1
|
Horn M, Bieliková L, Vostoupalová A, Švéda J, Mareš M. An update on proteases and protease inhibitors from trematodes. ADVANCES IN PARASITOLOGY 2024; 126:97-176. [PMID: 39448195 DOI: 10.1016/bs.apar.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Trematodes, a class of parasitic flatworms, are responsible for a variety of devastating diseases in humans and animals, with schistosomiasis and fascioliasis being prominent examples. Trematode proteolytic systems involved in the host-parasite interaction have emerged as key contributors to the success of trematodes in establishing and maintaining infections. This review concentrates on diverse proteases and protease inhibitors employed by trematodes and provides an update on recent advances in their molecular-level characterization, with a focus on function, structure, and therapeutic target potential.
Collapse
Affiliation(s)
- Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucia Bieliková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Vostoupalová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Švéda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Salang R, Phadungsil W, Geadkaew-Krenc A, Grams R. Investigation of a Serine Protease Inhibitor Active in the Infectious Stage of the Human Liver Fluke Opisthorchis viverrini. Pathogens 2024; 13:678. [PMID: 39204278 PMCID: PMC11356884 DOI: 10.3390/pathogens13080678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Serine protease inhibitors (serpins) participate in the regulation of inflammation, blood coagulation, and complement activation in humans. This research aimed to identify and characterize such inhibitors of the human liver fluke Opisthorchis viverrini. Parasite proteins that might contribute to the modulation of host physiology are of particular interest, especially as chronic opisthorchiasis increases the risk of developing biliary cancer. BLAST was used to find hypothetical serpins predicted from the parasite genome data. RNA extraction and reverse transcriptase PCR were used to isolate a serpin cDNA and to determine developmental transcript abundance. The evolutionary relation to other trematode serpins was revealed by phylogenetic analysis. Recombinant serpin was expressed in Escherichia coli and used to test the immunoreactivity of human opisthorchiasis sera and the inhibition of human serine proteases. A substantial serpin family with high sequence divergence among the members was found in the genus Opisthorchis. A serpin, different from previously analyzed trematode serpins, was cloned. The transcript was only detected in metacercariae and newly excysted juveniles. Human opisthorchiasis sera showed statistically significant reactivity to recombinant serpin. The serpin caused moderate inhibition of thrombin and low inhibition of kallikrein and chymotrypsin. This parasite serpin could be further evaluated as a diagnostic tool for early infection. Kallikrein and thrombin are involved in fibrinolysis; therefore, further research should explore the effects of the parasite serpin on this process.
Collapse
Affiliation(s)
| | | | | | - Rudi Grams
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand; (R.S.); (W.P.); (A.G.-K.)
| |
Collapse
|
3
|
Horák P, Bulantová J, Mikeš L. Other Schistosomatoidea and Diplostomoidea. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:107-155. [PMID: 39008265 DOI: 10.1007/978-3-031-60121-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Trematodes of the order Diplostomida are well known as serious pathogens of man, and both farm and wild animals; members of the genus Schistosoma (Schistosomatidae) are responsible for human schistosomosis (schistosomiasis) affecting more than 200 million people in tropical and subtropical countries, and infections of mammals and birds by animal schistosomes are of great veterinary importance. The order Diplostomida is also rich in species parasitizing other major taxa of vertebrates. The "Aporocotylidae" sensu lato are pathogenic in fish, "Spirorchiidae" sensu lato in reptiles. All these flukes have two-host life cycles, with asexually reproducing larvae usually in mollusks and occasionally in annelids, and adults usually live in the blood vessels of their vertebrate hosts. Pathology is frequently associated with inflammatory reactions to eggs trapped in various tissues/organs. On the other hand, the representatives of Diplostomidae and Strigeidae have three- or four-host life cycles in which vertebrates often serve not only as definitive but also as intermediate or paratenic hosts. Pathology is usually associated with migration of metacercariae and mesocercariae within the host tissues. The impact of these trematode infections on both farm and wild animals may be significant.
Collapse
Affiliation(s)
- Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Jana Bulantová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
4
|
Webb AJ, Allan F, Kelwick RJR, Beshah FZ, Kinung’hi SM, Templeton MR, Emery AM, Freemont PS. Specific Nucleic AcId Ligation for the detection of Schistosomes: SNAILS. PLoS Negl Trop Dis 2022; 16:e0010632. [PMID: 35881651 PMCID: PMC9355235 DOI: 10.1371/journal.pntd.0010632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/05/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Schistosomiasis, also known as bilharzia or snail fever, is a debilitating neglected tropical disease (NTD), caused by parasitic trematode flatworms of the genus Schistosoma, that has an annual mortality rate of 280,000 people in sub-Saharan Africa alone. Schistosomiasis is transmitted via contact with water bodies that are home to the intermediate host snail which shed the infective cercariae into the water. Schistosome lifecycles are complex, and while not all schistosome species cause human disease, endemic regions also typically feature animal-infecting schistosomes that can have broader economic and/or food security implications. Therefore, the development of species-specific Schistosoma detection technologies may help to inform evidence-based local environmental, food security and health systems policy making. Crucially, schistosomiasis disproportionally affects low- and middle-income (LMIC) countries and for that reason, environmental screening of water bodies for schistosomes may aid with the targeting of water, sanitation, and hygiene (WASH) interventions and preventive chemotherapy to regions at highest risk of schistosomiasis transmission, and to monitor the effectiveness of such interventions at reducing the risk over time. To this end, we developed a DNA-based biosensor termed Specific Nucleic AcId Ligation for the detection of Schistosomes or ‘SNAILS’. Here we show that ‘SNAILS’ enables species-specific detection from genomic DNA (gDNA) samples that were collected from the field in endemic areas. Schistosomiasis is a neglected tropical disease, caused by the parasitic trematodes of the genus Schistosoma. Schistosomiasis is endemic to regions within Africa, Asia and South America with at least 250 million people infected and a further 779 million at risk of infection. The lifecycle of schistosomes are complex and involve specific freshwater intermediate snail hosts which shed infective cercariae into the waterbodies they inhabit. Schistosomiasis is subsequently transmitted to humans or animals that contact cercariae contaminated water. In Africa, human disease is largely caused by Schistosoma mansoni and Schistosoma haematobium. However, endemic regions also typically feature animal-infecting schistosomes that can have broader economic and/or food security implications. Therefore, the development of species-specific Schistosoma detection technologies may help to inform local environmental, food security and health programmes. To this end, we re-purposed a nucleic acid detection technology to enable the detection of different schistosome species. Our DNA-biosensor, abbreviated as ‘SNAILS’, employs carefully designed probes that recognise species-specific DNA sequences, coupled with enzymatic amplification steps, and a fluorescent signal-dye to indicate a positive detection. ‘SNAILS’ successfully differentiates between S. mansoni and S. haematobium samples and could conceivably be employed within future global health programmes.
