1
|
Chen Z, Wang S, Pottekat A, Duffey A, Jang I, Chang BH, Cho J, Finck BN, Davidson NO, Kaufman RJ. Conditional hepatocyte ablation of PDIA1 uncovers indispensable roles in both APOB and MTTP folding to support VLDL secretion. Mol Metab 2024; 80:101874. [PMID: 38211723 PMCID: PMC10832468 DOI: 10.1016/j.molmet.2024.101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/13/2024] Open
Abstract
OBJECTIVES The assembly and secretion of hepatic very low-density lipoprotein (VLDL) plays pivotal roles in hepatic and plasma lipid homeostasis. Protein disulfide isomerase A1 (PDIA1/P4HB) is a molecular chaperone whose functions are essential for protein folding in the endoplasmic reticulum. Here we investigated the physiological requirement in vivo for PDIA1 in maintaining VLDL assembly and secretion. METHODS Pdia1/P4hb was conditionally deleted in adult mouse hepatocytes and the phenotypes characterized. Mechanistic analyses in primary hepatocytes determined how PDIA1 ablation alters MTTP synthesis and degradation as well as altering synthesis and secretion of Apolipoprotein B (APOB), along with complementary expression of intact PDIA1 vs a catalytically inactivated PDIA1 mutant. RESULTS Hepatocyte-specific deletion of Pdia1/P4hb inhibited hepatic MTTP expression and dramatically reduced VLDL production, leading to severe hepatic steatosis and hypolipidemia. Pdia1-deletion did not affect mRNA expression or protein stability of MTTP but rather prevented Mttp mRNA translation. We demonstrate an essential role for PDIA1 in MTTP synthesis and function and show that PDIA1 interacts with APOB in an MTTP-independent manner via its molecular chaperone function to support APOB folding and secretion. CONCLUSIONS PDIA1 plays indispensable roles in APOB folding, MTTP synthesis and activity to support VLDL assembly. Thus, like APOB and MTTP, PDIA1 is an obligatory component of hepatic VLDL production.
Collapse
Affiliation(s)
- Zhouji Chen
- Degenerative Diseases Program, Center for Genetics and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla CA 92037, USA.
| | - Shiyu Wang
- Degenerative Diseases Program, Center for Genetics and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla CA 92037, USA
| | - Anita Pottekat
- Degenerative Diseases Program, Center for Genetics and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla CA 92037, USA
| | - Alec Duffey
- Degenerative Diseases Program, Center for Genetics and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla CA 92037, USA
| | - Insook Jang
- Degenerative Diseases Program, Center for Genetics and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla CA 92037, USA
| | - Benny H Chang
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaehyung Cho
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Brian N Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicholas O Davidson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Randal J Kaufman
- Degenerative Diseases Program, Center for Genetics and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla CA 92037, USA.
| |
Collapse
|
2
|
Clay R, Siddiqi S, Siddiqi SA. α-Tocopherol reduces VLDL secretion through modulation of intracellular ER-to-Golgi transport of VLDL. Can J Physiol Pharmacol 2023; 101:554-564. [PMID: 37683292 PMCID: PMC11418172 DOI: 10.1139/cjpp-2023-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Avoiding hepatic steatosis is crucial for preventing liver dysfunction, and one mechanism by which this is accomplished is through synchronization of the rate of very low density lipoprotein (VLDL) synthesis with its secretion. Endoplasmic reticulum (ER)-to-Golgi transport of nascent VLDL is the rate-limiting step in its secretion and is mediated by the VLDL transport vesicle (VTV). Recent in vivo studies have indicated that α-tocopherol (α-T) supplementation can reverse steatosis in nonalcoholic fatty liver disease, but its effects on hepatic lipoprotein metabolism are poorly understood. Here, we investigated the impact of α-T on hepatic VLDL synthesis, secretion, and intracellular ER-to-Golgi VLDL trafficking using an in vitro model. Pulse-chase assays using [3H]-oleic acid and 100 µmol/L α-T demonstrated a disruption of early VLDL synthesis, resulting in enhanced apolipoprotein B-100 expression, decreased expression in markers for VTV budding, ER-to-Golgi VLDL transport, and reduced VLDL secretion. Additionally, an in vitro VTV budding assay indicated a significant decrease in VTV production and VTV-Golgi fusion. Confocal imaging of lipid droplet (LD) localization revealed a decrease in overall LD retention, diminished presence of ER-associated LDs, and an increase in Golgi-level LD retention. We conclude that α-T disrupts ER-to-Golgi VLDL transport by modulating the expression of specific proteins and thus reduces VLDL secretion.
Collapse
Affiliation(s)
- Ryan Clay
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Shaila Siddiqi
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Shadab A Siddiqi
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
3
|
Liu JT, Doueiry C, Jiang YL, Blaszkiewicz J, Lamprecht MP, Heslop JA, Peterson YK, Carten JD, Traktman P, Yuan Y, Khetani SR, Twal WO, Duncan SA. A human iPSC-derived hepatocyte screen identifies compounds that inhibit production of Apolipoprotein B. Commun Biol 2023; 6:452. [PMID: 37095219 PMCID: PMC10125972 DOI: 10.1038/s42003-023-04739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/21/2023] [Indexed: 04/26/2023] Open
Abstract
Familial hypercholesterolemia (FH) patients suffer from excessively high levels of Low Density Lipoprotein Cholesterol (LDL-C), which can cause severe cardiovascular disease. Statins, bile acid sequestrants, PCSK9 inhibitors, and cholesterol absorption inhibitors are all inefficient at treating FH patients with homozygous LDLR gene mutations (hoFH). Drugs approved for hoFH treatment control lipoprotein production by regulating steady-state Apolipoprotein B (apoB) levels. Unfortunately, these drugs have side effects including accumulation of liver triglycerides, hepatic steatosis, and elevated liver enzyme levels. To identify safer compounds, we used an iPSC-derived hepatocyte platform to screen a structurally representative set of 10,000 small molecules from a proprietary library of 130,000 compounds. The screen revealed molecules that could reduce the secretion of apoB from cultured hepatocytes and from humanized livers in mice. These small molecules are highly effective, do not cause abnormal lipid accumulation, and share a chemical structure that is distinct from any known cholesterol lowering drug.
Collapse
Affiliation(s)
- Jui-Tung Liu
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Caren Doueiry
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Yu-Lin Jiang
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Josef Blaszkiewicz
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Mary Paige Lamprecht
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - James A Heslop
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Yuri K Peterson
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Juliana Debrito Carten
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Paula Traktman
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Yang Yuan
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Salman R Khetani
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | | | - Stephen A Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Grùthan Biosciences LLC, Hollywood, SC, 29449, USA.
| |
Collapse
|
4
|
Li Y, Sha Y, Wang H, He L, Li L, Wen S, Sheng L, Hu W, Zhou H. Intracellular C3 prevents hepatic steatosis by promoting autophagy and very-low-density lipoprotein secretion. FASEB J 2021; 35:e22037. [PMID: 34762761 DOI: 10.1096/fj.202100856r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/30/2021] [Accepted: 10/26/2021] [Indexed: 01/07/2023]
Abstract
Complement component C3, mainly synthesized by hepatocytes, acts as the convergence point of three different pathways in activating the complement cascade. Besides its well-established roles in the extracellular milieu, C3 performs various intracellular functions such as immunomodulation and pathogen recognition. Although C3 is present at extremely high concentrations in hepatocytes, little is known about its intrahepatic function. In this study, we found that C3 knockout (C3-/- ) mice displayed accelerated hepatic triglyceride (TG) accumulation compared with C57BL/6J wild type mice. Mechanistically, C3 deficiency impaired lipophagy in hepatocytes, owing to the disrupted interaction between C3 and autophagy-related 16 like 1, which is essential for autolysosome assembly. Furthermore, lipophagy deficiency affected the function of the endoplasmic reticulum in C3-/- mice, subsequently affecting the expression of protein disulfide isomerase and activity of microsomal TG transfer protein, and ultimately impairing the production of hepatic very-low-density lipoproteins (VLDLs). Rapamycin and thapsigargin treatment accelerated VLDL secretion and alleviated hepatic lipid accumulation in C3-/- mice. Our study demonstrates that C3 promotes lipophagy to facilitate VLDL secretion in hepatocytes, thus playing an essential role in balancing TG levels in the liver.
Collapse
Affiliation(s)
- Yinling Li
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Yeqin Sha
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Haitao Wang
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Lianping He
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Longjun Li
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Shuang Wen
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Liang Sheng
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Weiguo Hu
- Shanghai Cancer Center and Institute of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, Nanjing, China.,Department of Cell Biology, School of Life Science, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Apolipoprotein B and Cardiovascular Disease: Biomarker and Potential Therapeutic Target. Metabolites 2021; 11:metabo11100690. [PMID: 34677405 PMCID: PMC8540246 DOI: 10.3390/metabo11100690] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein (apo) B, the critical structural protein of the atherogenic lipoproteins, has two major isoforms: apoB48 and apoB100. ApoB48 is found in chylomicrons and chylomicron remnants with one apoB48 molecule per chylomicron particle. Similarly, a single apoB100 molecule is contained per particle of very-low-density lipoprotein (VLDL), intermediate density lipoprotein, LDL and lipoprotein(a). This unique one apoB per particle ratio makes plasma apoB concentration a direct measure of the number of circulating atherogenic lipoproteins. ApoB levels indicate the atherogenic particle concentration independent of the particle cholesterol content, which is variable. While LDL, the major cholesterol-carrying serum lipoprotein, is the primary therapeutic target for management and prevention of atherosclerotic cardiovascular disease, there is strong evidence that apoB is a more accurate indicator of cardiovascular risk than either total cholesterol or LDL cholesterol. This review examines multiple aspects of apoB structure and function, with a focus on the controversy over use of apoB as a therapeutic target in clinical practice. Ongoing coronary artery disease residual risk, despite lipid-lowering treatment, has left patients and clinicians with unsatisfactory options for monitoring cardiovascular health. At the present time, the substitution of apoB for LDL-C in cardiovascular disease prevention guidelines has been deemed unjustified, but discussions continue.
Collapse
|
6
|
Sadegzadeh-Sadat M, Anassori E, Khalilvandi-Behroozyar H, Asri-Rezaei S. The effects of Zinc-Methionine on glucose metabolism and insulin resistance during late pregnancy in ewes. Domest Anim Endocrinol 2021; 77:106647. [PMID: 34311283 DOI: 10.1016/j.domaniend.2021.106647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
This study investigated the effects of dietary supplements of Zinc-Methionine (Zn-Met) on the zinc concentration of the blood and indices such as insulin resistance and glucose tolerance in late-pregnancy ewes to provide a practical solution to prevent metabolic diseases associated with energy status. In this research, 18 Makouei pregnant ewes were selected and randomized into 3 experimental groups: Group 1: Basal diet containing 10.3 mg Zn/kgDM and no zinc supplementation = CTR (Control); Group 2: Basal diet supplemented with low-dose zinc equivalent to the pregnancy requirements (30 mg Zn/kgDM) = LZN; Group 3: Basal diet supplemented with high-dose zinc (300 mg Zn/kgDM) = HZN. Blood samples for insulin resistance and glucose tolerance indices were collected according to standard methods. The results of this study indicated that supplementation of high-dose Zn-Met decreased (P < 0.05) blood glucose and tended (P < 0.1) to reduce the beta-hydroxybutyrate (BHB) concentrations. After intravenous injection of glucose and insulin, none of the glucose tolerance and insulin resistance indices were significant among groups (P > 0.05). However, the intravenous glucose tolerance test (IGTT) showed that the area under the curve (AUC) of serum glucose in the HZN group was numerically lower than that of the LZN and CTR groups. Furthermore, the numerically higher clearance rate (CR) of glucose and more negative glucose AUC following intravenous administration of insulin in Zinc-supplemented groups suggested that the ewes had greater insulin response than control group. The results showed a decrease in blood glucose concentration due to higher zinc intake after insulin injection and supported the evidence for improving insulin sensitivity. In addition, our results showed that ewes receiving zinc supplementation experienced a more favorable state of BHB or NEFA values. In conclusion, Zn-Met supplementation was found to have promising effects in improving energy metabolism in late pregnant ewes. However, further studies are needed to understand the mechanisms involved in regulating lipolysis and energy metabolism.
