1
|
Bojar D, Meche L, Meng G, Eng W, Smith DF, Cummings RD, Mahal LK. A Useful Guide to Lectin Binding: Machine-Learning Directed Annotation of 57 Unique Lectin Specificities. ACS Chem Biol 2022; 17:2993-3012. [PMID: 35084820 PMCID: PMC9679999 DOI: 10.1021/acschembio.1c00689] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glycans are critical to every facet of biology and medicine, from viral infections to embryogenesis. Tools to study glycans are rapidly evolving; however, the majority of our knowledge is deeply dependent on binding by glycan binding proteins (e.g., lectins). The specificities of lectins, which are often naturally isolated proteins, have not been well-defined, making it difficult to leverage their full potential for glycan analysis. Herein, we use a combination of machine learning algorithms and expert annotation to define lectin specificity for this important probe set. Our analysis uses comprehensive glycan microarray analysis of commercially available lectins we obtained using version 5.0 of the Consortium for Functional Glycomics glycan microarray (CFGv5). This data set was made public in 2011. We report the creation of this data set and its use in large-scale evaluation of lectin-glycan binding behaviors. Our motif analysis was performed by integrating 68 manually defined glycan features with systematic probing of computational rules for significant binding motifs using mono- and disaccharides and linkages. Combining machine learning with manual annotation, we create a detailed interpretation of glycan-binding specificity for 57 unique lectins, categorized by their major binding motifs: mannose, complex-type N-glycan, O-glycan, fucose, sialic acid and sulfate, GlcNAc and chitin, Gal and LacNAc, and GalNAc. Our work provides fresh insights into the complex binding features of commercially available lectins in current use, providing a critical guide to these important reagents.
Collapse
Affiliation(s)
- Daniel Bojar
- Department
of Chemistry and Molecular Biology and Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, Gothenburg, Sweden 405 30
| | - Lawrence Meche
- Biomedical
Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New
York, New York 10003, United States
| | - Guanmin Meng
- Department
of Chemistry, University of Alberta, Edmonton, Canada, T6G 2G2
| | - William Eng
- Biomedical
Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New
York, New York 10003, United States
| | - David F. Smith
- Department
of Biochemistry, Glycomics Center, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Richard D. Cummings
- Department
of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Lara K. Mahal
- Biomedical
Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New
York, New York 10003, United States,Department
of Chemistry, University of Alberta, Edmonton, Canada, T6G 2G2,E-mail:
| |
Collapse
|
2
|
Notova S, Siukstaite L, Rosato F, Vena F, Audfray A, Bovin N, Landemarre L, Römer W, Imberty A. Extending Janus lectins architecture: characterization and application to protocells. Comput Struct Biotechnol J 2022; 20:6108-6119. [DOI: 10.1016/j.csbj.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
|
3
|
Kreft L, Schepers A, Hils M, Swiontek K, Flatley A, Janowski R, Mirzaei MK, Dittmar M, Chakrapani N, Desai MS, Eyerich S, Deng L, Niessing D, Fischer K, Feederle R, Blank S, Schmidt-Weber CB, Hilger C, Biedermann T, Ohnmacht C. A novel monoclonal IgG1 antibody specific for Galactose-alpha-1,3-galactose questions alpha-Gal epitope expression by bacteria. Front Immunol 2022; 13:958952. [PMID: 35990627 PMCID: PMC9391071 DOI: 10.3389/fimmu.2022.958952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
The alpha-Gal epitope (α-Gal) with the determining element galactose-α1,3-galactose can lead to clinically relevant allergic reactions and rejections in xenotransplantation. These immune reactions can develop because humans are devoid of this carbohydrate due to evolutionary loss of the enzyme α1,3-galactosyltransferase (GGTA1). In addition, up to 1% of human IgG antibodies are directed against α-Gal, but the stimulus for the induction of anti-α-Gal antibodies is still unclear. Commensal bacteria have been suggested as a causal factor for this induction as α-Gal binding tools such as lectins were found to stain cultivated bacteria isolated from the intestinal tract. Currently available tools for the detection of the definite α-Gal epitope, however, are cross-reactive, or have limited affinity and, hence, offer restricted possibilities for application. In this study, we describe a novel monoclonal IgG1 antibody (27H8) specific for the α-Gal epitope. The 27H8 antibody was generated by immunization of Ggta1 knockout mice and displays a high affinity towards synthetic and naturally occurring α-Gal in various applications. Using this novel tool, we found that intestinal bacteria reported to be α-Gal positive cannot be stained with 27H8 questioning whether commensal bacteria express the native α-Gal epitope at all.
Collapse
Affiliation(s)
- Luisa Kreft
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Aloys Schepers
- Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Miriam Hils
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Kyra Swiontek
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Andrew Flatley
- Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Robert Janowski
- Institute of Structural Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Mohammadali Khan Mirzaei
- Institute of Virology, Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Prevention of Microbial Diseases, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Michael Dittmar
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Neera Chakrapani
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Mahesh S. Desai
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Stefanie Eyerich
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Li Deng
- Institute of Virology, Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Prevention of Microbial Diseases, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Konrad Fischer
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Simon Blank
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Carsten B. Schmidt-Weber
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
- German Center of Lung Research (DZL), Munich, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
- *Correspondence: Caspar Ohnmacht,
| |
Collapse
|
4
|
The Two Sweet Sides of Janus Lectin Drive Crosslinking of Liposomes to Cancer Cells and Material Uptake. Toxins (Basel) 2021; 13:toxins13110792. [PMID: 34822576 PMCID: PMC8620536 DOI: 10.3390/toxins13110792] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
A chimeric, bispecific Janus lectin has recently been engineered with different, rationally oriented recognition sites. It can bind simultaneously to sialylated and fucosylated glycoconjugates. Because of its multivalent architecture, this lectin reaches nanomolar avidities for sialic acid and fucose. The lectin was designed to detect hypersialylation—a dysregulation in physiological glycosylation patterns, which promotes the tumor growth and progression of several cancer types. In this study, the characteristic properties of this bispecific Janus lectin were investigated on human cells by flow cytometry and confocal microscopy in order to understand the fundamentals of its interactions. We evaluated its potential in targeted drug delivery, precisely leading to the cellular uptake of liposomal content in human epithelial cancer cells. We successfully demonstrated that Janus lectin mediates crosslinking of glyco-decorated giant unilamellar vesicles (GUVs) and H1299 lung epithelial cells. Strikingly, the Janus lectin induced the internalization of liposomal lipids and also of complete GUVs. Our findings serve as a solid proof of concept for lectin-mediated targeted drug delivery using glyco-decorated liposomes as possible drug carriers to cells of interest. The use of Janus lectin for tumor recognition certainly broadens the possibilities for engineering diverse tailor-made lectin constructs, specifically targeting extracellular structures of high significance in pathological conditions.
Collapse
|
5
|
Liu M, Cheng X, Wang J, Tian D, Tang K, Xu T, Zhang M, Wang Y, Wang M. Structural insights into the fungi-nematodes interaction mediated by fucose-specific lectin AofleA from Arthrobotrys oligospora. Int J Biol Macromol 2020; 164:783-793. [PMID: 32698064 DOI: 10.1016/j.ijbiomac.2020.07.173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022]
Abstract
Fungal lectin can bind specific carbohydrate structures of the host and work in recognition and adhesion or as a toxic factor. AofleA, as a fucose-specific lectin from widely studied nematode predatory fungus Arthrobotrys oligospora, possibly plays a key role in the event of capturing nematodes, but the mechanism remains unknown. Here we report the crystal structure of AofleA, which exists as a homodimer with each subunit folds as a six-bladed β-propeller. Our structural and biological results revealed that three of the six putative binding sites of AofleA had fucose-binding abilities. In addition, we found that AofleA could bind to the pharynx and intestine of the nematode in a fucose-binding-dependent manner. Our results facilitate the understanding of the mechanism that fucose-specific lectin mediates fungi-nematodes interaction, and provide structural information for the development of potential applications of AofleA.
