulation of neuronal excitability are abolished in cultured Orai1-deficient neurons. Moreover, DHPG-induced nociceptive behavior is markedly reduced in Orai1-deficient mice. Our findings reveal previously unknown functional coupling between Orai1 and group I mGluRs and shed light on the mechanism underlying group I mGluRs-mediated neuronal plasticity.
Collapse
Affiliation(s)
- Jingsheng Xia
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Yannong Dou
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Yixiao Mei
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Frances M. Munoz
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Ruby Gao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Xinghua Gao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Daling Li
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Patrick Osei-Owusu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - James Schiffenhaus
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Alex Bekker
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Yuan-Xiang Tao
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Huijuan Hu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| |
Collapse
|
20
|
Abstract
Neuropathic pain is a challenging clinical problem and remains difficult to treat. Altered gene expression in peripheral sensory nerves and neurons due to nerve injury is well documented and contributes critically to the synaptic plasticity in the spinal cord and the initiation and maintenance of chronic pain. However, our understanding of the epigenetic mechanisms regulating the transcription of pro-nociceptive (e.g., NMDA receptors and α2δ-1) and antinociceptive (e.g., potassium channels and opioid and cannabinoid receptors) genes are still limited. In this review, we summarize recent studies determining the roles of histone modifications (including methylation, acetylation, and ubiquitination), DNA methylation, and noncoding RNAs in neuropathic pain development. We review the epigenetic writer, reader, and eraser proteins that participate in the transcriptional control of the expression of key ion channels and neurotransmitter receptors in the dorsal root ganglion after traumatic nerve injury, which is commonly used as a preclinical model of neuropathic pain. A better understanding of epigenetic reprogramming involved in the transition from acute to chronic pain could lead to the development of new treatments for neuropathic pain.
Collapse
Affiliation(s)
- Krishna Ghosh
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
21
|
Vermeer CJC, Hiensch AE, Cleenewerk L, May AM, Eijkelkamp N. Neuro-immune interactions in paclitaxel-induced peripheral neuropathy. Acta Oncol 2021; 60:1369-1382. [PMID: 34313190 DOI: 10.1080/0284186x.2021.1954241] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Paclitaxel is a taxane-based chemotherapeutic agent used as a treatment in breast cancer. There is no effective prevention or treatment strategy for the most common side effect of peripheral neuropathy. In this manuscript, we reviewed the molecular mechanisms that contribute to paclitaxel-induced peripheral neuropathy (PIPN) with an emphasis on immune-related processes. METHODS A systematic search of the literature was conducted in PubMed, EMBASE and Cochrane Library. The SYRCLE's risk of bias tool was used to assess internal validity. RESULTS 156 studies conducted with rodent models were included. The risk of bias was high due to unclear methodology. Paclitaxel induces changes in myelinated axons, mitochondrial dysfunction, and mechanical hypersensitivity by affecting ion channels expression and function and facilitating spinal transmission. Paclitaxel-induced inflammatory responses are important contributors to PIPN. CONCLUSION Immune-related processes are an important mechanism contributing to PIPN. Studies in humans that validate these mechanistic data are highly needed to facilitate the development of therapeutic strategies.
Collapse
Affiliation(s)
- Cornelia J. C. Vermeer
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anouk E. Hiensch
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Laurence Cleenewerk
- Center of Translational Immunology (CTI), University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anne M. May
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Center of Translational Immunology (CTI), University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
22
|
Zhou MH, Chen SR, Wang L, Huang Y, Deng M, Zhang J, Zhang J, Chen H, Yan J, Pan HL. Protein Kinase C-Mediated Phosphorylation and α2δ-1 Interdependently Regulate NMDA Receptor Trafficking and Activity. J Neurosci 2021; 41:6415-6429. [PMID: 34252035 PMCID: PMC8318084 DOI: 10.1523/jneurosci.0757-21.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 11/21/2022] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are important for synaptic plasticity associated with many physiological functions and neurologic disorders. Protein kinase C (PKC) activation increases the phosphorylation and activity of NMDARs, and α2δ-1 is a critical NMDAR-interacting protein and controls synaptic trafficking of NMDARs. In this study, we determined the relative roles of PKC and α2δ-1 in the control of NMDAR activity. We found that α2δ-1 coexpression significantly increased NMDAR activity in HEK293 cells transfected with GluN1/GluN2A or GluN1/GluN2B. PKC activation with phorbol 12-myristate 13-acetate (PMA) increased receptor activity only in cells coexpressing GluN1/GluN2A and α2δ-1. Remarkably, PKC inhibition with Gӧ6983 abolished α2δ-1-coexpression-induced potentiation of NMDAR activity in cells transfected with GluN1/GluN2A or GluN1/GluN2B. Treatment with PMA increased the α2δ-1-GluN1 interaction and promoted α2δ-1 and GluN1 cell surface trafficking. PMA also significantly increased NMDAR activity of spinal dorsal horn neurons and the amount of α2δ-1-bound GluN1 protein complexes in spinal cord synaptosomes in wild-type mice, but not in α2δ-1 knockout mice. Furthermore, inhibiting α2δ-1 with pregabalin or disrupting the α2δ-1-NMDAR interaction with the α2δ-1 C-terminus peptide abolished the potentiating effect of PMA on NMDAR activity. Additionally, using quantitative phosphoproteomics and mutagenesis analyses, we identified S929 on GluN2A and S1413 (S1415 in humans) on GluN2B as the phosphorylation sites responsible for NMDAR potentiation by PKC and α2δ-1. Together, our findings demonstrate the interdependence of α2δ-1 and PKC phosphorylation in regulating NMDAR trafficking and activity. The phosphorylation-dependent, dynamic α2δ-1-NMDAR interaction constitutes an important molecular mechanism of synaptic plasticity.SIGNIFICANCE STATEMENT A major challenge in studies of protein phosphorylation is to define the functional significance of each phosphorylation event and determine how various signaling pathways are coordinated in response to neuronal activity to shape synaptic plasticity. PKC phosphorylates transporters, ion channels, and G-protein-coupled receptors in signal transduction. In this study, we showed that α2δ-1 is indispensable for PKC-activation-induced surface and synaptic trafficking of NMDARs, whereas the α2δ-1-NMDAR interaction is controlled by PKC-induced phosphorylation. Our findings reveal that α2δ-1 mainly functions as a phospho-binding protein in the control of NMDAR trafficking and activity. This information provides new mechanistic insight into the reciprocal roles of PKC-mediated phosphorylation and α2δ-1 in regulating NMDARs and in the therapeutic actions of gabapentinoids.
