1
|
Dos Santos B, Piermartiri T, Tasca CI. The impact of purine nucleosides on neuroplasticity in the adult brain. Purinergic Signal 2024:10.1007/s11302-024-09988-9. [PMID: 38367178 DOI: 10.1007/s11302-024-09988-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/19/2024] Open
Abstract
Neuroplasticity refers to the nervous system's ability to adapt and reorganize its cell structures and neuronal networks in response to internal and external stimuli. In adults, this process involves neurogenesis, synaptogenesis, and synaptic and neurochemical plasticity. Several studies have reported the significant impact of the purinergic system on neuroplasticity modulation. And, there is considerable evidence supporting the role of purine nucleosides, such as adenosine, inosine, and guanosine, in this process. This review presents extensive research on how these nucleosides enhance the neuroplasticity of the adult central nervous system, particularly in response to damage. The mechanisms through which these nucleosides exert their effects involve complex interactions with various receptors and signaling pathways. Adenosine's influence on neurogenesis involves interactions with adenosine receptors, specifically A1R and A2AR. A1R activation appears to inhibit neuronal differentiation and promote astrogliogenesis, while A2AR activation supports neurogenesis, neuritogenesis, and synaptic plasticity. Inosine and guanosine positively impact cell proliferation, neurogenesis, and neuritogenesis. Inosine seems to modulate extracellular adenosine levels, and guanosine might act through interactions between purinergic and glutamatergic systems. Additionally, the review discusses the potential therapeutic implications of purinergic signaling in neurodegenerative and neuropsychiatric diseases, emphasizing the importance of these nucleosides in the neuroplasticity of brain function and recovery.
Collapse
Affiliation(s)
- Beatriz Dos Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Programa de Pós-Graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Tetsade Piermartiri
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Programa de Pós-Graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Carla I Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Programa de Pós-Graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
- Programa de Pós-Graduação Em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
2
|
Evaluation of Adenosine A2A receptor gene polymorphisms as risk factors of methamphetamine use disorder susceptibility and predictors of craving degree. Psychiatry Res 2022; 316:114790. [PMID: 35987070 DOI: 10.1016/j.psychres.2022.114790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022]
Abstract
The adenosine A2A receptor (ADORA2A) is highly expressed in the central nervous system and plays vital roles in drug addiction. In this study, we aimed to explore the susceptibility of ADORA2A to methamphetamine use disorder (MUD) and the craving degree based on a two-stage association analysis. A total of 3,542 (1,216 patients with MUD and 2,326 controls) and 1,740 participants (580 patients with MUD and 1,160 controls) were recruited in discovery and replication stage, respectively. Significant SNPs identified in the discovery stage were genotyped in the replication samples. Serum levels of ADORA2A were measured using enzyme-linked immunosorbent assay kits. The genetic association signal of each SNP was examined using Plink. A linear model was fitted to investigate the relationship between craving scores and genotypes of significant SNPs. SNP rs5751876 was significantly associated with MUD in the discovery samples and this association signal was then further replicated in the replication samples. Significant associations were also identified between serum levels of ADORA2A and the genotypes of rs5751876 (P = 0.0002). The craving scores in patients with MUD were strongly correlated with rs5751876 genotypes. Our results suggest that polymorphisms of the ADORA2A gene could affect the susceptibility to MUD and its craving degree.
Collapse
|
3
|
Agarwal P, Agarwal R. Tackling retinal ganglion cell apoptosis in glaucoma: role of adenosine receptors. Expert Opin Ther Targets 2021; 25:585-596. [PMID: 34402357 DOI: 10.1080/14728222.2021.1969362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The role of adenosine receptors as therapeutic targets for neuroprotection is now widely recognized. Their role, however, in protection against retinal ganglion cell (RGC) apoptosis in glaucoma needs further investigation. Hence, in this review, we look into the possibility of adenosine receptors as potential therapeutic targets by exploring their role in modulating various pathophysiological mechanisms underlying glaucomatous RGC loss. AREAS COVERED This review presents a summary of the adenosine receptor distribution in retina and the cellular functions mediated by them. The major pathophysiological mechanisms such as excitotoxicity, vascular dysregulation, loss of neurotrophic signaling, and inflammatory responses involved in glaucomatous RGC loss are discussed. The literature showing the role of adenosine receptors in modulating these pathophysiological mechanisms is discussed. The literature search was conducted using Pubmed search engine using key words such as 'RGC apoptosis,' 'adenosine,' adenosine receptors' 'retina' 'excitotoxicity,' 'neurotrophins,' 'ischemia', and 'cytokines' individually and in various combinations. EXPERT OPINION Use of adenosine receptor agonists and antagonists, for preservation of the RGCs in glaucomatous eyes independent of the level of intraocular pressure seems a very useful strategy. Future application of this strategy would require appropriate designing of drug formulation for tissue and disease-specific receptor targeting. Furthermore, the modulation of physiological functions and potential adverse effects need further investigations.
Collapse
Affiliation(s)
- Puneet Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Renu Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Uddin MS, Mamun AA, Rahman MM, Jeandet P, Alexiou A, Behl T, Sarwar MS, Sobarzo-Sánchez E, Ashraf GM, Sayed AA, Albadrani GM, Peluso I, Abdel-Daim MM. Natural Products for Neurodegeneration: Regulating Neurotrophic Signals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8820406. [PMID: 34239696 PMCID: PMC8241508 DOI: 10.1155/2021/8820406] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders (NDs) are heterogeneous groups of ailments typically characterized by progressive damage of the nervous system. Several drugs are used to treat NDs but they have only symptomatic benefits with various side effects. Numerous researches have been performed to prove the advantages of phytochemicals for the treatment of NDs. Furthermore, phytochemicals such as polyphenols might play a pivotal role in rescue from neurodegeneration due to their various effects as anti-inflammatory, antioxidative, and antiamyloidogenic agents by controlling apoptotic factors, neurotrophic factors (NTFs), free radical scavenging system, and mitochondrial stress. On the other hand, neurotrophins (NTs) including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), NT4/5, and NT3 might have a crucial neuroprotective role, and their diminution triggers the development of the NDs. Polyphenols can interfere directly with intracellular signaling molecules to alter brain activity. Several natural products also improve the biosynthesis of endogenous genes encoding antiapoptotic Bcl-2 as well as NTFs such as glial cell and brain-derived NTFs. Various epidemiological studies have demonstrated that the initiation of these genes could play an essential role in the neuroprotective function of dietary compounds. Hence, targeting NTs might represent a promising approach for the management of NDs. In this review, we focus on the natural product-mediated neurotrophic signal-modulating cascades, which are involved in the neuroprotective effects.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | - Md Motiar Rahman
- Laboratory of Clinical Biochemistry and Nutritional Sciences (LCBNS), Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, USC INRAe 1488, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, P.O. Box 1039, CEDEX 2, 51687 Reims, France
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, 2770 Hebersham, Australia
- AFNP Med Austria, 1010 Wien, Austria
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, 8330507 Santiago, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00142 Rome, Italy
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
5
|
Portugal CC, da Encarnação TG, Sagrillo MA, Pereira MR, Relvas JB, Socodato R, Paes-de-Carvalho R. Activation of adenosine A3 receptors regulates vitamin C transport and redox balance in neurons. Free Radic Biol Med 2021; 163:43-55. [PMID: 33307167 DOI: 10.1016/j.freeradbiomed.2020.11.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/01/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022]
Abstract
Adenosine is an important neuromodulator in the CNS, regulating neuronal survival and synaptic transmission. The antioxidant ascorbate (the reduced form of vitamin C) is concentrated in CNS neurons through a sodium-dependent transporter named SVCT2 and participates in several CNS processes, for instance, the regulation of glutamate receptors functioning and the synthesis of neuromodulators. Here we studied the interplay between the adenosinergic system and ascorbate transport in neurons. We found that selective activation of A3, but not of A1 or A2a, adenosine receptors modulated ascorbate transport, decreasing intracellular ascorbate content. Förster resonance energy transfer (FRET) analyses showed that A3 receptors associate with the ascorbate transporter SVCT2, suggesting tight signaling compartmentalization between A3 receptors and SVCT2. The activation of A3 receptors increased ascorbate release in an SVCT2-dependent manner, which largely altered the neuronal redox status without interfering with cell death, glycolytic metabolism, and bioenergetics. Overall, by regulating vitamin C transport, the adenosinergic system (via activation of A3 receptors) can regulate ascorbate bioavailability and control the redox balance in neurons.
Collapse
Affiliation(s)
- Camila C Portugal
- Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.
| | | | - Mayara A Sagrillo
- Department of Neurobiology, Biology Institute, Fluminense Federal University, Niterói, Brazil
| | - Mariana R Pereira
- Program of Neurosciences, Fluminense Federal University, Niterói, Brazil; Department of Neurobiology, Biology Institute, Fluminense Federal University, Niterói, Brazil
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Renato Socodato
- Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Roberto Paes-de-Carvalho
- Program of Neurosciences, Fluminense Federal University, Niterói, Brazil; Department of Neurobiology, Biology Institute, Fluminense Federal University, Niterói, Brazil.
| |
Collapse
|
6
|
Pietrobono D, Giacomelli C, Marchetti L, Martini C, Trincavelli ML. High Adenosine Extracellular Levels Induce Glioblastoma Aggressive Traits Modulating the Mesenchymal Stromal Cell Secretome. Int J Mol Sci 2020; 21:E7706. [PMID: 33081024 PMCID: PMC7589183 DOI: 10.3390/ijms21207706] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/01/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is an aggressive, fast-growing brain tumor influenced by the composition of the tumor microenvironment (TME) in which mesenchymal stromal cell (MSCs) play a pivotal role. Adenosine (ADO), a purinergic signal molecule, can reach up to high micromolar concentrations in TME. The activity of specific adenosine receptor subtypes on glioma cells has been widely explored, as have the effects of MSCs on tumor progression. However, the effects of high levels of ADO on glioma aggressive traits are still unclear as is its role in cancer cells-MSC cross-talk. Herein, we first studied the role of extracellular Adenosine (ADO) on isolated human U343MG cells as a glioblastoma cellular model, finding that at high concentrations it was able to prompt the gene expression of Snail and ZEB1, which regulate the epithelial-mesenchymal transition (EMT) process, even if a complete transition was not reached. These effects were mediated by the induction of ERK1/2 phosphorylation. Additionally, ADO affected isolated bone marrow derived MSCs (BM-MSCs) by modifying the pattern of secreted inflammatory cytokines. Then, the conditioned medium (CM) of BM-MSCs stimulated with ADO and a co-culture system were used to investigate the role of extracellular ADO in GBM-MSC cross-talk. The CM promoted the increase of glioma motility and induced a partial phenotypic change of glioblastoma cells. These effects were maintained when U343MG cells and BM-MSCs were co-cultured. In conclusion, ADO may affect glioma biology directly and through the modulation of the paracrine factors released by MSCs overall promoting a more aggressive phenotype. These results point out the importance to deeply investigate the role of extracellular soluble factors in the glioma cross-talk with other cell types of the TME to better understand its pathological mechanisms.