Collapse
Affiliation(s)
- Mingjie Liu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Xiaowen Cheng
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China
| | - Junchao Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Dongrui Tian
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Kaijing Tang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Ting Xu
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Min Zhang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Mingzhu Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|
6
|
Fischer J, Riel S, Fehrenbacher B, Frank A, Schaller M, Biedermann T, Hilger C, Mackenstedt U. Spatial distribution of alpha-gal in Ixodes ricinus - A histological study. Ticks Tick Borne Dis 2020; 11:101506. [PMID: 32723636 DOI: 10.1016/j.ttbdis.2020.101506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
Alpha-gal syndrome is a complex allergic disease in humans that is caused by specific IgE (sIgE) against the carbohydrate galactose-α-1,3-galactose (alpha-gal). Tick saliva contains alpha-gal, and tick bites are considered a major cause of the induction of alpha-gal-sIgE. The origin of alpha-gal in tick saliva remains unclarified. The presence of alpha-gal in tick tissue was visualized in this study to provide an overview of the spatial distribution of alpha-gal and to further elucidate the origin of alpha-gal in tick saliva. Fed and unfed Ixodes ricinus females were examined by histology, immunohistochemistry, immunofluorescence, transmission electron microscopy and immunoelectron microscopy using the alpha-gal-specific monoclonal antibody M86 and Marasmius oreades agglutinin (MOA) lectin. Alpha-gal epitopes were detected in the midgut, hemolymph and salivary glands, and the immunofluorescence analysis revealed signs of the endocytosis of alpha-gal-containing constituents during the process of hematophagy. Alpha-gal epitopes in endosomes of the digestive gut cells of the ticks were observed via immunoelectron microscopy. Alpha-gal epitopes were detected in dried droplets of hemolymph from unfed ticks. Intense staining of alpha-gal epitopes was found in type II granular acini of the salivary glands of fed and unfed ticks. Our data suggest that alpha-gal is not ubiquitously expressed in tick tissue but is present in both fed and unfed ticks. The findings also indicate that both the metabolic incorporation of constituents from a mammalian blood meal and endogenous production contribute to the presence of alpha-gal epitopes in ticks.
Collapse
Affiliation(s)
- Jörg Fischer
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tuebingen, Tuebingen, Germany.
| | - Simon Riel
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Birgit Fehrenbacher
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Alisa Frank
- Department of Parasitology, Institute of Zoology, University Hohenheim, Stuttgart, Germany
| | - Martin Schaller
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, Technische Universität, Munich, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Ute Mackenstedt
- Department of Parasitology, Institute of Zoology, University Hohenheim, Stuttgart, Germany
| |
Collapse
|
7
|
Manna D, Cordara G, Krengel U. Crystal structure of MOA in complex with a peptide fragment: A protease caught in flagranti. Curr Res Struct Biol 2020; 2:56-67. [PMID: 34235469 PMCID: PMC8244254 DOI: 10.1016/j.crstbi.2020.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/28/2020] [Accepted: 04/06/2020] [Indexed: 11/20/2022] Open
Abstract
The Marasmius oreades agglutinin (MOA) is the holotype of an emerging family of fungal chimerolectins and an active Ca2+/Mn2+-dependent protease, which exhibits a unique papain-like fold with special active site features. Here we investigated the functional significance of the structural elements differentiating MOA from other papain-like cysteine proteases. X-ray crystal structures of MOA co-crystallized with two synthetic substrates reveal cleaved peptides bound to the catalytic site, corresponding to the final products of the proteolytic reaction. Anomalous diffraction data on crystals grown in the presence of calcium and manganese, cadmium or zinc resolve the calcium/manganese preference of MOA and elucidate the inhibitory roles of zinc and cadmium towards papain-like cysteine proteases in general. The reported structures, together with activity data of MOA active site variants, point to a conservation of the general proteolysis mechanism established for papain. Ultimately, the findings suggest that papain and the papain-like domain of MOA are the product of convergent evolution.
Collapse
Affiliation(s)
- Dipankar Manna
- Department of Chemistry, University of Oslo, PO Box 1033 Blindern, 0315, Oslo, Norway
| | - Gabriele Cordara
- Department of Chemistry, University of Oslo, PO Box 1033 Blindern, 0315, Oslo, Norway
| | - Ute Krengel
- Department of Chemistry, University of Oslo, PO Box 1033 Blindern, 0315, Oslo, Norway
| |
Collapse
|
8
|
Toxicity of Potential Fungal Defense Proteins towards the Fungivorous Nematodes Aphelenchus avenae and Bursaphelenchus okinawaensis. Appl Environ Microbiol 2018; 84:AEM.02051-18. [PMID: 30242007 PMCID: PMC6238071 DOI: 10.1128/aem.02051-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/18/2018] [Indexed: 01/27/2023] Open
Abstract
Our results support the hypothesis that cytoplasmic proteins abundant in fungal fruiting bodies are involved in fungal resistance against predation. The toxicity of these proteins toward stylet-feeding nematodes, which are also capable of feeding on plants, and the abundance of these proteins in edible mushrooms, may open possible avenues for biological crop protection against parasitic nematodes, e.g., by expression of these proteins in crops. Resistance of fungi to predation is thought to be mediated by toxic metabolites and proteins. Many of these fungal defense effectors are highly abundant in the fruiting body and not produced in the vegetative mycelium. The defense function of fruiting body-specific proteins, however, including cytoplasmically localized lectins and antinutritional proteins such as biotin-binding proteins, is mainly based on toxicity assays using bacteria as a heterologous expression system, with bacterivorous/omnivorous model organisms as predators. Here, we present an ecologically more relevant experimental setup to assess the toxicity of potential fungal defense proteins towards the fungivorous, stylet-feeding nematodes Aphelenchus avenae and Bursaphelenchus okinawaensis. As a heterologous expression host, we exploited the filamentous fungus Ashbya gossypii. Using this new system, we assessed the toxicity of six previously characterized, cytoplasmically localized, potential defense proteins from fruiting bodies of different fungal phyla against the two fungivorous nematodes. We found that all of the tested proteins were toxic against both nematodes, albeit to various degrees. The toxicity of these proteins against both fungivorous and bacterivorous nematodes suggests that their targets have been conserved between the different feeding groups of nematodes and that bacterivorous nematodes are valid model organisms to assess the nematotoxicity of potential fungal defense proteins. IMPORTANCE Our results support the hypothesis that cytoplasmic proteins abundant in fungal fruiting bodies are involved in fungal resistance against predation. The toxicity of these proteins toward stylet-feeding nematodes, which are also capable of feeding on plants, and the abundance of these proteins in edible mushrooms, may open possible avenues for biological crop protection against parasitic nematodes, e.g., by expression of these proteins in crops.
Collapse
|
9
|
Moura AP, Santos LCB, Brito CRN, Valencia E, Junqueira C, Filho AAP, Sant’Anna MRV, Gontijo NF, Bartholomeu DC, Fujiwara RT, Gazzinelli RT, McKay CS, Sanhueza CA, Finn MG, Marques AF. Virus-like Particle Display of the α-Gal Carbohydrate for Vaccination against Leishmania Infection. ACS CENTRAL SCIENCE 2017; 3:1026-1031. [PMID: 28979944 PMCID: PMC5620979 DOI: 10.1021/acscentsci.7b00311] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Indexed: 06/07/2023]
Abstract
Secreted and surface-displayed carbohydrates are essential for virulence and viability of many parasites, including for immune system evasion. We have identified the α-Gal trisaccharide epitope on the surface of the protozoan parasites Leishmania infantum and Leishmania amazonensis, the etiological agents of visceral and cutaneous leishmaniasis, respectively, with the latter bearing larger amounts of α-Gal than the former. A polyvalent α-Gal conjugate on the immunogenic Qβ virus-like particle was tested as a vaccine against Leishmania infection in a C57BL/6 α-galactosyltransferase knockout mouse model, which mimics human hosts in producing high titers of anti-α-Gal antibodies. As expected, α-Gal-T knockout mice infected with promastigotes of both Leishmania species showed significantly lower parasite load in the liver and slightly decreased levels in the spleen, compared with wild-type mice. Vaccination with Qβ-α-Gal nanoparticles protected the knockout mice against Leishmania challenge, eliminating the infection and proliferation of parasites in the liver and spleen as probed by qPCR. The α-Gal epitope may therefore be considered as a vaccine candidate to block human cutaneous and visceral leishmaniasis.