Collapse
Affiliation(s)
- Meng-Hua Zhou
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Li Wang
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Yuying Huang
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Meichun Deng
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jixiang Zhang
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jiyuan Zhang
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jiusheng Yan
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
23
|
Selective activation of metabotropic glutamate receptor 7 blocks paclitaxel-induced acute neuropathic pain and suppresses spinal glial reactivity in rats. Psychopharmacology (Berl) 2021; 238:107-119. [PMID: 33089875 DOI: 10.1007/s00213-020-05662-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 09/10/2020] [Indexed: 12/30/2022]
Abstract
RATIONALE Paclitaxel-induced acute pain syndrome (P-APS), characterized by deep muscle aches and arthralgia, occurs in more than 70% of patients who receive paclitaxel. P-APS can be debilitating for patients and lead to reductions and discontinuation of potentially curable therapy. Despite being relatively common in clinical practice, no clear treatment exists for P-APS and the underlying mechanisms remain poorly defined. Regulation of glutamatergic transmission by metabotropic glutamate receptors (mGluRs) has received growing attention with respect to its role in neuropathic pain. To our knowledge, no study has been conducted on alterations and functions of group III mGluR7 signaling in P-APS. OBJECTIVES In the present study, we determined whether a single administration of paclitaxel induces glutamatergic alterations and whether mGluR7 activation blocks paclitaxel-induced neuropathic pain by suppressing glial reactivity in the spinal cord. RESULTS A single paclitaxel injection dose-dependently induced acute mechanical and thermal hypersensitivity, and was associated with increased glutamate level accompanied by reduction in mGluR7 expression in the spinal cord. Selective activation of mGluR7 by its positive allosteric modulator, AMN082, blocked the development of paclitaxel-induced acute mechanical and thermal hypersensitivity, without affecting the normal pain behavior of control rats. Moreover, activation of mGluR7 by AMN082 inhibited glial reactivity and decreased pro-inflammatory cytokine release during P-APS. Abortion of spinal glial reaction to paclitaxel alleviated paclitaxel-induced acute mechanical and thermal hypersensitivity. CONCLUSIONS There results support the hypothesis that spinal mGluR7 signaling plays an important role in P-APS; Selective activation of mGluR7 by its positive allosteric modulator, AMN082, blocks P-APS in part by reducing spinal glial reactivity and neuroinflammatory process.
Collapse
|
24
|
Xiong C, Chua KC, Stage TB, Priotti J, Kim J, Altman-Merino A, Chan D, Saraf K, Canato Ferracini A, Fattahi F, Kroetz DL. Human Induced Pluripotent Stem Cell Derived Sensory Neurons are Sensitive to the Neurotoxic Effects of Paclitaxel. Clin Transl Sci 2020; 14:568-581. [PMID: 33340242 PMCID: PMC7993321 DOI: 10.1111/cts.12912] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy‐induced peripheral neuropathy (CIPN) is a dose‐limiting adverse event associated with treatment with paclitaxel and other chemotherapeutic agents. The prevention and treatment of CIPN are limited by a lack of understanding of the molecular mechanisms underlying this toxicity. In the current study, a human induced pluripotent stem cell–derived sensory neuron (iPSC‐SN) model was developed for the study of chemotherapy‐induced neurotoxicity. The iPSC‐SNs express proteins characteristic of nociceptor, mechanoreceptor, and proprioceptor sensory neurons and show Ca2+ influx in response to capsaicin, α,β‐meATP, and glutamate. The iPSC‐SNs are relatively resistant to the cytotoxic effects of paclitaxel, with half‐maximal inhibitory concentration (IC50) values of 38.1 µM (95% confidence interval (CI) 22.9–70.9 µM) for 48‐hour exposure and 9.3 µM (95% CI 5.7–16.5 µM) for 72‐hour treatment. Paclitaxel causes dose‐dependent and time‐dependent changes in neurite network complexity detected by βIII‐tubulin staining and high content imaging. The IC50 for paclitaxel reduction of neurite area was 1.4 µM (95% CI 0.3–16.9 µM) for 48‐hour exposure and 0.6 µM (95% CI 0.09–9.9 µM) for 72‐hour exposure. Decreased mitochondrial membrane potential, slower movement of mitochondria down the neurites, and changes in glutamate‐induced neuronal excitability were also observed with paclitaxel exposure. The iPSC‐SNs were also sensitive to docetaxel, vincristine, and bortezomib. Collectively, these data support the use of iPSC‐SNs for detailed mechanistic investigations of genes and pathways implicated in chemotherapy‐induced neurotoxicity and the identification of novel therapeutic approaches for its prevention and treatment.
Collapse
Affiliation(s)
- Chenling Xiong
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Katherina C Chua
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Tore B Stage
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA.,Department of Public Health, Clinical Pharmacology and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Josefina Priotti
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey Kim
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Anne Altman-Merino
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Daniel Chan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Krishna Saraf
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Amanda Canato Ferracini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA.,Faculty of Medical Sciences, University of Campinas, Sao Paulo, Brazil
| | - Faranak Fattahi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
25
|
Wong HHW, Rannio S, Jones V, Thomazeau A, Sjöström PJ. NMDA receptors in axons: there's no coincidence. J Physiol 2020; 599:367-387. [PMID: 33141440 DOI: 10.1113/jp280059] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
In the textbook view, N-methyl-d-aspartate (NMDA) receptors are postsynaptically located detectors of coincident activity in Hebbian learning. However, controversial presynaptically located NMDA receptors (preNMDARs) have for decades been repeatedly reported in the literature. These preNMDARs have typically been implicated in the regulation of short-term and long-term plasticity, but precisely how they signal and what their functional roles are have been poorly understood. The functional roles of preNMDARs across several brain regions and different forms of plasticity can differ vastly, with recent discoveries showing key involvement of unusual subunit composition. Increasing evidence shows preNMDAR can signal through both ionotropic action by fluxing calcium and in metabotropic mode even in the presence of magnesium blockade. We argue that these unusual properties may explain why controversy has surrounded this receptor type. In addition, the expression of preNMDARs at some synapse types but not others can underlie synapse-type-specific plasticity. Last but not least, preNMDARs are emerging therapeutic targets in disease states such as neuropathic pain. We conclude that axonally located preNMDARs are required for specific purposes and do not end up there by accident.