Collapse
Affiliation(s)
| | - Chiara Giacomelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.P.); (L.M.); (C.M.); (M.L.T.)
| | | | | | | |
Collapse
|
7
|
T1-11, an adenosine derivative, ameliorates aging-related behavioral physiology and senescence markers in aging mice. Aging (Albany NY) 2020; 12:10556-10577. [PMID: 32501291 PMCID: PMC7346012 DOI: 10.18632/aging.103279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 04/20/2020] [Indexed: 12/25/2022]
Abstract
Aging is a natural human process. It is uniquely individual, taking into account experiences, lifestyle habits and environmental factors. However, many disorders and syndromes, such as osteoporosis, neurodegenerative disorders, cognitive decline etc., often come with aging. The present study was designed to investigate the possible anti-aging effect of N6-(4-hydroxybenzyl)adenine riboside (T1-11), an adenosine analog isolated from Gastrodia elata, in a mouse model of aging created by D-galactose (D-gal) and the underlying mechanism, as well as explore the role of adenosine signaling in aging. T1-11 activated A2AR and suppressed D-gal- and BeSO4-induced cellular senescence in vitro. In vivo results in mice revealed that T1-11 abated D-gal-induced reactive oxygen species generation and ameliorated cognitive decline by inducing neurogenesis and lowering D-gal-caused neuron death. T1-11 could be a potent agent for postponing senility and preventing aging-related neuroinflammation and neurodegeneration.
Collapse
|
8
|
Li WP, Ma K, Jiang XY, Yang R, Lu PH, Nie BM, Lu Y. Molecular mechanism of panaxydol on promoting axonal growth in PC12 cells. Neural Regen Res 2018; 13:1927-1936. [PMID: 30233066 PMCID: PMC6183029 DOI: 10.4103/1673-5374.239439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2018] [Indexed: 12/04/2022] Open
Abstract
Nerve growth factor (NGF) promotes axonal growth in PC12 cells primarily by regulating the RTK-RAS-MEK-ERK pathway. Panaxydol, a polyacetylene isolated from Panax notoginseng, can mimic the effects of NGF. Panaxydol promotes neurite outgrowth in PC12 cells, but its molecular mechanism remains unclear. Indeed, although alkynol compounds such as panaxydol can increase intracellular cyclic adenosine 3',5'-monophosphate (cAMP) levels and the ERK inhibitor U0126 inhibits alkynol-induced axonal growth, how pathways downstream of cAMP activate ERK have not been investigated. This study observed the molecular mechanism of panaxydol-, NGF- and forskolin-induced PC12 cell axon growth using specific signaling pathway inhibitors. The results demonstrated that although the RTK inhibitor SU5416 obviously inhibited the growth-promoting effect of NGF, it could not inhibit the promoting effect of panaxydol on axonal growth of PC12 cells. The adenylate cyclase inhibitor SQ22536 and cAMP-dependent protein kinase inhibitor RpcAMPS could suppress the promoting effect of forskolin and panaxydol on axonal growth. The ERK inhibitor U0126 inhibited axonal growth induced by all three factors. However, the PKA inhibitor H89 inhibited the promoting effect of forskolin on axonal growth but could not suppress the promoting effect of panaxydol. A western blot assay was used to determine the effects of stimulating factors and inhibitors on ERK phosphorylation levels. The results revealed that NGF activates the ERK pathway through tyrosine receptors to induce axonal growth of PC12 cells. In contrast, panaxydol and forskolin increased cellular cAMP levels and were inhibited by adenylyl cyclase inhibitors. The protein kinase A inhibitor H89 completely inhibited forskolin-induced axonal outgrowth and ERK phosphorylation, but could not inhibit panaxydol-induced axonal growth and ERK phosphorylation. These results indicated that panaxydol promoted axonal growth of PC12 cells through different pathways downstream of cAMP. Considering that exchange protein directly activated by cAMP 1 (Epac1) plays an important role in mediating cAMP signaling pathways, RNA interference experiments targeting the Epac1 gene were employed. The results verified that Epac1 could mediate the axonal growth signaling pathway induced by panaxydol. These findings suggest that compared with NGF and forskolin, panaxydol elicits axonal growth through the cAMP-Epac1-Rap1-MEK-ERK-CREB pathway, which is independent of PKA.
Collapse
Affiliation(s)
- Wei-Peng Li
- Department of Nuclear Medicine, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Ke Ma
- Department of Pharmacy, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Yan Jiang
- Key Laboratory of Arrhythmias of Ministry of Education of China, Tongji University School of Medicine, Shanghai, China
| | - Rui Yang
- Department of Pharmacy, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei-Hua Lu
- Department of Pharmacy, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bao-Ming Nie
- Department of Pharmacy, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Lu
- Department of Pharmacy, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Ronowska A, Szutowicz A, Bielarczyk H, Gul-Hinc S, Klimaszewska-Łata J, Dyś A, Zyśk M, Jankowska-Kulawy A. The Regulatory Effects of Acetyl-CoA Distribution in the Healthy and Diseased Brain. Front Cell Neurosci 2018; 12:169. [PMID: 30050410 PMCID: PMC6052899 DOI: 10.3389/fncel.2018.00169] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/31/2018] [Indexed: 12/25/2022] Open
Abstract
Brain neurons, to support their neurotransmitter functions, require a several times higher supply of glucose than non-excitable cells. Pyruvate, the end product of glycolysis, through pyruvate dehydrogenase complex reaction, is a principal source of acetyl-CoA, which is a direct energy substrate in all brain cells. Several neurodegenerative conditions result in the inhibition of pyruvate dehydrogenase and decrease of acetyl-CoA synthesis in mitochondria. This attenuates metabolic flux through TCA in the mitochondria, yielding energy deficits and inhibition of diverse synthetic acetylation reactions in all neuronal sub-compartments. The acetyl-CoA concentrations in neuronal mitochondrial and cytoplasmic compartments are in the range of 10 and 7 μmol/L, respectively. They appear to be from 2 to 20 times lower than acetyl-CoA Km values for carnitine acetyltransferase, acetyl-CoA carboxylase, aspartate acetyltransferase, choline acetyltransferase, sphingosine kinase 1 acetyltransferase, acetyl-CoA hydrolase, and acetyl-CoA acetyltransferase, respectively. Therefore, alterations in acetyl-CoA levels alone may significantly change the rates of metabolic fluxes through multiple acetylation reactions in brain cells in different physiologic and pathologic conditions. Such substrate-dependent alterations in cytoplasmic, endoplasmic reticulum or nuclear acetylations may directly affect ACh synthesis, protein acetylations, and gene expression. Thereby, acetyl-CoA may regulate the functional and adaptative properties of neuronal and non-neuronal brain cells. The excitotoxicity-evoked intracellular zinc excess hits several intracellular targets, yielding the collapse of energy balance and impairment of the functional and structural integrity of postsynaptic cholinergic neurons. Acute disruption of brain energy homeostasis activates slow accumulation of amyloid-β1-42 (Aβ). Extra and intracellular oligomeric deposits of Aβ affect diverse transporting and signaling pathways in neuronal cells. It may combine with multiple neurotoxic signals, aggravating their detrimental effects on neuronal cells. This review presents evidences that changes of intraneuronal levels and compartmentation of acetyl-CoA may contribute significantly to neurotoxic pathomechanisms of different neurodegenerative brain disorders.
Collapse
Affiliation(s)
- Anna Ronowska
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Andrzej Szutowicz
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Hanna Bielarczyk
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Sylwia Gul-Hinc
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Klimaszewska-Łata
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Dyś
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Marlena Zyśk
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
10
|
Davis JB, Calvert V, Roberts S, Bracero S, Petricoin E, Couch R. Induction of nerve growth factor by phorbol 12-myristate 13-acetate is dependent upon the mitogen activated protein kinase pathway. Heliyon 2018; 4:e00617. [PMID: 29872754 PMCID: PMC5986306 DOI: 10.1016/j.heliyon.2018.e00617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/23/2018] [Accepted: 04/27/2018] [Indexed: 01/20/2023] Open
Abstract
Several small molecules have been identified that induce glial cells to synthesize and secrete nerve growth factor (NGF), a critical neurotrophin that supports neuronal growth and survival, and as such show promise in the development of drugs for the chemoprevention of Alzheimer's disease. To map the signal transduction cascade leading to NGF synthesis and secretion, cultured human glial cells were stimulated by phorbol 12-myristate 13-acetate (PMA), an agonist of Protein Kinase C. Changes in intracellular protein phosphorylation states were evaluated by reverse phase protein microarrays (RPPA), selectively screening over 130 protein endpoints. Of these, 55 proteins showed statistically significant changes in phosphorylation state due to cellular exposure to PMA. A critical signal transduction pathway was identified, and subsequent validation by ELISA and qPCR revealed that the signaling proteins Raf, MEK, ERK, and the signal transduction factor CREB are all essential to the upregulation of NGF gene expression by PMA. Additionally, members of the RSK family of kinases appear to be involved in glial secretion (exocytosis) of the NGF protein. Furthermore, through RPPA, the effects of PMA on apoptosis signaling events and cell proliferation were differentiated from the pathway to NGF upregulation. Overall, this study reveals potential protein targets for the rational design of Alzheimer's therapeutics.