Collapse
Affiliation(s)
- M Sadegzadeh-Sadat
- Graduate Student of Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - E Anassori
- Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | | | - S Asri-Rezaei
- Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
7
|
Newberry EP, Hall Z, Xie Y, Molitor EA, Bayguinov PO, Strout GW, Fitzpatrick JA, Brunt EM, Griffin JL, Davidson NO. Liver-Specific Deletion of Mouse Tm6sf2 Promotes Steatosis, Fibrosis, and Hepatocellular Cancer. Hepatology 2021; 74:1203-1219. [PMID: 33638902 PMCID: PMC8390580 DOI: 10.1002/hep.31771] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/17/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Human transmembrane 6 superfamily 2 (TM6SF2) variant rs58542926 is associated with NAFLD and HCC. However, conflicting reports in germline Tm6sf2 knockout mice suggest no change or decreased very low density lipoprotein (VLDL) secretion and either unchanged or increased hepatic steatosis, with no increased fibrosis. We generated liver-specific Tm6Sf2 knockout mice (Tm6 LKO) to study VLDL secretion and the impact on development and progression of NAFLD. APPROACH AND RESULTS Two independent lines of Tm6 LKO mice exhibited spontaneous hepatic steatosis. Targeted lipidomic analyses showed increased triglyceride species whose distribution and abundance phenocopied findings in mice with liver-specific deletion of microsomal triglyceride transfer protein. The VLDL triglyceride secretion was reduced with small, underlipidated particles and unchanged or increased apolipoprotein B. Liver-specific adeno-associated viral, serotype 8 (AAV8) rescue using either wild-type or mutant E167K-Tm6 reduced hepatic steatosis and improved VLDL secretion. The Tm6 LKO mice fed a high milk-fat diet for 3 weeks exhibited increased steatosis and fibrosis, and those phenotypes were further exacerbated when mice were fed fibrogenic, high fat/fructose diets for 20 weeks. In two models of HCC, either neonatal mice injected with streptozotocin (NASH/STAM) and high-fat fed or with diethylnitrosamine injection plus fibrogenic diet feeding, Tm6 LKO mice exhibited increased steatosis, greater tumor burden, and increased tumor area versus Tm6 flox controls. Additionally, diethylnitrosamine-injected and fibrogenic diet-fed Tm6 LKO mice administered wild-type Tm6 or E167K-mutant Tm6 AAV8 revealed significant tumor attenuation, with tumor burden inversely correlated with Tm6 protein levels. CONCLUSIONS Liver-specific Tm6sf2 deletion impairs VLDL secretion, promoting hepatic steatosis, fibrosis, and accelerated development of HCC, which was mitigated with AAV8- mediated rescue.
Collapse
Affiliation(s)
- Elizabeth P. Newberry
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Zoe Hall
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom,Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Yan Xie
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Elizabeth A. Molitor
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Peter O. Bayguinov
- Washington University Center for Cellular Imaging, Washington University in Saint Louis, St. Louis, MO 63130
| | - Gregory W. Strout
- Washington University Center for Cellular Imaging, Washington University in Saint Louis, St. Louis, MO 63130
| | - James A.J. Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University in Saint Louis, St. Louis, MO 63130;,Departments of Cell Biology & Physiology and Neuroscience, Washington University School of Medicine, Louis, St. Louis, MO 63130;,Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130
| | - Elizabeth M. Brunt
- Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Julian L. Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom,Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Nicholas O. Davidson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110;,To whom correspondence should be addressed: Nicholas O. Davidson, MD, DSc, Gastroenterology Division, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110.
| |
Collapse
|
8
|
Communications between Mitochondria and Endoplasmic Reticulum in the Regulation of Metabolic Homeostasis. Cells 2021; 10:cells10092195. [PMID: 34571844 PMCID: PMC8468463 DOI: 10.3390/cells10092195] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria associated membranes (MAM), which are the contact sites between endoplasmic reticulum (ER) and mitochondria, have emerged as an important hub for signaling molecules to integrate the cellular and organelle homeostasis, thus facilitating the adaptation of energy metabolism to nutrient status. This review explores the dynamic structural and functional features of the MAM and summarizes the various abnormalities leading to the impaired insulin sensitivity and metabolic diseases.
Collapse
|
9
|
Jiang Z, Kimura Y, Shirouchi B, Tanaka Y, Tsai WT, Yuan X, Sato M. Dietary egg white protein hydrolysate improves orotic acid-induced fatty liver in rats by promoting hepatic phospholipid synthesis and microsomal triglyceride transfer protein expression. J Nutr Biochem 2021; 98:108820. [PMID: 34273531 DOI: 10.1016/j.jnutbio.2021.108820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/21/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022]
Abstract
We investigated the effects of egg white protein hydrolysates (EWH) on orotic acid (OA)-induced nonalcoholic fatty liver (NAFL) in rats. Effects of the egg white protein (EWP) and EWH were also compared. Four groups of male Sprague-Dawley rats were separately fed AIN-76-based diets, supplemented with 20% casein for control, or with 1% OA, together with either 20% casein (OA), 20% EWP, or 20% EWH, respectively, for 3 d (developing stage) and 14 d (developed stage). In both feeding periods, animals from the OA group showed higher accumulation hepatic triacylglycerol (TAG) compared with those from the control group. In the 14-d experiment, dietary EWP and EWH significantly reduced the hepatic TAG levels. Intake of EWP reduced liver fat in OA-fed rats by 61%, while EWH reduced it by 92%. In addition, EWH restored the OA-induced high serum-TAG level to that seen in the control group. The 3 d experiment showed that consumption of EWH improved the expression of hepatic MTP, that was reduced by OA, without changing Mttp gene expression. It also increased the hepatic synthesis of PC and PE by enhancing the transcription of Pcyt1 and Pemt genes. Inclusion of EWP and EWH in the diet improves the OA-induced NAFL. EWH reduces the liver TAG better than EWP, and works more rapidly. Dietary EWH ameliorates OA-induced NAFL by promoting the secretion of hepatic TAG.
Collapse
Affiliation(s)
- Zhe Jiang
- Laboratory of Nutriment Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Moto-oka Nishi-ku, Fukuoka, Japan
| | - Yuki Kimura
- Laboratory of Nutriment Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Moto-oka Nishi-ku, Fukuoka, Japan
| | - Bungo Shirouchi
- Laboratory of Nutriment Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Moto-oka Nishi-ku, Fukuoka, Japan
| | - Yasutake Tanaka
- Laboratory of Nutriment Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Moto-oka Nishi-ku, Fukuoka, Japan
| | - Wei-Ting Tsai
- Laboratory of Nutriment Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Moto-oka Nishi-ku, Fukuoka, Japan
| | - Xingyu Yuan
- Laboratory of Nutriment Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Moto-oka Nishi-ku, Fukuoka, Japan
| | - Masao Sato
- Laboratory of Nutriment Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Moto-oka Nishi-ku, Fukuoka, Japan.
| |
Collapse
|
10
|
Meng Y, Qiu N, Mine Y, Keast R. Comparative Lipidomics of Chick Yolk Sac during the Embryogenesis Provides Insight into Understanding the Development-Related Lipid Supply. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7467-7477. [PMID: 34159787 DOI: 10.1021/acs.jafc.1c01728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Yolk sac (YS, include the yolk content) at different chick embryogenesis stages possesses varying lipid distributions, which are nutrition-influencing factors for the health of an early embryo and a later adult. YS lipids can substantially influence embryogenesis metabolism, but a comprehensive understanding of lipid's influence remains unknown. Herein, the effects of embryogenesis on lipid profiling of chick YS were investigated by UHPLC-MS/MS-based lipidomics. A total of 2231 lipid species across 57 subclasses were identified in the YS, and 1011 lipids were significantly different (P < 0.05) at the incubation days of 0, 7, 13, and 18. Specifically, phosphocholine and phosphatidylglycerol in late-stage embryogenesis potentially assist with prehatching gas exchange and infection resistance in the environment after lung respiration. In addition, the accumulated lysophosphatidylcholine at day 18 may induce apoptosis and disturb the membrane structure of YS to enable better absorption by the embryo abdomen. The decreased cardiolipin in late embryogenesis may be due to transportation to the embryo and integration into the mitochondrial membrane to accelerate energy metabolism for the rapidly developing embryo after day 13. Therefore, this study demonstrated the lipid profile alteration of the developing YS, providing theoretical guidance for researching the developmental origins of health and disease.
Collapse
Affiliation(s)
- Yaqi Meng
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Ning Qiu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Russell Keast
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125, Australia
| |
Collapse
|
11
|
Peng H, Chiu TY, Liang YJ, Lee CJ, Liu CS, Suen CS, Yen JJY, Chen HT, Hwang MJ, Hussain MM, Yang HC, Yang-Yen HF. PRAP1 is a novel lipid-binding protein that promotes lipid absorption by facilitating MTTP-mediated lipid transport. J Biol Chem 2021; 296:100052. [PMID: 33168624 PMCID: PMC7949078 DOI: 10.1074/jbc.ra120.015002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 01/10/2023] Open
Abstract
Microsomal triglyceride transfer protein (MTTP) is an endoplasmic reticulum resident protein that is essential for the assembly and secretion of triglyceride (TG)-rich, apoB-containing lipoproteins. Although the function and structure of mammalian MTTP have been extensively studied, how exactly MTTP transfers lipids to lipid acceptors and whether there are other biomolecules involved in MTTP-mediated lipid transport remain elusive. Here we identify a role in this process for the poorly characterized protein PRAP1. We report that PRAP1 and MTTP are partially colocalized in the endoplasmic reticulum. We observe that PRAP1 directly binds to TG and facilitates MTTP-mediated lipid transfer. A single amino acid mutation at position 85 (E85V) impairs PRAP1's ability to form a ternary complex with TG and MTTP, as well as impairs its ability to facilitate MTTP-mediated apoB-containing lipoprotein assembly and secretion, suggesting that the ternary complex formation is required for PRAP1 to facilitate MTTP-mediated lipid transport. PRAP1 is detectable in chylomicron/VLDL-rich plasma fractions, suggesting that MTTP recognizes PRAP1-bound TG as a cargo and transfers TG along with PRAP1 to lipid acceptors. Both PRAP1-deficient and E85V knock-in mutant mice fed a chow diet manifested an increase in the length of their small intestines, likely to compensate for challenges in absorbing lipid. Interestingly, both genetically modified mice gained significantly less body weight and fat mass when on high-fat diets compared with littermate controls and were prevented from hepatosteatosis. Together, this study provides evidence that PRAP1 plays an important role in MTTP-mediated lipid transport and lipid absorption.
Collapse
Affiliation(s)
- Hubert Peng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Tzu-Yuan Chiu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Jen Liang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Chia-Jen Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Syuan Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ching-Shu Suen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jeffrey J-Y Yen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hung-Ta Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Jing Hwang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - M Mahmood Hussain
- Foundations of Medicine, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Hsin-Chou Yang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
12
|
Vujić N, Korbelius M, Sachdev V, Rainer S, Zimmer A, Huber A, Radović B, Kratky D. Intestine-specific DGAT1 deficiency improves atherosclerosis in apolipoprotein E knockout mice by reducing systemic cholesterol burden. Atherosclerosis 2020; 310:26-36. [PMID: 32882484 PMCID: PMC7116265 DOI: 10.1016/j.atherosclerosis.2020.07.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/25/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022]
Abstract
Background and aims Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is the rate-limiting enzyme catalyzing the final step of triglyceride synthesis by esterifying a diglyceride with a fatty acid. We have previously shown that apolipoprotein E-knockout (ApoE−/−) mice lacking Dgat1 have reduced intestinal cholesterol absorption and potentiated macrophage cholesterol efflux, and consequently, exhibit attenuated atherogenesis. However, he-matopoietic Dgat1 deficiency lacked beneficial effects on atherosclerosis. Due to our recent results on the critical role of intestinal Dgat1 in murine cholesterol homeostasis, we delineated whether intestinal Dgat1 deficiency regulates atherogenesis in mice. Methods We generated intestine-specific Dgat1−/− mice on the ApoE−/− background (iDgat1−/−ApoE−/−) and determined cholesterol homeostasis and atherosclerosis development. Results When fed a Western-type diet, iDgat1−/−ApoE−/− mice exhibited a substantial decrease in fasting plasma cholesterol content in ApoB-containing lipoproteins. Although lipid absorption was delayed, iDgat1−/−ApoE−/− mice had reduced acute and fractional cholesterol absorption coupled with an elevated fecal caloric loss. In line, increased appearance of i.v. administered [3H]cholesterol in duodena and stool of iDgat1−/−ApoE−/− animals suggested potentiated cholesterol elimination. Atherosclerotic lesions were markedly smaller with beneficial alterations in plaque composition as evidenced by reduced macrophage infiltration and necrotic core size despite unaltered collagen content, indicating improved plaque stability. Conclusions Disruption of Dgat1 activity solely in the small intestine of ApoE−/− mice strongly decreased plasma cholesterol levels by abrogating the assimilation of dietary cholesterol, partly by reduced absorption and increased excretion. Consequently, the reduced cholesterol burden significantly attenuated atherogenesis and improved the lesion phenotype in iDgat1−/−ApoE−/− mice.