Collapse
Affiliation(s)
- Hovy Ho-Wai Wong
- Department of Medicine, Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Ave, Montreal, Quebec, H3G 1A4, Canada
| | - Sabine Rannio
- Department of Medicine, Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Ave, Montreal, Quebec, H3G 1A4, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Victoria Jones
- Department of Medicine, Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Ave, Montreal, Quebec, H3G 1A4, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Aurore Thomazeau
- Department of Medicine, Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Ave, Montreal, Quebec, H3G 1A4, Canada
| | - P Jesper Sjöström
- Department of Medicine, Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Ave, Montreal, Quebec, H3G 1A4, Canada
| |
Collapse
|
26
|
Niu Y, Zeng X, Zhao L, Zhou Y, Qin G, Zhang D, Fu Q, Zhou J, Chen L. Metabotropic glutamate receptor 5 regulates synaptic plasticity in a chronic migraine rat model through the PKC/NR2B signal. J Headache Pain 2020; 21:139. [PMID: 33276724 PMCID: PMC7716451 DOI: 10.1186/s10194-020-01206-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
Background The mechanism of chronic migraine (CM) is complex, central sensitization is considered as one of the pathological mechanism. Synaptic plasticity is the basis of central sensitization. Metabotropic glutamate receptor 5 (mGluR5) plays a vital role in the synaptic plasticity of the central nervous system. However, whether mGluR5 can promote the central sensitization by regulating synaptic plasticity in CM is unknown. Methods Male Wistar rats were used to establish a CM rat model, and the expression of mGluR5 mRNA and protein were detected by qRT-PCR and western blot. The allodynia was assessed by mechanical and thermal thresholds, and central sensitization was assessed by expression of the phosphorylation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) at Serine 133(pCREB-S133) and c-Fos. The synaptic-associated protein postsynaptic density protein 95 (PSD), synaptophysin (Syp), and synaptophysin-1(Syt-1), synaptic ultrastructure, and dendritic spines were detected to explore synaptic plasticity. The expression of PKC, total NR2B(tNR2B), and phosphorylation of NR2B at Tyr1472(pNR2B-Y1472) were detected by western blot. Results We found that the expression of mGluR5 was upregulated in CM rats. Downregulated the mGluR5 with MPEP alleviated the allodynia and reduced the expression of CGRP, pCREB-S133, c-Fos, PSD, Syp and Syt-1 and synaptic transmission. Moreover, the administration of MPEP inhibited the upregulation of PKC and pNR2B-Y1472. Conclusions These results indicate that mGluR5 contributes to central sensitization by regulating synaptic plasticity in CM through the PKC/NR2B signal, which suggests that mGluR5 may be a potential therapeutic candidate for CM.
Collapse
Affiliation(s)
- Yingying Niu
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoxu Zeng
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lilin Zhao
- Department of Stomatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Zhou
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingqing Fu
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
27
|
闫 芳, 陈 东, 谢 敬, 曾 维, 李 强. [Escin alleviates chemotherapy-induced peripheral neuropathic pain by inducing autophagy in the spinal cord of rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1634-1638. [PMID: 33243746 PMCID: PMC7704370 DOI: 10.12122/j.issn.1673-4254.2020.11.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To investigate the effect of escin in relieving chemotherapy-induced peripheral neuropathic pain in rats and explore and the underlying mechanism. METHODS Eighteen SD rats were randomly divided into 3 groups (n=6), including an escin preconditioning group (treated with 4 mg/kg escin on days 1-7 and then with 2 mg/kg taxol on days 8, 10, 12, and 14), an escin postconditioning group (treated with 2 mg/kg taxol on days 1, 3, 5, and 7 and then with 4 mg/mg escin on days 8-14) and control group (treated with 2 mg/kg taxol on days 1, 3, 5, and 7 and then with saline on days 8-14). Mechanical allodynia and thermal hyperalgesia of the mice were tested on days 4, 7, 10 and 14, and the expression levels of LC3II and p62 in the spinal cord of the rats were detected using Western blotting. RESULTS The rats in both the escin preconditioning group and escin postconditioning group showed obviously increased thresholds of mechanical allodynia and thermal hyperalgesia as compared with those in the control group (P < 0.01). Western blotting showed that the expression level of LC3II was significantly increased while p62 expression was lowered in escin preconditioning group as compared with those in the control group (P < 0.05). The escin postconditioning group also showed significantly higher LC3II expression and lower p62 expression levels than the control group (P < 0.05). CONCLUSIONS Escin can alleviate chemotherapy-induced peripheral neuropathic pain in rats possibly by upregulating the expressions of autophagy-related proteins in the spinal cord.
Collapse
Affiliation(s)
- 芳 闫
- />中山大学肿瘤防治中心麻醉科//华南肿瘤学国家重点实验室/肿瘤医学协同创新中心,广东 广州 510060Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - 东泰 陈
- />中山大学肿瘤防治中心麻醉科//华南肿瘤学国家重点实验室/肿瘤医学协同创新中心,广东 广州 510060Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - 敬敦 谢
- />中山大学肿瘤防治中心麻醉科//华南肿瘤学国家重点实验室/肿瘤医学协同创新中心,广东 广州 510060Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - 维安 曾
- />中山大学肿瘤防治中心麻醉科//华南肿瘤学国家重点实验室/肿瘤医学协同创新中心,广东 广州 510060Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - 强 李
- />中山大学肿瘤防治中心麻醉科//华南肿瘤学国家重点实验室/肿瘤医学协同创新中心,广东 广州 510060Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
28
|
Liao WT, Tseng CC, Chia WT, Lin CR. High-frequency spinal cord stimulation treatment attenuates the increase in spinal glutamate release and spinal miniature excitatory postsynaptic currents in rats with spared nerve injury-induced neuropathic pain. Brain Res Bull 2020; 164:307-313. [PMID: 32937185 DOI: 10.1016/j.brainresbull.2020.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/29/2020] [Accepted: 09/07/2020] [Indexed: 12/27/2022]
Abstract
High-frequency spinal cord stimulation (HFSCS) at 10 kHz provides paresthesia-free treatment for chronic pain. However, the underlying mechanisms of its action have not been fully elucidated. The aim of the present study was to investigate the effect of HFSCS treatment on spinal glutamate release and uptake in spared nerve injury (SNI) rats. HFSCS was applied to the T10/T11 spinal cord 3 days after SNI. The concentration of spinal glutamate, glutamate transporter activity and miniature excitatory postsynaptic currents (mEPSCs) from neurons in lamina II were evaluated. HFSCS treatment alleviated SNI pain induced by mechanical and cold allodynia. HFSCS treatment also partially restored altered spinal glutamate uptake activity, the levels of spinal glutamate, and the frequency of mEPSCs following SNI. In conclusion, HFSCS treatment attenuated SNI-induced neuropathic pain and partially restored the altered glutamate uptake after SNI.