Collapse
|
11
|
Pinheiro H, Gaspar R, Baptista FI, Fontes-Ribeiro CA, Ambrósio AF, Gomes CA. Adenosine A 2A Receptor Blockade Modulates Glucocorticoid-Induced Morphological Alterations in Axons, But Not in Dendrites, of Hippocampal Neurons. Front Pharmacol 2018; 9:219. [PMID: 29615903 PMCID: PMC5868516 DOI: 10.3389/fphar.2018.00219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/27/2018] [Indexed: 11/13/2022] Open
Abstract
The exposure to supra-physiological levels of glucocorticoids in prenatal life can lead to a long-term impact in brain cytoarchitecture, increasing the susceptibility to neuropsychiatric disorders. Dexamethasone, an exogenous glucocorticoid widely used in pregnant women in risk of preterm delivery, is associated with higher rates of neuropsychiatric conditions throughout life of the descendants. In animal models, prenatal dexamethasone exposure leads to anxious-like behavior and increased susceptibility to depressive-like behavior in adulthood, concomitant with alterations in neuronal morphology in brain regions implicated in the control of emotions and mood. The pharmacologic blockade of the purinergic adenosine A2A receptor, which was previously described as anxiolytic, is also able to modulate neuronal morphology, namely in the hippocampus. Additionally, recent observations point to an interaction between glucocorticoid receptors (GRs) and adenosine A2A receptors. In this work, we explored the impact of dexamethasone on neuronal morphology, and the putative implication of adenosine A2A receptor in the mediation of dexamethasone effects. We report that in vitro hippocampal neurons exposed to dexamethasone (250 nM), in the early phases of development, exhibit a polarized morphology alteration: dendritic atrophy and axonal hypertrophy. While the effect of dexamethasone in the axon is dependent on the activation of adenosine A2A receptor, the effect in the dendrites relies on the activation of GRs, regardless of the activation of adenosine A2A receptor. These results support the hypothesis of the interaction between GRs and adenosine A2A receptors and the potential therapeutic value of modulating adenosine A2A receptors activation in order to prevent glucocorticoid-induced alterations in developing neurons.
Collapse
Affiliation(s)
- Helena Pinheiro
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Rita Gaspar
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Filipa I Baptista
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Carlos A Fontes-Ribeiro
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - António F Ambrósio
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Catarina A Gomes
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
12
|
Ohtake Y, Wong D, Abdul-Muneer PM, Selzer ME, Li S. Two PTP receptors mediate CSPG inhibition by convergent and divergent signaling pathways in neurons. Sci Rep 2016; 6:37152. [PMID: 27849007 PMCID: PMC5111048 DOI: 10.1038/srep37152] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/25/2016] [Indexed: 01/29/2023] Open
Abstract
Receptor protein tyrosine phosphatase σ (PTPσ) and its subfamily member LAR act as transmembrane receptors that mediate growth inhibition of chondroitin sulfate proteoglycans (CSPGs). Inhibition of either receptor increases axon growth into and beyond scar tissues after CNS injury. However, it is unclear why neurons express two similar CSPG receptors, nor whether they use the same or different intracellular pathways. We have now studied the signaling pathways of these two receptors using N2A cells and primary neurons derived from knockout mice. We demonstrate that both receptors share certain signaling pathways (RhoA, Akt and Erk), but also use distinct signals to mediate CSPG actions. Activation of PTPσ by CSPGs selectively inactivated CRMP2, APC, S6 kinase and CREB. By contrast LAR activation inactivated PKCζ, cofilin and LKB1. For the first time, we propose a model of the signaling pathways downstream of these two CSPG receptors. We also demonstrate that deleting both receptors exhibits additive enhancement of axon growth in adult neuronal cultures in vitro. Our findings elucidate the novel downstream pathways of CSPGs and suggest potential synergy of blocking their two PTP receptors.
Collapse
Affiliation(s)
- Yosuke Ohtake
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Daniella Wong
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - P. M. Abdul-Muneer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Michael E. Selzer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
13
|
Moosavi F, Hosseini R, Saso L, Firuzi O. Modulation of neurotrophic signaling pathways by polyphenols. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 10:23-42. [PMID: 26730179 PMCID: PMC4694682 DOI: 10.2147/dddt.s96936] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Polyphenols are an important class of phytochemicals, and several lines of evidence have demonstrated their beneficial effects in the context of a number of pathologies including neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. In this report, we review the studies on the effects of polyphenols on neuronal survival, growth, proliferation and differentiation, and the signaling pathways involved in these neurotrophic actions. Several polyphenols including flavonoids such as baicalein, daidzein, luteolin, and nobiletin as well as nonflavonoid polyphenols such as auraptene, carnosic acid, curcuminoids, and hydroxycinnamic acid derivatives including caffeic acid phentyl ester enhance neuronal survival and promote neurite outgrowth in vitro, a hallmark of neuronal differentiation. Assessment of underlying mechanisms, especially in PC12 neuronal-like cells, reveals that direct agonistic effect on tropomyosin receptor kinase (Trk) receptors, the main receptors of neurotrophic factors including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) explains the action of few polyphenols such as 7,8-dihydroxyflavone. However, several other polyphenolic compounds activate extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt pathways. Increased expression of neurotrophic factors in vitro and in vivo is the mechanism of neurotrophic action of flavonoids such as scutellarin, daidzein, genistein, and fisetin, while compounds like apigenin and ferulic acid increase cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation. Finally, the antioxidant activity of polyphenols reflected in the activation of Nrf2 pathway and the consequent upregulation of detoxification enzymes such as heme oxygenase-1 as well as the contribution of these effects to the neurotrophic activity have also been discussed. In conclusion, a better understanding of the neurotrophic effects of polyphenols and the concomitant modulations of signaling pathways is useful for designing more effective agents for management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Razieh Hosseini
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Mohamed RA, Agha AM, Abdel-Rahman AA, Nassar NN. Role of adenosine A2A receptor in cerebral ischemia reperfusion injury: Signaling to phosphorylated extracellular signal-regulated protein kinase (pERK1/2). Neuroscience 2015; 314:145-59. [PMID: 26642806 DOI: 10.1016/j.neuroscience.2015.11.059] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/02/2015] [Accepted: 11/25/2015] [Indexed: 12/11/2022]
Abstract
Following brain ischemia reperfusion (IR), the dramatic increase in adenosine activates A2AR to induce further neuronal damage. Noteworthy, A2A antagonists have proven efficacious in halting IR injury, however, the detailed downstream signaling remains elusive. To this end, the present study aimed to investigate the possible involvement of phospho-extracellular signal-regulated kinase (pERK1/2) pathway in mediating protection afforded by the central A2A blockade. Male Wistar rats (250-270 g) subjected to bilateral carotid occlusion for 45 min followed by a 24-h reperfusion period showed increased infarct size corroborating histopathological damage, memory impairment and motor incoordination as well as increased locomotor activity. Those events were mitigated by the unilateral intrahippocampal administration of the selective A2A antagonist SCH58261 via a decrease in pERK1/2 downstream from diacyl glycerol (DAG) signaling. Consequent to pERK1/2 inhibition, reduced hippocampal microglial activation, glial tumor necrosis factor-alpha (TNF-α) and brain-derived neurotropic factor (BDNF) expression, glutamate (Glu), inducible nitric oxide synthase (iNOS) and thiobarbituric acid reactive substances (TBARS) were evident in animals receiving SCH58261. Additionally, the anti-inflammatory cytokine interleukin-10 (IL-10) increased following nuclear factor (erythroid-derived 2)-like 2 (Nrf-2). Taken all together, these events suppressed apoptotic pathways via a reduction in cytochrome c (Cyt. c) as well as caspase-3 supporting a crucial role for pERK1/2 inhibition in consequent reduction of inflammatory and excitotoxic cascades as well as correction of the redox imbalance.
Collapse
Affiliation(s)
- R A Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - A M Agha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - A A Abdel-Rahman
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, NC, USA.
| | - N N Nassar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
15
|
Purine nucleosides in neuroregeneration and neuroprotection. Neuropharmacology 2015; 104:226-42. [PMID: 26577017 DOI: 10.1016/j.neuropharm.2015.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/20/2022]
Abstract
In the present review, we stress the importance of the purine nucleosides, adenosine and guanosine, in protecting the nervous system, both centrally and peripherally, via activation of their receptors and intracellular signalling mechanisms. A most novel part of the review focus on the mechanisms of neuronal regeneration that are targeted by nucleosides, including a recently identified action of adenosine on axonal growth and microtubule dynamics. Discussion on the role of the purine nucleosides transversally with the most established neurotrophic factors, e.g. brain derived neurotrophic factor (BDNF), glial derived neurotrophic factor (GDNF), is also focused considering the intimate relationship between some adenosine receptors, as is the case of the A2A receptors, and receptors for neurotrophins. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
|
16
|
Ribeiro FF, Neves-Tomé R, Assaife-Lopes N, Santos TE, Silva RFM, Brites D, Ribeiro JA, Sousa MM, Sebastião AM. Axonal elongation and dendritic branching is enhanced by adenosine A2A receptors activation in cerebral cortical neurons. Brain Struct Funct 2015; 221:2777-99. [DOI: 10.1007/s00429-015-1072-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/27/2015] [Indexed: 01/09/2023]
|
17
|
Chen JF, Lee CF, Chern Y. Adenosine receptor neurobiology: overview. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 119:1-49. [PMID: 25175959 DOI: 10.1016/b978-0-12-801022-8.00001-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adenosine is a naturally occurring nucleoside that is distributed ubiquitously throughout the body as a metabolic intermediary. In the brain, adenosine functions as an important upstream neuromodulator of a broad spectrum of neurotransmitters, receptors, and signaling pathways. By acting through four G-protein-coupled receptors, adenosine contributes critically to homeostasis and neuromodulatory control of a variety of normal and abnormal brain functions, ranging from synaptic plasticity, to cognition, to sleep, to motor activity to neuroinflammation, and cell death. This review begun with an overview of the gene and genome structure and the expression pattern of adenosine receptors (ARs). We feature several new developments over the past decade in our understanding of AR functions in the brain, with special focus on the identification and characterization of canonical and noncanonical signaling pathways of ARs. We provide an update on functional insights from complementary genetic-knockout and pharmacological studies on the AR control of various brain functions. We also highlight several novel and recent developments of AR neurobiology, including (i) recent breakthrough in high resolution of three-dimension structure of adenosine A2A receptors (A2ARs) in several functional status, (ii) receptor-receptor heterodimerization, (iii) AR function in glial cells, and (iv) the druggability of AR. We concluded the review with the contention that these new developments extend and strengthen the support for A1 and A2ARs in brain as therapeutic targets for neurologic and psychiatric diseases.
Collapse
Affiliation(s)
- Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA.
| | - Chien-fei Lee
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
18
|
Diógenes MJ, Ribeiro JA, Sebastião AM. Adenosine A2A Receptors and Neurotrophic Factors: Relevance for Parkinson’s Disease. CURRENT TOPICS IN NEUROTOXICITY 2015. [DOI: 10.1007/978-3-319-20273-0_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
The nerve growth factor signaling and its potential as therapeutic target for glaucoma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:759473. [PMID: 25250333 PMCID: PMC4164261 DOI: 10.1155/2014/759473] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 08/12/2014] [Indexed: 12/25/2022]
Abstract
Neuroprotective therapies which focus on factors leading to retinal ganglion cells (RGCs) degeneration have been drawing more and more attention. The beneficial effects of nerve growth factor (NGF) on the glaucoma have been recently suggested, but its effects on eye tissue are complex and controversial in various studies. Recent clinical trials of systemically and topically administrated NGF demonstrate that NGF is effective in treating several ocular diseases, including glaucoma. NGF has two receptors named high affinity NGF tyrosine kinase receptor TrkA and low affinity receptor p75NTR. Both receptors exist in cells in retina like RGC (expressing TrkA) and glia cells (expressing p75NTR). NGF functions by binding to TrkA or p75NTR alone or both together. The binding of NGF to TrkA alone in RGC promotes RGC's survival and proliferation through activation of TrkA and several prosurvival pathways. In contrast, the binding of NGF to p75NTR leads to apoptosis although it also promotes survival in some cases. Binding of NGF to both TrkA and p75NTR at the same time leads to survival in which p75NTR functions as a TrkA helping receptor. This review discusses the current understanding of the NGF signaling in retina and the therapeutic implications in the treatment of glaucoma.