Collapse
Affiliation(s)
- Nemanja Vujić
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Melanie Korbelius
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Vinay Sachdev
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Silvia Rainer
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Andreas Zimmer
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Anton Huber
- Institute of Chemistry, University of Graz, Graz, Austria
| | - Branislav Radović
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
13
|
Wilson MH, Rajan S, Danoff A, White RJ, Hensley MR, Quinlivan VH, Recacha R, Thierer JH, Tan FJ, Busch-Nentwich EM, Ruddock L, Hussain MM, Farber SA. A point mutation decouples the lipid transfer activities of microsomal triglyceride transfer protein. PLoS Genet 2020; 16:e1008941. [PMID: 32760060 PMCID: PMC7444587 DOI: 10.1371/journal.pgen.1008941] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/18/2020] [Accepted: 06/17/2020] [Indexed: 01/08/2023] Open
Abstract
Apolipoprotein B-containing lipoproteins (B-lps) are essential for the transport of hydrophobic dietary and endogenous lipids through the circulation in vertebrates. Zebrafish embryos produce large numbers of B-lps in the yolk syncytial layer (YSL) to move lipids from yolk to growing tissues. Disruptions in B-lp production perturb yolk morphology, readily allowing for visual identification of mutants with altered B-lp metabolism. Here we report the discovery of a missense mutation in microsomal triglyceride transfer protein (Mtp), a protein that is essential for B-lp production. This mutation of a conserved glycine residue to valine (zebrafish G863V, human G865V) reduces B-lp production and results in yolk opacity due to aberrant accumulation of cytoplasmic lipid droplets in the YSL. However, this phenotype is milder than that of the previously reported L475P stalactite (stl) mutation. MTP transfers lipids, including triglycerides and phospholipids, to apolipoprotein B in the ER for B-lp assembly. In vitro lipid transfer assays reveal that while both MTP mutations eliminate triglyceride transfer activity, the G863V mutant protein unexpectedly retains ~80% of phospholipid transfer activity. This residual phospholipid transfer activity of the G863V mttp mutant protein is sufficient to support the secretion of small B-lps, which prevents intestinal fat malabsorption and growth defects observed in the mttpstl/stl mutant zebrafish. Modeling based on the recent crystal structure of the heterodimeric human MTP complex suggests the G865V mutation may block triglyceride entry into the lipid-binding cavity. Together, these data argue that selective inhibition of MTP triglyceride transfer activity may be a feasible therapeutic approach to treat dyslipidemia and provide structural insight for drug design. These data also highlight the power of yolk transport studies to identify proteins critical for B-lp biology.
Collapse
Affiliation(s)
- Meredith H. Wilson
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
| | - Sujith Rajan
- New York University Long Island School of Medicine, Mineola, New York, United States of America
| | - Aidan Danoff
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Richard J. White
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Monica R. Hensley
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
| | - Vanessa H. Quinlivan
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
| | - Rosario Recacha
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - James H. Thierer
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Frederick J. Tan
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
| | - Elisabeth M. Busch-Nentwich
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lloyd Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - M. Mahmood Hussain
- New York University Long Island School of Medicine, Mineola, New York, United States of America
| | - Steven A. Farber
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
14
|
Iqbal J, Jahangir Z, Al-Qarni AA. Microsomal Triglyceride Transfer Protein: From Lipid Metabolism to Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:37-52. [DOI: 10.1007/978-981-15-6082-8_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Koerner CM, Roberts BS, Neher SB. Endoplasmic reticulum quality control in lipoprotein metabolism. Mol Cell Endocrinol 2019; 498:110547. [PMID: 31442546 PMCID: PMC6814580 DOI: 10.1016/j.mce.2019.110547] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 12/26/2022]
Abstract
Lipids play a critical role in energy metabolism, and a suite of proteins is required to deliver lipids to tissues. Several of these proteins require an intricate endoplasmic reticulum (ER) quality control (QC) system and unique secondary chaperones for folding. Key examples include apolipoprotein B (apoB), which is the primary scaffold for many lipoproteins, dimeric lipases, which hydrolyze triglycerides from circulating lipoproteins, and the low-density lipoprotein receptor (LDLR), which clears cholesterol-rich lipoproteins from the circulation. ApoB requires specialized proteins for lipidation, dimeric lipases lipoprotein lipase (LPL) and hepatic lipase (HL) require a transmembrane maturation factor for secretion, and the LDLR requires several specialized, domain-specific chaperones. Deleterious mutations in these proteins or their chaperones may result in dyslipidemias, which are detrimental to human health. Here, we review the ER quality control systems that ensure secretion of apoB, LPL, HL, and LDLR with a focus on the specialized chaperones required by each protein.
Collapse
Affiliation(s)
- Cari M Koerner
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, USA
| | - Benjamin S Roberts
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, USA
| | - Saskia B Neher
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
16
|
Gross JJ, Schwinn AC, Schmitz-Hsu F, Barenco A, Neuenschwander TFO, Drögemüller C, Bruckmaier RM. The APOB loss-of-function mutation of Holstein dairy cattle does not cause a deficiency of cholesterol but decreases the capacity for cholesterol transport in circulation. J Dairy Sci 2019; 102:10564-10572. [PMID: 31477289 DOI: 10.3168/jds.2019-16852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/15/2019] [Indexed: 01/13/2023]
Abstract
The loss-of-function mutation of the apolipoprotein (APO) B gene (APOB) in Holstein cattle accounts for increased losses in calves that are homozygous for this mutation. Heterozygous carriers of the APOB mutation are clinically healthy but show decreased concentrations of plasma cholesterol and lipoproteins. So far, the metabolic effects of the mutation have only been investigated in heterozygous calves, bulls, and nonlactating females. In high-yielding dairy cows, a marked decrease in cholesterol concentration in plasma during early lactation is part of the usual metabolic changes. Given the essential role of cholesterol in fatty acid and lipid metabolism, a specific effect of the APOB mutation on metabolism and performance in dairy cows is expected. Therefore, the aim of the present study was to investigate the effects of different APOB genotypes on metabolic parameters, hepatic metabolism, and lactation and reproductive performance. Twenty pairs of full siblings with similar age, performance, and calving were investigated. Both animals of each pair were kept on the same farm and consisted of a heterozygous carrier (CDC) and a noncarrier (CDF) of the APOB mutation associated with cholesterol deficiency. Blood samples were taken in early (25.5 ± 4.7 d in milk) and mid lactation (158.2 ± 11.1 d in milk; mean ± SD), and analyzed for nonesterified fatty acids, β-hydroxybutyrate, glucose, insulin-like growth factor-1, aspartate aminotransferase and gamma-glutamyltransferase activity, total cholesterol, free cholesterol, triacylglycerols, high density lipoprotein-cholesterol, and phospholipids. The evaluation of milk production, milk gross composition, and lactation persistency was based on official Dairy Herd Improvement Association recordings. Cholesterol and lipoprotein concentrations were lower in CDC cows than in CDF cows in early and mid lactation. Metabolic parameters, triacylglycerol concentration in plasma, and lactation and reproductive performance did not differ between CDC cows and CDF cows. The low cholesterol concentrations associated with the APOB mutation in heterozygous carriers are not because of a primary deficiency of cholesterol at a cellular level, as the term "cholesterol deficiency" suggests, but rather a consequence of reduced capacity for its transport in circulation. Overall, the data of the present study suggest that, despite the presence of the APOB mutation, cholesterol is not limiting for animals' metabolic adaptation and performance in heterozygous Holstein cows.
Collapse
Affiliation(s)
- J J Gross
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - A-C Schwinn
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | | | - A Barenco
- Swissherdbook, 3052 Zollikofen, Switzerland
| | | | - C Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - R M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
17
|
Di Filippo M, Collardeau Frachon S, Janin A, Rajan S, Marmontel O, Decourt C, Rubio A, Nony S, Dumont S, Cuerq C, Charrière S, Moulin P, Lachaux A, Hussain MM, Bozon D, Peretti N. Normal serum ApoB48 and red cells vitamin E concentrations after supplementation in a novel compound heterozygous case of abetalipoproteinemia. Atherosclerosis 2019; 284:75-82. [PMID: 30875496 DOI: 10.1016/j.atherosclerosis.2019.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Abetalipoproteinemia (ABL) is a rare recessive monogenic disease due to MTTP (microsomal triglyceride transfer protein) mutations leading to the absence of plasma apoB-containing lipoproteins. Here we characterize a new ABL case with usual clinical phenotype, hypocholesterolemia, hypotriglyceridemia but normal serum apolipoprotein B48 (apoB48) and red blood cell vitamin E concentrations. METHODS Histology and MTP activity measurements were performed on intestinal biopsies. Mutations in MTTP were identified by Sanger sequencing, quantitative digital droplet and long-range PCR. Functional consequences of the variants were studied in vitro using a minigene splicing assay, measurement of MTP activity and apoB48 secretion. RESULTS Intestinal steatosis and the absence of measurable lipid transfer activity in intestinal protein extract supported the diagnosis of ABL. A novel MTTP c.1868G>T variant inherited from the patient's father was identified. This variant gives rise to three mRNA transcripts: one normally spliced, found at a low frequency in intestinal biopsy, carrying the p.(Arg623Leu) missense variant, producing in vitro 65% of normal MTP activity and apoB48 secretion, and two abnormally spliced transcripts resulting in a non-functional MTP protein. Digital droplet PCR and long-range sequencing revealed a previously described c.1067+1217_1141del allele inherited from the mother, removing exon 10. Thus, the patient is compound heterozygous for two dysfunctional MTTP alleles. The p.(Arg623Leu) variant may maintain residual secretion of apoB48. CONCLUSIONS Complex cases of primary dyslipidemia require the use of a cascade of different methodologies to establish the diagnosis in patients with non-classical biological phenotypes and provide better knowledge on the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Mathilde Di Filippo
- Laboratoire de Biologie Médicale Multi Sites, Centre de Biologie et de Pathologie Est, Service de Biochimie et Biologie Moléculaire Grand Est, Hospices Civils de Lyon, Bron cedex, F-69677, France; INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne F-69621, Oullins cedex, F-69921, France.
| | - Sophie Collardeau Frachon
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne F-69621, Oullins cedex, F-69921, France; Laboratoire de Biologie Médicale Multi Sites, Centre de Biologie et de Pathologie Est, Institut de Pathologie, Hospices Civils de Lyon, Bron cedex, F-69677, France.
| | - Alexandre Janin
- Laboratoire de Biologie Médicale Multi Sites, Centre de Biologie et de Pathologie Est, Service de Biochimie et Biologie Moléculaire Grand Est, Hospices Civils de Lyon, Bron cedex, F-69677, France; Université de Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Lyon, F-69622, France.
| | - Sujith Rajan
- NYU Winthrop Hospital, 101 Mineola Blvd, Mineola, USA.
| | - Oriane Marmontel
- Laboratoire de Biologie Médicale Multi Sites, Centre de Biologie et de Pathologie Est, Service de Biochimie et Biologie Moléculaire Grand Est, Hospices Civils de Lyon, Bron cedex, F-69677, France; INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne F-69621, Oullins cedex, F-69921, France.
| | - Charlotte Decourt
- Laboratoire de Biologie Médicale Multi Sites, Centre de Biologie et de Pathologie Est, Service de Biochimie et Biologie Moléculaire Grand Est, Hospices Civils de Lyon, Bron cedex, F-69677, France.
| | - Amandine Rubio
- Gastroentérologie et Nutrition Pédiatrique Hôpital Couple Enfant, CHU de Grenoble Alpes, Grenoble, F-38043, France; Laboratoire de Bioénergétique Fondamentale et Appliquée, INSERM U1055, Univ. Grenoble Alpes, F-38000, France.
| | - Séverine Nony
- Laboratoire de Biologie Médicale Multi Sites, Centre de Biologie et de Pathologie Est, Service de Biochimie et Biologie Moléculaire Grand Est, Hospices Civils de Lyon, Bron cedex, F-69677, France.
| | - Sabrina Dumont
- Laboratoire de Biologie Médicale Multi Sites, Centre de Biologie et de Pathologie Est, Service de Biochimie et Biologie Moléculaire Grand Est, Hospices Civils de Lyon, Bron cedex, F-69677, France.
| | - Charlotte Cuerq
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne F-69621, Oullins cedex, F-69921, France; Laboratoire de Biologie Médicale Multi Sites, Centre de Biologie et de Pathologie Sud, Service de Biochimie et Biologie Moléculaire, Hospices Civils de Lyon, Pierre, Benite cedex, F-69495, France.
| | - Sybil Charrière
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne F-69621, Oullins cedex, F-69921, France; Fédération d'endocrinologie, maladies métaboliques, diabète et nutrition, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron cedex, F-69677, France.
| | - Philippe Moulin
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne F-69621, Oullins cedex, F-69921, France; Fédération d'endocrinologie, maladies métaboliques, diabète et nutrition, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron cedex, F-69677, France.
| | - Alain Lachaux
- Service de Nutrition Pediatrique, Gastroenterologie and Hepatologie, Hôpital Femme Mère Enfants, Hospices Civils de Lyon, Bron cedex, F-69677, France.
| | | | - Dominique Bozon
- Laboratoire de Biologie Médicale Multi Sites, Centre de Biologie et de Pathologie Est, Service de Biochimie et Biologie Moléculaire Grand Est, Hospices Civils de Lyon, Bron cedex, F-69677, France.