Collapse
Affiliation(s)
- Alexander James Webb
- Section of Structural and Synthetic biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Fiona Allan
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Richard J. R. Kelwick
- Section of Structural and Synthetic biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Feleke Zewge Beshah
- College of Natural and Computational Sciences, Addis Ababa University, Arat Kilo, Addis Ababa, Ethiopia
| | | | - Michael R. Templeton
- Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
| | - Aidan Mark Emery
- Department of Life Sciences, Natural History Museum, London, United Kingdom
- * E-mail: (AME); (PSF)
| | - Paul S. Freemont
- Section of Structural and Synthetic biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
- The London Biofoundry, Imperial College Translation and Innovation Hub, White City Campus, London, United Kingdom
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, Hammersmith Campus, London, United Kingdom
- * E-mail: (AME); (PSF)
| |
Collapse
|
5
|
Parker-Manuel SJ, Wilson RA. An atlas of the germ ball-cercaria-schistosomulum transition in Schistosoma mansoni, using confocal microscopy and in situ hybridisation. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 2:100087. [PMID: 35514673 PMCID: PMC9062357 DOI: 10.1016/j.crpvbd.2022.100087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/22/2022] [Accepted: 04/04/2022] [Indexed: 01/19/2023]
Abstract
Schistosomes are complex platyhelminth parasites with a genome comprising ∼12,000 protein-coding genes, three distinct generations, and at least seven distinct phenotypes. We chart here cellular and gene expression changes associated with development of the cercaria, in the intramolluscan daughter sporocyst, and its transformation into the skin stage schistosomulum upon infection of the mammalian host. We describe the morphology of the early daughter sporocyst and the increasing complexity of cellular organisation in germ balls as they rapidly develop into cercariae. We show how individual myocytes differentiate and combine to create the complex musculature of the head capsule and body wall. In situ hybridisation reveals that some transcripts encoding the secretory proteins, released during skin penetration, are expressed in gland-cell precursors very early in germ ball development. However, those for the projected anti-inflammatory protein Sm16-stathmin are widely expressed in germ ball tissues, suggesting the protein has intracellular functions. Transcripts for smkk7 are expressed in six cells of the larval body, while the KK7 protein is present throughout the peripheral nerve net, including sensory nerve bulbs, providing a marker for the nerve net in adult worms. We also note that the cercaria-schistosomulum transformation is accompanied by tissue remodelling without growth.
Collapse
Affiliation(s)
| | - R Alan Wilson
- Department of Biology, University of York, Heslington, York YO10 5DD, UK.,York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
6
|
Vondráček O, Mikeš L, Talacko P, Leontovyč R, Bulantová J, Horák P. Differential proteomic analysis of laser-microdissected penetration glands of avian schistosome cercariae with a focus on proteins involved in host invasion. Int J Parasitol 2022; 52:343-358. [PMID: 35218763 DOI: 10.1016/j.ijpara.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022]
Abstract
Schistosome invasive stages, cercariae, leave intermediate snail hosts, penetrate the skin of definitive hosts, and transform to schistosomula which migrate to the final location. During invasion, cercariae employ histolytic and other bioactive products of specialized holocrine secretory cells - postacetabular (PA) and circumacetabular (CA) penetration glands. Although several studies attempted to characterize protein composition of the in vitro-induced gland secretions in Schistosoma mansoni and Schistosoma japonicum, the results were somewhat inconsistent and dependent on the method of sample collection and processing. Products of both gland types mixed during their secretion did not allow localization of identified proteins to a particular gland. Here we compared proteomes of separately isolated cercarial gland cells of the avian schistosome Trichobilharzia szidati, employing laser-assisted microdissection and shotgun LC-MS/MS, thus obtaining the largest dataset so far of the representation and localization of cercarial penetration gland proteins. We optimized the methods of sample processing with cercarial bodies (heads) first. Alizarin-pre-stained, chemically non-fixed samples provided optimal results of MS analyses, and enabled us to distinguish PA and CA glands for microdissection. Using 7.5 x 106 μm3 sample volume per gland replicate, we identified 3347 peptides assigned to 792 proteins, from which 461 occurred in at least two of three replicates in either gland type (PA = 455, 40 exclusive; CA = 421, six exclusive; 60 proteins differed significantly in their abundance between the glands). Peptidases of five catalytic types accounted for ca. 8% and 6% of reliably identified proteins in PA and CA glands, respectively. Invadolysin, nardilysin, cathepsins B2 and L3, and elastase 2b orthologs were the major gland endopeptidases. Two cystatins and a serpin were highly abundant peptidase inhibitors in the glands. While PA glands generally had rich enzymatic equipment, CA glands were conspicuously abundant in venom allergen-like proteins.
Collapse
Affiliation(s)
- Oldřich Vondráček
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czechia
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czechia.