Collapse
Affiliation(s)
- Wen-Tzu Liao
- Department of Anesthesiology, Chia-Yi Chang Gung Memorial Hospital, Chia-Yi, Taiwan
| | - Chia-Chih Tseng
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wan-Ting Chia
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Ren Lin
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
29
|
Speltz R, Lunzer MM, Shueb SS, Akgün E, Reed R, Kalyuzhny A, Portoghese PS, Simone DA. The bivalent ligand, MMG22, reduces neuropathic pain after nerve injury without the side effects of traditional opioids. Pain 2020; 161:2041-2057. [PMID: 32345918 PMCID: PMC7606301 DOI: 10.1097/j.pain.0000000000001902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/21/2020] [Indexed: 11/26/2022]
Abstract
ABSTRACT Functional interactions between the mu opioid receptor (MOR) and the metabotropic glutamate receptor 5 (mGluR5) in pain and analgesia have been well established. MMG22 is a bivalent ligand containing MOR agonist (oxymorphamine) and mGluR5 antagonist (MPEP) pharmacophores tethered by a 22-atom linker. MMG22 has been shown to produce potent analgesia in several models of chronic inflammatory and neuropathic pain (NP). This study assessed the efficacy of systemic administration of MMG22 at reducing pain behavior in the spared nerve injury (SNI) model of NP in mice, as well as its side-effect profile and abuse potential. MMG22 reduced mechanical hyperalgesia and spontaneous ongoing pain after SNI, with greater potency early (10 days) as compared to late (30 days) after injury. Systemic administration of MMG22 did not induce place preference in naive animals, suggesting absence of abuse liability when compared to traditional opioids. MMG22 also lacked the central locomotor, respiratory, and anxiolytic side effects of its monomeric pharmacophores. Evaluation of mRNA expression showed the transcripts for both receptors were colocalized in cells in the dorsal horn of the lumbar spinal cord and dorsal root ganglia. Thus, MMG22 reduces hyperalgesia after injury in the SNI model of NP without the typical centrally mediated side effects associated with traditional opioids.
Collapse
Affiliation(s)
- Rebecca Speltz
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Mary M Lunzer
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Sarah S Shueb
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Eyup Akgün
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | | | - Alex Kalyuzhny
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
- Bio-Techne, Minneapolis, MN, United States
| | - Philip S Portoghese
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Donald A Simone
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
30
|
Wang Y, He W, Zhang H, Yao Z, Che F, Cao Y, Sun H. mGluR5 mediates ketamine antidepressant response in susceptible rats exposed to prenatal stress. J Affect Disord 2020; 272:398-408. [PMID: 32553383 DOI: 10.1016/j.jad.2020.03.104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/31/2020] [Accepted: 03/28/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND New insights have recently been gained into ketamine's potential anti-depressive effects. However, the mechanisms that underlie ketamine's rapid antidepressant activity still remain a mystery. METHODS We used a rat prenatal stress (PS) model of depression to explore the functional role of mGluR5 in ketamine's rapidly induced antidepressant activity. Effects of the antidepressants imipramine, escitalopram, ketamine, and fluoxetine were compared. AAV-mGluR5 and AAV-shRNA-mGluR5 were constructed to overexpress and knockdown hippocampal mGluR5 respectively. RESULTS This study shows that mGluR5, which is associated with depression-like behaviors, is increased in susceptible rats exposed to prenatal stress, and that ketamine could significantly alleviate these stress-induced effects. RU-38486 down-regulated expression of mGluR5 and up-regulated NR1. MPEP and CHPG also altered expression of both mGluR5 and NR1. Notably, hippocampal overexpression of mGluR5 in wild type rats changed NR1 and PSD-95 expression and induced depression-like behavior that could be blocked by ketamine activity. Further, knockdown of hippocampal mGluR5 in PS-S rats restored normal levels of mGluR5, NR1, and PSD-95, and alleviated depression-like behavior. LIMITATIONS The entire rat hippocampus was used for this study, but the role of mGluR5 may vary by sub-region. CONCLUSION These results suggest that hippocampal mGluR5 may play a key role in mediating the rapid antidepressant effects of ketamine in a prenatal stress model of depression. This provides a novel therapeutic target in clinical treatment of depression.
Collapse
Affiliation(s)
- Yi Wang
- Department of Neonatal Intensive Care Unit, Xi'an Children's Hospital (The Affiliated Children's Hospital of Xi'an Jiaotong University), Xi'an, Shaanxi, 86-710003, P.R. China
| | - Wei He
- Shaanxi Institute of Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Xi'an Children's Hospital (The Affiliated Children's Hospital of Xi'an Jiaotong University), Xi'an, Shaanxi, 86-710003, P.R. China
| | - Huiping Zhang
- Shaanxi Institute of Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Xi'an Children's Hospital (The Affiliated Children's Hospital of Xi'an Jiaotong University), Xi'an, Shaanxi, 86-710003, P.R. China
| | - Zhenyu Yao
- Shaanxi Institute of Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Xi'an Children's Hospital (The Affiliated Children's Hospital of Xi'an Jiaotong University), Xi'an, Shaanxi, 86-710003, P.R. China
| | - Fengyu Che
- Shaanxi Institute of Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Xi'an Children's Hospital (The Affiliated Children's Hospital of Xi'an Jiaotong University), Xi'an, Shaanxi, 86-710003, P.R. China
| | - Yanjun Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi, 86-710069, P.R. China
| | - Hongli Sun
- Shaanxi Institute of Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Xi'an Children's Hospital (The Affiliated Children's Hospital of Xi'an Jiaotong University), Xi'an, Shaanxi, 86-710003, P.R. China; Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 86-710061, P.R. China.