| | - Noël Peretti
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne F-69621, Oullins cedex, F-69921, France; Service de Nutrition Pediatrique, Gastroenterologie and Hepatologie, Hôpital Femme Mère Enfants, Hospices Civils de Lyon, Bron cedex, F-69677, France.
| |
Collapse
|
18
|
Sołtysik K, Ohsaki Y, Tatematsu T, Cheng J, Fujimoto T. Nuclear lipid droplets derive from a lipoprotein precursor and regulate phosphatidylcholine synthesis. Nat Commun 2019; 10:473. [PMID: 30692541 PMCID: PMC6349838 DOI: 10.1038/s41467-019-08411-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/10/2019] [Indexed: 02/07/2023] Open
Abstract
The origin and physiological significance of lipid droplets (LDs) in the nucleus is not clear. Here we show that nuclear LDs in hepatocytes are derived from apolipoprotein B (ApoB)-free lumenal LDs, a precursor to very low-density lipoproprotein (VLDL) generated in the ER lumen by microsomal triglyceride transfer protein. ApoB-free lumenal LDs accumulate under ER stress, grow within the lumen of the type I nucleoplasmic reticulum, and turn into nucleoplasmic LDs by disintegration of the surrounding inner nuclear membrane. Oleic acid with or without tunicamycin significantly increases the formation of nucleoplasmic LDs, to which CTP:phosphocholine cytidylyltransferase α (CCTα) is recruited, resulting in activation of phosphatidylcholine (PC) synthesis. Perilipin-3 competes with CCTα in binding to nucleoplasmic LDs, and thus, knockdown and overexpression of perilipin-3 increases and decreases PC synthesis, respectively. The results indicate that nucleoplasmic LDs in hepatocytes constitute a feedback mechanism to regulate PC synthesis in accordance with ER stress. The origin and physiological significance of lipid droplets (LDs) in the nucleus is not clear. Here authors show that nucleoplasmic LDs in hepatocytes are derived from apolipoprotein B (ApoB)-free lumenal LDs and constitute a feedback mechanism to regulate PC synthesis in accordance with ER stress.
Collapse
Affiliation(s)
- Kamil Sołtysik
- Department of Molecular Cell Biology and Anatomy, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yuki Ohsaki
- Department of Molecular Cell Biology and Anatomy, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Tsuyako Tatematsu
- Department of Molecular Cell Biology and Anatomy, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Jinglei Cheng
- Department of Molecular Cell Biology and Anatomy, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Toyoshi Fujimoto
- Department of Molecular Cell Biology and Anatomy, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| |
Collapse
|
19
|
Sirwi A, Hussain MM. Lipid transfer proteins in the assembly of apoB-containing lipoproteins. J Lipid Res 2018; 59:1094-1102. [PMID: 29650752 DOI: 10.1194/jlr.r083451] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/12/2018] [Indexed: 11/20/2022] Open
Abstract
A better understanding of intracellular lipoprotein assembly may help identify proteins with important roles in lipid disorders. apoB-containing lipoproteins (B-lps) are macromolecular lipid and protein micelles that act as specialized transport vehicles for hydrophobic lipids. They are assembled predominantly in enterocytes and hepatocytes to transport dietary and endogenous fat, respectively, to different tissues. Assembly occurs in the endoplasmic reticulum (ER) and is dependent on lipid resynthesis in the ER and on a chaperone, namely, microsomal triglyceride transfer protein (MTTP). Precursors for lipid synthesis are obtained from extracellular sources and from cytoplasmic lipid droplets. MTTP is the major and essential lipid transfer protein that transfers phospholipids and triacylglycerols to nascent apoB for the assembly of lipoproteins. Assembly is aided by cell death-inducing DFF45-like effector B and by phospholipid transfer protein, which may facilitate additional deposition of triacylglycerols and phospholipids, respectively, to apoB. Here, we summarize the current understanding of the different steps in the assembly of B-lps and discuss the role of lipid transfer proteins in these steps to help identify new clinical targets for lipid-associated disorders, such as heart disease.
Collapse
Affiliation(s)
- Alaa Sirwi
- School of Graduate Studies, Molecular and Cell Biology Program, State University of New York Downstate Medical Center, Brooklyn, NY
| | - M Mahmood Hussain
- New York University Winthrop Hospital, Mineola, NY and Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY
| |
Collapse
|
20
|
Manchekar M, Kapil R, Sun Z, Segrest JP, Dashti N. Relationship between Amphipathic β Structures in the β 1 Domain of Apolipoprotein B and the Properties of the Secreted Lipoprotein Particles in McA-RH7777 Cells. Biochemistry 2017; 56:4084-4094. [PMID: 28702990 DOI: 10.1021/acs.biochem.6b01174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our previous studies demonstrated that the first 1000 amino acid residues (the βα1 domain) of human apolipoprotein (apo) B-100, termed apoB:1000, are required for the initiation of lipoprotein assembly and the formation of a monodisperse stable phospholipid (PL)-rich particle. The objectives of this study were (a) to assess the effects on the properties of apoB truncates undergoing sequential inclusion of the amphipathic β strands in the 700 N-terminal residues of the β1 domain of apoB-100 and (b) to identify the subdomain in the β1 domain that is required for the formation of a microsomal triglyceride transfer protein (MTP)-dependent triacylglycerol (TAG)-rich apoB-containing particle. Characterization of particles secreted by stable transformants of McA-RH7777 cells demonstrated the following. (1) The presence of amphipathic β strands in the 200 N-terminal residues of the β1 domain resulted in the secretion of apoB truncates (apoB:1050 to apoB:1200) as both lipidated and lipid-poor particles. (2) Inclusion of residues 300-700 of the β1 domain led to the secretion of apoB:1300, apoB:1400, apoB:1500, and apoB:1700 predominantly as lipidated particles. (3) Particles containing residues 1050-1500 were all rich in PL. (4) There was a marked increase in the lipid loading capacity and TAG content of apoB:1700-containing particles. (5) Only the level of secretion of apoB:1700 was markedly diminished by MTP inhibitor BMS-197636. These results suggest that apoB:1700 marks the threshold for the formation of a TAG-rich particle and support the concept that MTP participates in apoB assembly and secretion at the stage where particles undergo a transition from PL-rich to TAG-rich.
Collapse
Affiliation(s)
| | | | | | - Jere P Segrest
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | | |
Collapse
|
21
|
van der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1558-1572. [PMID: 28411170 DOI: 10.1016/j.bbamem.2017.04.006] [Citation(s) in RCA: 878] [Impact Index Per Article: 109.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/27/2017] [Accepted: 04/09/2017] [Indexed: 12/11/2022]
Abstract
Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are the most abundant phospholipids in all mammalian cell membranes. In the 1950s, Eugene Kennedy and co-workers performed groundbreaking research that established the general outline of many of the pathways of phospholipid biosynthesis. In recent years, the importance of phospholipid metabolism in regulating lipid, lipoprotein and whole-body energy metabolism has been demonstrated in numerous dietary studies and knockout animal models. The purpose of this review is to highlight the unappreciated impact of phospholipid metabolism on health and disease. Abnormally high, and abnormally low, cellular PC/PE molar ratios in various tissues can influence energy metabolism and have been linked to disease progression. For example, inhibition of hepatic PC synthesis impairs very low density lipoprotein secretion and changes in hepatic phospholipid composition have been linked to fatty liver disease and impaired liver regeneration after surgery. The relative abundance of PC and PE regulates the size and dynamics of lipid droplets. In mitochondria, changes in the PC/PE molar ratio affect energy production. We highlight data showing that changes in the PC and/or PE content of various tissues are implicated in metabolic disorders such as atherosclerosis, insulin resistance and obesity. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Jelske N van der Veen
- Group on the Molecular and Cell Biology of Lipids, Canada; Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - John P Kennelly
- Group on the Molecular and Cell Biology of Lipids, Canada; Department of Agricultural, Food and Nutritional Science, 4-002 Li Ka Shing Centre for Heath Research Innovations, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Sereana Wan
- Group on the Molecular and Cell Biology of Lipids, Canada; Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Jean E Vance
- Group on the Molecular and Cell Biology of Lipids, Canada; Department of Medicine, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Dennis E Vance
- Group on the Molecular and Cell Biology of Lipids, Canada; Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - René L Jacobs
- Group on the Molecular and Cell Biology of Lipids, Canada; Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada; Department of Agricultural, Food and Nutritional Science, 4-002 Li Ka Shing Centre for Heath Research Innovations, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
22
|
Zha XQ, Zhang WN, Peng FH, Xue L, Liu J, Luo JP. Alleviating VLDL overproduction is an important mechanism for Laminaria japonica polysaccharide to inhibit atherosclerosis in LDLr -/- mice with diet-induced insulin resistance. Mol Nutr Food Res 2017; 61. [PMID: 27928899 DOI: 10.1002/mnfr.201600456] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/27/2016] [Accepted: 11/24/2016] [Indexed: 01/22/2023]
Abstract
SCOPE The overproduction of very low density lipoprotein (VLDL) is an important cause for initiation and development of atherosclerosis, which is highly associated with insulin signaling. The aim of this work is to verify whether the inhibition of VLDL overproduction is an underlying mechanism for a Laminaria japonica polysaccharide (LJP61A (where LJP is L. japonica)) to resist atherosclerosis. METHODS AND RESULTS LJP61A (50 and 200 mg/kg/day) was orally administered to a high-fat diet (HFD)-fed LDL receptor deficient mice for 14 weeks. LJP61A significantly attenuated insulin resistance, hepatic steatosis, atherosclerosis, and dyslipidemia. Meanwhile, LJP61A ameliorated the HFD-induced impairment of hepatic insulin signaling and reduced VLDL overproduction via regulating the expression of genes involved in the assembly and secretion of VLDL. To study the possibility that the inhibition of mammalian target of rapamycin complex 1 and stimulation of Forkhead box protein O1 (Foxo1) nuclear exclusion is a result of LJP61A via regulating insulin signaling, LJP61A was administrated to HepG2 cells in the presence or absence of mTOR inhibitor and Foxo1 inhibitor. Results showed that LJP61A alleviated VLDL overproduction via regulating insulin receptor substrate mediated phosphatidylinositide 3-kinase AKT mammalian target of rapamycin complex 1 and phosphatidylinositide 3-kinase AKT-Foxo1 signaling pathways. CONCLUSION These results suggested that LJP61A ameliorated HFD-induced insulin resistance to attenuate VLDL overproduction possibly via regulating insulin signaling, leading to the inhibition of atherosclerosis.
Collapse
Affiliation(s)
- Xue-Qiang Zha
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, China
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Wei-Nan Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Fu-Hua Peng
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Lei Xue
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Jian Liu
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, China
| | - Jian-Ping Luo
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
23
|
Aspichueta P, Pérez-Agote B, Pérez S, Ochoa B, Fresnedo O. Impaired response of VLDL lipid and apoB secretion to endotoxin in the fasted rat liver. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519060120030501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bacterial infection elicits hypertriglyceridemia attributed to increased hepatic production of very low-density lipoprotein (VLDL) particles and decreased peripheral metabolism. The mechanisms underlying VLDL overproduction in sepsis are as yet unclear, but seem to be fed/fasted state-dependent. To learn more about this, we investigated hepatocytes isolated from fasted rats, made endotoxic by 1 mg/kg lipopolysaccharide (LPS) injection, for their ability to secrete the VLDL protein and lipid components. The results were then related to lipogenesis markers and expression of genes critical to VLDL biogenesis. Endotoxic rats showed increased levels of serum VLDL-apoB (10-fold), -triglyceride (2-fold), and -cholesterol (2-fold), whereby circulating VLDL were lipid-poor particles. Similarly, VLDL-apoB secretion by isolated endotoxic hepatocytes was ~85% above control, whereas marginal changes in the output of VLDL-lipid classes occurred. This was accompanied by a substantial rise in apoB and a moderate rise in MTP mRNA levels, but with basal de novo formation and efficiency of secretion of triglycerides, cholesterol and cholesteryl esters. These results indicate that during periods of food restriction, endotoxin does not enhance lipid provision to accomplish normal lipidation of overproduced apoB molecules, though this does occur to a sufficient extent to pass the proteasome checkpoint and secretion of lipid-poor, type 2 VLDL takes place.