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV Průmyslová 595, Vestec, Czechia
| | - Roman Leontovyč
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czechia
| | - Jana Bulantová
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czechia
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czechia
| |
Collapse
|
7
|
Hu CX, Zeng J, Yang DQ, Yue X, Dan Liu R, Long SR, Zhang X, Jiang P, Cui J, Wang ZQ. Binding of elastase-1 and enterocytes facilitates Trichinella spiralis larval intrusion of the host's intestinal epithelium. Acta Trop 2020; 211:105592. [PMID: 32565198 DOI: 10.1016/j.actatropica.2020.105592] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 11/28/2022]
Abstract
Elastase-1 is one member of serine protease family, distributes in organisms widely and plays a crucial role in the invasion and development of Trichinella spiralis. In order to identify the binding of T. spiralis elastase-1 (TsEla) with host's intestinal epithelial cells (IECs) and its role in Trichinella larval intrusion, TsEla gene was cloned and expressed in our previous study. The recombinant TsEla (rTsEla) has the enzymatic activity to degrade specific peptide substrate. A specific binding between rTsEla and IECs was detected by Far Western blot and ELISA. In an in vitro invasion assay, rTsEla promoted the larval intrusion, whereas anti-rTsEla serum inhibited the larval penetration. The larval intrusion was also suppressed after the silencing of TsEla by siRNA. Silencing of TsEla gene by siRNA-291 meditated RNA interference suppressed TsEla protein expression, reduced the worm infectivity, development and reproductive capacity. These results indicated that TsEla plays an important role in the T. spiralis intrusion of host's intestinal epithelia, and it could be a prospective vaccine molecular target against T. spiralis infection.
Collapse
Affiliation(s)
- Chen Xi Hu
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Jie Zeng
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Da Qi Yang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Xin Yue
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China.
| |
Collapse
|
8
|
Zhu B, Luo F, Shen Y, Yang W, Sun C, Wang J, Li J, Mo X, Xu B, Zhang X, Li Y, Hu W. Schistosoma japonicum cathepsin B2 (SjCB2) facilitates parasite invasion through the skin. PLoS Negl Trop Dis 2020; 14:e0008810. [PMID: 33104723 PMCID: PMC7644097 DOI: 10.1371/journal.pntd.0008810] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/05/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Cercariae invasion of the human skin is the first step in schistosome infection. Proteases play key roles in this process. However, little is known about the related hydrolytic enzymes in Schistosoma japonicum. Here, we investigated the biochemical features, tissue distribution and biological roles of a cathepsin B cysteine protease, SjCB2, in the invasion process of S. japonicum cercariae. Enzyme activity analysis revealed that recombinant SjCB2 is a typical cysteine protease with optimum temperature and pH for activity at 37°C and 4.0, respectively, and can be totally inhibited by the cysteine protease inhibitor E-64. Immunoblotting showed that both the zymogen (50 kDa) and mature enzyme (30.5 kDa) forms of SjCB2 are expressed in the cercariae. It was observed that SjCB2 localized predominantly in the acetabular glands and their ducts of cercariae, suggesting that the protease could be released during the invasion process. The protease degraded collagen, elastin, keratin, fibronectin, immunoglobulin (A, G and M) and complement C3, protein components of the dermis and immune system. In addition, proteomic analysis demonstrated that SjCB2 can degrade the human epidermis. Furthermore, it was showed that anti-rSjCB2 IgG significantly reduced (22.94%) the ability of the cercariae to invade the skin. The cysteine protease, SjCB2, located in the acetabular glands and their ducts of S. japonicum cercariae. We propose that SjCB2 facilitates skin invasion by degrading the major proteins of the epidermis and dermis. However, this cysteine protease may play additional roles in host-parasite interaction by degrading immunoglobins and complement protein. Schistosomiasis is one of the most prevalent parasitic diseases in the world, with about 200 million humans infected in 74 tropical countries. The infection of schistosome is initiated when the larvae, cercariae, penetrate the human skin. Proteolytic enzymes are likely involved in the invasion process, but these have yet to be characterized for S. japonicum. Here, we have functionally expressed a recombinant form of the cathepsin B cysteine protease SjCB2 in the yeast Pichia pastoris. Our study showed that SjCB2 degraded a number of proteins associated with the skin and immune systems, and disrupted the structure of the human epidermis. The enzyme was located in the acetabular glands and their ducts in the cercariae, where it would be stored before released into the skin. Antibody-blocking studies revealed that SjCB2 had a 22.94% contribution during the cercariae invasion process. Taken together, our findings suggest that SjCB2 helped cercariae penetrating the skin barrier and evading the immune attack to allow successful infection in the mammalian host.
Collapse
Affiliation(s)
- Bingkuan Zhu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Fang Luo
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Yi Shen
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Wenbin Yang
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Chengsong Sun
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Jipeng Wang
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Jian Li
- Dermatology Department, Huashan Hospital of Fudan University, Shanghai, China
| | - Xiaojin Mo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| | - Xumin Zhang
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Yongdong Li
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, China
- * E-mail: (YL); (WH)
| | - Wei Hu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
- * E-mail: (YL); (WH)
| |
Collapse
|
9
|
Konczal M, Przesmycka KJ, Mohammed RS, Phillips KP, Camara F, Chmielewski S, Hahn C, Guigo R, Cable J, Radwan J. Gene duplications, divergence and recombination shape adaptive evolution of the fish ectoparasite Gyrodactylus bullatarudis. Mol Ecol 2020; 29:1494-1507. [PMID: 32222008 DOI: 10.1111/mec.15421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 03/05/2020] [Accepted: 03/19/2020] [Indexed: 12/30/2022]
Abstract
Determining the molecular basis of parasite adaptation to its host is an important component in understanding host-parasite coevolution and the epidemiology of parasitic infections. Here, we investigate short- and long-term adaptive evolution in the eukaryotic parasite Gyrodactylus bullatarudis infecting Caribbean guppies (Poecilia reticulata), by comparing the reference genome of Tobagonian G. bullatarudis with other Platyhelminthes, and by analysing resequenced samples from local Trinidadian populations. At the macroevolutionary timescale, we observed duplication of G-protein and serine proteases genes, which are probably important in host-parasite arms races. Serine protease also showed strong evidence of ongoing, diversifying selection at the microevolutionary timescale. Furthermore, our analyses revealed that a hybridization event, involving two divergent genomes, followed by recombination has dramatically affected the genetic composition of Trinidadian populations. The recombinant genotypes invaded Trinidad and replaced local parasites in all populations. We localized more than 300 genes in regions fixed in local populations for variants of different origin, possibly due to diversifying selection pressure from local host populations. In addition, around 70 genes were localized in regions identified as heterozygous in some, but not all, individuals. This pattern is consistent with a very recent spread of recombinant parasites. Overall, our results are consistent with the idea that recombination between divergent genomes can result in particularly successful parasites.