Collapse
|
20
|
Jerónimo-Santos A, Batalha VL, Müller CE, Baqi Y, Sebastião AM, Lopes LV, Diógenes MJ. Impact of in vivo chronic blockade of adenosine A2A receptors on the BDNF-mediated facilitation of LTP. Neuropharmacology 2014; 83:99-106. [DOI: 10.1016/j.neuropharm.2014.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/20/2014] [Accepted: 04/08/2014] [Indexed: 11/29/2022]
|
21
|
Huang PC, Hsiao YT, Kao SY, Chen CF, Chen YC, Chiang CW, Lee CF, Lu JC, Chern Y, Wang CT. Adenosine A(2A) receptor up-regulates retinal wave frequency via starburst amacrine cells in the developing rat retina. PLoS One 2014; 9:e95090. [PMID: 24777042 PMCID: PMC4002430 DOI: 10.1371/journal.pone.0095090] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/23/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Developing retinas display retinal waves, the patterned spontaneous activity essential for circuit refinement. During the first postnatal week in rodents, retinal waves are mediated by synaptic transmission between starburst amacrine cells (SACs) and retinal ganglion cells (RGCs). The neuromodulator adenosine is essential for the generation of retinal waves. However, the cellular basis underlying adenosine's regulation of retinal waves remains elusive. Here, we investigated whether and how the adenosine A(2A) receptor (A(2A)R) regulates retinal waves and whether A(2A)R regulation of retinal waves acts via presynaptic SACs. METHODOLOGY/PRINCIPAL FINDINGS We showed that A(2A)R was expressed in the inner plexiform layer and ganglion cell layer of the developing rat retina. Knockdown of A(2A)R decreased the frequency of spontaneous Ca²⁺ transients, suggesting that endogenous A(2A)R may up-regulate wave frequency. To investigate whether A(2A)R acts via presynaptic SACs, we targeted gene expression to SACs by the metabotropic glutamate receptor type II promoter. Ca²⁺ transient frequency was increased by expressing wild-type A(2A)R (A2AR-WT) in SACs, suggesting that A(2A)R may up-regulate retinal waves via presynaptic SACs. Subsequent patch-clamp recordings on RGCs revealed that presynaptic A(2A)R-WT increased the frequency of wave-associated postsynaptic currents (PSCs) or depolarizations compared to the control, without changing the RGC's excitability, membrane potentials, or PSC charge. These findings suggest that presynaptic A(2A)R may not affect the membrane properties of postsynaptic RGCs. In contrast, by expressing the C-terminal truncated A(2A)R mutant (A(2A)R-ΔC) in SACs, the wave frequency was reduced compared to the A(2A)R-WT, but was similar to the control, suggesting that the full-length A(2A)R in SACs is required for A(2A)R up-regulation of retinal waves. CONCLUSIONS/SIGNIFICANCE A(2A)R up-regulates the frequency of retinal waves via presynaptic SACs, requiring its full-length protein structure. Thus, by coupling with the downstream intracellular signaling, A(2A)R may have a great capacity to modulate patterned spontaneous activity during neural circuit refinement.
Collapse
Affiliation(s)
- Pin-Chien Huang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Yu-Tien Hsiao
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Shao-Yen Kao
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ching-Feng Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Yu-Chieh Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chung-Wei Chiang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chien-fei Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Juu-Chin Lu
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chih-Tien Wang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
22
|
Chen JF. Adenosine receptor control of cognition in normal and disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 119:257-307. [PMID: 25175970 DOI: 10.1016/b978-0-12-801022-8.00012-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adenosine and adenosine receptors (ARs) are increasingly recognized as important therapeutic targets for controlling cognition under normal and disease conditions for its dual roles of neuromodulation as well as of homeostatic function in the brain. This chapter first presents the unique ability of adenosine, by acting on the inhibitory A1 and facilitating A2A receptor, to integrate dopamine, glutamate, and BNDF signaling and to modulate synaptic plasticity (e.g., long-term potentiation and long-term depression) in brain regions relevant to learning and memory, providing the molecular and cellular bases for adenosine receptor (AR) control of cognition. This led to the demonstration of AR modulation of social recognition memory, working memory, reference memory, reversal learning, goal-directed behavior/habit formation, Pavlovian fear conditioning, and effort-related behavior. Furthermore, human and animal studies support that AR activity can also, through cognitive enhancement and neuroprotection, reverse cognitive impairments in animal models of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, and schizophrenia. Lastly, epidemiological evidence indicates that regular human consumption of caffeine, the most widely used psychoactive drug and nonselective AR antagonists, is associated with the reduced cognitive decline in aging and AD patients, and with the reduced risk in developing PD. Thus, there is a convergence of the molecular studies revealing AR as molecular targets for integrating neurotransmitter signaling and controlling synaptic plasticity, with animal studies demonstrating the strong procognitive impact upon AR antagonism in normal and disease brains and with epidemiological and clinical evidences in support of caffeine and AR drugs for therapeutic modulation of cognition. Since some of adenosine A2A receptor antagonists are already in phase III clinical trials for motor benefits in PD patients with remarkable safety profiles, additional animal and human studies to better understand the mechanism underlying the AR-mediated control of cognition under normal and disease conditions will provide the required rationale to stimulate the necessary clinical investigation to rapidly translate adenosine and AR drug as a novel strategy to control memory impairment in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA; The Molecular Medicine Institute, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
23
|
Rial D, Lara DR, Cunha RA. The Adenosine Neuromodulation System in Schizophrenia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 119:395-449. [DOI: 10.1016/b978-0-12-801022-8.00016-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Tak H, Haque MM, Kim MJ, Lee JH, Baik JH, Kim Y, Kim DJ, Grailhe R, Kim YK. Bimolecular fluorescence complementation; lighting-up tau-tau interaction in living cells. PLoS One 2013; 8:e81682. [PMID: 24312574 PMCID: PMC3847076 DOI: 10.1371/journal.pone.0081682] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/15/2013] [Indexed: 11/18/2022] Open
Abstract
Abnormal tau aggregation is a pathological hallmark of many neurodegenerative disorders and it is becoming apparent that soluble tau aggregates play a key role in neurodegeneration and memory impairment. Despite this pathological importance, there is currently no single method that allows monitoring soluble tau species in living cells. In this regard, we developed a cell-based sensor that visualizes tau self-assembly. By introducing bimolecular fluorescence complementation (BiFC) technique to tau, we were able to achieve spatial and temporal resolution of tau-tau interactions in a range of states, from soluble dimers to large aggregates. Under basal conditions, tau-BiFC cells exhibited little fluorescence intensity, implying that the majority of tau molecules exist as monomers. Upon chemically induced tau hyperphosphorylation, BiFC fluorescence greatly increased, indicating an increased level of tau-tau interactions. As an indicator of tau assembly, our BiFC sensor would be a useful tool for investigating tau pathology.
Collapse
Affiliation(s)
- HyeJin Tak
- Korea Institute of Science and Technology (KIST), Brain Science Institute, Center for neuro-medicine, Seoul, South Korea
- School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Md. Mamunul Haque
- Korea Institute of Science and Technology (KIST), Brain Science Institute, Center for neuro-medicine, Seoul, South Korea
- Biological Chemistry, University of Science and Technology (UST), Daejon, South Korea
| | - Min Jung Kim
- Korea Institute of Science and Technology (KIST), Brain Science Institute, Center for neuro-medicine, Seoul, South Korea
| | - Joo Hyun Lee
- Institut Pasteur Korea, Neurodegenerative Disorders, Sungnam, South Korea
| | - Ja-Hyun Baik
- School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - YoungSoo Kim
- Korea Institute of Science and Technology (KIST), Brain Science Institute, Center for neuro-medicine, Seoul, South Korea
| | - Dong Jin Kim
- Korea Institute of Science and Technology (KIST), Brain Science Institute, Center for neuro-medicine, Seoul, South Korea
| | - Regis Grailhe
- Institut Pasteur Korea, Neurodegenerative Disorders, Sungnam, South Korea
| | - Yun Kyung Kim
- Korea Institute of Science and Technology (KIST), Brain Science Institute, Center for neuro-medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
25
|
Lee CF, Lai HL, Lee YC, Chien CL, Chern Y. The A2A adenosine receptor is a dual coding gene: a novel mechanism of gene usage and signal transduction. J Biol Chem 2013; 289:1257-70. [PMID: 24293369 DOI: 10.1074/jbc.m113.509059] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The A2A adenosine receptor (A2AR) is a G protein-coupled receptor and a major target of caffeine. The A2AR gene encodes alternative transcripts that are initiated from at least two independent promoters. The different transcripts of the A2AR gene contain the same coding region and 3'-untranslated region and different 5'-untranslated regions that are highly conserved among species. We report here that in addition to the production of the A2AR protein, translation from an upstream, out-of-frame AUG of the rat A2AR gene produces a 134-amino acid protein (designated uORF5). An anti-uORF5 antibody recognized a protein of the predicted size of uORF5 in PC12 cells and rat brains. Up-regulation of A2AR transcripts by hypoxia led to increased levels of both the A2AR and uORF5 proteins. Moreover, stimulation of A2AR increased the level of the uORF5 protein via post-transcriptional regulation. Expression of the uORF5 protein suppressed the AP1-mediated transcription promoted by nerve growth factor and modulated the expression of several proteins that were implicated in the MAPK pathway. Taken together, our results show that the rat A2AR gene encodes two distinct proteins (A2AR and uORF5) in an A2AR-dependent manner. Our study reveals a new example of the complexity of the mammalian genome and provides novel insights into the function of A2AR.