Collapse
Affiliation(s)
- Anna Paula
V. Moura
- Instituto
de Ciencias Biologicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Luiza C. B. Santos
- Instituto
de Ciencias Biologicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Ramon Nascimento Brito
- Instituto
de Ciencias Biologicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Edward Valencia
- Instituto
de Ciencias Biologicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Caroline Junqueira
- Instituto
de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Adalberto A. P. Filho
- Instituto
de Ciencias Biologicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Mauricio R. V. Sant’Anna
- Instituto
de Ciencias Biologicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Nelder F. Gontijo
- Instituto
de Ciencias Biologicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Daniella C. Bartholomeu
- Instituto
de Ciencias Biologicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo T. Fujiwara
- Instituto
de Ciencias Biologicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo T. Gazzinelli
- Instituto
de Ciencias Biologicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Craig S. McKay
- School
of Chemistry and Biochemistry, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Carlos A. Sanhueza
- School
of Chemistry and Biochemistry, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - M. G. Finn
- School
of Chemistry and Biochemistry, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Alexandre Ferreira Marques
- Instituto
de Ciencias Biologicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
10
|
Cordara G, Manna D, Krengel U. Family of Papain-Like Fungal Chimerolectins with Distinct Ca2+-Dependent Activation Mechanism. Biochemistry 2017; 56:4689-4700. [DOI: 10.1021/acs.biochem.7b00317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Gabriele Cordara
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Dipankar Manna
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Ute Krengel
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| |
Collapse
|
11
|
Brito CRN, McKay CS, Azevedo MA, Santos LCB, Venuto AP, Nunes DF, D'Ávila DA, Rodrigues da Cunha GM, Almeida IC, Gazzinelli RT, Galvão LMC, Chiari E, Sanhueza CA, Finn MG, Marques AF. Virus-like Particle Display of the α-Gal Epitope for the Diagnostic Assessment of Chagas Disease. ACS Infect Dis 2016; 2:917-922. [PMID: 27696820 DOI: 10.1021/acsinfecdis.6b00114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The α-Gal antigen [Galα(1,3)Galβ(1,4)GlcNAcα] is an immunodominant epitope displayed by infective trypomastigote forms of Trypanosoma cruzi, the causative agent of Chagas disease. A virus-like particle displaying a high density of α-Gal was found to be a superior reagent for the ELISA-based serological diagnosis of Chagas disease and the assessment of treatment effectiveness. A panel of sera from patients chronically infected with T. cruzi, both untreated and benznidazole-treated, was compared with sera from patients with leishmaniasis and from healthy donors. The nanoparticle-α-Gal construct allowed for perfect discrimination between Chagas patients and the others, avoiding false negative and false positive results obtained with current state-of-the-art reagents. As previously reported with purified α-Gal-containing glycosylphosphatidylinositol-anchored mucins, the current study also showed concentrations of anti-α-Gal IgG to decrease substantially in patients receiving treatment with benznidazole, suggesting that the semiquantitative assessment of serum levels of this highly abundant type of antibody can report on disease status in individual patients.
Collapse
Affiliation(s)
- Carlos Ramon Nascimento Brito
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas , Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Craig S McKay
- School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Maíra Araújo Azevedo
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas , Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Luíza Costa Brandão Santos
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas , Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Venuto
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas , Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela Ferreira Nunes
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas , Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Daniella Alchaar D'Ávila
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas , Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Gisele Macedo Rodrigues da Cunha
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas , Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Igor Correia Almeida
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso , El Paso, Texas 79912, United States
| | - Ricardo Tostes Gazzinelli
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas , Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Lucia Maria Cunha Galvão
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas , Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Egler Chiari
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas , Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos A Sanhueza
- School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - M G Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Alexandre Ferreira Marques
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas , Pampulha, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
12
|
Araujo RN, Franco PF, Rodrigues H, Santos LCB, McKay CS, Sanhueza CA, Brito CRN, Azevedo MA, Venuto AP, Cowan PJ, Almeida IC, Finn MG, Marques AF. Amblyomma sculptum tick saliva: α-Gal identification, antibody response and possible association with red meat allergy in Brazil. Int J Parasitol 2016; 46:213-220. [PMID: 26812026 DOI: 10.1016/j.ijpara.2015.12.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/04/2015] [Accepted: 12/10/2015] [Indexed: 01/08/2023]
Abstract
The anaphylaxis response is frequently associated with food allergies, representing a significant public health hazard. Recently, exposure to tick bites and production of specific IgE against α-galactosyl (α-Gal)-containing epitopes has been correlated to red meat allergy. However, this association and the source of terminal, non-reducing α-Gal-containing epitopes have not previously been established in Brazil. Here, we employed the α-1,3-galactosyltransferase knockout mouse (α1,3-GalT-KO) model and bacteriophage Qβ-virus like particles (Qβ-VLPs) displaying Galα1,3Galβ1,4GlcNAc (Galα3LN) epitopes to investigate the presence of α-Gal-containing epitopes in the saliva of Amblyomma sculptum, a species of the Amblyomma cajennense complex, which represents the main tick that infests humans in Brazil. We confirmed that the α-1,3-galactosyltransferase knockout animals produce significant levels of anti-α-Gal antibodies against the Galα1,3Galβ1,4GlcNAc epitopes displayed on Qβ-virus like particles. The injection of A. sculptum saliva or exposure to feeding ticks was also found to induce both IgG and IgE anti-α-Gal antibodies in α-1,3-galactosyltransferase knockout mice, thus indicating the presence of α-Gal-containing epitopes in the tick saliva. The presence of α-Gal-containing epitopes was confirmed by ELISA and immunoblotting following removal of terminal α-Gal epitopes by α-galactosidase treatment. These results suggest for the first known time that bites from the A. sculptum tick may be associated with the unknown etiology of allergic reactions to red meat in Brazil.
Collapse
Affiliation(s)
- Ricardo Nascimento Araujo
- Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Ferreira Franco
- Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Henrique Rodrigues
- Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Luiza C B Santos
- Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Craig S McKay
- Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA, USA
| | - Carlos A Sanhueza
- Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA, USA
| | - Carlos Ramon Nascimento Brito
- Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Maíra Araújo Azevedo
- Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Venuto
- Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Peter J Cowan
- Immunology Research Centre, St. Vincent's Hospital, Fitzroy, Melbourne, VIC 3065, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 3052, Australia
| | - Igor C Almeida
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79912, USA
| | - M G Finn
- Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA, USA
| | - Alexandre F Marques
- Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
13
|
Juillot S, Cott C, Madl J, Claudinon J, van der Velden NSJ, Künzler M, Thuenauer R, Römer W. Uptake of Marasmius oreades agglutinin disrupts integrin-dependent cell adhesion. Biochim Biophys Acta Gen Subj 2015; 1860:392-401. [PMID: 26546712 PMCID: PMC4717121 DOI: 10.1016/j.bbagen.2015.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/31/2015] [Accepted: 11/03/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND Fruiting body lectins have been proposed to act as effector proteins in the defense of fungi against parasites and predators. The Marasmius oreades agglutinin (MOA) is a lectin from the fairy ring mushroom with specificity for Galα1-3Gal containing carbohydrates. This lectin is composed of an N-terminal carbohydrate-binding domain and a C-terminal dimerization domain. The dimerization domain of MOA shows in addition calcium-dependent cysteine protease activity, similar to the calpain family. METHODS Cell detachment assay, cell viability assay, immunofluorescence, live cell imaging and Western blot using MDCKII cell line. RESULTS In this study, we demonstrate in MDCKII cells that after internalization, MOA protease activity induces profound physiological cellular responses, like cytoskeleton rearrangement, cell detachment and cell death. These changes are preceded by a decrease in FAK phosphorylation and an internalization and degradation of β1-integrin, consistent with a disruption of integrin-dependent cell adhesion signaling. Once internalized, MOA accumulates in late endosomal compartments. CONCLUSION Our results suggest a possible toxic mechanism of MOA, which consists of disturbing the cell adhesion and the cell viability. GENERAL SIGNIFICANCE After being ingested by a predator, MOA might exert a protective role by diminishing host cell integrity.
Collapse
Affiliation(s)
- Samuel Juillot
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, D-79104 Freiburg, Germany
| | - Catherine Cott
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, D-79104 Freiburg, Germany
| | - Josef Madl
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, D-79104 Freiburg, Germany
| | - Julie Claudinon
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, D-79104 Freiburg, Germany
| | | | - Markus Künzler
- Institute of Microbiology, Department of Biology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Roland Thuenauer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, D-79104 Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, D-79104 Freiburg, Germany.
| |
Collapse
|
14
|
Entomotoxic and nematotoxic lectins and protease inhibitors from fungal fruiting bodies. Appl Microbiol Biotechnol 2015; 100:91-111. [DOI: 10.1007/s00253-015-7075-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/04/2015] [Accepted: 10/11/2015] [Indexed: 01/26/2023]
|
15
|
Mushroom lectins: specificity, structure and bioactivity relevant to human disease. Int J Mol Sci 2015; 16:7802-38. [PMID: 25856678 PMCID: PMC4425051 DOI: 10.3390/ijms16047802] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 11/16/2022] Open
Abstract
Lectins are non-immunoglobulin proteins that bind diverse sugar structures with a high degree of selectivity. Lectins play crucial role in various biological processes such as cellular signaling, scavenging of glycoproteins from the circulatory system, cell-cell interactions in the immune system, differentiation and protein targeting to cellular compartments, as well as in host defence mechanisms, inflammation, and cancer. Among all the sources of lectins, plants have been most extensively studied. However, more recently fungal lectins have attracted considerable attention due to their antitumor, antiproliferative and immunomodulatory activities. Given that only 10% of mushroom species are known and have been taxonomically classified, mushrooms represent an enormous unexplored source of potentially useful and novel lectins. In this review we provide an up-to-date summary on the biochemical, molecular and structural properties of mushroom lectins, as well as their versatile applications specifically focusing on mushroom lectin bioactivity.