| |
Collapse
|
31
|
Calcineurin Inhibition Causes α2δ-1-Mediated Tonic Activation of Synaptic NMDA Receptors and Pain Hypersensitivity. J Neurosci 2020; 40:3707-3719. [PMID: 32269108 DOI: 10.1523/jneurosci.0282-20.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/16/2020] [Accepted: 03/22/2020] [Indexed: 12/12/2022] Open
Abstract
Calcineurin inhibitors, such as tacrolimus (FK506) and cyclosporine, are widely used as standard immunosuppressants in organ transplantation recipients. However, these drugs can cause severe pain in patients, commonly referred to as calcineurin inhibitor-induced pain syndrome (CIPS). Although calcineurin inhibition increases NMDAR activity in the spinal cord, the underlying mechanism remains enigmatic. Using an animal model of CIPS, we found that systemic administration of FK506 in male and female mice significantly increased the amount of α2δ-1-GluN1 complexes in the spinal cord and the level of α2δ-1-bound GluN1 proteins in spinal synaptosomes. Treatment with FK506 significantly increased the frequency of mEPSCs and the amplitudes of monosynaptic EPSCs evoked from the dorsal root and puff NMDAR currents in spinal dorsal horn neurons. Inhibiting α2δ-1 with gabapentin or disrupting the α2δ-1-NMDAR interaction with α2δ-1Tat peptide completely reversed the effects of FK506. In α2δ-1 gene KO mice, treatment with FK506 failed to increase the frequency of NMDAR-mediated mEPSCs and the amplitudes of evoked EPSCs and puff NMDAR currents in spinal dorsal horn neurons. Furthermore, systemic administration of gabapentin or intrathecal injection of α2δ-1Tat peptide reversed thermal and mechanical hypersensitivity in FK506-treated mice. In addition, genetically deleting GluN1 in dorsal root ganglion neurons or α2δ-1 genetic KO similarly attenuated FK506-induced thermal and mechanical hypersensitivity. Together, our findings indicate that α2δ-1-bound NMDARs mediate calcineurin inhibitor-induced tonic activation of presynaptic and postsynaptic NMDARs at the spinal cord level and that presynaptic NMDARs play a prominent role in the development of CIPS.SIGNIFICANCE STATEMENT Calcineurin inhibitors are immunosuppressants used to prevent rejection of transplanted organs and tissues. However, these drugs can cause severe, unexplained pain. We showed that calcineurin inhibition enhances physical interaction between α2δ-1 and NMDARs and their synaptic trafficking in the spinal cord. α2δ-1 is essential for calcineurin inhibitor-induced aberrant activation of presynaptic and postsynaptic NMDARs in the spinal cord. Furthermore, inhibiting α2δ-1 or disrupting α2δ-1-NMDAR interaction reduces calcineurin inhibitor-induced pain hypersensitivity. Eliminating NMDARs in primary sensory neurons or α2δ-1 KO also attenuates calcineurin inhibitor-induced pain hypersensitivity. This new information extends our mechanistic understanding of the role of endogenous calcineurin in regulating synaptic plasticity and nociceptive transmission and suggests new strategies for treating this painful condition.
Collapse
|
32
|
Mei X, Yang Y, Zhao J, Wang Y, Chen Q, Qian X, Li X, Feng Z. Role of fragile X mental retardation protein in chronic pain. Mol Pain 2020; 16:1744806920928619. [PMID: 32496847 PMCID: PMC7273537 DOI: 10.1177/1744806920928619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 11/15/2022] Open
Abstract
Chronic pain has detrimental effects on one's quality of life. However, its treatment options are very limited, and its underlying pathogenesis remains unclear. Recent research has suggested that fragile X mental retardation protein is involved in the development of chronic pain, making it a potential target for prevention and treatment. The current review of literature will examine the function of fragile X mental retardation protein and its associated pathways, through which we hope to gain insight into how fragile X mental retardation protein may contribute to nociceptive sensitization and chronic pain.
Collapse
Affiliation(s)
- Xiangyang Mei
- Department of Pain Medicine,
The First Affiliated Hospital,
Zhejiang
University School of Medicine,
Hangzhou, Zhejiang, China
| | - Yixin Yang
- Department of Pain Medicine,
The First Affiliated Hospital,
Zhejiang
University School of Medicine,
Hangzhou, Zhejiang, China
| | - Jinsong Zhao
- Department of Pain Medicine,
The First Affiliated Hospital,
Zhejiang
University School of Medicine,
Hangzhou, Zhejiang, China
| | - Yongjie Wang
- Institute of Neuroscience,
Key Laboratory of Medical Neurobiology of the Ministry of Health of
China, School of Medicine,
Zhejiang
University, Hangzhou,
Zhejiang, China
| | - QiLiang Chen
- Department of
Anesthesiology, Perioperative and Pain Medicine, Stanford Health Care,
Stanford
University, Stanford, CA,
USA
| | - Xiang Qian
- Department of
Anesthesiology, Perioperative and Pain Medicine, Stanford Health Care,
Stanford
University, Stanford, CA,
USA
| | - Xiangyao Li
- Institute of Neuroscience,
Key Laboratory of Medical Neurobiology of the Ministry of Health of
China, School of Medicine,
Zhejiang
University, Hangzhou,
Zhejiang, China
| | - Zhiying Feng
- Department of Pain Medicine,
The First Affiliated Hospital,
Zhejiang
University School of Medicine,
Hangzhou, Zhejiang, China
| |
Collapse
|
33
|
Lai CC, Hsu JW, Cheng YS, Lin HH. Involvement of metabotropic glutamate receptor 5 in ethanol regulation of NMDA receptor activity in rat substantia gelatinosa neurons. Life Sci 2019; 233:116729. [PMID: 31386876 DOI: 10.1016/j.lfs.2019.116729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/28/2019] [Accepted: 08/02/2019] [Indexed: 11/17/2022]
Abstract
AIMS Glutamatergic receptors are important targets of ethanol. Intake of ethanol may produce analgesic effects. The present study examined the effects of ethanol on the activity of ionotropic glutamate receptors in spinal cord substantia gelatinosa (SG) neurons, critical neurons involved in nociceptive transmission. MAIN METHODS Whole-cell recordings were made from SG neurons of the lumbar spinal cord slices from 15 to 20-day-old rats. Ethanol and glutamate receptor agonists or antagonists were applied by superfusion. KEY FINDING Ethanol (50 and 100 mM) applied by superfusion for 5 min dose-dependently decreased the amplitude of evoked excitatory postsynaptic potential in SG neurons. Superfusion of ethanol (100 mM) for 15 min consistently inhibited NMDA- or AMPA-induced depolarizations in SG neurons. Ethanol (100 mM) also inhibited the depolarizations induced by glutamate. However, ethanol inhibition of glutamate-induced responses significantly decreased at 10-15 min following continuous superfusion, suggesting the development of acute tolerance to the inhibition during prolonged exposure. Application of MPEP hydrochloride (an antagonist of metabotropic glutamate receptor [mGluR] 5) or GF109203X (a protein kinase C [PKC] inhibitor), together with ethanol significantly blocked the tolerance. The inhibition by ethanol of the NMDA-induced, but not AMPA-induced, depolarizations significantly decreased at 15 min during continuous superfusion while ACPD (a mGluR agonist) was co-applied with ethanol. SIGNIFICANCE The results suggest that (1) ethanol exposure may inhibit ionotropic glutamate receptor-mediated neurotransmission; (2) regulation of NMDA receptor function by mGluR5/PKC pathways may be involved in the development of the tolerance to ethanol inhibition of glutamate-induced responses during prolonged exposure in SG neurons.