Collapse
Affiliation(s)
- Chien-fei Lee
- From the Institute of Neuroscience, School of Life Sciences, National Yang Ming University, Taipei 112, Taiwan
| | | | | | | | | |
Collapse
|
26
|
Jeon SJ, Bak H, Seo J, Han SM, Lee SH, Han SH, Kwon KJ, Ryu JH, Cheong JH, Ko KH, Yang SI, Choi JW, Park SH, Shin CY. Oroxylin A Induces BDNF Expression on Cortical Neurons through Adenosine A2A Receptor Stimulation: A Possible Role in Neuroprotection. Biomol Ther (Seoul) 2013; 20:27-35. [PMID: 24116271 PMCID: PMC3792198 DOI: 10.4062/biomolther.2012.20.1.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/26/2011] [Accepted: 11/02/2011] [Indexed: 11/05/2022] Open
Abstract
Oroxylin A is a flavone isolated from a medicinal herb reported to be effective in reducing the inflammatory and oxidative stresses. It also modulates the production of brain derived neurotrophic factor (BDNF) in cortical neurons by the transactivation of cAMP response element-binding protein (CREB). As a neurotrophin, BDNF plays roles in neuronal development, differentiation, synaptogenesis, and neural protection from the harmful stimuli. Adenosine A2A receptor colocalized with BDNF in brain and the functional interaction between A2A receptor stimulation and BDNF action has been suggested. In this study, we investigated the possibility that oroxylin A modulates BDNF production in cortical neuron through the regulation of A2A receptor system. As ex-pected, CGS21680 (A2A receptor agonist) induced BDNF expression and release, however, an antagonist, ZM241385, prevented oroxylin A-induced increase in BDNF production. Oroxylin A activated the PI3K-Akt-GSK-3β signaling pathway, which is inhibited by ZM241385 and the blockade of the signaling pathway abolished the increase in BDNF production. The physiological roles of oroxylin A-induced BDNF production were demonstrated by the increased neurite extension as well as synapse formation from neurons. Overall, oroxylin A might regulate BDNF production in cortical neuron through A2A receptor stimulation, which promotes cellular survival, synapse formation and neurite extension.
Collapse
Affiliation(s)
- Se Jin Jeon
- Department of Pharmacology, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742 ; Neuroscience Research Center, Institute for Advanced Biomedical Sciences
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Vaiman D, Calicchio R, Miralles F. Landscape of transcriptional deregulations in the preeclamptic placenta. PLoS One 2013; 8:e65498. [PMID: 23785430 PMCID: PMC3681798 DOI: 10.1371/journal.pone.0065498] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/26/2013] [Indexed: 02/06/2023] Open
Abstract
Preeclampsia is a pregnancy disease affecting 5 to 8% of pregnant women and a leading cause of both maternal and fetal mortality and morbidity. Because of a default in the process of implantation, the placenta of preeclamptic women undergoes insufficient vascularization. This results in placental ischemia, inflammation and subsequent release of placental debris and vasoactive factors in the maternal circulation causing a systemic endothelial activation. Several microarray studies have analyzed the transcriptome of the preeclamptic placentas to identify genes which could be involved in placental dysfunction. In this study, we compared the data from publicly available microarray analyses to obtain a consensus list of modified genes. This allowed to identify consistently modified genes in the preeclamptic placenta. Of these, 67 were up-regulated and 31 down-regulated. Assuming that changes in the transcription level of co-expressed genes may result from the coordinated action of a limited number of transcription factors, we looked for over-represented putative transcription factor binding sites in the promoters of these genes. Indeed, we found that the promoters of up-regulated genes are enriched in putative binding sites for NFkB, CREB, ANRT, REEB1, SP1, and AP-2. In the promoters of down-regulated genes, the most prevalent putative binding sites are those of MZF-1, NFYA, E2F1 and MEF2A. These transcriptions factors are known to regulate specific biological pathways such as cell responses to inflammation, hypoxia, DNA damage and proliferation. We discuss here the molecular mechanisms of action of these transcription factors and how they can be related to the placental dysfunction in the context of preeclampsia.
Collapse
Affiliation(s)
- Daniel Vaiman
- INSERM U1016-CNRS UMR8104, Université Paris Descartes, Institut Cochin, Paris, France
| | - Rosamaria Calicchio
- INSERM U1016-CNRS UMR8104, Université Paris Descartes, Institut Cochin, Paris, France
| | - Francisco Miralles
- INSERM U1016-CNRS UMR8104, Université Paris Descartes, Institut Cochin, Paris, France
- * E-mail:
| |
Collapse
|
28
|
Lv T, Wang SD, Bai J. Thioredoxin-1 was required for CREB activity by methamphetamine in rat pheochromocytoma cells. Cell Mol Neurobiol 2013; 33:319-25. [PMID: 23239345 DOI: 10.1007/s10571-012-9897-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 11/28/2012] [Indexed: 12/20/2022]
Abstract
Methamphetamine (METH) is one of the most commonly abused agents by illicit-drug users. Thioredoxin-1 (Trx-1) plays important biological roles both in intra- and extracellular compartments, including in regulation of various intracellular molecules via thiol redox control. In this study, we found that Trx-1 was induced by METH in rat pheochromocytoma PC12 cells. Furthermore, PI3K/Akt pathway was involved in METH-induced increase of Trx-1 expression. An increase in phosphorylated cAMP response element-binding protein (CREB) was also observed after exposure of PC12 cells to METH, which was inhibited by a PI3K inhibitor, LY294002. In addition, the siRNA targeted toTrx-1 reduced the level of phosphorylated CREB by METH, suggesting Trx-1 is necessary for increased activity of CREB by METH. The results obtained in this study showed that Trx-1 might play a role in the actions of METH.
Collapse
Affiliation(s)
- Tao Lv
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | | | | |
Collapse
|
29
|
Bisphenol-A suppresses neurite extension due to inhibition of phosphorylation of mitogen-activated protein kinase in PC12 cells. Chem Biol Interact 2011; 194:23-30. [DOI: 10.1016/j.cbi.2011.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/12/2011] [Accepted: 08/01/2011] [Indexed: 01/10/2023]
|
30
|
Activation of adenosine A2A receptor up-regulates BDNF expression in rat primary cortical neurons. Neurochem Res 2011; 36:2259-69. [PMID: 21792677 DOI: 10.1007/s11064-011-0550-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 06/18/2011] [Accepted: 07/14/2011] [Indexed: 01/12/2023]
Abstract
As a member of neurotrophin family, brain derived neurotrophic factor (BDNF) plays critical roles in neuronal development, differentiation, synaptogenesis, and neural protection from the harmful stimuli. There have been reported that adenosine A2(A) receptor subtype is widely distributed in the brain regions, such as hippocampus, striatum, and cortex. Adenosine A2(A) receptor is colocalized with BDNF in brain regions and the functional interaction between A2(A) receptor stimulation and BDNF action has been suggested. In this study, we investigated the possibility that the activation of A2(A) receptor modulates BDNF production in rat primary cortical neuron. CGS21680, an adenosine A2(A) receptor agonist, induced BDNF expression and release. An antagonist against A2(A) receptor, ZM241385, prevented CGS21680-induced increase in BDNF production. A2(A) receptor stimulation induced the activation of Akt-GSK-3β signaling pathway and the blockade of the signaling pathway with specific inhibitors abolished the increase in BDNF production, possibly via modulation of ERK1/2-CREB pathway. The physiological roles of A2(A) receptor-induced BDNF production was demonstrated by the protection of neurons from the excitotoxicity and increased neurite extension as well as synapse formation from immature and mature neurons. Taken together, activation of A2(A) receptor regulates BDNF production in rat cortical neuron, which provides neuro-protective action.
Collapse
|
31
|
Butler TR, Prendergast MA. Neuroadaptations in adenosine receptor signaling following long-term ethanol exposure and withdrawal. Alcohol Clin Exp Res 2011; 36:4-13. [PMID: 21762181 DOI: 10.1111/j.1530-0277.2011.01586.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ethanol affects the function of neurotransmitter systems, resulting in neuroadaptations that alter neural excitability. Adenosine is one such receptor system that is changed by ethanol exposure. The current review is focused on the A(1) and the A(2A) receptor subtypes in the context of ethanol-related neuroadaptations and ethanol withdrawal because these subtypes (i) are activated by basal levels of adenosine, (ii) have been most well-studied for their role in neuroprotection and ethanol-related phenomena, and (iii) are the primary site of action for caffeine in the brain, a substance commonly ingested with ethanol. It is clear that alterations in adenosinergic signaling mediate many of the effects of acute ethanol administration, particularly with regard to motor function and sedation. Further, prolonged ethanol exposure has been shown to produce adaptations in the cell surface expression or function of both A(1) and the A(2A) receptor subtypes, effects that likely promote neuronal excitability during ethanol withdrawal. As a whole, these findings demonstrate a significant role for ethanol-induced adaptations in adenosine receptor signaling that likely influence neuronal function, viability, and relapse to ethanol intake following abstinence.
Collapse
Affiliation(s)
- Tracy R Butler
- Department of Psychology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, USA.
| | | |
Collapse
|
32
|
Cyclic AMP signalling through PKA but not Epac is essential for neurturin-induced biphasic ERK1/2 activation and neurite outgrowths through GFRα2 isoforms. Cell Signal 2011; 23:1727-37. [PMID: 21723942 DOI: 10.1016/j.cellsig.2011.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/09/2011] [Accepted: 06/15/2011] [Indexed: 11/23/2022]
Abstract
Cyclic AMP (cAMP) and neurotrophic factors are known to interact closely to promote neurite outgrowth and neuronal regeneration. Glial cell line-derived neurotrophic factor (GDNF) and its family member neurturin (NTN) transduce signal through a multi-component receptor complex consisting of GDNF family receptor alpha 2 (GFRα2) and Ret receptor tyrosine kinase. Neurons from GFRα2-deficient mice do not promote axonal initiation when stimulated by NTN, consistent with the role of GFRα2 in neuronal outgrowth. Multiple alternatively spliced isoforms of GFRα2 are known to be expressed in the nervous system. GFRα2a and GFRα2c but not GFRα2b promoted neurite outgrowth. It is currently unknown if cAMP signalling is differentially regulated by these isoforms. In this study, NTN activation of GFRα2a and GFRα2c but not GFRα2b induced biphasic ERK1/2 activation and phosphorylation of the major cAMP target CREB. Interestingly, inhibition of cAMP signalling significantly impaired GFRα2a and GFRα2c-mediated neurite outgrowth while cAMP agonists cooperated with GFRα2b to induce neurite outgrowth. Importantly, the specific cAMP effector PKA but not Epac was essential for NTN-induced neurite outgrowth, through transcription and translation-dependent activation of late phase ERK1/2. Taken together, these results not only demonstrated the essential role of cAMP-PKA signalling in NTN-induced biphasic ERK1/2 activation and neurite outgrowth, but also suggested cAMP-PKA signalling as a hitherto unrecognized underlying mechanism contributing to the differential neuritogenic activities of GFRα2 isoforms.