Collapse
|
16
|
Singh SS, Wang H, Chan YS, Pan W, Dan X, Yin CM, Akkouh O, Ng TB. Lectins from edible mushrooms. Molecules 2014; 20:446-69. [PMID: 25558856 PMCID: PMC6272671 DOI: 10.3390/molecules20010446] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/23/2014] [Indexed: 11/16/2022] Open
Abstract
Mushrooms are famous for their nutritional and medicinal values and also for the diversity of bioactive compounds they contain including lectins. The present review is an attempt to summarize and discuss data available on molecular weights, structures, biological properties, N-terminal sequences and possible applications of lectins from edible mushrooms. It further aims to update and discuss/examine the recent advancements in the study of these lectins regarding their structures, functions, and exploitable properties. A detailed tabling of all the available data for N-terminal sequences of these lectins is also presented here.
Collapse
Affiliation(s)
- Senjam Sunil Singh
- Laboratory of Protein Biochemistry, Biochemistry Department, Manipur University, Canchipur, Imphal 795003, India.
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing 100193, China.
| | - Yau Sang Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Wenliang Pan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Xiuli Dan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Cui Ming Yin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Ouafae Akkouh
- Department of Biology and Medical Laboratory Research, Leiden University of Applied Science, Zernikedreef 11, Leiden 2333 CK, The Netherlands.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
17
|
Fungal lectins: structure, function and potential applications. Curr Opin Struct Biol 2013; 23:678-85. [DOI: 10.1016/j.sbi.2013.07.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/18/2013] [Accepted: 07/11/2013] [Indexed: 11/20/2022]
|
18
|
Mapping glycoconjugate-mediated interactions of marine Bacteroidetes with diatoms. Syst Appl Microbiol 2013; 36:417-25. [PMID: 23809997 DOI: 10.1016/j.syapm.2013.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/29/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
Abstract
The degradation of diatoms is mainly catalyzed by Bacteroidetes and this process is of global relevance for the carbon cycle. In this study, a combination of catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) and fluorescent lectin binding analysis (FLBA) was used to identify and map glycoconjugates involved in the specific interactions of Bacteroidetes and diatoms, as well as detritus, at the coastal marine site Helgoland Roads (German Bight, North Sea). The study probed both the presence of lectin-specific extracellular polymeric substances (EPS) of Bacteroidetes for cell attachment and that of glycoconjugates on diatoms with respect to binding sites for Bacteroidetes. Members of the clades Polaribacter and Ulvibacter were shown to form microcolonies within aggregates for which FLBA indicated the presence of galactose containing slime. Polaribacter spp. was shown to bind specifically to the setae of the abundant diatom Chaetoceros spp., and the setae were stained with fucose-specific lectins. In contrast, Ulvibacter spp. attached to diatoms of the genus Asterionella which bound, among others, the mannose-specific lectin PSA. The newly developed CARD-FISH/FLBA protocol was limited to the glycoconjugates that persisted after the initial CARD-FISH procedure. The differential attachment of bacteroidetal clades to diatoms and their discrete staining by FLBA provided evidence for the essential role that formation and recognition of glycoconjugates play in the interaction of bacteria with phytoplankton.
Collapse
|
19
|
Yagi Y, Kakehi K, Hayakawa T, Ohyama Y, Suzuki S. Specific detection of N-glycolylneuraminic acid and Galα1–3Gal epitopes of therapeutic antibodies by partial-filling capillary electrophoresis. Anal Biochem 2012; 431:120-6. [DOI: 10.1016/j.ab.2012.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/01/2012] [Accepted: 09/04/2012] [Indexed: 10/27/2022]
|
20
|
Naso F, Gandaglia A, Iop L, Spina M, Gerosa G. Alpha-Gal detectors in xenotransplantation research: a word of caution. Xenotransplantation 2012; 19:215-20. [DOI: 10.1111/j.1399-3089.2012.00714.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Characterization of a new α-galactosyl-binding lectin from the mushroom Clavaria purpurea. Biosci Biotechnol Biochem 2012; 76:336-42. [PMID: 22313779 DOI: 10.1271/bbb.110732] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A galactose specific lectin (CpL) was purified from the Clavaria purpurea mushroom by affinity chromatography. CpL agglutinated only trypsin-treated rabbit erythrocytes. On enzyme linked lectin sorbent assay (ELLSA), the lectin bound with thyroglobulin and asialo bovine submaxillary mucin (BSM). The fine sugar binding specificity of CpL was elucidated using inhibition of hemagglutination and sugar immobilized gold nano-particles (SGNP). The results indicated a preference of CpL towards α-galactosyl sugar chains. Among several monosaccharides and disaccharides assayed for dissociation effect on the SGNP-CpL complex, Galα1-3Gal and raffinose were the best inhibitors. The partial amino acid sequence showed two QXW motifs in CpL and similarity towards members of the ricin B superfamily.
Collapse
|
22
|
Broom A, Doxey AC, Lobsanov YD, Berthin LG, Rose DR, Howell PL, McConkey BJ, Meiering EM. Modular evolution and the origins of symmetry: reconstruction of a three-fold symmetric globular protein. Structure 2011; 20:161-71. [PMID: 22178248 DOI: 10.1016/j.str.2011.10.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/09/2011] [Accepted: 10/24/2011] [Indexed: 10/14/2022]
Abstract
The high frequency of internal structural symmetry in common protein folds is presumed to reflect their evolutionary origins from the repetition and fusion of ancient peptide modules, but little is known about the primary sequence and physical determinants of this process. Unexpectedly, a sequence and structural analysis of symmetric subdomain modules within an abundant and ancient globular fold, the β-trefoil, reveals that modular evolution is not simply a relic of the ancient past, but is an ongoing and recurring mechanism for regenerating symmetry, having occurred independently in numerous existing β-trefoil proteins. We performed a computational reconstruction of a β-trefoil subdomain module and repeated it to form a newly three-fold symmetric globular protein, ThreeFoil. In addition to its near perfect structural identity between symmetric modules, ThreeFoil is highly soluble, performs multivalent carbohydrate binding, and has remarkably high thermal stability. These findings have far-reaching implications for understanding the evolution and design of proteins via subdomain modules.
Collapse
Affiliation(s)
- Aron Broom
- Guelph-Waterloo Centre for Graduate Studies in Chemistry and Biochemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Panchak LV, Antonyuk VO. Purification of a lectin from fruit bodies of Lactarius pergamenus (Fr.) Fr. and studies of its properties. BIOCHEMISTRY (MOSCOW) 2011; 76:438-49. [PMID: 21585319 DOI: 10.1134/s0006297911040067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A lectin was purified from fruit bodies of the milk mushroom Lactarius pergamenus (Fr.) Fr. by a combination of ethanol precipitation, affinity chromatography on copolymer of polyvinyl alcohol and human blood B-group-specific substance, and ion-exchange chromatography on DEAE-Toyopearl. The lectin yield was 3 mg/kg of fresh mushrooms. Considerable loss of primary activity was observed during its purification, which, presumably, could be explained by disintegration of the lectin molecule, which consisted of six subunits, first to two molecules of three subunits, and then to individual subunits. There was a reverse tendency to aggregation during concentration of lectin solutions. Similar processes can take place in nature because of considerable individual variations of the lectin activity during growth of mushroom fruit bodies. The lectin weakly interacts with DGalNAc, while DGalβ1-3DGalNAc and DGalβ1-3DGlcNAc are the most probable candidates for ligands, with which the L. pergamenus lectin interacts at disaccharides level. The purified lectin may find application in histochemical research.
Collapse
Affiliation(s)
- L V Panchak
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine.
| | | |
Collapse
|
24
|
Wohlschlager T, Butschi A, Zurfluh K, Vonesch SC, Auf dem Keller U, Gehrig P, Bleuler-Martinez S, Hengartner MO, Aebi M, Künzler M. Nematotoxicity of Marasmius oreades agglutinin (MOA) depends on glycolipid binding and cysteine protease activity. J Biol Chem 2011; 286:30337-30343. [PMID: 21757752 DOI: 10.1074/jbc.m111.258202] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fruiting body lectins have been proposed to act as effector proteins in the defense of fungi against parasites and predators. The Marasmius oreades agglutinin (MOA) is a Galα1,3Gal/GalNAc-specific lectin from the fairy ring mushroom that consists of an N-terminal ricin B-type lectin domain and a C-terminal dimerization domain. The latter domain shows structural similarity to catalytically active proteins, suggesting that, in addition to its carbohydrate-binding activity, MOA has an enzymatic function. Here, we demonstrate toxicity of MOA toward the model nematode Caenorhabditis elegans. This toxicity depends on binding of MOA to glycosphingolipids of the worm via its lectin domain. We show further that MOA has cysteine protease activity and demonstrate a critical role of this catalytic function in MOA-mediated nematotoxicity. The proteolytic activity of MOA was dependent on high Ca(2+) concentrations and favored by slightly alkaline pH, suggesting that these conditions trigger activation of the toxin at the target location. Our results suggest that MOA is a fungal toxin with intriguing similarities to bacterial binary toxins and has a protective function against fungivorous soil nematodes.