Collapse
Affiliation(s)
- Chih-Chia Lai
- Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien, Taiwan 970; Master and Ph.D. Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan 970
| | - Jhih-Wei Hsu
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan 970
| | - Yi-Shan Cheng
- Master and Ph.D. Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan 970
| | - Hsun-Hsun Lin
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan 970; Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan 970.
| |
Collapse
|
34
|
Zhang ZY, Bai HH, Guo Z, Li HL, He YT, Duan XL, Suo ZW, Yang X, He YX, Hu XD. mGluR5/ERK signaling regulated the phosphorylation and function of glycine receptor α1ins subunit in spinal dorsal horn of mice. PLoS Biol 2019; 17:e3000371. [PMID: 31433808 PMCID: PMC6703679 DOI: 10.1371/journal.pbio.3000371] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/24/2019] [Indexed: 12/29/2022] Open
Abstract
Inhibitory glycinergic transmission in adult spinal cord is primarily mediated by glycine receptors (GlyRs) containing the α1 subunit. Here, we found that α1ins, a longer α1 variant with 8 amino acids inserted into the intracellular large loop (IL) between transmembrane (TM)3 and TM4 domains, was expressed in the dorsal horn of the spinal cord, distributed at inhibitory synapses, and engaged in negative control over nociceptive signal transduction. Activation of metabotropic glutamate receptor 5 (mGluR5) specifically suppressed α1ins-mediated glycinergic transmission and evoked pain sensitization. Extracellular signal-regulated kinase (ERK) was critical for mGluR5 to inhibit α1ins. By binding to a D-docking site created by the 8-amino–acid insert within the TM3–TM4 loop of α1ins, the active ERK catalyzed α1ins phosphorylation at Ser380, which favored α1ins ubiquitination at Lys379 and led to α1ins endocytosis. Disruption of ERK interaction with α1ins blocked Ser380 phosphorylation, potentiated glycinergic synaptic currents, and alleviated inflammatory and neuropathic pain. These data thus unraveled a novel, to our knowledge, mechanism for the activity-dependent regulation of glycinergic neurotransmission. Activity-dependent phosphorylation of the glycine receptor α1ins subunit by metabotropic glutamate receptor 5 and ERK kinase signalling causes endocytosis of α1ins and glycinergic disinhibition in the spinal cord dorsal horn, contributing to pain sensitization.
Collapse
Affiliation(s)
- Zi-Yang Zhang
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, PR China
| | - Hu-Hu Bai
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, PR China
| | - Zhen Guo
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, PR China
| | - Hu-Ling Li
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, PR China
| | - Yong-Tao He
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, PR China
| | - Xing-Lian Duan
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, PR China
| | - Zhan-Wei Suo
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, PR China
| | - Xian Yang
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, PR China
| | - Yong-Xing He
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, PR China
| | - Xiao-Dong Hu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, PR China
- * E-mail:
| |
Collapse
|
35
|
León-Navarro DA, Albasanz JL, Martín M. Functional Cross-Talk between Adenosine and Metabotropic Glutamate Receptors. Curr Neuropharmacol 2019; 17:422-437. [PMID: 29663888 PMCID: PMC6520591 DOI: 10.2174/1570159x16666180416093717] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/19/2018] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
Abstract: G-protein coupled receptors are transmembrane proteins widely expressed in cells and their transduction pathways are mediated by controlling second messenger levels through different G-protein interactions. Many of these receptors have been described as involved in the physiopathology of neurodegenerative diseases and even considered as potential targets for the design of novel therapeutic strategies. Endogenous and synthetic allosteric and orthosteric selective ligands are able to modulate GPCRs at both gene and protein expression levels and can also modify their physiological function. GPCRs that coexist in the same cells can homo- and heteromerize, therefore, modulating their function. Adenosine receptors are GPCRs which stimulate or inhibit adenylyl cyclase activity through Gi/Gs protein and are involved in the control of neurotransmitter release as glutamate. In turn, metabotropic glutamate receptors are also GPCRs which inhibit adenylyl cyclase or stimulate phospholipase C activities through Gi or Gq proteins, respectively. In recent years, evidence of crosstalk mechanisms be-tween different GPCRs have been described. The aim of the present review was to summarize the described mechanisms of interaction and crosstalking between adenosine and metabotropic glutamate receptors, mainly of group I, in both in vitro and in vivo systems, and their possible use for the design of novel ligands for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- David Agustín León-Navarro
- Departamento de Quimica Inorganica, Organica y Bioquimica. CRIB, Universidad de Castilla-La Mancha, Spain.,Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain
| | - José Luis Albasanz
- Departamento de Quimica Inorganica, Organica y Bioquimica. CRIB, Universidad de Castilla-La Mancha, Spain.,Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain.,Facultad de Medicina de Ciudad Real, Camino Moledores s/n. 13071 Ciudad Real, Spain
| | - Mairena Martín
- Departamento de Quimica Inorganica, Organica y Bioquimica. CRIB, Universidad de Castilla-La Mancha, Spain.,Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain.,Facultad de Medicina de Ciudad Real, Camino Moledores s/n. 13071 Ciudad Real, Spain
| |
Collapse
|
36
|
Rigo FK, Bochi GV, Pereira AL, Adamante G, Ferro PR, Dal-Toé De Prá S, Milioli AM, Damiani AP, da Silveira Prestes G, Dalenogare DP, Chávez-Olórtegui C, Moraes de Andrade V, Machado-de-Ávila RA, Trevisan G. TsNTxP, a non-toxic protein from Tityus serrulatus scorpion venom, induces antinociceptive effects by suppressing glutamate release in mice. Eur J Pharmacol 2019; 855:65-74. [PMID: 31059709 DOI: 10.1016/j.ejphar.2019.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 01/22/2023]
Abstract