Collapse
Affiliation(s)
- Patricia Aspichueta
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| | - Begoña Pérez-Agote
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| | - Silvia Pérez
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| | - Begoña Ochoa
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain,
| | - Olatz Fresnedo
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| |
Collapse
|
24
|
Smagris E, Gilyard S, BasuRay S, Cohen JC, Hobbs HH. Inactivation of Tm6sf2, a Gene Defective in Fatty Liver Disease, Impairs Lipidation but Not Secretion of Very Low Density Lipoproteins. J Biol Chem 2016; 291:10659-76. [PMID: 27013658 PMCID: PMC4865914 DOI: 10.1074/jbc.m116.719955] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 12/18/2022] Open
Abstract
A missense mutation (E167K) in TM6SF2 (transmembrane 6 superfamily member 2), a polytopic protein of unknown function, is associated with the full spectrum of fatty liver disease. To investigate the role of TM6SF2 in hepatic triglyceride (TG) metabolism, we inactivated the gene in mice. Chronic inactivation of Tm6sf2 in mice is associated with hepatic steatosis, hypocholesterolemia, and transaminitis, thus recapitulating the phenotype observed in humans. No dietary challenge was required to elicit the phenotype. Immunocytochemical and cell fractionation studies revealed that TM6SF2 was present in the endoplasmic reticulum and Golgi complex, whereas the excess neutral lipids in the Tm6sf2(-/-) mice were located in lipid droplets. Plasma VLDL-TG levels were reduced in the KO animals due to a 3-fold decrease in VLDL-TG secretion rate without any associated reduction in hepatic apoB secretion. Both VLDL particle size and plasma cholesterol levels were significantly reduced in KO mice. Despite levels of TM6SF2 protein being 10-fold higher in the small intestine than in the liver, dietary lipid absorption was only modestly reduced in the KO mice. Our data, taken together, reveal that TM6SF2 is required to mobilize neutral lipids for VLDL assembly but is not required for secretion of apoB-containing lipoproteins. Despite TM6SF2 being located in the endoplasmic reticulum and Golgi complex, the lipids that accumulate in its absence reside in lipid droplets.
Collapse
Affiliation(s)
- Eriks Smagris
- From the Departments of Molecular Genetics and Internal Medicine and
| | - Shenise Gilyard
- From the Departments of Molecular Genetics and Internal Medicine and
| | | | | | - Helen H Hobbs
- From the Departments of Molecular Genetics and Internal Medicine and the Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
25
|
Walsh MT, Iqbal J, Josekutty J, Soh J, Di Leo E, Özaydin E, Gündüz M, Tarugi P, Hussain MM. Novel Abetalipoproteinemia Missense Mutation Highlights the Importance of the N-Terminal β-Barrel in Microsomal Triglyceride Transfer Protein Function. ACTA ACUST UNITED AC 2015. [PMID: 26224785 DOI: 10.1161/circgenetics.115.001106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The use of microsomal triglyceride transfer protein (MTP) inhibitors is limited to severe hyperlipidemias because of associated hepatosteatosis and gastrointestinal adverse effects. Comprehensive knowledge about the structure-function of MTP might help design new molecules that avoid steatosis. Characterization of mutations in MTP causing abetalipoproteinemia has revealed that the central α-helical and C-terminal β-sheet domains are important for protein disulfide isomerase binding and lipid transfer activity. Our aim was to identify and characterize mutations in the N-terminal domain to understand its function. METHODS AND RESULTS We identified a novel missense mutation (D169V) in a 4-month-old Turkish male child with severe signs of abetalipoproteinemia. To study the effect of this mutation on MTP function, we created mutants via site-directed mutagenesis. Although D169V was expressed in the endoplasmic reticulum and interacted with apolipoprotein B (apoB) 17, it was unable to bind protein disulfide isomerase, transfer lipids, and support apoB secretion. Computational modeling suggested that D169 could form an internal salt bridge with K187 and K189. Mutagenesis of these lysines to leucines abolished protein disulfide isomerase heterodimerization, lipid transfer, and apoB secretion, without affecting apoB17 binding. Furthermore, mutants with preserved charges (D169E, K187R, and K189R) rescued these activities. CONCLUSIONS D169V is detrimental because it disrupts an internal salt bridge leading to loss of protein disulfide isomerase binding and lipid transfer activities; however, it does not affect apoB binding. Thus, the N-terminal domain of MTP is also important for its lipid transfer activity.
Collapse
Affiliation(s)
- Meghan T Walsh
- From the School of Graduate Studies, Molecular and Cell Biology Program (M.T.W., J.J., J.S.), Department of Cell Biology (M.T.W., J.I., J.J., J.S., M.M.H.), Department of Pediatrics (M.M.H.), State University of New York Downstate Medical Center, Brooklyn, NY; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy (E.D.L., P.T.); Infancy Services, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (E.O); Department of Nutrition and Metabolism, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (M.G.); and Department of Research, VA New York Harbor Healthcare System, Brooklyn, NY (M.M.H.)
| | - Jahangir Iqbal
- From the School of Graduate Studies, Molecular and Cell Biology Program (M.T.W., J.J., J.S.), Department of Cell Biology (M.T.W., J.I., J.J., J.S., M.M.H.), Department of Pediatrics (M.M.H.), State University of New York Downstate Medical Center, Brooklyn, NY; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy (E.D.L., P.T.); Infancy Services, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (E.O); Department of Nutrition and Metabolism, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (M.G.); and Department of Research, VA New York Harbor Healthcare System, Brooklyn, NY (M.M.H.)
| | - Joby Josekutty
- From the School of Graduate Studies, Molecular and Cell Biology Program (M.T.W., J.J., J.S.), Department of Cell Biology (M.T.W., J.I., J.J., J.S., M.M.H.), Department of Pediatrics (M.M.H.), State University of New York Downstate Medical Center, Brooklyn, NY; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy (E.D.L., P.T.); Infancy Services, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (E.O); Department of Nutrition and Metabolism, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (M.G.); and Department of Research, VA New York Harbor Healthcare System, Brooklyn, NY (M.M.H.)
| | - James Soh
- From the School of Graduate Studies, Molecular and Cell Biology Program (M.T.W., J.J., J.S.), Department of Cell Biology (M.T.W., J.I., J.J., J.S., M.M.H.), Department of Pediatrics (M.M.H.), State University of New York Downstate Medical Center, Brooklyn, NY; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy (E.D.L., P.T.); Infancy Services, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (E.O); Department of Nutrition and Metabolism, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (M.G.); and Department of Research, VA New York Harbor Healthcare System, Brooklyn, NY (M.M.H.)
| | - Enza Di Leo
- From the School of Graduate Studies, Molecular and Cell Biology Program (M.T.W., J.J., J.S.), Department of Cell Biology (M.T.W., J.I., J.J., J.S., M.M.H.), Department of Pediatrics (M.M.H.), State University of New York Downstate Medical Center, Brooklyn, NY; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy (E.D.L., P.T.); Infancy Services, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (E.O); Department of Nutrition and Metabolism, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (M.G.); and Department of Research, VA New York Harbor Healthcare System, Brooklyn, NY (M.M.H.)
| | - Eda Özaydin
- From the School of Graduate Studies, Molecular and Cell Biology Program (M.T.W., J.J., J.S.), Department of Cell Biology (M.T.W., J.I., J.J., J.S., M.M.H.), Department of Pediatrics (M.M.H.), State University of New York Downstate Medical Center, Brooklyn, NY; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy (E.D.L., P.T.); Infancy Services, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (E.O); Department of Nutrition and Metabolism, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (M.G.); and Department of Research, VA New York Harbor Healthcare System, Brooklyn, NY (M.M.H.)
| | - Mehmet Gündüz
- From the School of Graduate Studies, Molecular and Cell Biology Program (M.T.W., J.J., J.S.), Department of Cell Biology (M.T.W., J.I., J.J., J.S., M.M.H.), Department of Pediatrics (M.M.H.), State University of New York Downstate Medical Center, Brooklyn, NY; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy (E.D.L., P.T.); Infancy Services, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (E.O); Department of Nutrition and Metabolism, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (M.G.); and Department of Research, VA New York Harbor Healthcare System, Brooklyn, NY (M.M.H.)
| | - Patrizia Tarugi
- From the School of Graduate Studies, Molecular and Cell Biology Program (M.T.W., J.J., J.S.), Department of Cell Biology (M.T.W., J.I., J.J., J.S., M.M.H.), Department of Pediatrics (M.M.H.), State University of New York Downstate Medical Center, Brooklyn, NY; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy (E.D.L., P.T.); Infancy Services, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (E.O); Department of Nutrition and Metabolism, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (M.G.); and Department of Research, VA New York Harbor Healthcare System, Brooklyn, NY (M.M.H.)
| | - M Mahmood Hussain
- From the School of Graduate Studies, Molecular and Cell Biology Program (M.T.W., J.J., J.S.), Department of Cell Biology (M.T.W., J.I., J.J., J.S., M.M.H.), Department of Pediatrics (M.M.H.), State University of New York Downstate Medical Center, Brooklyn, NY; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy (E.D.L., P.T.); Infancy Services, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (E.O); Department of Nutrition and Metabolism, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (M.G.); and Department of Research, VA New York Harbor Healthcare System, Brooklyn, NY (M.M.H.).
| |
Collapse
|
26
|
Response of the cholesterol metabolism to a negative energy balance in dairy cows depends on the lactational stage. PLoS One 2015; 10:e0121956. [PMID: 26034989 PMCID: PMC4452704 DOI: 10.1371/journal.pone.0121956] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/09/2015] [Indexed: 12/25/2022] Open
Abstract
The response of cholesterol metabolism to a negative energy balance (NEB) induced by feed restriction for 3 weeks starting at 100 days in milk (DIM) compared to the physiologically occurring NEB in week 1 postpartum (p.p.) was investigated in 50 dairy cows (25 control (CON) and 25 feed-restricted (RES)). Blood samples, liver biopsies and milk samples were taken in week 1 p.p., and in weeks 0 and 3 of feed restriction. Plasma concentrations of total cholesterol (C), phospholipids (PL), triglycerides (TAG), very low density lipoprotein-cholesterol (VLDL-C) and low density lipoprotein-cholesterol (LDL-C) increased in RES cows from week 0 to 3 during feed restriction and were higher in week 3 compared to CON cows. In contrast, during the physiologically occurring NEB in week 1 p.p., C, PL, TAG and lipoprotein concentrations were at a minimum. Plasma phospholipid transfer protein (PLTP) and lecithin:cholesterol acyltransferase (LCAT) activities did not differ between week 0 and 3 for both groups, whereas during NEB in week 1 p.p. PLTP activity was increased and LCAT activity was decreased. Milk C concentration was not affected by feed restriction in both groups, whereas milk C mass was decreased in week 3 for RES cows. In comparison, C concentration and mass in milk were elevated in week 1 p.p. Hepatic mRNA abundance of sterol regulatory element-binding factor-2 (SREBF-2), 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1 (HMGCS1), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and ATP-binding cassette transporter (ABCA1) were similar in CON and RES cows during feed restriction, but were upregulated during NEB in week 1 p.p. compared to the non-lactating stage without a NEB. In conclusion, cholesterol metabolism in dairy cows is affected by nutrient and energy deficiency depending on the stage of lactation.
Collapse
|
27
|
Activation of hepatic CREBH and Insig signaling in the anti-hypertriglyceridemic mechanism of R-α-lipoic acid. J Nutr Biochem 2015; 26:921-8. [PMID: 26007286 DOI: 10.1016/j.jnutbio.2015.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/15/2015] [Accepted: 03/24/2015] [Indexed: 12/12/2022]
Abstract
The activation of sterol regulatory element binding proteins (SREBPs) is regulated by insulin-induced genes 1 and 2 (Insig-1 and Insig-2) and SCAP. We previously reported that feeding R-α-lipoic acid (LA) to Zucker diabetic fatty (ZDF) rats improves severe hypertriglyceridemia. In this study, we investigated the role of cyclic AMP-responsive element binding protein H (CREBH) in the lipid-lowering mechanism of LA and its involvement in the SREBP-1c and Insig pathway. Incubation of McA cells with LA (0.2 mM) or glucose (6 mM) stimulated activation of CREBH. LA treatment further induced mRNA expression of Insig-1 and Insig-2a, but not Insig-2b, in glucose-treated cells. In vivo, feeding LA to obesity-induced hyperlipidemic ZDF rats activated hepatic CREBH and stimulated transcription and translation of Insig-1 and Insig-2a. Activation of CREBH and Insigs induced by LA suppressed processing of SREBP-1c precursor into nuclear SREBP-1c, which subsequently inhibited expression of genes involved in fatty acid synthesis, including FASN, ACC and SCD-1, and reduced triglyceride (TG) contents in both glucose-treated cells and ZDF rat livers. Additionally, LA treatment also decreased abundances of very low density lipoprotein (VLDL)-associated apolipoproteins, apoB100 and apoE, in glucose-treated cells and livers of ZDF rats, leading to decreased secretion of VLDL and improvement of hypertriglyceridemia. This study unveils a novel molecular mechanism whereby LA lowers TG via activation of hepatic CREBH and increased expression of Insig-1 and Insig-2a to inhibit de novo lipogenesis and VLDL secretion. These findings provide novel insight into the therapeutic potential of LA as an anti-hypertriglyceridemia dietary molecule.