Collapse
Affiliation(s)
- Mateusz Konczal
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Karolina J Przesmycka
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Ryan S Mohammed
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies Zoology Museum, UWI, St. Augustine, Trinidad and Tobago
| | - Karl P Phillips
- School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland.,Marine Institute, Newport (Mayo), Ireland
| | - Francisco Camara
- Centre for Genomic Regulation (CRG), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sebastian Chmielewski
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | | - Roderic Guigo
- Centre for Genomic Regulation (CRG), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
10
|
Dvořáková H, Leontovyč R, Macháček T, O'Donoghue AJ, Šedo O, Zdráhal Z, Craik CS, Caffrey CR, Horák P, Mikeš L. Isoforms of Cathepsin B1 in Neurotropic Schistosomula of Trichobilharzia regenti Differ in Substrate Preferences and a Highly Expressed Catalytically Inactive Paralog Binds Cystatin. Front Cell Infect Microbiol 2020; 10:66. [PMID: 32175287 PMCID: PMC7054455 DOI: 10.3389/fcimb.2020.00066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/07/2020] [Indexed: 11/13/2022] Open
Abstract
Schistosomula (the post-infective stages) of the neurotropic schistosome Trichobilharzia regenti possess multiple isoforms of cathepsin B1 peptidase (TrCB1.1-TrCB1.6) with involvement in nutrient digestion. The comparison of substrate preferences of TrCB1.1 and TrCB1.4 showed that TrCB1.4 had a very narrow substrate specificity and after processing it was less effective toward protein substrates when compared to TrCB1.1. Self-processing of both isoforms could be facilitated by sulfated polysaccharides due to a specific binding motif in the pro-sequence. Trans-activation by heterologous enzymes was also successfully employed. Expression profiling revealed a high level of transcription of genes encoding the enzymatically inactive paralogs TrCB1.5 and TrCB1.6. The transcription level of TrCB1.6 was comparable with that of TrCB1.1 and TrCB1.2, the most abundant active isoforms. Recombinant TrCB1.6wt, a wild type paralog with a Cys29-to-Gly substitution in the active site that renders the enzyme inactive, was processed by the active TrCB1 forms and by an asparaginyl endopeptidase. Although TrCB1.6wt lacked hydrolytic activity, endopeptidase, but not dipeptidase, activity could be restored by mutating Gly29 to Cys29. The lack of exopeptidase activity may be due to other mutations, such as His110-to-Asn in the occluding loop and Asp224-to-Gly in the main body of the mature TrCB1.6, which do not occur in the active isoforms TrCB1.1 and TrCB1.4 with exopeptidase activity. The catalytically active enzymes and the inactive TrCB1.6 paralog formed complexes with chicken cystatin, thus supporting experimentally the hypothesis that inactive paralogs could potentially regulate the activity of the active forms or protect them from being inhibited by host inhibitors. The effect on cell viability and nitric oxide production by selected immune cells observed for TrCB1.1 was not confirmed for TrCB1.6. We show here that the active isoforms of TrCB1 have different affinities for peptide substrates thereby facilitating diversity in protein-derived nutrition for the parasite. The inactive paralogs are unexpectedly highly expressed and one of them retains the ability to bind cystatins, likely due to specific mutations in the occluding loop and the enzyme body. This suggests a role in sequestration of inhibitors and protection of active cysteine peptidases.
Collapse
Affiliation(s)
- Hana Dvořáková
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Roman Leontovyč
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Anthony J. O'Donoghue
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, San Francisco, CA, United States
| | - Ondřej Šedo
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, San Francisco, CA, United States
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
11
|
Hu CX, Jiang P, Yue X, Zeng J, Zhang XZ, Song YY, Liu RD, Zhang X, Wang ZQ, Cui J. Molecular characterization of a Trichinella spiralis elastase-1 and its potential as a diagnostic antigen for trichinellosis. Parasit Vectors 2020; 13:97. [PMID: 32093735 PMCID: PMC7041205 DOI: 10.1186/s13071-020-3981-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trichinella spiralis muscle larval (ML) excretion/secretion (ES) antigen is the most widely used diagnostic antigen of trichinellosis, but preparation of ES antigen requires collecting worms from infected animals, and detection of specific IgG against ML ES antigen may result in a false negative at the early stage of infection. The aim of the study was to characterize T. spiralis elastase-1 (TsEla) and to evaluate its potential as diagnostic antigen for trichinellosis. METHODS The complete cDNA sequences of the TsEla gene were cloned and expressed, and recombinant (rTsEla) was purified. TsEla transcription and expression in different T. spiralis life-cycle stages was investigated by qPCR and western blotting, and its location in the nematodes was evaluated using an immunofluorescence assay (IFA). The antigenicity of rTsEla was investigated by western blotting analysis and ELISA. Anti-Trichinella IgG, IgM and IgE of experimentally infected mice and specific IgG antibodies of trichinellosis patients were assayed by rTsEla-ELISA and ES-ELISA. RESULTS The results of the qPCR and western blotting showed that TsEla was expressed in various T. spiralis life stages. Natural TsEla was detected in the soluble proteins and ES proteins of different life stages. IFA revealed that TsEla was identified in the whole nematodes of various stages, especially in the cuticle, stichosome and genital primordium of the parasite. Serum anti-Trichinella IgM, IgG and IgE in infected mice was first detected by rTsEla-ELISA at 6, 10 and 12 days post-infection (dpi), and reached 100% at 8, 14 and 14 dpi, respectively. When rTsEla-ELISA and ES-ELISA were used to detect anti-Trichinella IgG in sera of trichinellosis patients, the sensitivity was 97.37% (37/38) and 89.74% (34/38) (P > 0.05), and the specificity was 99.10% (220/222) and 98.20% (218/222), respectively (P > 0.05). The rTsEla cross-reacted with only one serum sample out of 20 samples from paragonimiasis patients and 7 samples from clonorchiasis patients. CONCLUSIONS rTsEla is valuable to early diagnosis of trichinellosis and could be an alternative diagnostic antigen to the ML ES antigens.