Neuropathic pain is a common type of chronic pain caused by trauma or chemotherapy. However, this type of pain is undertreated. TsNTxP is a non-toxic protein isolated from the venom of the scorpion Tityus serrulatus, and it is structurally similar to neurotoxins that interact with voltage-gated sodium channels. However, the antinociceptive properties of this protein have not been characterized. The purpose of this study was to investigate the antinociceptive effects of TsNTxP in acute and neuropathic pain models. Male and female Swiss mice (25-30 g) were exposed to different models of acute pain (tail-flick test and nociception caused by capsaicin intraplantar injection) or neuropathic pain (chronic pain syndrome induced by paclitaxel or chronic constriction injury of the sciatic nerve). Hypersensitivity to mechanical or cold stimuli were evaluated in the models of neuropathic pain. The ability of TsNTxP to alter the release of glutamate in mouse spinal cord synaptosomes was also evaluated. The results showed that TsNTxP exerted antinociceptive effects in the tail-flick test to a thermal stimulus and in the intraplantar capsaicin administration model. Furthermore, TsNTxP was non-toxic and exerted antiallodynic effects in neuropathic pain models induced by chronic constriction injury of the sciatic nerve and administration of paclitaxel. TsNTxP reduced glutamate release from mouse spinal cord synaptosomes following stimulation with potassium chloride (KCl) or capsaicin. Thus, this T. serrulatus protein may be a promising non-toxic drug for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Flávia Karine Rigo
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil
| | - Guilherme Vargas Bochi
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Adriano Lana Pereira
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil
| | - Gabriela Adamante
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil
| | - Paula Ronsani Ferro
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil
| | - Samira Dal-Toé De Prá
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil
| | - Alessandra Marcone Milioli
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil
| | - Adriani Paganini Damiani
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil
| | - Gabriele da Silveira Prestes
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil
| | - Diéssica Padilha Dalenogare
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Carlos Chávez-Olórtegui
- Department of Biochemistry and Immunology, Federal University of Minas Gerais State (UFMG), 31270-901, Belo Horizonte, MG, Brazil
| | - Vanessa Moraes de Andrade
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil
| | | | - Gabriela Trevisan
- Graduated Program in Health Sciences, University of Southern Santa Catarina (UNESC), 88006-000, Criciúma, SC, Brazil; Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
37
|
Deng M, Chen SR, Pan HL. Presynaptic NMDA receptors control nociceptive transmission at the spinal cord level in neuropathic pain. Cell Mol Life Sci 2019; 76:1889-1899. [PMID: 30788514 PMCID: PMC6482077 DOI: 10.1007/s00018-019-03047-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 12/20/2022]
Abstract
Chronic neuropathic pain is a debilitating condition that remains challenging to treat. Glutamate N-methyl-D-aspartate receptor (NMDAR) antagonists have been used to treat neuropathic pain, but the exact sites of their actions have been unclear until recently. Although conventionally postsynaptic, NMDARs are also expressed presynaptically, particularly at the central terminals of primary sensory neurons, in the spinal dorsal horn. However, presynaptic NMDARs in the spinal cord are normally quiescent and are not actively involved in physiological nociceptive transmission. In this review, we describe the emerging role of presynaptic NMDARs at the spinal cord level in chronic neuropathic pain and the implications of molecular mechanisms for more effective treatment. Recent studies indicate that presynaptic NMDAR activity at the spinal cord level is increased in several neuropathic pain conditions but not in chronic inflammatory pain. Increased presynaptic NMDAR activity can potentiate glutamate release from primary afferent terminals to spinal dorsal horn neurons, which is crucial for the synaptic plasticity associated with neuropathic pain caused by traumatic nerve injury and chemotherapy-induced peripheral neuropathy. Furthermore, α2δ-1, previously considered a calcium channel subunit, can directly interact with NMDARs through its C-terminus to increase presynaptic NMDAR activity by facilitating synaptic trafficking of α2δ-1-NMDAR complexes in neuropathic pain caused by chemotherapeutic agents and peripheral nerve injury. Targeting α2δ-1-bound NMDARs with gabapentinoids or α2δ-1 C-terminus peptides can attenuate nociceptive drive form primary sensory nerves to dorsal horn neurons in neuropathic pain.
Collapse
Affiliation(s)
- Meichun Deng
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 110, Houston, TX, 77030, USA
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Shao-Rui Chen
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 110, Houston, TX, 77030, USA
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 110, Houston, TX, 77030, USA.
| |
Collapse
|
38
|
Ganugula R, Deng M, Arora M, Pan HL, Kumar MNVR. Polyester Nanoparticle Encapsulation Mitigates Paclitaxel-Induced Peripheral Neuropathy. ACS Chem Neurosci 2019; 10:1801-1812. [PMID: 30609902 DOI: 10.1021/acschemneuro.8b00703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy utilizing cytotoxic drugs, such as paclitaxel (PTX), is still a commonly used therapeutic approach to treat both localized and metastasized cancers. Unlike traditional regimens in which PTX is administered at the maximum tolerated dose, alternative regimens like metronomic dosing are beneficial by administering PTX more frequently and in much lower doses exploiting antiangiogenic and immunomodulatory effects. However, PTX-induced peripheral neuropathy and lack of patient compliant dosage forms of PTX are major roadblocks for the successful implementation of metronomic regimens. Because of the success of polyester nanoparticle drug delivery, we explored the potential of nanoparticle-encapsulated paclitaxel (nPTX) in alleviating peripheral neuropathy using a rat model. Rats were injected intraperitoneally with 2 mg/kg body weight of PTX or nPTX on four alternate days, and neuropathic pain and neuronal damage were characterized using behavioral assessments, histology, and immunohistochemistry. The reduction in tactile and nociceptive pressure thresholds was significantly less in nPTX-treated rats than in PTX-treated rats over a 16-day study period. Histological analysis showed that the degree of dorsal root ganglion (DRG) degeneration and reduction in motor neurons in the spinal cord was significantly lower in the nPTX group than the PTX group. Further, immunofluorescence data reveals that nPTX-treated rats had an increased density of a neuronal marker, β-tubulin-III, reduced TUNEL positive cells, and increased high molecular weight neurofilament in the spinal cord, DRG, and sciatic nerves compared with PTX-treated rats. Therefore, this work has important implications in improving risk-benefit profile of PTX, paving the way for metronomic regimens.