Collapse
|
28
|
Hashidate-Yoshida T, Harayama T, Hishikawa D, Morimoto R, Hamano F, Tokuoka SM, Eto M, Tamura-Nakano M, Yanobu-Takanashi R, Mukumoto Y, Kiyonari H, Okamura T, Kita Y, Shindou H, Shimizu T. Fatty acid remodeling by LPCAT3 enriches arachidonate in phospholipid membranes and regulates triglyceride transport. eLife 2015; 4. [PMID: 25898003 PMCID: PMC4436788 DOI: 10.7554/elife.06328] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/19/2015] [Indexed: 12/22/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) in phospholipids affect the physical properties of membranes, but it is unclear which biological processes are influenced by their regulation. For example, the functions of membrane arachidonate that are independent of a precursor role for eicosanoid synthesis remain largely unknown. Here, we show that the lack of lysophosphatidylcholine acyltransferase 3 (LPCAT3) leads to drastic reductions in membrane arachidonate levels, and that LPCAT3-deficient mice are neonatally lethal due to an extensive triacylglycerol (TG) accumulation and dysfunction in enterocytes. We found that high levels of PUFAs in membranes enable TGs to locally cluster in high density, and that this clustering promotes efficient TG transfer. We propose a model of local arachidonate enrichment by LPCAT3 to generate a distinct pool of TG in membranes, which is required for normal directionality of TG transfer and lipoprotein assembly in the liver and enterocytes. DOI:http://dx.doi.org/10.7554/eLife.06328.001 Membranes made of molecules called lipids surround every living cell and also form compartments inside the cell. There are hundreds of different lipid molecules that can be found in membranes. The amount of each type within the membrane can vary, which affects the flexibility and other physical properties of the membrane. One type of lipid found in membranes is called arachidonic acid. It is involved in cell communication and other processes, and is required for young animals to grow and develop properly. An enzyme called LPCAT3 is thought to incorporate arachidonic acid into membranes, but this has not yet been proven to occur in living animals. Here, Hashidate-Yoshida, Harayama et al. studied the role of LPCAT3 in newborn mice. The experiments show that this enzyme is found at high levels in the intestine and liver. Mice that lacked LPCAT3 had much lower levels of arachidonic acid compared with normal mice. These mice also showed signs of severe intestinal damage due to the build up of lipids from their mother's milk, and died within a few days of being born. The mice that lacked LPCAT3 had different amounts of another type of lipid—called triacylglycerols—in their intestine and liver. Normally, these lipids would be assembled into larger molecules called lipoproteins that are released into the blood stream and used in the muscles and other parts of the body. However, Hashidate-Yoshida, Harayama et al. found that in the mice missing LPCAT3, the triacylglycerols did not get assembled into lipoproteins and so they accumulated inside the intestine and liver cells. The experiments also show that high levels of arachidonic acid and other similar lipids in the membrane enable triacylglycerol molecules to cluster together, which increases the production of lipoproteins. Hashidate-Yoshida, Harayama et al.'s findings suggest that LPCAT3 incorporates arachidonic acid into the membrane of intestine and liver cells, which enables triacylglycerols to be assembled into lipoproteins. The next challenge will be to find out if LPCAT3 is also important for the production of lipoproteins in humans. If it is, then developing new therapies that alter the activity of this enzyme might be beneficial for patients with abnormal levels of lipids in the blood (known as dyslipidemia). DOI:http://dx.doi.org/10.7554/eLife.06328.002
Collapse
Affiliation(s)
| | - Takeshi Harayama
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| | - Daisuke Hishikawa
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| | - Ryo Morimoto
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| | - Fumie Hamano
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Suzumi M Tokuoka
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miki Eto
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| | - Miwa Tamura-Nakano
- Communal Laboratory, National Center for Global Health and Medicine, Tokyo, Japan
| | - Rieko Yanobu-Takanashi
- Department of Laboratory Animal Medicine, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yoshiko Mukumoto
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yoshihiro Kita
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
29
|
Green CJ, Pramfalk C, Morten KJ, Hodson L. From whole body to cellular models of hepatic triglyceride metabolism: man has got to know his limitations. Am J Physiol Endocrinol Metab 2015; 308:E1-20. [PMID: 25352434 PMCID: PMC4281685 DOI: 10.1152/ajpendo.00192.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The liver is a main metabolic organ in the human body and carries out a vital role in lipid metabolism. Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, encompassing a spectrum of conditions from simple fatty liver (hepatic steatosis) through to cirrhosis. Although obesity is a known risk factor for hepatic steatosis, it remains unclear what factor(s) is/are responsible for the primary event leading to retention of intrahepatocellular fat. Studying hepatic processes and the etiology and progression of disease in vivo in humans is challenging, not least as NAFLD may take years to develop. We present here a review of experimental models and approaches that have been used to assess liver triglyceride metabolism and discuss their usefulness in helping to understand the aetiology and development of NAFLD.
Collapse
Affiliation(s)
- Charlotte J Green
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford United Kingdom; and
| | - Camilla Pramfalk
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford United Kingdom; and
| | - Karl J Morten
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford United Kingdom; and
| |
Collapse
|
30
|
Wang S, Park S, Kodali VK, Han J, Yip T, Chen Z, Davidson NO, Kaufman RJ. Identification of protein disulfide isomerase 1 as a key isomerase for disulfide bond formation in apolipoprotein B100. Mol Biol Cell 2014; 26:594-604. [PMID: 25518935 PMCID: PMC4325832 DOI: 10.1091/mbc.e14-08-1274] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pdi1 knockdown decreases apoB100 synthesis, reduces MTP activity and apoB100 lipidation, and impairs the oxidative folding of apoB100, which causes defective VLDL secretion. PDI1 promotes formation of disulfide bonds in apoB100 and serves as its disulfide isomerase. Apolipoprotein (apo) B is an obligatory component of very low density lipoprotein (VLDL), and its cotranslational and posttranslational modifications are important in VLDL synthesis, secretion, and hepatic lipid homeostasis. ApoB100 contains 25 cysteine residues and eight disulfide bonds. Although these disulfide bonds were suggested to be important in maintaining apoB100 function, neither the specific oxidoreductase involved nor the direct role of these disulfide bonds in apoB100-lipidation is known. Here we used RNA knockdown to evaluate both MTP-dependent and -independent roles of PDI1 in apoB100 synthesis and lipidation in McA-RH7777 cells. Pdi1 knockdown did not elicit any discernible detrimental effect under normal, unstressed conditions. However, it decreased apoB100 synthesis with attenuated MTP activity, delayed apoB100 oxidative folding, and reduced apoB100 lipidation, leading to defective VLDL secretion. The oxidative folding–impaired apoB100 was secreted mainly associated with LDL instead of VLDL particles from PDI1-deficient cells, a phenotype that was fully rescued by overexpression of wild-type but not a catalytically inactive PDI1 that fully restored MTP activity. Further, we demonstrate that PDI1 directly interacts with apoB100 via its redox-active CXXC motifs and assists in the oxidative folding of apoB100. Taken together, these findings reveal an unsuspected, yet key role for PDI1 in oxidative folding of apoB100 and VLDL assembly.
Collapse
Affiliation(s)
- Shiyu Wang
- Degenerative Diseases Research Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Shuin Park
- Degenerative Diseases Research Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Vamsi K Kodali
- Degenerative Diseases Research Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Jaeseok Han
- Soonchunhyang Institute of Med-Bio Science, Soonchunhayng University, Cheonan-si, Choongchengnam-do 330-930, Republic of Korea
| | - Theresa Yip
- Degenerative Diseases Research Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Zhouji Chen
- Division of Geriatrics and Nutrition Sciences, Washington University School of Medicine, St. Louis, MO 63110
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Randal J Kaufman
- Degenerative Diseases Research Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| |
Collapse
|
31
|
Christian P, Su Q. MicroRNA regulation of mitochondrial and ER stress signaling pathways: implications for lipoprotein metabolism in metabolic syndrome. Am J Physiol Endocrinol Metab 2014; 307:E729-37. [PMID: 25184990 DOI: 10.1152/ajpendo.00194.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of metabolic syndrome is closely associated with the deregulation of lipid metabolism. Emerging evidence has demonstrated that microRNAs (miRNAs) are intensively engaged in lipid and lipoprotein metabolism by regulating genes involved in control of intracellular lipid synthesis, mitochondrial fatty acid oxidation, and lipoprotein assembly. Mitochondrial dysfunction induced by altered miRNA expression has been proposed to be a contributing factor in the onset of metabolic diseases, while at the same time, aberrant expression of certain miRNAs is associated with the induction of endoplasmic reticulum (ER) stress induced by nutrient-surplus. These studies position miRNAs as a link between oxidative stress and ER stress, two cellular stress pathways that are deregulated in metabolic disease and are associated with very-low-density lipoprotein (VLDL) overproduction. Dyslipoproteinemia frequently accompanied with metabolic syndrome is initiated largely by the overproduction of VLDL and altered biogenesis of high-density lipoprotein (HDL). In this review, we highlight recent findings on the regulatory impact of miRNAs on the metabolic homeostasis of mitochondria and ER as well as their contribution to the aberrant biogenesis of both VLDL and HDL in the context of metabolic disorders, in an attempt to gain further insights into the molecular mechanisms of dyslipidemia in the metabolic syndrome.
Collapse
Affiliation(s)
- Patricia Christian
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Qiaozhu Su
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
32
|
Florentin M, Kostapanos MS, Kei A, Elisaf MS. Emerging drugs for hyperlipidaemia: an update. Expert Opin Emerg Drugs 2014; 19:471-88. [PMID: 25356785 DOI: 10.1517/14728214.2014.976553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
33
|
Kessler EC, Gross JJ, Bruckmaier RM, Albrecht C. Cholesterol metabolism, transport, and hepatic regulation in dairy cows during transition and early lactation. J Dairy Sci 2014; 97:5481-90. [PMID: 24952770 DOI: 10.3168/jds.2014-7926] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/07/2014] [Indexed: 11/19/2022]
Abstract
The transition from the nonlactating to the lactating state represents a critical period for dairy cow lipid metabolism because body reserves have to be mobilized to meet the increasing energy requirements for the initiation of milk production. The purpose of this study was to provide a comprehensive overview on cholesterol homeostasis in transition dairy cows by assessing in parallel plasma, milk, and hepatic tissue for key factors of cholesterol metabolism, transport, and regulation. Blood samples and liver biopsies were taken from 50 multiparous Holstein dairy cows in wk 3 antepartum (a.p.), wk 1 postpartum (p.p.), wk 4 p.p., and wk 14 p.p. Milk sampling was performed in wk 1, 4, and 14 p.p. Blood and milk lipid concentrations [triglycerides (TG), cholesterol, and lipoproteins], enzyme activities (phospholipid transfer protein and lecithin:cholesterol acyltransferase) were analyzed using enzymatic assays. Hepatic gene expression patterns of 3-hydroxy-3-methylglutaryl-coenzyme A (HMGC) synthase 1 (HMGCS1) and HMGC reductase (HMGCR), sterol regulatory element-binding factor (SREBF)-1 and -2, microsomal triglyceride transfer protein (MTTP), ATP-binding cassette transporter (ABC) A1 and ABCG1, liver X receptor (LXR) α and peroxisome proliferator activated receptor (PPAR) α and γ were measured using quantitative RT-PCR. Plasma TG, cholesterol, and lipoprotein concentrations decreased from wk 3 a.p. to a minimum in wk 1 p.p., and then gradually increased until wk 14 p.p. Compared with wk 4 p.p., phospholipid transfer protein activity was increased in wk 1 p.p., whereas lecithin:cholesterol acyltransferase activity was lowest at this period. Total cholesterol concentration and mass, and cholesterol concentration in the milk fat fraction decreased from wk 1 p.p. to wk 4 p.p. Both total and milk fat cholesterol concentration were decreased in wk 4 p.p. compared with wk 1 and 14 p.p. The mRNA abundance of genes involved in cholesterol synthesis (SREBF-2, HMGCS1, and HMGCR) markedly increased from wk 3 a.p. to wk 1 p.p., whereas SREBF-1 was downregulated. The expression of ABCA1 increased from wk 3 a.p. to wk 1 p.p., whereas ABCG1 was increased in wk 14 p.p. compared with other time points. In conclusion, hepatic expression of genes involved in the biosynthesis of cholesterol as well as the ABCA1 transporter were upregulated at the onset of lactation, whereas plasma concentrations of total cholesterol, phospholipids, lipoprotein-cholesterol, and TG were at a minimum. Thus, at the gene expression level, the liver seems to react to the increased demand for cholesterol after parturition. Whether the low plasma cholesterol and TG levels are due to impaired hepatic export mechanisms or reflect an enhanced transfer of these compounds into the milk to provide essential nutrients for the newborn remains to be elucidated.
Collapse
Affiliation(s)
- E C Kessler
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - J J Gross
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - R M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - C Albrecht
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland; Swiss National Center of Competence in Research (NCCR) TransCure, University of Bern, CH-3012 Bern, Switzerland.