Collapse
|
33
|
Verzijl D, IJzerman AP. Functional selectivity of adenosine receptor ligands. Purinergic Signal 2011; 7:171-92. [PMID: 21544511 PMCID: PMC3146648 DOI: 10.1007/s11302-011-9232-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 04/05/2011] [Indexed: 12/11/2022] Open
Abstract
Adenosine receptors are plasma membrane proteins that transduce an extracellular signal into the interior of the cell. Basically every mammalian cell expresses at least one of the four adenosine receptor subtypes. Recent insight in signal transduction cascades teaches us that the current classification of receptor ligands into agonists, antagonists, and inverse agonists relies very much on the experimental setup that was used. Upon activation of the receptors by the ubiquitous endogenous ligand adenosine they engage classical G protein-mediated pathways, resulting in production of second messengers and activation of kinases. Besides this well-described G protein-mediated signaling pathway, adenosine receptors activate scaffold proteins such as β-arrestins. Using innovative and sensitive experimental tools, it has been possible to detect ligands that preferentially stimulate the β-arrestin pathway over the G protein-mediated signal transduction route, or vice versa. This phenomenon is referred to as functional selectivity or biased signaling and implies that an antagonist for one pathway may be a full agonist for the other signaling route. Functional selectivity makes it necessary to redefine the functional properties of currently used adenosine receptor ligands and opens possibilities for new and more selective ligands. This review focuses on the current knowledge of functionally selective adenosine receptor ligands and on G protein-independent signaling of adenosine receptors through scaffold proteins.
Collapse
Affiliation(s)
- Dennis Verzijl
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Ad P. IJzerman
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
34
|
Chen JF, Chern Y. Impacts of methylxanthines and adenosine receptors on neurodegeneration: human and experimental studies. Handb Exp Pharmacol 2011:267-310. [PMID: 20859800 DOI: 10.1007/978-3-642-13443-2_10] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Neurodegenerative disorders are some of the most feared illnesses in modern society, with no effective treatments to slow or halt this neurodegeneration. Several decades after the earliest attempt to treat Parkinson's disease using caffeine, tremendous amounts of information regarding the potential beneficial effect of caffeine as well as adenosine drugs on major neurodegenerative disorders have accumulated. In the first part of this review, we provide general background on the adenosine receptor signaling systems by which caffeine and methylxanthine modulate brain activity and their role in relationship to the development and treatment of neurodegenerative disorders. The demonstration of close interaction between adenosine receptor and other G protein coupled receptors and accessory proteins might offer distinct pharmacological properties from adenosine receptor monomers. This is followed by an outline of the major mechanism underlying neuroprotection against neurodegeneration offered by caffeine and adenosine receptor agents. In the second part, we discuss the current understanding of caffeine/methylxantheine and its major target adenosine receptors in development of individual neurodegenerative disorders, including stroke, traumatic brain injury Alzheimer's disease, Parkinson's disease, Huntington's disease and multiple sclerosis. The exciting findings to date include the specific in vivo functions of adenosine receptors revealed by genetic mouse models, the demonstration of a broad spectrum of neuroprotection by chronic treatment of caffeine and adenosine receptor ligands in animal models of neurodegenerative disorders, the encouraging development of several A(2A) receptor selective antagonists which are now in advanced clinical phase III trials for Parkinson's disease. Importantly, increasing body of the human and experimental studies reveals encouraging evidence that regular human consumption of caffeine in fact may have several beneficial effects on neurodegenerative disorders, from motor stimulation to cognitive enhancement to potential neuroprotection. Thus, with regard to neurodegenerative disorders, these potential benefits of methylxanthines, caffeine in particular, strongly argue against the common practice by clinicians to discourage regular human consumption of caffeine in aging populations.
Collapse
Affiliation(s)
- Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| | | |
Collapse
|
35
|
Wang Z, Che PL, Du J, Ha B, Yarema KJ. Static magnetic field exposure reproduces cellular effects of the Parkinson's disease drug candidate ZM241385. PLoS One 2010; 5:e13883. [PMID: 21079735 PMCID: PMC2975637 DOI: 10.1371/journal.pone.0013883] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Accepted: 10/18/2010] [Indexed: 12/20/2022] Open
Abstract
Background This study was inspired by coalescing evidence that magnetic therapy may be a viable treatment option for certain diseases. This premise is based on the ability of moderate strength fields (i.e., 0.1 to 1 Tesla) to alter the biophysical properties of lipid bilayers and in turn modulate cellular signaling pathways. In particular, previous results from our laboratory (Wang et al., BMC Genomics, 10, 356 (2009)) established that moderate strength static magnetic field (SMF) exposure altered cellular endpoints associated with neuronal function and differentiation. Building on this background, the current paper investigated SMF by focusing on the adenosine A2A receptor (A2AR) in the PC12 rat adrenal pheochromocytoma cell line that displays metabolic features of Parkinson's disease (PD). Methodology and Principal Findings SMF reproduced several responses elicited by ZM241385, a selective A2AR antagonist, in PC12 cells including altered calcium flux, increased ATP levels, reduced cAMP levels, reduced nitric oxide production, reduced p44/42 MAPK phosphorylation, inhibited proliferation, and reduced iron uptake. SMF also counteracted several PD-relevant endpoints exacerbated by A2AR agonist CGS21680 in a manner similar to ZM241385; these include reduction of increased expression of A2AR, reversal of altered calcium efflux, dampening of increased adenosine production, reduction of enhanced proliferation and associated p44/42 MAPK phosphorylation, and inhibition of neurite outgrowth. Conclusions and Significance When measured against multiple endpoints, SMF elicited qualitatively similar responses as ZM241385, a PD drug candidate. Provided that the in vitro results presented in this paper apply in vivo, SMF holds promise as an intriguing non-invasive approach to treat PD and potentially other neurological disorders.
Collapse
Affiliation(s)
- Zhiyun Wang
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Pao-Lin Che
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jian Du
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Barbara Ha
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kevin J. Yarema
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
36
|
Sun CN, Chuang HC, Wang JY, Chen SY, Cheng YY, Lee CF, Chern Y. The A2A adenosine receptor rescues neuritogenesis impaired by p53 blockage via KIF2A, a kinesin family member. Dev Neurobiol 2010; 70:604-21. [PMID: 20506231 DOI: 10.1002/dneu.20802] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The A2A adenosine receptor (A2AR) is a G-protein-coupled receptor. We previously reported that the C terminus of the A2AR binds to translin-associated protein X (TRAX) and modulates nerve growth factor (NGF)-evoked neurite outgrowth in PC12 cells. Herein, we show that neuritogenesis of primary hippocampal neurons requires p53 because blockage of p53 suppressed neurite outgrowth. The impaired neuritogenesis caused by p53 blockage was rescued by activation of the A2AR (designated the A2A rescue effect) in a TRAX-dependent manner. Importantly, suppression of a TRAX-interacting protein (kinesin heavy chain member 2A, KIF2A) inhibited the A2A rescue effect, whereas overexpression of KIF2A caused a rescue effect. Expression of a KIF2A fragment (KIF2A514), which disturbed the interaction between KIF2A and TRAX, blocked the rescue effect. Transient colocalization of TRAX and KIF2A was detected in the nucleus of PC12 cells upon NGF treatment. These data suggest that functional interaction between KIF2A and TRAX is critical for the A2A rescue effect. Moreover, p53 blockage during NGF treatment prevented the redistribution of KIF2A from the nucleus to the cytoplasmic region. Expression of a nuclear-retained KIF2A variant (NLS-KIF2A) did not rescue the impaired neurite outgrowth as did the wild-type KIF2A. Therefore, redistribution of KIF2A to the cytoplasmic fraction is a prerequisite for neurite outgrowth. Collectively, we demonstrate that KIF2A functions downstream of p53 to mediate neuritogenesis of primary hippocampal neurons and PC12 cells. Stimulation of the A2AR rescued neuritogenesis impaired by p53 blockage via an interaction between TRAX and KIF2A.
Collapse
Affiliation(s)
- Chung-Nan Sun
- Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
37
|
Modulation of brain-derived neurotrophic factor (BDNF) actions in the nervous system by adenosine A(2A) receptors and the role of lipid rafts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1340-9. [PMID: 20603099 DOI: 10.1016/j.bbamem.2010.06.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/23/2010] [Accepted: 06/27/2010] [Indexed: 12/11/2022]
Abstract
In this paper we review some novel aspects related to the way adenosine A(2A) receptors (A(2A)R) modulate the action of BDNF or its high-affinity receptors, the TrkB receptors, on synaptic transmission and plasticity, as well as upon cholinergic currents and GABA transporters. Evidence has been accumulating that adenosine A(2A)Rs are required for most of the synaptic actions of BDNF. In some cases, where A(2A)Rs are constitutively activated (e.g. by endogenous extracellular adenosine), the need for A(2A)R activation for the maintenance of the synaptic influences of BDNF can be envisaged from the loss of BDNF effects upon blockade of adenosine A(2A)Rs or upon removal of extracellular adenosine with adenosine deaminase. In some other cases, it is necessary to enhance extracellular adenosine levels (e.g. depolarization) or to further activate A(2A)Rs (e.g. with selective agonists) to trigger a BDNF neuromodulatory role at the synapses. Age- and cell-dependent differences may determine the above two possibilities, but in all cases it is quite clear that there is close interplay between adenosine A(2A)Rs and BDNF TrkB receptors at synapses. The role of lipid rafts in this cross-talk will be discussed. This article is part of a Special Issue entitled: "Adenosine Receptors".
Collapse
|
38
|
Sebastião AM, Ribeiro JA. Tuning and fine-tuning of synapses with adenosine. Curr Neuropharmacol 2010; 7:180-94. [PMID: 20190960 PMCID: PMC2769002 DOI: 10.2174/157015909789152128] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/21/2009] [Accepted: 04/28/2009] [Indexed: 12/03/2022] Open
Abstract
The ‘omnipresence’ of adenosine in all nervous system cells (neurons and glia) together with the intensive release of adenosine following insults, makes adenosine as a sort of ‘maestro’ of synapses leading to the homeostatic coordination of brain function. Besides direct actions of adenosine on the neurosecretory mechanisms, where adenosine operates to tune neurotransmitter release, receptor-receptor interactions as well as interplays between adenosine receptors and transporters occur as part of the adenosine’s attempt to fine tuning synaptic transmission. This review will focus on the different ways adenosine can use to trigger or brake the action of several neurotransmitters and neuromodulators. Adenosine receptors cross talk with other G protein coupled receptors (GPCRs), with ionotropic receptors and with receptor kinases. Most of these interactions occur through A2A receptors, which in spite their low density in some brain areas, such as the hippocampus, may function as metamodulators. Tonic adenosine A2A receptor activity is a required step to allow synaptic actions of neurotrophic factors, namely upon synaptic transmission at both pre- and post-synaptic level as well as upon synaptic plasticity and neuronal survival. The implications of these interactions in normal brain functioning and in neurologic and psychiatric dysfunction will be discussed.