Collapse
Affiliation(s)
| | - Alex Butschi
- Institute of Molecular Life Sciences, University of Zürich, CH-8057 Zürich, CH-8057 Zürich, Switzerland
| | | | - Sibylle C Vonesch
- Institute of Molecular Life Sciences, University of Zürich, CH-8057 Zürich, CH-8057 Zürich, Switzerland
| | | | - Peter Gehrig
- Functional Genomics Center, University and ETH Zürich, CH-8057 Zürich, Switzerland
| | | | - Michael O Hengartner
- Institute of Molecular Life Sciences, University of Zürich, CH-8057 Zürich, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
25
|
Diswall M, Gustafsson A, Holgersson J, Sandrin MS, Breimer ME. Antigen-binding specificity of anti-αGal reagents determined by solid-phase glycolipid-binding assays. A complete lack of αGal glycolipid reactivity in α1,3GalT-KO pig small intestine. Xenotransplantation 2011; 18:28-39. [PMID: 21342285 DOI: 10.1111/j.1399-3089.2011.00623.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND αGal-specific lectins, monoclonal and polyclonal antibodies (Abs) are widely used in xenotransplantation research. Immunological assays such as immunohistochemistry, flow cytometry, Western blot and thin layer chromatography are often the only applicable characterization procedures when limited amount of tissue is available and biochemical characterization is impossible. Hence, detailed knowledge of the Ab/lectin carbohydrate-binding specificity is essential. METHODS The binding specificity of human blood group AB serum, three different affinity-purified human polyclonal anti-Gal Ab batches, and two anti-Gal mAb clones (TH5 and 15.101) as well as Griffonia simplicifolia isolectin B4 and Marasmius oreades agglutinin were examined for reactivity with glycolipid fractions isolated from human and pig (wild-type and α1,3GalT-KO) tissues using thin layer chromatogram and microtiter well binding assays. RESULTS All anti-Gal-specific reagents reacted with the pentaglycosylceramide Galα1,3nLc4, and several 6-12 sugar compounds in wild-type pig kidneys. However, their staining intensity with different αGal antigens varied considerably. Some, but not all, anti-Gal reagents cross-reacted with a pure iGb3 glycolipid reference compound. No reactivity with glycolipids isolated from α1,3GalT-KO pig small intestine or human tissues was found, confirming the specificity of the anti-Gal reagents in those tissues for α1,3Gal-epitopes produced by the α1,3GalT (GGTA1). CONCLUSIONS Different anti-Gal reagents vary in their carbohydrate epitope specificity. Mono-/polyclonal Abs and lectins have different carbohydrate epitope fine specificity toward pig glycolipids as well as purified Galα1,3nLc4, and iGb3. Despite the difference in αGal specificity, all reagents were completely non-reactive with glycolipids isolated from α1,3GalT-KO pig small intestine.
Collapse
Affiliation(s)
- Mette Diswall
- Department of Surgery, Sahlgrenska Academy at Gothenburg University, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
26
|
Cordara G, Egge-Jacobsen W, Johansen HT, Winter HC, Goldstein IJ, Sandvig K, Krengel U. Marasmius oreades agglutinin (MOA) is a chimerolectin with proteolytic activity. Biochem Biophys Res Commun 2011; 408:405-10. [PMID: 21513701 DOI: 10.1016/j.bbrc.2011.04.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/07/2011] [Indexed: 10/18/2022]
Abstract
The Marasmius oreades mushroom lectin (MOA) is well known for its exquisite binding specificity for blood group B antigens. In addition to its N-terminal carbohydrate-binding domain, MOA possesses a C-terminal domain with unknown function, which structurally resembles hydrolytic enzymes. Here we show that MOA indeed has catalytic activity. It is a calcium-dependent cysteine protease resembling papain-like cysteine proteases, with Cys215 being the catalytic nucleophile. The possible importance of MOA's proteolytic activity for mushroom defense against pathogens is discussed.
Collapse
Affiliation(s)
- Gabriele Cordara
- Department of Chemistry, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
27
|
Kadirvelraj R, Grant OC, Goldstein IJ, Winter HC, Tateno H, Fadda E, Woods RJ. Structure and binding analysis of Polyporus squamosus lectin in complex with the Neu5Ac{alpha}2-6Gal{beta}1-4GlcNAc human-type influenza receptor. Glycobiology 2011; 21:973-84. [PMID: 21436237 DOI: 10.1093/glycob/cwr030] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glycan chains that terminate in sialic acid (Neu5Ac) are frequently the receptors targeted by pathogens for initial adhesion. Carbohydrate-binding proteins (lectins) with specificity for Neu5Ac are particularly useful in the detection and isolation of sialylated glycoconjugates, such as those associated with pathogen adhesion as well as those characteristic of several diseases including cancer. Structural studies of lectins are essential in order to understand the origin of their specificity, which is particularly important when employing such reagents as diagnostic tools. Here, we report a crystallographic and molecular dynamics (MD) analysis of a lectin from Polyporus squamosus (PSL) that is specific for glycans terminating with the sequence Neu5Acα2-6Galβ. Because of its importance as a histological reagent, the PSL structure was solved (to 1.7 Å) in complex with a trisaccharide, whose sequence (Neu5Acα2-6Galβ1-4GlcNAc) is exploited by influenza A hemagglutinin for viral adhesion to human tissue. The structural data illuminate the origin of the high specificity of PSL for the Neu5Acα2-6Gal sequence. Theoretical binding free energies derived from the MD data confirm the key interactions identified crystallographically and provide additional insight into the relative contributions from each amino acid, as well as estimates of the importance of entropic and enthalpic contributions to binding.
Collapse
Affiliation(s)
- Renuka Kadirvelraj
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Vetchinkina EP, Nikitina VE, Tsivileva OM, Garibova LV. Activity of Lentinus edodes intracellular lectins at various developmental stages of the fungus. APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683808010110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
The pathogenic fungus Paracoccidioides brasiliensis exports extracellular vesicles containing highly immunogenic α-Galactosyl epitopes. EUKARYOTIC CELL 2011; 10:343-51. [PMID: 21216942 DOI: 10.1128/ec.00227-10] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Exosome-like vesicles containing virulence factors, enzymes, and antigens have recently been characterized in fungal pathogens, such as Cryptococcus neoformans and Histoplasma capsulatum. Here, we describe extracellular vesicles carrying highly immunogenic α-linked galactopyranosyl (α-Gal) epitopes in Paracoccidioides brasiliensis. P. brasiliensis is a dimorphic fungus that causes human paracoccidioidomycosis (PCM). For vesicle preparations, cell-free supernatant fluids from yeast cells cultivated in Ham's defined medium-glucose were concentrated in an Amicon ultrafiltration system and ultracentrifuged at 100,000 × g. P. brasiliensis antigens were present in preparations from phylogenetically distinct isolates Pb18 and Pb3, as observed in immunoblots revealed with sera from PCM patients. In an enzyme-linked immunosorbent assay (ELISA), vesicle components containing α-Gal epitopes reacted strongly with anti-α-Gal antibodies isolated from both Chagas' disease and PCM patients, with Marasmius oreades agglutinin (MOA) (a lectin that recognizes terminal α-Gal), but only faintly with natural anti-α-Gal. Reactivity was inhibited after treatment with α-galactosidase. Vesicle preparations analyzed by electron microscopy showed vesicular structures of 20 to 200 nm that were labeled both on the surface and in the lumen with MOA. In P. brasiliensis cells, components carrying α-Gal epitopes were found distributed on the cell wall, following a punctuated confocal pattern, and inside large intracellular vacuoles. Lipid-free vesicle fractions reacted with anti-α-Gal in ELISA only when not digested with α-galactosidase, while reactivity with glycoproteins was reduced after β-elimination, which is indicative of partial O-linked chain localization. Our findings open new areas to explore in terms of host-parasite relationships in PCM and the role played in vivo by vesicle components and α-galactosyl epitopes.