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW To summarize the evidence for the presence of two lipid absorption pathways and their regulation. RECENT FINDINGS Lipid absorption involves hydrolysis of dietary fat in the lumen of the intestine, followed by the uptake of hydrolyzed products by enterocytes. Lipids are resynthesized in the endoplasmic reticulum and are either secreted with chylomicrons and HDLs or stored as cytoplasmic lipid droplets. Lipids in the droplets are hydrolyzed and are secreted at a later time. Secretion of lipids by the chylomicron and HDL pathways are dependent on microsomal triglyceride transfer protein (MTP) and ATP-binding cassette family A protein 1, respectively, and are regulated independently. Gene-ablation studies showed that MTP function and chylomicron assembly is essential for the absorption of triglycerides. Ablation of MTP abolishes triglyceride absorption and results in massive triglyceride accumulation in enterocytes. Although the majority of phospholipid, cholesterol, and vitamin E are absorbed through the chylomicron pathway, a significant amount of these lipids are also absorbed via the HDL pathway. Chylomicron assembly and secretion is increased by the enhanced availability of fatty acids, whereas the HDL pathway is upregulated by liver X receptor agonists. SUMMARY Triglycerides are exclusively transported with chylomicrons and this process is critically dependent on MTP. In addition to chylomicrons, absorption of phospholipids, free cholesterol, retinol, and vitamin E also involves HDLs. These two pathways are complementary and are regulated independently. They may be targeted to lower lipid absorption in order to control hyperlipidemia, obesity, metabolic syndrome, steatosis, insulin resistance, atherosclerosis, and other disorders.
Collapse
Affiliation(s)
- M Mahmood Hussain
- aDepartment of Cell Biology bDepartment of Pediatrics, SUNY Downstate Medical Center cVA New York Harbor Healthcare System, Brooklyn, New York, USA
| |
Collapse
|
35
|
Fisher E, Lake E, McLeod RS. Apolipoprotein B100 quality control and the regulation of hepatic very low density lipoprotein secretion. J Biomed Res 2014; 28:178-93. [PMID: 25013401 PMCID: PMC4085555 DOI: 10.7555/jbr.28.20140019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/15/2014] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein B (apoB) is the main protein component of very low density lipoprotein (VLDL) and is necessary for the assembly and secretion of these triglyceride (TG)-rich particles. Following release from the liver, VLDL is converted to low density lipoprotein (LDL) in the plasma and increased production of VLDL can therefore play a detrimental role in cardiovascular disease. Increasing evidence has helped to establish VLDL assembly as a target for the treatment of dyslipidemias. Multiple factors are involved in the folding of the apoB protein and the formation of a secretion-competent VLDL particle. Failed VLDL assembly can initiate quality control mechanisms in the hepatocyte that target apoB for degradation. ApoB is a substrate for endoplasmic reticulum associated degradation (ERAD) by the ubiquitin proteasome system and for autophagy. Efficient targeting and disposal of apoB is a regulated process that modulates VLDL secretion and partitioning of TG. Emerging evidence suggests that significant overlap exists between these degradative pathways. For example, the insulin-mediated targeting of apoB to autophagy and postprandial activation of the unfolded protein response (UPR) may employ the same cellular machinery and regulatory cues. Changes in the quality control mechanisms for apoB impact hepatic physiology and pathology states, including insulin resistance and fatty liver. Insulin signaling, lipid metabolism and the hepatic UPR may impact VLDL production, particularly during the postprandial state. In this review we summarize our current understanding of VLDL assembly, apoB degradation, quality control mechanisms and the role of these processes in liver physiology and in pathologic states.
Collapse
Affiliation(s)
- Eric Fisher
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Elizabeth Lake
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Roger S McLeod
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
36
|
VerHague MA, Cheng D, Weinberg RB, Shelness GS. Apolipoprotein A-IV Expression in Mouse Liver Enhances Triglyceride Secretion and Reduces Hepatic Lipid Content by Promoting Very Low Density Lipoprotein Particle Expansion. Arterioscler Thromb Vasc Biol 2013; 33:2501-8. [DOI: 10.1161/atvbaha.113.301948] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Melissa A. VerHague
- From the Department of Pathology (M.A.V., D.C., G.S.S.), Department of Internal Medicine (R.B.W.), and Department of Physiology & Pharmacology (R.B.W.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Dongmei Cheng
- From the Department of Pathology (M.A.V., D.C., G.S.S.), Department of Internal Medicine (R.B.W.), and Department of Physiology & Pharmacology (R.B.W.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Richard B. Weinberg
- From the Department of Pathology (M.A.V., D.C., G.S.S.), Department of Internal Medicine (R.B.W.), and Department of Physiology & Pharmacology (R.B.W.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Gregory S. Shelness
- From the Department of Pathology (M.A.V., D.C., G.S.S.), Department of Internal Medicine (R.B.W.), and Department of Physiology & Pharmacology (R.B.W.), Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
37
|
Molecular cloning, expression, and hormonal regulation of the chicken microsomal triglyceride transfer protein. Gene 2013; 523:1-9. [DOI: 10.1016/j.gene.2013.03.102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/03/2013] [Accepted: 03/25/2013] [Indexed: 11/18/2022]
|
38
|
Endoplasmic reticulum-localized hepatic lipase decreases triacylglycerol storage and VLDL secretion. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1113-23. [DOI: 10.1016/j.bbalip.2013.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 01/09/2013] [Accepted: 01/23/2013] [Indexed: 01/07/2023]
|
39
|
Hepatic triacylglycerol synthesis and secretion: DGAT2 as the link between glycaemia and triglyceridaemia. Biochem J 2013; 451:1-12. [PMID: 23489367 DOI: 10.1042/bj20121689] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
lThe liver regulates both glycaemia and triglyceridaemia. Hyperglycaemia and hypertriglyceridaemia are both characteristic of (pre)diabetes. Recent observations on the specialised role of DGAT2 (diacylglycerol acyltransferase 2) in catalysing the de novo synthesis of triacylglycerols from newly synthesized fatty acids and nascent diacylglycerols identifies this enzyme as the link between the two. This places DGAT2 at the centre of carbohydrate-induced hypertriglyceridaemia and hepatic steatosis. This function is complemented, but not substituted for, by the ability of DGAT1 to rescue partial glycerides from complete hydrolysis. In peripheral tissues not normally considered to be lipogenic, synthesis of triacylglycerols may largely bypass DGAT2 except in hyperglycaemic/hyperinsulinaemic conditions, when induction of de novo fatty acid synthesis in these tissues may contribute towards increased triacylglycerol secretion (intestine) or insulin resistance (adipose tissue, and cardiac and skeletal muscle).
Collapse
|
40
|
Tiwari S, Siddiqi S, Siddiqi SA. CideB protein is required for the biogenesis of very low density lipoprotein (VLDL) transport vesicle. J Biol Chem 2013; 288:5157-65. [PMID: 23297397 DOI: 10.1074/jbc.m112.434258] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nascent very low density lipoprotein (VLDL) exits the endoplasmic reticulum (ER) in a specialized ER-derived vesicle, the VLDL transport vesicle (VTV). Similar to protein transport vesicles (PTVs), VTVs require coat complex II (COPII) proteins for their biogenesis from the ER membranes. Because the size of the VTV is large, we hypothesized that protein(s) in addition to COPII components might be required for VTV biogenesis. Our proteomic analysis, supported by Western blotting data, shows that a 26-kDa protein, CideB, is present in the VTV but not in other ER-derived vesicles such as PTV and pre-chylomicron transport vesicle. Western blotting and immunoelectron microscopy analyses suggest that CideB is concentrated in the VTV. Our co-immunoprecipitation data revealed that CideB specifically interacts with VLDL structural protein, apolipoprotein B100 (apoB100), but not with albumin, a PTV cargo protein. Confocal microscopic data indicate that CideB co-localizes with apoB100 in the ER. Additionally, CideB interacts with COPII components, Sar1 and Sec24. To investigate the role of CideB in VTV biogenesis, we performed an in vitro ER budding assay. We show that the blocking of CideB inhibits VTV budding, indicating a direct requirement of CideB in VTV formation. To confirm our findings, we knocked down CideB in primary hepatocytes and isolated ER and cytosol to examine whether they support VTV budding. Our data suggest that CideB knockdown significantly reduces VTV biogenesis. These findings suggest that CideB forms an intricate COPII coat and regulates the VTV biogenesis.
Collapse
Affiliation(s)
- Samata Tiwari
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827, USA
| | | | | |
Collapse
|
41
|
Lian J, Wei E, Wang SP, Quiroga AD, Li L, Di Pardo A, van der Veen J, Sipione S, Mitchell GA, Lehner R. Liver specific inactivation of carboxylesterase 3/triacylglycerol hydrolase decreases blood lipids without causing severe steatosis in mice. Hepatology 2012; 56:2154-62. [PMID: 22707181 DOI: 10.1002/hep.25881] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 05/02/2012] [Indexed: 12/22/2022]
Abstract
UNLABELLED Carboxylesterase 3/triacylglycerol hydrolase (Ces3/TGH) participates in hepatic very low-density lipoprotein (VLDL) assembly and in adipose tissue basal lipolysis. Global ablation of Ces3/Tgh expression decreases serum triacylglycerol (TG) and nonesterified fatty acid levels and improves insulin sensitivity. To understand the tissue-specific role of Ces3/TGH in lipid and glucose homeostasis, we generated mice with a liver-specific deletion of Ces3/Tgh expression (L-TGH knockout [KO]). Elimination of hepatic Ces3/Tgh expression dramatically decreased plasma VLDL TG and VLDL cholesterol concentrations but only moderately increased liver TG levels in mice fed a standard chow diet. Significantly reduced plasma TG and cholesterol without hepatic steatosis were also observed in L-TGH KO mice challenged with a high-fat, high-cholesterol diet. L-TGH KO mice presented with increased plasma ketone bodies and hepatic fatty acid oxidation. Intrahepatic TG in L-TGH KO mice was stored in significantly smaller lipid droplets. Augmented hepatic TG levels in chow-fed L-TGH KO mice did not affect glucose tolerance or glucose production from hepatocytes, but impaired insulin tolerance was observed in female mice. CONCLUSION Our data suggest that ablation of hepatic Ces3/Tgh expression decreases plasma lipid levels without causing severe hepatic steatosis.
Collapse
Affiliation(s)
- Jihong Lian
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang S, Chen Z, Lam V, Han J, Hassler J, Finck BN, Davidson NO, Kaufman RJ. IRE1α-XBP1s induces PDI expression to increase MTP activity for hepatic VLDL assembly and lipid homeostasis. Cell Metab 2012; 16:473-86. [PMID: 23040069 PMCID: PMC3569089 DOI: 10.1016/j.cmet.2012.09.003] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 05/17/2012] [Accepted: 09/05/2012] [Indexed: 12/15/2022]
Abstract
The unfolded protein response (UPR) is a signaling pathway required to maintain endoplasmic reticulum (ER) homeostasis and hepatic lipid metabolism. Here, we identify an essential role for the inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α)-X box binding protein 1 (XBP1) arm of the UPR in regulation of hepatic very low-density lipoprotein (VLDL) assembly and secretion. Hepatocyte-specific deletion of Ire1α reduces lipid partitioning into the ER lumen and impairs the assembly of triglyceride (TG)-rich VLDL but does not affect TG synthesis, de novo lipogenesis, or the synthesis or secretion of apolipoprotein B (apoB). The defect in VLDL assembly is, at least in part, due to decreased microsomal triglyceride-transfer protein (MTP) activity resulting from reduced protein disulfide isomerase (PDI) expression. Collectively, our findings reveal a key role for the IRE1α-XBP1s-PDI axis in linking ER homeostasis with regulation of VLDL production and hepatic lipid homeostasis that may provide a therapeutic target for disorders of lipid metabolism.