Collapse
Affiliation(s)
- A M Sebastião
- Institute of Pharmacology and Neurosciences, Faculty of Medicine and Unit of Neurosciences, Institute of Molecular Medicine, University of Lisbon, Lisboa, Portugal.
| | | |
Collapse
|
39
|
Abstract
The presence of adenosine in all nervous system cells (neurones and glia) together with its intensive release following insults makes adenosine as a sort of 'regulator' of synaptic communication, leading to the homeostatic coordination of brain function. Besides the direct actions of adenosine on the neurosecretory mechanisms, to tune neurotransmitter release, adenosine receptors interact with other receptors as well as with transporters as part of its attempt to fine-tune synaptic transmission. This review will focus on examples of the different ways adenosine can use to modulate or metamodulate synapses, in other words, to trigger or brake the action of some neurotransmitters and neuromodulators, to cross-talk with other G protein-coupled receptors, with ionotropic receptors and with receptor kinases as well as with transporters. Most of these interactions occur through A2A receptors, which in spite of their low density in some brain areas, such as the hippocampus, may function as amplifiers of the signalling of other mediators at synapses.
Collapse
Affiliation(s)
- J A Ribeiro
- Institute of Pharmacology and Neurosciences, Faculty of Medicine and Unit of Neurosciences, Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal.
| | | |
Collapse
|
40
|
Local glutamate level dictates adenosine A2A receptor regulation of neuroinflammation and traumatic brain injury. J Neurosci 2010; 30:5802-10. [PMID: 20410132 DOI: 10.1523/jneurosci.0268-10.2010] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
During brain injury, extracellular adenosine and glutamate levels increase rapidly and dramatically. We hypothesized that local glutamate levels in the brain dictates the adenosine-adenosine A(2A) receptor (A(2A)R) effects on neuroinflammation and brain damage outcome. Here, we showed that, in the presence of low concentrations of glutamate, the A(2A)R agonist 3-[4-[2-[[6-amino-9-[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxy-oxolan-2-yl]purin-2-yl]amino]ethyl]phenyl]propanoic acid (CGS21680) inhibited lipopolysaccharide (LPS)-induced nitric oxide synthase (NOS) activity of cultured microglial cells, an effect that was dependent on the protein kinase A (PKA) pathway. However, in high concentrations of glutamate, CGS21680 increased LPS-induced NOS activity in a protein kinase C (PKC)-dependent manner. Thus, increasing the local level of glutamate redirects A(2A)R signaling from the PKA to the PKC pathway, resulting in a switch in A(2A)R effects from antiinflammatory to proinflammatory. In a cortical impact model of traumatic brain injury (TBI) in mice, brain water contents, behavioral deficits, and expression of tumor necrosis factor-alpha, interleukin-1 mRNAs, and inducible NOS were attenuated by administering CGS21680 at post-TBI time when brain glutamate levels were low, or by administering the A(2A)R antagonist ZM241385 [4-(2-{[5-amino-2-(2-furyl)[1,2,4]triazolo[1,5-a][1,3,5]triazin-7-yl]amino}ethyl)phenol] at post-TBI time when brain glutamate levels were elevated. Furthermore, pre-TBI treatment with the glutamate release inhibitor (S)-4C3HPG [(S)-4-carboxy-3-hydroxyphenylglycine] converted the debilitating effect of CGS21680 administered at post-TBI time with high glutamate level to a neuroprotective effect. This further indicates that the switch in the effect of A(2A)R activation in intact animals from antiinflammatory to proinflammatory is dependent on glutamate concentration. These findings identify a novel role for glutamate in modulation of neuroinflammation and brain injury via the adenosine-A(2A)R system.
Collapse
|
41
|
Liou GI. Diabetic retinopathy: Role of inflammation and potential therapies for anti-inflammation. World J Diabetes 2010; 1:12-8. [PMID: 21537423 PMCID: PMC3083879 DOI: 10.4239/wjd.v1.i1.12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 02/23/2010] [Accepted: 03/02/2010] [Indexed: 02/05/2023] Open
Abstract
Diabetic retinopathy is a leading cause of blindness among working-age adults. Despite many years of research, treatment options for diabetic retinopathy remain limited and with adverse effects. Discovery of new molecular entities with adequate clinical activity for diabetic retinopathy remains one of the key research priorities in ophthalmology. This review is focused on the therapeutic effects of cannabidiol (CBD), a non-psychoactive native cannabinoid, as an emerging and novel therapeutic modality in ophthalmology based on systematic studies in animal models of inflammatory retinal diseases including diabetic retinopathy - a retinal disease associated with vascular-neuroinflammation. Special emphasis is placed on novel mechanisms which may shed light on the pharmacological activity associated with CBD preclinically. These include a self-defence system against inflammation and neurodegeneration mediated by inhibition of equilibrative nucleoside transporter and activation of adenosine receptor by treatment with CBD.
Collapse
Affiliation(s)
- Gregory I Liou
- Gregory I Liou, Department of Ophthalmology, Medical College of Georgia, GA 30912, United States
| |
Collapse
|
42
|
Liou G, El-Remessy A, Ibrahim A, Caldwell R, Khalifa Y, Gunes A, Nussbaum J. Cannabidiol As a Putative Novel Therapy for Diabetic Retinopathy: A Postulated Mechanism of Action as an Entry Point for Biomarker-Guided Clinical Development. ACTA ACUST UNITED AC 2009; 7:215-222. [PMID: 20953236 DOI: 10.2174/1875692110907030215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Diabetic retinopathy is a leading cause of blindness in the Western world. However, treatment options for diabetic retinopathy are limited and display poor efficacy with marked patient-to-patient variation in therapeutic outcomes. Discovery of new molecular entities acting on mechanistically novel biological pathways remains as one of the key research priorities in diabetic retinopathy. Moreover, given the variable success of the existing treatment modalities, a targeted and personalized drug development strategy could be more fruitful for rational and successful transition of preclinical discoveries to the clinical realm. This review is focused on cannabidiol, a non-psychoactive native cannabinoid, as an emerging and novel therapeutic modality based on systematic studies in animal models of inflammatory retinal diseases including diabetic retinopathy - one of the retinal diseases associated with vascular neuroinflammation. We present the postulated and preclinically documented novel mechanisms that may underlie cannabidiol mode of action in diabetic retinopathy. We discuss the interindividual variation in pharmacokinetic pathways as well as in the SLC29A1 gene, a molecular target for cannabidiol. We emphasize that the novel mode of action of cannabidiol and the previous failures with nontargeted interventions in diabetic retinopathy collectively demand a more rational and personalized clinical development strategy for compounds that have shown promise at the preclinical stage. Moreover, it is noteworthy that ophthalmology, as a medical specialty, has fewer examples (e.g., compared to oncology) of personalized medicine and biomarker applications thus far. Understanding the biological action of cannabidiol in preclinical studies is therefore a rational first step to proactively map the pertinent biomarker strategies in clinical proof of concept studies in diabetic retinopathy, and to allow advances at the hitherto neglected intersection of personalized medicine and ophthalmology.
Collapse
Affiliation(s)
- Gi Liou
- Department of Ophthalmology, Medical College of Georgia, Augusta, GA, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Washio A, Kitamura C, Jimi E, Terashita M, Nishihara T. Mechanisms involved in suppression of NGF-induced neuronal differentiation of PC12 cells by hyaluronic acid. Exp Cell Res 2009; 315:3036-43. [PMID: 19615362 DOI: 10.1016/j.yexcr.2009.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 07/05/2009] [Accepted: 07/08/2009] [Indexed: 01/10/2023]
Abstract
In the present study, we found that hyaluronic acid (HA) suppressed the neuronal differentiation mediated by nerve growth factor (NGF). In addition, we examined the mechanism by which HA inhibits the NGF-induced neurite outgrowth of PC12 cells. We elucidated the direct interaction between NGF and HA, and found that HA did not bind to NGF directly using a quartz-crystal microbalance. Western blot analysis revealed that HA suppressed NGF-induced phosphorylation of p38 MAPK, ERKs, and transcriptional factor CREB in PC12 cells. Furthermore, HA inhibited the luciferase activity of pCRE-Luc transfected PC12 cells in the presence of NGF. We confirmed that the p38 MAPK inhibitor SB203580 and ERK inhibitor U0126 suppressed NGF-induced neurite outgrowth of PC12 cells, and found that the inhibitory effects of HA on phosphorylation of ERKs, but not of p38 MAPK, were restored by the anti-RHAMM antibody. The number of PC12 cells with neurites increased remarkably when pre-cultured with the anti-RHAMM antibody, then treated with NGF and HA. Our findings indicate that HA inhibits NGF-induced neuronal differentiation of PC12 cells partially by inhibiting ERK phosphorylation through RHAMM, and suggest that the binding of HA to RHAMM modifies the signaling pathways in PC12 cells treated with NGF.