Collapse
|
30
|
Singh RS, Bhari R, Kaur HP. Mushroom lectins: current status and future perspectives. Crit Rev Biotechnol 2010; 30:99-126. [PMID: 20105049 DOI: 10.3109/07388550903365048] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lectins are nonimmune proteins or glycoproteins that bind specifically to cell surface carbohydrates, culminating in cell agglutination. These are known to play key roles in host defense system and also in metastasis. Many new sources have been explored for the occurrence of lectins during the last few years. Numerous novel lectins with unique specificities and exploitable properties have been discovered. Mushrooms have attracted a number of researchers in food and pharmaceuticals. Many species have long been used in traditional Chinese medicines or functional foods in Japan and other Asian countries. A number of bioactive constituents have been isolated from mushrooms including polysaccharides, polysaccharopeptides, polysaccharide-protein complexes, proteases, ribonucleases, ribosome inactivating proteins, antifungal proteins, immunomodulatory proteins, enzymes, lectins, etc. Mushroom lectins are endowed with mitogenic, antiproliferative, antitumor, antiviral, and immune stimulating potential. In this review, an attempt has been made to collate the information on mushroom lectins, their blood group and sugar specificities, with an emphasis on their biomedical potential and future perspectives.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab, India.
| | | | | |
Collapse
|
31
|
Sulzenbacher G, Roig-Zamboni V, Peumans WJ, Rougé P, Van Damme EJ, Bourne Y. Crystal structure of the GalNAc/Gal-specific agglutinin from the phytopathogenic ascomycete Sclerotinia sclerotiorum reveals novel adaptation of a beta-trefoil domain. J Mol Biol 2010; 400:715-23. [PMID: 20566411 PMCID: PMC2956877 DOI: 10.1016/j.jmb.2010.05.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 05/12/2010] [Indexed: 10/19/2022]
Abstract
A lectin from the phytopathogenic ascomycete Sclerotinia sclerotiorum that shares only weak sequence similarity with characterized fungal lectins has recently been identified. S. sclerotiorum agglutinin (SSA) is a homodimeric protein consisting of two identical subunits of approximately 17 kDa and displays specificity primarily towards Gal/GalNAc. Glycan array screening indicates that SSA readily interacts with Gal/GalNAc-bearing glycan chains. The crystal structures of SSA in the ligand-free form and in complex with the Gal-beta1,3-GalNAc (T-antigen) disaccharide have been determined at 1.6 and 1.97 A resolution, respectively. SSA adopts a beta-trefoil domain as previously identified for other carbohydrate-binding proteins of the ricin B-like lectin superfamily and accommodates terminal non-reducing galactosyl and N-acetylgalactosaminyl glycans. Unlike other structurally related lectins, SSA contains a single carbohydrate-binding site at site alpha. SSA reveals a novel dimeric assembly markedly dissimilar to those described earlier for ricin-type lectins. The present structure exemplifies the adaptability of the beta-trefoil domain in the evolution of fungal lectins.
Collapse
Affiliation(s)
- Gerlind Sulzenbacher
- Architecture et Fonction des Macromolécules Biologiques (AFMB, UMR-6098) CNRS, Université Aix-Marseille, Campus Luminy, Case 932, F-13288 Marseille cedex 09, France
| | - Véronique Roig-Zamboni
- Architecture et Fonction des Macromolécules Biologiques (AFMB, UMR-6098) CNRS, Université Aix-Marseille, Campus Luminy, Case 932, F-13288 Marseille cedex 09, France
| | - Willy J. Peumans
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Pierre Rougé
- Surfaces Cellulaires et Signalisation chez les Végétaux, UMR-CNRS 5546, Pôle de Biotechnologie Végétale, Toulouse, France
| | - Els J.M. Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Yves Bourne
- Architecture et Fonction des Macromolécules Biologiques (AFMB, UMR-6098) CNRS, Université Aix-Marseille, Campus Luminy, Case 932, F-13288 Marseille cedex 09, France
| |
Collapse
|
32
|
|
33
|
|
34
|
Structural characterization of a lectin from the mushroom Marasmius oreades in complex with the blood group B trisaccharide and calcium. J Mol Biol 2009; 390:457-66. [PMID: 19426740 DOI: 10.1016/j.jmb.2009.04.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 04/28/2009] [Accepted: 04/29/2009] [Indexed: 11/21/2022]
Abstract
MOA (Marasmius oreades agglutinin), a lectin isolated from fruiting bodies of the mushroom M. oreades, specifically binds nonreducing terminal Galalpha(1,3)Gal carbohydrates, such as that which occurs in the xenotransplantation epitope Galalpha(1,3)Galbeta(1,4)GlcNAc and the branched blood group B determinant Galalpha(1,3)[Fucalpha(1,2)]Gal. Here, we present the crystal structure of MOA in complex with the blood group B trisaccharide solved at 1.8 A resolution. To our knowledge, this is the first blood-group-B-specific structure reported in complex with a blood group B determinant. The carbohydrate ligand binds to all three binding sites of the N-terminal beta-trefoil domain. Also, in this work, Ca(2+) was included in the crystals, and binding of Ca(2+) to the MOA homodimer altered the conformation of the C-terminal domain by opening up the cleft containing a putative catalytic site.
Collapse
|
35
|
Pohleven J, Obermajer N, Sabotic J, Anzlovar S, Sepcić K, Kos J, Kralj B, Strukelj B, Brzin J. Purification, characterization and cloning of a ricin B-like lectin from mushroom Clitocybe nebularis with antiproliferative activity against human leukemic T cells. Biochim Biophys Acta Gen Subj 2008; 1790:173-81. [PMID: 19100814 DOI: 10.1016/j.bbagen.2008.11.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 11/19/2008] [Accepted: 11/22/2008] [Indexed: 11/30/2022]
Abstract
BACKGROUND Lectins are a diverse group of carbohydrate-binding proteins exhibiting numerous biological activities and functions. METHODS Two-step serial carbohydrate affinity chromatography was used to isolate a lectin from the edible mushroom clouded agaric (Clitocybe nebularis). It was characterized biochemically, its gene and cDNA cloned and the deduced amino acid sequence analyzed. Its activity was tested by hemagglutination assay and carbohydrate-binding specificity determined by glycan microarray analysis. Its effect on proliferation of several human cell lines was determined by MTS assay. RESULTS A homodimeric lectin with 15.9-kDa subunits agglutinates human group A, followed by B, O, and bovine erythrocytes. Hemagglutination was inhibited by glycoprotein asialofetuin and lactose. Glycan microarray analysis revealed that the lectin recognizes human blood group A determinant GalNAcalpha1-3(Fucalpha1-2)Galbeta-containing carbohydrates, and GalNAcbeta1-4GlcNAc (N,N'-diacetyllactosediamine). The lectin exerts antiproliferative activity specific to human leukemic T cells. CONCLUSIONS The protein belongs to the ricin B-like lectin superfamily, and has been designated as C. nebularis lectin (CNL). Its antiproliferative effect appears to be elicited by binding to carbohydrate receptors on human leukemic T cells. GENERAL SIGNIFICANCE CNL is one of the few mushroom ricin B-like lectins that have been identified and the only one so far shown to possess immunomodulatory properties.
Collapse
Affiliation(s)
- Jure Pohleven
- Department of Biotechnology, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Goldstein IJ, Winter HC, Aurandt J, Confer L, Adamson JT, Hakansson K, Remmer H. A new alpha-galactosyl-binding protein from the mushroom Lyophyllum decastes. Arch Biochem Biophys 2007; 467:268-74. [PMID: 17904093 DOI: 10.1016/j.abb.2007.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 08/13/2007] [Accepted: 08/14/2007] [Indexed: 10/22/2022]
Abstract
A new alpha-galactosyl binding lectin was isolated from the fruiting bodies of the mushroom Lyopyllum decastes. It is a homodimer composed of noncovalently-associated monomers of molecular mass 10,276Da. The lectin's amino acid sequence was determined by cloning from a cDNA library using partial sequences determined by automated Edman sequencing and by mass spectrometry of enzyme-derived peptides. The sequence shows no significant homology to any known protein sequence. Analysis of carbohydrate binding specificity by a variety of approaches including precipitation with glycoconjugates and microcalorimetric titration reveals specificity towards galabiose (Gal alpha1,4Gal), a relatively rare disaccharide in humans. The lectin shares carbohydrate binding preference with the Shiga-like toxin, also known as verocytoxin, present in the bacteria Shigella dysenteriae and Escherichia. coli 0157:H7, both of which are causes of outbreaks of sometimes fatal food-borne illnesses.
Collapse
Affiliation(s)
- Irwin J Goldstein
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0606, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Wearne KA, Winter HC, Goldstein IJ. Temporal changes in the carbohydrates expressed on BG01 human embryonic stem cells during differentiation as embryoid bodies. Glycoconj J 2007; 25:121-36. [PMID: 17674202 DOI: 10.1007/s10719-007-9064-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 06/27/2007] [Accepted: 07/02/2007] [Indexed: 10/23/2022]
Abstract
Cell surface carbohydrates present on BG01 human embryonic stem cells after 28 days of differentiation were examined using two classes of carbohydrate binding proteins: lectins and antibodies specific for carbohydrate epitopes. Specificity of lectin staining was verified using carbohydrate ligands to block lectin interaction, glycohydrolases to cleave specific sugar residues that are receptors for these proteins, and periodate oxidation to destroy susceptible sugar residues. Specific antibodies were used to identify various tissue types and germ layers present in the 12- and 28-day differentiating embryoid bodies. Results from 12 and 28-day differentiated embryoid bodies were compared to determine changes over time. A slight increase in the sialylation of alpha-GalNAc was seen between 12 and 28 days of differentiation due to the presence of sialyl Tn and/or other sialylated alpha-GalNAc residues. Increases were also observed in GalNAc, the T antigen (Gal beta1,3 GalNAc), and difucosylated LacNAc residues during this time interval. Additionally, some distinct differences in the pattern of lectin staining between 12 and 28 days were observed. Not unexpectedly, the presence of most differentiated cell-types increased during this time period with the exception of neural progenitors, which decreased. Undifferentiated cells, which were prevalent in the 12-day EBs, were undetectable after 28 days. We conclude that several changes in glycosylation occurred during the differentiation of embryonic stem cells, and that these changes may play a role in embryonic development.