Collapse
Affiliation(s)
- Shiyu Wang
- Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037
- Department of Biological Chemistry, University of Michigan Medical Center, 1150 West Medical Center Drive, Ann Arbor, MI 48109
| | - Zhouji Chen
- Division of Geriatrics, and Nutrition Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Vivian Lam
- Department of Medical School, University of Michigan Medical Center, 1150 West Medical Center Drive, Ann Arbor, MI 48109
| | - Jaeseok Han
- Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037
- Department of Biological Chemistry, University of Michigan Medical Center, 1150 West Medical Center Drive, Ann Arbor, MI 48109
| | - Justin Hassler
- Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037
- Department of Biological Chemistry, University of Michigan Medical Center, 1150 West Medical Center Drive, Ann Arbor, MI 48109
| | - Brian N. Finck
- Division of Geriatrics, and Nutrition Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Nicholas O. Davidson
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Randal J. Kaufman
- Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037
- Department of Biological Chemistry, University of Michigan Medical Center, 1150 West Medical Center Drive, Ann Arbor, MI 48109
- Department of Internal Medicine, University of Michigan Medical Center, 1150 West Medical Center Drive, Ann Arbor, MI 48109
- corresponding author: Degenerative Disease Research Program, Neuroscience, Aging, and Stem Cell Research Center, Sanford-Burnham Medical Research Institute 10901 North Torrey Pines Road La Jolla, CA 92037 T: 858-795-5149; F: 858-795-5273
| |
Collapse
|
43
|
Lipoproteins in Drosophila melanogaster--assembly, function, and influence on tissue lipid composition. PLoS Genet 2012; 8:e1002828. [PMID: 22844248 PMCID: PMC3406001 DOI: 10.1371/journal.pgen.1002828] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/25/2012] [Indexed: 11/19/2022] Open
Abstract
Interorgan lipid transport occurs via lipoproteins, and altered lipoprotein levels correlate with metabolic disease. However, precisely how lipoproteins affect tissue lipid composition has not been comprehensively analyzed. Here, we identify the major lipoproteins of Drosophila melanogaster and use genetics and mass spectrometry to study their assembly, interorgan trafficking, and influence on tissue lipids. The apoB-family lipoprotein Lipophorin (Lpp) is the major hemolymph lipid carrier. It is produced as a phospholipid-rich particle by the fat body, and its secretion requires Microsomal Triglyceride Transfer Protein (MTP). Lpp acquires sterols and most diacylglycerol (DAG) at the gut via Lipid Transfer Particle (LTP), another fat body-derived apoB-family lipoprotein. The gut, like the fat body, is a lipogenic organ, incorporating both de novo-synthesized and dietary fatty acids into DAG for export. We identify distinct requirements for LTP and Lpp-dependent lipid mobilization in contributing to the neutral and polar lipid composition of the brain and wing imaginal disc. These studies define major routes of interorgan lipid transport in Drosophila and uncover surprising tissue-specific differences in lipoprotein lipid utilization.
Collapse
|
44
|
Ye J. Hepatitis C virus: a new class of virus associated with particles derived from very low-density lipoproteins. Arterioscler Thromb Vasc Biol 2012; 32:1099-103. [PMID: 22517369 DOI: 10.1161/atvbaha.111.241448] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hepatitis C virus (HCV) infects 3% of the world population and is the leading cause of liver failure in the United States. A unique feature of HCV is that the viral particles are integral to very low-density lipoprotein (VLDL)-derived lipoprotein particles. The virus is assembled into VLDL in hepatocytes and released out of the cells together with VLDL. The virus then infects more hepatocytes by entering the cells through the low-density lipoprotein receptor, which mediates uptake of majorities of VLDL-derived lipoprotein particles. These observations suggest that HCV may belong to a novel class of viruses that is associated with VLDL. Understanding the relationship between HCV and VLDL metabolism may reveal new strategies to treat HCV infection.
Collapse
Affiliation(s)
- Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA.
| |
Collapse
|
45
|
Abstract
Steady increase in the incidence of atherosclerosis is becoming a major concern not only in the United States but also in other countries. One of the major risk factors for the development of atherosclerosis is high concentrations of plasma low-density lipoprotein, which are metabolic products of very low-density lipoprotein (VLDL). VLDLs are synthesized and secreted by the liver. In this review, we discuss various stages through which VLDL particles go from their biogenesis to secretion in the circulatory system. Once VLDLs are synthesized in the lumen of the endoplasmic reticulum, they are transported to the Golgi. The transport of nascent VLDLs from the endoplasmic reticulum to Golgi is a complex multistep process, which is mediated by a specialized transport vesicle, the VLDL transport vesicle. The VLDL transport vesicle delivers VLDLs to the cis-Golgi lumen where nascent VLDLs undergo a number of essential modifications. The mature VLDL particles are then transported to the plasma membrane and secreted in the circulatory system. Understanding of molecular mechanisms and identification of factors regulating the complex intracellular VLDL trafficking will provide insight into the pathophysiology of various metabolic disorders associated with abnormal VLDL secretion and identify potential new therapeutic targets.
Collapse
Affiliation(s)
- Samata Tiwari
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, FL 32827, USA
| | | |
Collapse
|
46
|
Lehner R, Lian J, Quiroga AD. Lumenal lipid metabolism: implications for lipoprotein assembly. Arterioscler Thromb Vasc Biol 2012; 32:1087-93. [PMID: 22517367 DOI: 10.1161/atvbaha.111.241497] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Overproduction of apolipoprotein B (apoB)-containing lipoproteins by the liver and the intestine is 1 of the hallmarks of insulin resistance and type 2 diabetes and a well-established risk factor of cardiovascular disease. The assembly of apoB lipoproteins is regulated by the availability of lipids that form the neutral lipid core (triacylglycerol and cholesteryl ester) and the limiting lipoprotein monolayer (phospholipids and cholesterol). Although tremendous advances have been made over the past decade toward understanding neutral lipid and phospholipid biosynthesis and neutral lipid storage in cytosolic lipid droplets (LDs), little is known about the mechanisms that govern the transfer of lipids to the lumen of the endoplasmic reticulum for apoB lipidation. ApoB-synthesizing organs can deposit synthesized neutral lipids into at least 3 different types of LDs, each decorated with a subset of specific proteins: perilipin-decorated cytosolic LDs, and 2 types of LDs formed in the lumen of the endoplasmic reticulum, the secretion-destined LDs containing apoB, and resident lumenal LDs coated with microsomal triglyceride transfer protein and exchangeable apolipoproteins. This brief review will address the current knowledge of lumenal lipid metabolism in the context of apoB assembly and lipid storage.
Collapse
Affiliation(s)
- Richard Lehner
- Department of Pediatrics and Cell Biology, Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
47
|
Abstract
Intestinal lipid transport plays a central role in fat homeostasis. Here we review the pathways regulating intestinal absorption and delivery of dietary and biliary lipid substrates, principally long-chain fatty acid, cholesterol, and other sterols. We discuss the regulation and functions of CD36 in fatty acid absorption, NPC1L1 in cholesterol absorption, as well as other lipid transporters including FATP4 and SRB1. We discuss the pathways of intestinal sterol efflux via ABCG5/G8 and ABCA1 as well as the role of the small intestine in high-density lipoprotein (HDL) biogenesis and reverse cholesterol transport. We review the pathways and genetic regulation of chylomicron assembly, the role of dominant restriction points such as microsomal triglyceride transfer protein and apolipoprotein B, and the role of CD36, l-FABP, and other proteins in formation of the prechylomicron complex. We will summarize current concepts of regulated lipoprotein secretion (including HDL and chylomicron pathways) and include lessons learned from families with genetic mutations in dominant pathways (i.e., abetalipoproteinemia, chylomicron retention disease, and familial hypobetalipoproteinemia). Finally, we will provide an integrative view of intestinal lipid homeostasis through recent findings on the role of lipid flux and fatty acid signaling via diverse receptor pathways in regulating absorption and production of satiety factors.
Collapse
Affiliation(s)
- Nada A Abumrad
- Center for Human Nutrition and Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
48
|
Liu M, Chung S, Shelness GS, Parks JS. Hepatic ABCA1 and VLDL triglyceride production. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1821:770-7. [PMID: 22001232 PMCID: PMC3272310 DOI: 10.1016/j.bbalip.2011.09.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/23/2011] [Accepted: 09/26/2011] [Indexed: 02/04/2023]
Abstract
Elevated plasma triglyceride (TG) and reduced high density lipoprotein (HDL) concentrations are prominent features of metabolic syndrome (MS) and type 2 diabetes (T2D). Individuals with Tangier disease also have elevated plasma TG concentrations and a near absence of HDL, resulting from mutations in ATP binding cassette transporter A1 (ABCA1), which facilitates the efflux of cellular phospholipid and free cholesterol to assemble with apolipoprotein A-I (apoA-I), forming nascent HDL particles. In this review, we summarize studies focused on the regulation of hepatic very low density lipoprotein (VLDL) TG production, with particular attention on recent evidence connecting hepatic ABCA1 expression to VLDL, LDL, and HDL metabolism. Silencing ABCA1 in McArdle rat hepatoma cells results in diminished assembly of large (>10nm) nascent HDL particles, diminished PI3 kinase activation, and increased secretion of large, TG-enriched VLDL1 particles. Hepatocyte-specific ABCA1 knockout (HSKO) mice have a similar plasma lipid phenotype as Tangier disease subjects, with a two-fold elevation of plasma VLDL TG, 50% lower LDL, and 80% reduction in HDL concentrations. This lipid phenotype arises from increased hepatic secretion of VLDL1 particles, increased hepatic uptake of plasma LDL by the LDL receptor, elimination of nascent HDL particle assembly by the liver, and hypercatabolism of apoA-I by the kidney. These studies highlight a novel role for hepatic ABCA1 in the metabolism of all three major classes of plasma lipoproteins and provide a metabolic link between elevated TG and reduced HDL levels that are a common feature of Tangier disease, MS, and T2D. This article is part of a Special Issue entitled: Triglyceride Metabolism and Disease.
Collapse
Affiliation(s)
- Mingxia Liu
- Department of Pathology/Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | | |
Collapse
|
49
|
Khatun I, Zeissig S, Iqbal J, Wang M, Curiel D, Shelness GS, Blumberg RS, Hussain MM. Phospholipid transfer activity of microsomal triglyceride transfer protein produces apolipoprotein B and reduces hepatosteatosis while maintaining low plasma lipids in mice. Hepatology 2012; 55:1356-68. [PMID: 22121032 PMCID: PMC3299931 DOI: 10.1002/hep.25504] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 11/13/2011] [Indexed: 12/12/2022]
Abstract
UNLABELLED Microsomal triglyceride transfer protein (MTP), essential for apolipoprotein B (apoB) biosynthesis, evolved as a phospholipid transfer protein and acquired triglyceride transfer activity during a transition from invertebrates to vertebrates. But it is unknown whether MTP directly transfers lipids onto apoB in vivo and, if it does, whether both neutral and polar lipid transfer activities of MTP are critical for lipoprotein assembly. The molecular bases for differences in lipid transfer activities with respect to distinct domains in Drosophila MTP (dMTP) and human MTP (hMTP) are not obvious because both proteins have very similar primary, secondary, and tertiary structures. We used an in vivo approach to delineate physiological significance of these distinct lipid transfer activities by expressing dMTP (transfers phospholipids) and hMTP (transfers phospholipids and triglycerides) orthologs using adenoviruses in liver-specific MTP-deficient (L-MTP(-/-)) mice that have low plasma and high hepatic lipids. Both orthologs improved plasma lipids but plasma triglycerides were lower in dMTP mice due to lower hepatic triglyceride and apoB production. Hepatosteatosis in L-MTP(-/-) mice was ameliorated to similar levels by both. Attenuation of hepatosteatosis upon dMTP expression pertained to enhanced β-oxidation with no changes in lipogenesis. Phospholipid transfer activity of MTP promoted biogenesis of both apoB48 and apoB100-containing very low density lipoprotein in addition to a phospholipid-rich apoB48-containing high-density lipoprotein particle. Triglyceride transfer activity augmented the biosynthesis of triglyceride-rich lipoproteins by increasing the formation of these particles in the lumen of the endoplasmic reticulum. CONCLUSION Based on these findings, we posit that the selective inhibition of MTP triglyceride transfer activity might reduce hyperlipidemia while protecting liver from excess lipid accumulation.
Collapse
Affiliation(s)
- Irani Khatun
- School of Graduate Studies, Molecular and Cellular Biology Program, Brooklyn, NY,Departments of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY
| | - Sebastian Zeissig
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Jahangir Iqbal
- Departments of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY
| | - Minghui Wang
- University of Alabama, Birmingham, Winston-Salem, NC
| | - David Curiel
- University of Alabama, Birmingham, Winston-Salem, NC
| | | | - Richard S. Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - M. Mahmood Hussain
- Departments of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY
| |
Collapse
|
50
|
Hussain MM, Rava P, Walsh M, Rana M, Iqbal J. Multiple functions of microsomal triglyceride transfer protein. Nutr Metab (Lond) 2012; 9:14. [PMID: 22353470 PMCID: PMC3337244 DOI: 10.1186/1743-7075-9-14] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/21/2012] [Indexed: 02/08/2023] Open
Abstract
Microsomal triglyceride transfer protein (MTP) was first identified as a major cellular protein capable of transferring neutral lipids between membrane vesicles. Its role as an essential chaperone for the biosynthesis of apolipoprotein B (apoB)-containing triglyceride-rich lipoproteins was established after the realization that abetalipoproteinemia patients carry mutations in the MTTP gene resulting in the loss of its lipid transfer activity. Now it is known that it also plays a role in the biosynthesis of CD1, glycolipid presenting molecules, as well as in the regulation of cholesterol ester biosynthesis. In this review, we will provide a historical perspective about the identification, purification and characterization of MTP, describe methods used to measure its lipid transfer activity, and discuss tissue expression and function. Finally, we will review the role MTP plays in the assembly of apoB-lipoprotein, the regulation of cholesterol ester synthesis, biosynthesis of CD1 proteins and propagation of hepatitis C virus. We will also provide a brief overview about the clinical potentials of MTP inhibition.
Collapse
Affiliation(s)
- M Mahmood Hussain
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Paul Rava
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Meghan Walsh
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Muhammad Rana
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Jahangir Iqbal
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|