Collapse
Affiliation(s)
- Chen Xi Hu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Xin Yue
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Jie Zeng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Xin Zhuo Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
12
|
Zhang T, Mo XJ, Xu B, Yang Z, Gobert GN, Yan S, Feng Z, Hu W. Enzyme activity of Schistosoma japonicum cercarial elastase SjCE-2b ascertained by in vitro refolded recombinant protein. Acta Trop 2018; 187:15-22. [PMID: 30017495 DOI: 10.1016/j.actatropica.2018.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 06/03/2018] [Accepted: 07/10/2018] [Indexed: 10/28/2022]
Abstract
Cercarial elastase (CE) secreted from cercariae is evinced to play a pivotal role in initial skin penetration of mammalian host. SjCE-2b, a Schistosoma japonicum CE orthologous to SmCE-2b in S. mansoni, was previously found present in cercarial stage to aid skin invasion, but its enzyme activity has not been validated due to the insolubility and altered conformation when expressed recombinantly in bacteria as inclusion bodies. We report here for the first time a bioactive and soluble recombinant SjCE-2b recovered successfully from inclusion bodies by refolding approaches, enabling our biochemical and immunological investigation of this enzyme. Using a "two-step-denaturing and refolding" method, we recovered an 83% yield with 90% purity of refolded protein. Proteolytic activity of rSjCE-2b was demonstrated and characterized by enzymatic assay, showing a Km of 0.116 mM and a specific activity of 1900 nmol p-nitroaniline/min/mg protein. A significant immunoprotective response was evidenced in mice immunized with refolded rSjCE-2b. The result of immunoprotection test is at apparent variance with previously reported findings using S. mansoni CE preparation, which was poorly immunogenic in immunized animals. This work extends the knowledge of schistosome cercarial protease, and presents a bioactive form of S. japonicum recombinant CE with high yield and good quality. This will allow further biochemical and biological investigations to explore schistosome CE activity and better understand the molecular mechanisms associated with cercarial skin invasion of the mammalian host.
Collapse
|
13
|
Leontovyč A, Ulrychová L, O’Donoghue AJ, Vondrášek J, Marešová L, Hubálek M, Fajtová P, Chanová M, Jiang Z, Craik CS, Caffrey CR, Mareš M, Dvořák J, Horn M. SmSP2: A serine protease secreted by the blood fluke pathogen Schistosoma mansoni with anti-hemostatic properties. PLoS Negl Trop Dis 2018; 12:e0006446. [PMID: 29677188 PMCID: PMC5931690 DOI: 10.1371/journal.pntd.0006446] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/02/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Serine proteases are important virulence factors for many pathogens. Recently, we discovered a group of trypsin-like serine proteases with domain organization unique to flatworm parasites and containing a thrombospondin type 1 repeat (TSR-1). These proteases are recognized as antigens during host infection and may prove useful as anthelminthic vaccines, however their molecular characteristics are under-studied. Here, we characterize the structural and proteolytic attributes of serine protease 2 (SmSP2) from Schistosoma mansoni, one of the major species responsible for the tropical infectious disease, schistosomiasis. METHODOLOGY/PRINCIPAL FINDINGS SmSP2 comprises three domains: a histidine stretch, TSR-1 and a serine protease domain. The cleavage specificity of recombinant SmSP2 was determined using positional scanning and multiplex combinatorial libraries and the determinants of specificity were identified with 3D homology models, demonstrating a trypsin-like endopeptidase mode of action. SmSP2 displayed restricted proteolysis on protein substrates. It activated tissue plasminogen activator and plasminogen as key components of the fibrinolytic system, and released the vasoregulatory peptide, kinin, from kininogen. SmSP2 was detected in the surface tegument, esophageal glands and reproductive organs of the adult parasite by immunofluorescence microscopy, and in the excretory/secretory products by immunoblotting. CONCLUSIONS/SIGNIFICANCE The data suggest that SmSP2 is secreted, functions at the host-parasite interface and contributes to the survival of the parasite by manipulating host vasodilatation and fibrinolysis. SmSP2 may be, therefore, a potential target for anti-schistosomal therapy.
Collapse
Affiliation(s)
- Adrian Leontovyč
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lenka Ulrychová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Anthony J. O’Donoghue
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Jiří Vondrášek
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| | - Lucie Marešová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| | - Pavla Fajtová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marta Chanová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zhenze Jiang
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, United States of America
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Dvořák
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
- * E-mail: (MH); (JD)
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
- * E-mail: (MH); (JD)
| |
Collapse
|
14
|
Dvorak J, Horn M. Serine proteases in schistosomes and other trematodes. Int J Parasitol 2018; 48:333-344. [PMID: 29477711 DOI: 10.1016/j.ijpara.2018.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/19/2018] [Accepted: 01/25/2018] [Indexed: 02/04/2023]
Abstract
Trematodes, also known as flukes, are phylogenetically ancient parasitic organisms. Due to their importance as human and veterinary parasites, their proteins have been investigated extensively as drug and vaccine targets. Among those, proteases, as crucial enzymes for parasite survival, are considered candidate molecules for anti-parasitic interventions. Surprisingly however, trematode serine proteases, in comparison with other groups of proteases, are largely neglected. Genes encoding serine proteases have been identified in trematode genomes in significant abundance, but the biological roles and biochemical functions of these proteases are poorly understood. However, increasing volumes of genomic and proteomic studies, and accumulated experimental evidence, indicate that this class of proteases plays a substantial role in host-parasite interactions and parasite survival. Here, we discuss in detail serine proteases at genomic and protein levels, and their known or hypothetical functions.