Collapse
Affiliation(s)
- Kimberly A Wearne
- Department of Biological Chemistry, University of Michigan, 1150 West Medical Center Drive, 3220E MSRBIII, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
38
|
Ma L, Lu H, Sprinkle A, Parsek MR, Wozniak DJ. Pseudomonas aeruginosa Psl is a galactose- and mannose-rich exopolysaccharide. J Bacteriol 2007; 189:8353-6. [PMID: 17631634 PMCID: PMC2168683 DOI: 10.1128/jb.00620-07] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Pseudomonas aeruginosa polysaccharide synthesis locus (psl) is predicted to encode an exopolysaccharide which is critical for biofilm formation. Here we used chemical composition analyses and mannose- or galactose-specific lectin staining, followed by confocal laser scanning microscopy and electron microscopy, to show that Psl is a galactose-rich and mannose-rich exopolysaccharide.
Collapse
Affiliation(s)
- Luyan Ma
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1064, USA
| | | | | | | | | |
Collapse
|
39
|
Grahn E, Askarieh G, Holmner Å, Tateno H, Winter HC, Goldstein IJ, Krengel U. Crystal Structure of the Marasmius Oreades Mushroom Lectin in Complex with a Xenotransplantation Epitope. J Mol Biol 2007; 369:710-21. [DOI: 10.1016/j.jmb.2007.03.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 03/02/2007] [Accepted: 03/03/2007] [Indexed: 11/25/2022]
|
40
|
Kirkeby S, Winter HC, Goldstein IJ. Comparison of the binding properties of the mushroom Marasmius oreades lectin and Griffonia simplicifolia I-B isolectin to alphagalactosyl carbohydrate antigens in the surface phase. Xenotransplantation 2004; 11:254-61. [PMID: 15099205 DOI: 10.1111/j.1399-3089.2004.00108.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The binding of two alpha-galactophilic lectins, Marasmius oreades agglutinin (MOA), and Griffonia simplicifolia I isolectin B(4) (GS I-B(4)) to neoglycoproteins and natural glycoproteins were compared in a surface phase assay. Neoglycoproteins carrying various alpha-galactosylated glycans and laminin from basement membrane of mouse sarcoma that contains the xenogenic Galalpha1-3Gal1-4GlcNAc epitope were immobilized in microtiter plate wells and lectin binding determined with an enzyme-linked assay. After 24 h of incubation, MOA had higher affinity for the xenogenic pentasaccharide (Galalpha1-3Gal1-4GlcNAcbeta1-3Galbeta1-4Glc) than for the Galalpha-monosaccharide. The binding properties of MOA and GS I-B(4) to the xenogenic disaccharide (Galalpha1-3Galbeta1) were comparable while the binding of MOA to the xenogenic pentasaccharide was much stronger than the binding of GS I-B(4) to the same epitope. Non-xenogenic disaccharide-coupled neoglycoproteins having galactose end groups linked alpha1-2 or alpha1-4 to Gal or linked alpha1-3 to GalNAc bound very weakly to MOA, whereas GS I-B(4) recognized all of these disaccharides with similarly high affinity. MOA also showed high affinity for laminin. The results indicate that the Marasmius oreades lectin has nearly the same affinities as does GS I-B(4) for the simple xenogenic carbohydrate antigens, but MOA has greater affinity for the pentasaccharide and is far more specific in its binding preferences than the Griffonia lectin.
Collapse
Affiliation(s)
- Svend Kirkeby
- Department of Oral Medicine, Dental School, The Panum Institute, University of Copenhagen, Nørre Allé 20, 2200 N Copenhagen, Denmark.
| | | | | |
Collapse
|
41
|
Warner RL, Winter HC, Speyer CL, Varani J, Oldstein IJ, Murphy HS, Johnson KJ. Marasmius oreades lectin induces renal thrombotic microangiopathic lesions. Exp Mol Pathol 2004; 77:77-84. [PMID: 15351229 DOI: 10.1016/j.yexmp.2004.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Indexed: 10/26/2022]
Abstract
The present studies demonstrate that infusion of a type B specific lectin derived from the mushroom Marasmius oreades (MOA) into mice binds selectively to the glomerular endothelial cells via surface carbohydrate moieties resulting in cell injury and death associated with platelet-fibrin thrombi. This selective MOA binding to the endothelial cells can be abrogated by a sugar specific for the carbohydrate sequence. Hemolytic-Uremic Syndrome (HUS) and the closely associated Thrombotic Thrombocytopenic Purpura (TTP) are diseases associated with widespread microvascular injury in various organs. Clinically, these diseases are associated with microangiopathic hemolytic anemia and thrombocytopenia. The kidney glomerulus is a primary target of this microvascular injury. There are many underlying etiologies including bacterial toxins. Experimentally, such toxins injure endothelial cells in vitro but in vivo studies have failed to reproduce the characteristic renal pathology. We suggest that MOA-induced glomerular microangiopathic injury could be used to study the pathophysiology of endothelial cell injury as related to glomerular microangiopathic injury.
Collapse
Affiliation(s)
- Roscoe L Warner
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109-0602, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Tateno H, Winter H, Goldstein I. Cloning, expression in Escherichia coli and characterization of the recombinant Neu5Acalpha2,6Galbeta1,4GlcNAc-specific high-affinity lectin and its mutants from the mushroom Polyporus squamosus. Biochem J 2004; 382:667-75. [PMID: 15176950 PMCID: PMC1133824 DOI: 10.1042/bj20040391] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 05/05/2004] [Accepted: 06/03/2004] [Indexed: 11/17/2022]
Abstract
Lectin from the mushroom Polyporus squamosus (PSL) has a unique carbohydrate-binding specificity for sialylated glycoconjugates containing Neu5Acalpha2,6Galbeta1,4Glc/GlcNAc trisaccharide sequences of asparagine-linked glycoproteins. In the present study, we elucidate the molecular basis for its binding specificity as well as establish a consistent source of this useful lectin using a bacterial expression system. cDNA cloning revealed that PSL contains a ricin B chain-like (QXW)(3) domain at its N-terminus that is composed of three homologous subdomains (alpha, beta and gamma). A recombinant lectin was expressed in Escherichia coli as a fully active, soluble form. It agglutinated rabbit erythrocytes and showed the highest affinity for Neu5Acalpha2,6Galbeta1,4GlcNAc, but not for the sialyl alpha2,3-linked isomer. We also investigated the structure-function relationship of PSL. A monomeric C-terminal deletion mutant lacking 40% of the lectin's molecular mass retained sugar-binding activity, indicating that the carbohydrate-binding sites are situated in the N-terminal portion of the lectin, whereas the C-terminal portion probably functions in oligomerization and structural stabilization. Mutant constructs that have single amino acid substitutions in the putative sugar-binding sites, based on sequence alignment with the ricin B-chain, indicate that the beta and gamma subdomains are most probably sugar-binding sites. The recombinantly expressed lectin will be a valuable reagent for the detection of the Neu5Acalpha2,6Galbeta1,4GlcNAc sequence of asparagine-linked glycans.
Collapse
Affiliation(s)
- Hiroaki Tateno
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0606, U.S.A
| | - Harry C. Winter
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0606, U.S.A
| | - Irwin J. Goldstein
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0606, U.S.A
| |
Collapse
|
43
|
Tateno H, Goldstein IJ. Partial identification of carbohydrate-binding sites of a Galalpha1,3Galbeta1,4GlcNAc-specific lectin from the mushroom Marasmius oreades by site-directed mutagenesis. Arch Biochem Biophys 2004; 427:101-9. [PMID: 15178492 DOI: 10.1016/j.abb.2004.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 04/13/2004] [Indexed: 10/26/2022]
Abstract
The Galalpha1,3Galbeta1,4GlcNAc-specific lectin from the mushroom Marasmius oreades (MOA) contains a ricin B chain-like (QXW)(3) domain at its N-terminus that is composed of three identical subdomains (alpha, beta, and gamma) and a C-terminal domain of unknown function. Here, we investigate the structure-function relationship of MOA to define the number and location of its carbohydrate-binding sites. Based on the sequence alignment of MOA to the ricin B-chain lactose-binding sites, we systematically constructed mutants by site-directed mutagenesis. We have used precipitation and hemagglutination assay for the primary analyses, and surface plasmon resonance for the kinetic analysis. Among amino acid residues at the putative carbohydrate-binding sites, Gln(46) in the alpha subdomain and Trp(138) in the gamma subdomain have been identified to be important amino acid residues directly or indirectly involved in carbohydrate recognition. By surface plasmon resonance, Q46A and W138A were 2.4- and 4.3-fold less active than that of the wild-type MOA (K(a) = 2 x 10(7)), respectively. A double-site mutant (Q46A/W138A) had activity similar to W138A. The C-terminal deletion mutant MOADeltaC showed hemagglutination and precipitation activity, although its binding constant was 12.5-fold less active (K(a) = 1.6 x 10(6)) than that of the wild-type MOA. A C-terminal deletion mutant with mutations at both Gln(46) and Trp(138) (MOADeltaC-Q46A/W138A) was 12,500-fold less active (K(a) = 1.6 x 10(3)) than that of the wild-type MOA. On the basis of this observation, we conclude that both alpha and gamma subdomains are most probably involved in carbohydrate binding, but the beta subdomain appears to be inactive.