Collapse
Affiliation(s)
- R. Ganugula
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, Reynolds Medical Building, TAMU Mail Stop 1114, College Station, Texas 77843, United States
| | - M. Deng
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - M. Arora
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, Reynolds Medical Building, TAMU Mail Stop 1114, College Station, Texas 77843, United States
| | - H.-L. Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - M. N. V. Ravi Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, Reynolds Medical Building, TAMU Mail Stop 1114, College Station, Texas 77843, United States
| |
Collapse
|
39
|
Pereira V, Goudet C. Emerging Trends in Pain Modulation by Metabotropic Glutamate Receptors. Front Mol Neurosci 2019; 11:464. [PMID: 30662395 PMCID: PMC6328474 DOI: 10.3389/fnmol.2018.00464] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Pain is an essential protective mechanism meant to prevent tissue damages in organisms. On the other hand, chronic or persistent pain caused, for example, by inflammation or nerve injury is long lasting and responsible for long-term disability in patients. Therefore, chronic pain and its management represents a major public health problem. Hence, it is critical to better understand chronic pain molecular mechanisms to develop innovative and efficient drugs. Over the past decades, accumulating evidence has demonstrated a pivotal role of glutamate in pain sensation and transmission, supporting glutamate receptors as promising potential targets for pain relieving drug development. Glutamate is the most abundant excitatory neurotransmitter in the brain. Once released into the synapse, glutamate acts through ionotropic glutamate receptors (iGluRs), which are ligand-gated ion channels triggering fast excitatory neurotransmission, and metabotropic glutamate receptors (mGluRs), which are G protein-coupled receptors modulating synaptic transmission. Eight mGluRs subtypes have been identified and are divided into three classes based on their sequence similarities and their pharmacological and biochemical properties. Of note, all mGluR subtypes (except mGlu6 receptor) are expressed within the nociceptive pathways where they modulate pain transmission. This review will address the role of mGluRs in acute and persistent pain processing and emerging pharmacotherapies for pain management.
Collapse
Affiliation(s)
- Vanessa Pereira
- IGF, CNRS, INSERM, Univ. de Montpellier, Montpellier, France
| | - Cyril Goudet
- IGF, CNRS, INSERM, Univ. de Montpellier, Montpellier, France
| |
Collapse
|
40
|
Deng M, Chen SR, Chen H, Luo Y, Dong Y, Pan HL. Mitogen-activated protein kinase signaling mediates opioid-induced presynaptic NMDA receptor activation and analgesic tolerance. J Neurochem 2018; 148:275-290. [PMID: 30444263 DOI: 10.1111/jnc.14628] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/01/2018] [Accepted: 11/09/2018] [Indexed: 12/15/2022]
Abstract
Opioid-induced hyperalgesia and analgesic tolerance can lead to dose escalation and inadequate pain treatment with μ-opioid receptor agonists. Opioids cause tonic activation of glutamate NMDA receptors (NMDARs) at primary afferent terminals, increasing nociceptive input. However, the signaling mechanisms responsible for opioid-induced activation of pre-synaptic NMDARs in the spinal dorsal horn remain unclear. In this study, we determined the role of MAPK signaling in opioid-induced pre-synaptic NMDAR activation caused by chronic morphine administration. Whole-cell recordings of excitatory post-synaptic currents (EPSCs) were performed on dorsal horn neurons in rat spinal cord slices. Chronic morphine administration markedly increased the frequency of miniature EPSCs, increased the amplitude of monosynaptic EPSCs evoked from the dorsal root, and reduced the paired-pulse ratio of evoked EPSCs. These changes were fully reversed by an NMDAR antagonist and normalized by inhibiting extracellular signal-regulated kinase 1/2 (ERK1/2), p38, or c-Jun N-terminal kinase (JNK). Furthermore, intrathecal injection of a selective ERK1/2, p38, or JNK inhibitor blocked pain hypersensitivity induced by chronic morphine treatment. These inhibitors also similarly attenuated a reduction in morphine's analgesic effect in rats. In addition, co-immunoprecipitation assays revealed that NMDARs formed a protein complex with ERK1/2, p38, and JNK in the spinal cord and that chronic morphine treatment increased physical interactions of NMDARs with these three MAPKs. Our findings suggest that opioid-induced hyperalgesia and analgesic tolerance are mediated by tonic activation of pre-synaptic NMDARs via three functionally interrelated MAPKs at the spinal cord level. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Meichun Deng
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yi Luo
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yingchun Dong
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Anesthesiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
41
|
Cisplatin treatment induces attention deficits and impairs synaptic integrity in the prefrontal cortex in mice. Sci Rep 2018; 8:17400. [PMID: 30479361 PMCID: PMC6258730 DOI: 10.1038/s41598-018-35919-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022] Open
Abstract
Patients treated for cancer frequently experience chemobrain, characterized by impaired memory and reduced attention. These deficits often persist after treatment, and no preventive or curative interventions exist. In mice, we assessed the effect of cisplatin chemotherapy on attention using the 5-choice serial reaction time task and on synaptic integrity. We also assessed the capacity of mesenchymal stem cells to normalize the characteristics of chemobrain. Mice were trained in the 5-choice serial reaction time task. After reaching advancement criteria at a 4-second stimulus time, they were treated with cisplatin followed by nasal administration of mesenchymal stem cells. Cisplatin reduced the percentage of correct responses due to an increase in omissions, indicating attention deficits. Mesenchymal stem cell treatment reversed these cisplatin-induced deficits in attention. Cisplatin also induced abnormalities in markers of synaptic integrity in the prefrontal cortex. Specifically, cisplatin decreased expression of the global presynaptic marker synaptophysin and the glutamatergic presynaptic marker vGlut2. Expression of the presynaptic GABAergic marker vGAT increased. Nasal mesenchymal stem cell administration normalized these markers of synaptic integrity. In conclusion, cisplatin induces long-lasting attention deficits that are associated with decreased synaptic integrity in the prefrontal cortex. Nasal administration of mesenchymal stem cells reversed these behavioural and structural deficits.
Collapse
|