Collapse
Affiliation(s)
- Jan Dvorak
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, Kamycka 129, Prague CZ 165 21, Czech Republic.
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague CZ 166 10, Czech Republic.
| |
Collapse
|
15
|
Fernandes RS, Barbosa TC, Barbosa MMF, Miyasato PA, Nakano E, Leite LCC, Farias LP. Stage and tissue expression patterns of Schistosoma mansoni venom allergen-like proteins SmVAL 4, 13, 16 and 24. Parasit Vectors 2017; 10:223. [PMID: 28482920 PMCID: PMC5422958 DOI: 10.1186/s13071-017-2144-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/19/2017] [Indexed: 11/20/2022] Open
Abstract
Background Schistosoma mansoni venom allergen-like protein (SmVAL) is a gene family composed of 29 members divided into group 1 encoding proteins potentially secreted, and group 2 encoding intracellular components. Some members were found to be upregulated in the transition of germ ball - cercariae - day 3 schistosomula, suggesting that group 1 SmVAL proteins are associated with the invasion of the human host, although their functions are not completely established. Recently, we have described the localization of SmVAL7 (group 1) and SmVAL6 (group 2) transcripts in the oesophageal gland and in the oral and ventral suckers of adult parasites, respectively. The expression patterns of the two genes suggest that SmVAL7 protein plays a role in the blood-feeding process while SmVAL6 is associated with the parasite attachment and movement in the vasculature. In this way, searching for additional secreted SmVAL proteins that could be involved in key processes from skin penetration to the beginning of blood-feeding, we investigated the tissue localization of SmVAL4, 13, 16 and 24 by whole-mount in situ hybridization (WISH). Results We report here the localization of group 1 SmVAL4 and 24 transcripts in the pre-acetabular glands of developing germ balls. Time course experiments of in vitro cultured schistosomula after cercariae transformation demonstrated that SmVAL4 protein is secreted during the first 3 h of in vitro culture, correlating with the emptying of acetabular glands as documented by confocal microscopy. In addition, the localization of SmVAL13 transcripts in adult male anterior oesophageal gland suggests that the respective protein may be involved in the first steps of the blood-feeding process. SmVAL16 was localized close to the neural ganglia and requires further investigation. Conclusions Our findings demonstrate that SmVAL proteins have localizations that place them in strategic positions to be considered as potential vaccine candidates as some members are exposed to interaction with the immune system and may participate in key processes of mammalian invasion and parasitism establishment. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2144-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rafaela Sachetto Fernandes
- Centro de Biotecnologia, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, SP, Brazil.,Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Mayra Mara Ferrari Barbosa
- Centro de Biotecnologia, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, SP, Brazil.,Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Patrícia Aoki Miyasato
- Laboratório de Parasitologia, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, SP, Brazil
| | - Eliana Nakano
- Laboratório de Parasitologia, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, SP, Brazil
| | | | - Leonardo Paiva Farias
- Centro de Biotecnologia, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, SP, Brazil. .,Present Address: Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, BA, Brazil.
| |
Collapse
|
16
|
Schistosoma mansoni cercarial elastase (SmCE): differences in immunogenic properties of native and recombinant forms. Parasitology 2017; 144:1356-1364. [DOI: 10.1017/s0031182017000658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYThe Schistosoma mansoni cercarial elastase (SmCE) has previously been shown to be poorly immunogenic in mice. However, a minority of mice were able to produce antibodies against SmCE after multiple immunizations with crude preparations containing the enzyme. These mice were partially protected against challenge infections of S. mansoni. In the present study, we show that in contrast to the poor immunogenicity of the enzymatically active native form of SmCE derived from a crude preparation (cercarial transformation fluid), immunization of CBA/Ca mice with two enzymatically inactive forms, namely purified native SmCE or a recombinant SmCE fused to recombinant Schistosoma japonicum glutathione S-transferase (rSmCE-SjGST), after adsorption onto aluminum hydroxide adjuvant, induced specific anti-SmCE immunoglobulin G (IgG) in all mice within 2 weeks of the second immunization. The IgG antibody response to rSmCE-SjGST was mainly of the IgG1 subclass. These results suggest that inactive forms of the antigen could be used to obtain the optimum immunogenic effects as a vaccine candidate against schistosomiasis. Mice immunized with the rSmCE-SjGST on alum had smaller mean worm burdens and lower tissue egg counts when compared with adjuvant alone- and recombinant SjGST-injected controls. The native SmCE was antigenically cross-reactive with homologous enzymes of Schistosoma haematobium and Schistosoma margrebowiei.
Collapse
|
17
|
A protease-based biosensor for the detection of schistosome cercariae. Sci Rep 2016; 6:24725. [PMID: 27090566 PMCID: PMC4835807 DOI: 10.1038/srep24725] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/30/2016] [Indexed: 01/18/2023] Open
Abstract
Parasitic diseases affect millions of people worldwide, causing debilitating illnesses and death. Rapid and cost-effective approaches to detect parasites are needed, especially in resource-limited settings. A common signature of parasitic diseases is the release of specific proteases by the parasites at multiple stages during their life cycles. To this end, we engineered several modular Escherichia coli and Bacillus subtilis whole-cell-based biosensors which incorporate an interchangeable protease recognition motif into their designs. Herein, we describe how several of our engineered biosensors have been applied to detect the presence and activity of elastase, an enzyme released by the cercarial larvae stage of Schistosoma mansoni. Collectively, S. mansoni and several other schistosomes are responsible for the infection of an estimated 200 million people worldwide. Since our biosensors are maintained in lyophilised cells, they could be applied for the detection of S. mansoni and other parasites in settings without reliable cold chain access.