Collapse
Affiliation(s)
- Ayako Washio
- Department of Health Promotion, Kyushu Dental College, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | | | | | | | | |
Collapse
|
44
|
Sebastião AM, Ribeiro JA. Triggering neurotrophic factor actions through adenosine A2A receptor activation: implications for neuroprotection. Br J Pharmacol 2009; 158:15-22. [PMID: 19508402 DOI: 10.1111/j.1476-5381.2009.00157.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
G protein coupled receptors and tropomyosin-related kinase (Trk) receptors have distinct structure and transducing mechanisms; therefore, cross-talk among them was unexpected. Evidence has, however, accumulated showing that tonic adenosine A2A receptor activity is a required step to allow synaptic actions of neurotrophic factors, namely upon synaptic transmission at both pre- and post-synaptic level as well as upon synaptic plasticity. An enhancement of A2A receptor tonus upon ageing may partially compensate the loss of TrkB receptors, rescuing to certain degree the facilitatory action of brain derived neurotrophic factor in aged animals, which might prove particularly relevant in the prevention of neurodegeneration upon ageing. A2A receptors also trigger synaptic actions of other neurotrophic factors, such as glial derived neurotrophic factor at dopaminergic striatal nerve endings. The growing evidence that tonic adenosine A2A receptor activity is a crucial step to allow actions of neurotrophic factors in neurones will be reviewed and discussed in the light of therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ana M Sebastião
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisbon, Portugal.
| | | |
Collapse
|
45
|
Abstract
The adenosine receptors (ARs) in the nervous system act as a kind of "go-between" to regulate the release of neurotransmitters (this includes all known neurotransmitters) and the action of neuromodulators (e.g., neuropeptides, neurotrophic factors). Receptor-receptor interactions and AR-transporter interplay occur as part of the adenosine's attempt to control synaptic transmission. A(2A)ARs are more abundant in the striatum and A(1)ARs in the hippocampus, but both receptors interfere with the efficiency and plasticity-regulated synaptic transmission in most brain areas. The omnipresence of adenosine and A(2A) and A(1) ARs in all nervous system cells (neurons and glia), together with the intensive release of adenosine following insults, makes adenosine a kind of "maestro" of the tripartite synapse in the homeostatic coordination of the brain function. Under physiological conditions, both A(2A) and A(1) ARs play an important role in sleep and arousal, cognition, memory and learning, whereas under pathological conditions (e.g., Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, stroke, epilepsy, drug addiction, pain, schizophrenia, depression), ARs operate a time/circumstance window where in some circumstances A(1)AR agonists may predominate as early neuroprotectors, and in other circumstances A(2A)AR antagonists may alter the outcomes of some of the pathological deficiencies. In some circumstances, and depending on the therapeutic window, the use of A(2A)AR agonists may be initially beneficial; however, at later time points, the use of A(2A)AR antagonists proved beneficial in several pathologies. Since selective ligands for A(1) and A(2A) ARs are now entering clinical trials, the time has come to determine the role of these receptors in neurological and psychiatric diseases and identify therapies that will alter the outcomes of these diseases, therefore providing a hopeful future for the patients who suffer from these diseases.
Collapse
Affiliation(s)
- Ana M Sebastião
- Institute of Pharmacology and Neurosciences, Institute of Molecular Medicine, University of Lisbon, 1649-028 Lisbon, Portugal.
| | | |
Collapse
|
46
|
Lin CL, Dumont AS, Tsai YJ, Huang JH, Chang KP, Kwan AL, Hong YR, Howng SL. 17Beta-estradiol activates adenosine A(2a) receptor after subarachnoid hemorrhage. J Surg Res 2008; 157:208-15. [PMID: 19181336 DOI: 10.1016/j.jss.2008.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 08/15/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Our previous study showed that 17beta-estradiol (E2) and an adenosine A(2A) receptor (AR-A(2A)) agonist could attenuate subarachnoid hemorrhage (SAH)-induced cerebral vasospasm via preventing the augmentation of iNOS expression and preserving the normal eNOS expression. This study tests the hypothesis that E2 attenuates SAH-induced vasospasm and apoptosis by activating adenosine AR-A(2A) and extracellular signal-regulated kinase 1 and 2 (ERK1/2), and by altering antiapoptotic and proapoptotic protein expression (Bcl-2 and Bax, respectively). MATERIALS AND METHODS The two-hemorrhage SAH model in rat was used. Animals were treated with E2 with or without a nonselective estrogen receptor (ER) antagonist (ICI182,780). The cross sectional areas of the basilar artery and terminal dUTP nick-end labeling (TUNEL) were used to determine the degree of vasospasm and apoptosis, respectively. The expressions of Bcl-2, Bax, AR-A(2A), and ERK1/2 in the cerebral cortex, hippocampus, and dentate gyrus were investigated. RESULTS E2 significantly attenuated vasospasm. Seven days after the first SAH, TUNEL scores were significantly increased, and protein levels of AR-A(2A), ERK1/2, and Bcl-2 were significantly decreased in the dentate gyrus only but not in the cortex and hippocampus. These changes were reversed by E2 while ICI182,780 abrogated the antiapoptotic and anti-spastic effects of E2. The expression of Bax did not change in the dentate gyrus after SAH with or without treatment. CONCLUSIONS The down-regulated AR-A(2A) and ERK may play a role in vasospasm and apoptosis after SAH. The beneficial effect of E2 in the attenuating SAH-induced vasospasm and apoptosis may be due to an increased expression of AR-A(2A) and ERK via ER-dependent mechanisms. These data may support further investigation of E2 in the treatment of SAH in humans.
Collapse
Affiliation(s)
- Chih-Lung Lin
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Tomaselli B, Nedden SZ, Podhraski V, Baier-Bitterlich G. p42/44 MAPK is an essential effector for purine nucleoside-mediated neuroprotection of hypoxic PC12 cells and primary cerebellar granule neurons. Mol Cell Neurosci 2008; 38:559-68. [DOI: 10.1016/j.mcn.2008.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 04/29/2008] [Accepted: 05/07/2008] [Indexed: 10/22/2022] Open
|
48
|
Expanded-polyglutamine huntingtin protein suppresses the secretion and production of a chemokine (CCL5/RANTES) by astrocytes. J Neurosci 2008; 28:3277-90. [PMID: 18367595 DOI: 10.1523/jneurosci.0116-08.2008] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Huntington's disease (HD) is a hereditary neurological disease caused by expended CAG repeats in the HD gene, which codes for a protein called Huntingtin (Htt). The resultant mutant Huntingtin (mHtt) forms aggregates in neurons and causes neuronal dysfunction. In astrocytes, the largest population of brain cells, mHtt also exists. We report herein that astrocyte-conditioned medium (ACM) collected from astrocytes of R6/2 mice (a mouse model of HD) caused primary cortical neurons to grow less-mature neurites, migrate more slowly, and exhibit lower calcium influx after depolarization than those maintained in wild-type (WT) ACM. Using a cytokine antibody array and ELISA assays, we demonstrated that the amount of a chemokine [chemokine (C-C motif) ligand 5 (CCL5)/regulated on activation normal T cell expressed and secreted (RANTES)] released by R6/2 astrocytes was much less than that by WT astrocytes. When cortical neurons were treated with the indicated ACM, supplementation with recombinant CCL5/RANTES ameliorated the neuronal deficiency caused by HD-ACM, whereas removing CCL5/RANTES from WT-ACM using an anti-CCL5/RANTES antibody mimicked the effects evoked by HD-ACM. Quantitative PCR and promoter analyses demonstrated that mHtt hindered the activation of the CCL5/RANTES promoter by reducing the availability of nuclear factor kappaB-p65 and, hence, reduced the transcript level of CCL5/RANTES. Moreover, ELISA assays and immunocytochemical staining revealed that mHtt retained the residual CCL5/RANTES inside R6/2 astrocytes. In line with the above findings, elevated cytosolic CCL5/RANTES levels were also observed in the brains of two mouse models of HD [R6/2 and Hdh((CAG)150)] and human HD patients. These findings suggest that mHtt hinders one major trophic function of astrocytes which might contribute to the neuronal dysfunction of HD.
Collapse
|
49
|
Karamoysoyli E, Burnand RC, Tomlinson DR, Gardiner NJ. Neuritin mediates nerve growth factor-induced axonal regeneration and is deficient in experimental diabetic neuropathy. Diabetes 2008; 57:181-9. [PMID: 17909094 DOI: 10.2337/db07-0895] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Axonal regeneration is defective in both experimental and clinical diabetic neuropathy, contributing to loss of axonal extremities and neuronal dysfunction. The mechanisms behind this failure are not fully understood; however, a deficit in neurotrophic support and signaling has been implicated. RESEARCH DESIGN AND METHODS We investigated the expression of neuritin (also known as candidate plasticity gene 15, cpg15) in the sensory nervous system of control rats and rats with streptozotocin (STZ)-induced diabetes using microarray PCR, Western blotting, and immunocytochemical analysis. The functional role of neuritin in sensory neurons in vitro was assessed using silencing RNA. RESULTS Neuritin was expressed by a population of small-diameter neurons in the dorsal root ganglia (DRG) and was anterogradely and retrogradely transported along the sciatic nerve in vivo. Nerve growth factor (NGF) treatment induced an increase in the transcription and translation of neuritin in sensory neurons in vitro. This increase was both time and dose dependent and occurred via mitogen-activated protein kinase or phosphatidylinositol-3 kinase activation. Inhibition of neuritin using silencing RNA abolished NGF-mediated neurite outgrowth, demonstrating the crucial role played by neuritin in mediating regeneration. Neuritin levels were reduced in both the DRG and sciatic nerve of rats with 12 weeks of STZ-induced diabetes, and these deficits were reversed in vivo by treatment with NGF. CONCLUSIONS Manipulation of neuritin levels in diabetes may therefore provide a potential target for therapeutic intervention in the management of neuropathy.
Collapse
Affiliation(s)
- Eugenia Karamoysoyli
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | |
Collapse
|
50
|
Hattori N, Nomoto H, Fukumitsu H, Mishima S, Furukawa S. AMP N(1)-oxide, a unique compound of royal jelly, induces neurite outgrowth from PC12 cells via signaling by protein kinase A independent of that by mitogen-activated protein kinase. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2007; 7:63-8. [PMID: 18955270 PMCID: PMC2816379 DOI: 10.1093/ecam/nem146] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2007] [Accepted: 08/20/2007] [Indexed: 01/08/2023]
Abstract
Earlier we identified adenosine monophosphate (AMP) N1-oxide as a unique compound of royal jelly (RJ) that induces neurite outgrowth (neuritegenesis) from cultured rat pheochromocytoma PC12 cells via the adenosine A2A receptor. Now, we found that AMP N1-oxide stimulated the phosphorylation of not only mitogen-activated protein kinase (MAPK) but also that of cAMP/calcium-response element-binding protein (CREB) in a dose-dependent manner. Inhibition of MAPK activation by a MEK inhibitor, PD98059, did not influence the AMP N1-oxide-induced neuritegenesis, whereas that of protein kinase A (PKA) by a selective inhibitor, KT5720, significantly reduced neurite outgrowth. AMP N1-oxide also had the activity of suppressing the growth of PC12 cells, which correlated well with the neurite outgrowth-promoting activity. KT5720 restored the growth of AMP N1-oxide-treated PC12 cells. It is well known that nerve growth factor suppresses proliferation of PC12 cells before causing stimulation of neuronal differentiation. Thus, AMP N1-oxide elicited neuronal differentiation of PC12 cells, as evidenced by generation of neurites, and inhibited cell growth through adenosine A2A receptor-mediated PKA signaling, which may be responsible for characteristic actions of RJ.
Collapse
Affiliation(s)
- Noriko Hattori
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Mitahora-higashi, Gifu 502-8585, Japan and Nagaragawa Research Center, API Co., Ltd, Nagara, Gifu 502-0071, Japan
| | | | | | | | | |
Collapse
|