Collapse
Affiliation(s)
- Hiroaki Tateno
- Department of Biological Chemistry, The University of Michigan Medical School, Ann Arbor, MI 48109-0606, USA
| | | |
Collapse
|
44
|
Tateno H, Goldstein IJ. Molecular cloning, expression, and characterization of novel hemolytic lectins from the mushroom Laetiporus sulphureus, which show homology to bacterial toxins. J Biol Chem 2003; 278:40455-63. [PMID: 12900403 DOI: 10.1074/jbc.m306836200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe herein the cDNA cloning, expression, and characterization of a hemolytic lectin and its related species from the parasitic mushroom Laetiporus sulphureus. The lectin designated LSL (L. sulphureus lectin), is a tetramer composed of subunits of approximately 35 kDa associated by non-covalent bonds. From a cDNA library, three similar full-length cDNAs, termed LSLa, LSLb, and LSLc, were generated, each of which had an open reading frame of 945 bp encoding 315 amino acid residues. These proteins share 80-90% sequence identity and showed structural similarity to bacterial toxins: mosquitocidal toxin (MTX2) from Bacillus sphaericus and alpha toxin from Clostridium septicum. Native and recombinant forms of LSL showed hemagglutination and hemolytic activity and both activities were inhibited by N-acetyllactosamine, whereas a C-terminal deletion mutant of LSLa (LSLa-D1) retained hemagglutination, but not hemolytic activity, indicating the N-terminal domain is a carbohydrate recognition domain and the C-terminal domain functions as an oligomerization domain. The LSL-mediated hemolysis was protected osmotically by polyethylene glycol 4000 and maltohexaose. Inhibition studies showed that lacto-N-neotetraose (Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc) was the best inhibitor for LSL. These results indicate that LSL is a novel pore-forming lectin homologous to bacterial toxins.
Collapse
Affiliation(s)
- Hiroaki Tateno
- Department of Biological Chemistry, the University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA
| | | |
Collapse
|
45
|
Zhang Y, Telyatnikov V, Sathe M, Zeng X, Wang PG. Studying the interaction of alpha-gal carbohydrate antigen and proteins by quartz-crystal microbalance. J Am Chem Soc 2003; 125:9292-3. [PMID: 12889948 PMCID: PMC2504757 DOI: 10.1021/ja035350a] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The interaction of alpha-galacosyl antigen and its binding protein (anti-Gal antibody) has been studied by quartz crystal microbalance through a SAM immobilization technique which overcomes the nonspecific interactions and molecule trapping for current piezoelectric biosensors.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, USA
| | | | | | | | | |
Collapse
|
46
|
Tateno H, Winter HC, Petryniak J, Goldstein IJ. Purification, characterization, molecular cloning, and expression of novel members of jacalin-related lectins from rhizomes of the true fern Phlebodium aureum (L) J. Smith (Polypodiaceae). J Biol Chem 2003; 278:10891-9. [PMID: 12538584 DOI: 10.1074/jbc.m211840200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A lectin was purified from rhizomes of the fern Phlebodium aureum by affinity chromatography on mannose-Sepharose. The lectin, designated P. aureum lectin (PAL), is composed of two identical subunits of approximately 15 kDa associated by noncovalent bonds. From a cDNA library and synthetic oligonucleotide probes based on a partial amino acid sequence, 5'- and 3'-rapid amplification of cDNA ends allowed the generation of two similar full-length cDNAs, termed PALa and PALb, each of which had an open reading frame of 438 bp encoding 146 amino acid residues. The two proteins share 88% sequence identity and showed structural similarity to jacalin-related lectins. PALa contained peptide sequences exactly matching those found in the isolated lectin. PALa and PALb were expressed in Escherichia coli using pET-22b(+) vector and purified by one-step affinity chromatography. Native and recombinant forms of PAL agglutinated rabbit erythrocytes and precipitated with yeast mannan, dextran, and the high mannose-containing glycoprotein invertase. The detailed carbohydrate-binding properties of the native and recombinant lectins were elucidated by agglutination inhibition assay, and native lectin was also studied by isothermal titration calorimetry. Based on the results of these assays, we conclude that this primitive vascular plant, like many higher plants, contains significant quantities of a mannose/glucose-binding protein in its storage tissue, whose binding specificity differs in detail from either legume mannose/glucose-binding lectins or monocot mannose-specific lectins. The identification of a jacalin-related lectin in a true fern reveals for the first time the widespread distribution and molecular evolution of this lectin family in the plant kingdom.
Collapse
Affiliation(s)
- Hiroaki Tateno
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA
| | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Hansjörg Streicher
- Department of Chemistry, University of Konstanz, Konstanz D-78457, Germany
| | | |
Collapse
|
48
|
Kruger RP, Winter HC, Simonson-Leff N, Stuckey JA, Goldstein IJ, Dixon JE. Cloning, expression, and characterization of the Galalpha 1,3Gal high affinity lectin from the mushroom Marasmius oreades. J Biol Chem 2002; 277:15002-5. [PMID: 11836254 DOI: 10.1074/jbc.m200165200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The purification and unique carbohydrate binding properties, including blood group B-specific agglutination and preferential binding to Galalpha1,3Gal-containing sugar epitopes, of the Marasmius oreades agglutinin (MOA) are reported in an accompanying paper (Winter, H. C., Mostafapour, K., and Goldstein, I. J. (2002) J. Biol. Chem. 277, 14996-15001). Here we describe the cloning, characterization, and expression of MOA. MOA was digested with trypsin and endoproteinase Asp-N, and the peptide fragments were purified by high performance liquid chromatography. Amino acid sequence data were obtained for eight peptides. Using oligonucleotides deduced from the peptide sequences for a reverse transcriptase-PCR, a 41-base pair cDNA was obtained. The 41-base pair fragment allowed the generation a full-length cDNA using 5' and 3' rapid amplification of cDNA ends. MOA cDNA encodes a protein of 293 amino acids that contains a ricin domain. These carbohydrate binding domains were first described in subunits of bacterial toxins and are also commonly found in polysaccharide-degrading enzymes. Whereas these proteins are known to display a variety of sugar binding specificities, none to date are known to share MOA's high affinity for Galalpha1,3Gal and Galalpha1,3Galbeta1,4GlcNAc. Recombinantly expressed and purified MOA retains the specificity and affinity observed with the native protein. This study provides the basis for analyzing the underlying cause for the unusual binding specificity of MOA.
Collapse
Affiliation(s)
- Robert P Kruger
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | | | | | | | | | | |
Collapse
|
49
|
Rempel BP, Winter HC, Goldstein IJ, Hindsgaul O. Characterization of the recognition of blood group B trisaccharide derivatives by the lectin from Marasmius oreades using frontal affinity chromatography-mass spectrometry. Glycoconj J 2002; 19:175-80. [PMID: 12815228 DOI: 10.1023/a:1024297623445] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A novel lectin from the mushroom Marasmius oreades (MOA) has been shown to bind to human blood group B oligosaccharides [1]. In the present work we examine the binding of a series of analogues of the blood group B-trisaccharide, alphaGal(1-3)[alphaFuc(1-2)]betaGal-OR (1, R = (CH2)8COOMe). MOA was biotinylated and immobilized on a micro column (9.8 microL) for evaluation by Frontal Affinity Chromatography-Mass Spectrometry (FAC-MS) [2]. The trisaccharide 1 was found to be the epitope needed for maximum recognition (Kd = 3.6 microM). A series of synthetic deoxygenated and O-methylated analogues of the B-trisaccharide (R = OMe) were then screened against the lectin, and the key structural elements for binding were determined. OH-4 of the beta-Gal residue and OH-2 of the alpha-Gal residue were found to be critical for recognition. The FAC-MS technique also proved powerful in evaluating mixtures of compounds. Since the solution NMR structure and crystal structure of the B-trisaccharide are known [3], we propose the specific surface of the trisaccharide that is recognized by the lectin.
Collapse
Affiliation(s)
- Brian P Rempel
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2
| | | | | | | |
Collapse
|