Collapse
|
18
|
Whole genome resequencing of the human parasite Schistosoma mansoni reveals population history and effects of selection. Sci Rep 2016; 6:20954. [PMID: 26879532 PMCID: PMC4754680 DOI: 10.1038/srep20954] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/13/2016] [Indexed: 12/30/2022] Open
Abstract
Schistosoma mansoni is a parasitic fluke that infects millions of people in the developing world. This study presents the first application of population genomics to S. mansoni based on high-coverage resequencing data from 10 global isolates and an isolate of the closely-related Schistosoma rodhaini, which infects rodents. Using population genetic tests, we document genes under directional and balancing selection in S. mansoni that may facilitate adaptation to the human host. Coalescence modeling reveals the speciation of S. mansoni and S. rodhaini as 107.5-147.6KYA, a period which overlaps with the earliest archaeological evidence for fishing in Africa. Our results indicate that S. mansoni originated in East Africa and experienced a decline in effective population size 20-90KYA, before dispersing across the continent during the Holocene. In addition, we find strong evidence that S. mansoni migrated to the New World with the 16-19th Century Atlantic Slave Trade.
Collapse
|
19
|
Leontovyč R, Young ND, Korhonen PK, Hall RS, Tan P, Mikeš L, Kašný M, Horák P, Gasser RB. Comparative Transcriptomic Exploration Reveals Unique Molecular Adaptations of Neuropathogenic Trichobilharzia to Invade and Parasitize Its Avian Definitive Host. PLoS Negl Trop Dis 2016; 10:e0004406. [PMID: 26863542 PMCID: PMC4749378 DOI: 10.1371/journal.pntd.0004406] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/04/2016] [Indexed: 02/07/2023] Open
Abstract
To date, most molecular investigations of schistosomatids have focused principally on blood flukes (schistosomes) of humans. Despite the clinical importance of cercarial dermatitis in humans caused by Trichobilharzia regenti and the serious neuropathologic disease that this parasite causes in its permissive avian hosts and accidental mammalian hosts, almost nothing is known about the molecular aspects of how this fluke invades its hosts, migrates in host tissues and how it interacts with its hosts’ immune system. Here, we explored selected aspects using a transcriptomic-bioinformatic approach. To do this, we sequenced, assembled and annotated the transcriptome representing two consecutive life stages (cercariae and schistosomula) of T. regenti involved in the first phases of infection of the avian host. We identified key biological and metabolic pathways specific to each of these two developmental stages and also undertook comparative analyses using data available for taxonomically related blood flukes of the genus Schistosoma. Detailed comparative analyses revealed the unique involvement of carbohydrate metabolism, translation and amino acid metabolism, and calcium in T. regenti cercariae during their invasion and in growth and development, as well as the roles of cell adhesion molecules, microaerobic metabolism (citrate cycle and oxidative phosphorylation), peptidases (cathepsins) and other histolytic and lysozomal proteins in schistosomula during their particular migration in neural tissues of the avian host. In conclusion, the present transcriptomic exploration provides new and significant insights into the molecular biology of T. regenti, which should underpin future genomic and proteomic investigations of T. regenti and, importantly, provides a useful starting point for a range of comparative studies of schistosomatids and other trematodes. Despite the clinical importance of Trichobilharzia regenti in bird hosts and as a cause of cercarial dermatitis in humans, almost nothing is known about the molecular aspects of this fluke and its interactions with its hosts. Here, we sequenced, assembled and annotated the transcriptome representing two life stages (cercariae and schistosomula) of T. regenti involved in the first phases of infection of the bird host. We identified key biological and metabolic pathways specific to each of these two developmental stages and also undertook comparative analyses using data available for related flukes. Detailed analyses showed the unique involvement of carbohydrate metabolism, translation and amino acid metabolism, and calcium in T. regenti cercariae during invasion and in growth and development, as well as cell adhesion molecules, microaerobic metabolism (citrate cycle and oxidative phosphorylation), peptidases (cathepsins) and other histolytic and lysozomal proteins in schistosomula during migration in neural tissues. These molecular insights into T. regenti biology should support future genomic and proteomic investigations of T. regenti, and comparative studies of flatworms.
Collapse
Affiliation(s)
- Roman Leontovyč
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- * E-mail:
| | - Neil D. Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Pasi K. Korhonen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ross S. Hall
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Patrick Tan
- Genome Institute of Singapore, Singapore, Republic of Singapore
- Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, Republic of Singapore
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Martin Kašný
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Robin B. Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Liu M, Ju C, Du XF, Shen HM, Wang JP, Li J, Zhang XM, Feng Z, Hu W. Proteomic Analysis on Cercariae and Schistosomula in Reference to Potential Proteases Involved in Host Invasion of Schistosoma japonicum Larvae. J Proteome Res 2015; 14:4623-34. [PMID: 26370134 DOI: 10.1021/acs.jproteome.5b00465] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Schistosomiasis is a parasitic zoonosis posing great threat to human health. The infection is acquired by larval cercariae penetrating host skin and transforming into juveniles, schistosomula. Proteolytic enzymes secreted from the cercarial acetabular glands are known to aid to the skin penetration, but molecular mechanisms remain largely unclear. To profile the protein composition and identify potential invasive proteases, we developed a new method for simulating cercarial transformation and collecting schistosomula, and for the first time, we compared the proteomes of Schistosoma japonicum cercariae and schistosomula by using in-gel shotgun proteomic analysis. Totally, 1972 proteins were identified in association with ten main biological processes based on Gene Ontology analysis; 46 proteases were detected in cercariae, and among them, 25 proteases disappeared after penetrated. Notably, leishmanolysins and serine and cysteine proteases were found abundant but differentially expressed. Recombinant serine protease SjCE2b and cysteine protease SjCB2 were produced and used for validation of native proteins. Immunofluorescence and Western blotting assays detected SjCE2b and SjCB2 in cercariae but not in schistosomula, suggesting the two enzymes might be consumed upon skin migration. Our data comprehensively chart the proteomic changes during cercarial invasion, revealing the potential proteases involved, providing a platform for the development of molecular anti-infection strategy.
Collapse
Affiliation(s)
- Mu Liu
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University , 2005 Songhu Road, Shanghai 200438, China
| | - Chuan Ju
- Key Laboratory of Parasite and Vector Biology of Ministry of Public Health, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention , 207 Rui Jin Er Road, Shanghai 200025, China
| | - Xiao-Feng Du
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University , 2005 Songhu Road, Shanghai 200438, China
| | - Hai-Mo Shen
- Key Laboratory of Parasite and Vector Biology of Ministry of Public Health, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention , 207 Rui Jin Er Road, Shanghai 200025, China
| | - Ji-Peng Wang
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University , 2005 Songhu Road, Shanghai 200438, China
| | - Jian Li
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University , 2005 Songhu Road, Shanghai 200438, China
| | - Xu-Min Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University , 2005 Songhu Road, Shanghai 200438, China
| | - Zheng Feng
- Key Laboratory of Parasite and Vector Biology of Ministry of Public Health, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention , 207 Rui Jin Er Road, Shanghai 200025, China
| | - Wei Hu
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University , 2005 Songhu Road, Shanghai 200438, China.,Key Laboratory of Parasite and Vector Biology of Ministry of Public Health, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention , 207 Rui Jin Er Road, Shanghai 200025, China.,State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University , 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
21
|
Dvořák J, Fajtová P, Ulrychová L, Leontovyč A, Rojo-Arreola L, Suzuki BM, Horn M, Mareš M, Craik CS, Caffrey CR, O'Donoghue AJ. Excretion/secretion products from Schistosoma mansoni adults, eggs and schistosomula have unique peptidase specificity profiles. Biochimie 2015; 122:99-109. [PMID: 26409899 DOI: 10.1016/j.biochi.2015.09.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 09/22/2015] [Indexed: 02/03/2023]
Abstract
Schistosomiasis is one of a number of chronic helminth diseases of poverty that severely impact personal and societal well-being and productivity. Peptidases (proteases) are vital to successful parasitism, and can modulate host physiology and immunology. Interference of peptidase action by specific drugs or vaccines can be therapeutically beneficial. To date, research on peptidases in the schistosome parasite has focused on either the functional characterization of individual peptidases or their annotation as part of global genome or transcriptome studies. We were interested in functionally characterizing the complexity of peptidase activity operating at the host-parasite interface, therefore the excretory-secretory products of key developmental stages of Schistosoma mansoni that parasitize the human were examined. Using class specific peptidase inhibitors in combination with a multiplex substrate profiling assay, a number of unique activities derived from endo- and exo-peptidases were revealed in the excretory-secretory products of schistosomula (larval migratory worms), adults and eggs. The data highlight the complexity of the functional degradome for each developmental stage of this parasite and facilitate further enquiry to establish peptidase identity, physiological and immunological function, and utility as drug or vaccine candidates.
Collapse
Affiliation(s)
- Jan Dvořák
- Institute of Molecular Genetics, The Czech Academy of Sciences, Prague CZ - 142 20, Czech Republic; Institute of Parasitology, Biology Center, The Czech Academy of Sciences, České Budějovice CZ - 370 05, Czech Republic; Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague CZ - 166 10, Czech Republic
| | - Pavla Fajtová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague CZ - 166 10, Czech Republic; First Faculty of Medicine, Charles University in Prague, Prague CZ - 121 08, Czech Republic
| | - Lenka Ulrychová
- Institute of Molecular Genetics, The Czech Academy of Sciences, Prague CZ - 142 20, Czech Republic; Dept. of Parasitology, Faculty of Science, Charles University in Prague, Prague CZ - 128 44, Czech Republic
| | - Adrian Leontovyč
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague CZ - 166 10, Czech Republic; First Faculty of Medicine, Charles University in Prague, Prague CZ - 121 08, Czech Republic
| | - Liliana Rojo-Arreola
- Center for Discovery and Innovation in Parasitic Diseases and the Department of Pathology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Brian M Suzuki
- Center for Discovery and Innovation in Parasitic Diseases and the Department of Pathology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague CZ - 166 10, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague CZ - 166 10, Czech Republic
| | - Charles S Craik
- Dept. of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases and the Department of Pathology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Anthony J O'Donoghue
- Dept. of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
22
|
Yang Y, Wen YJ, Cai YN, Vallée I, Boireau P, Liu MY, Cheng SP. Serine proteases of parasitic helminths. THE KOREAN JOURNAL OF PARASITOLOGY 2015; 53:1-11. [PMID: 25748703 PMCID: PMC4384789 DOI: 10.3347/kjp.2015.53.1.1] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 09/15/2014] [Accepted: 10/23/2014] [Indexed: 12/04/2022]
Abstract
Serine proteases form one of the most important families of enzymes and perform significant functions in a broad range of biological processes, such as intra- and extracellular protein metabolism, digestion, blood coagulation, regulation of development, and fertilization. A number of serine proteases have been identified in parasitic helminths that have putative roles in parasite development and nutrition, host tissues and cell invasion, anticoagulation, and immune evasion. In this review, we described the serine proteases that have been identified in parasitic helminths, including nematodes (Trichinella spiralis, T. pseudospiralis, Trichuris muris, Anisakis simplex, Ascaris suum, Onchocerca volvulus, O. lienalis, Brugia malayi, Ancylostoma caninum, and Steinernema carpocapsae), cestodes (Spirometra mansoni, Echinococcus granulosus, and Schistocephalus solidus), and trematodes (Fasciola hepatica, F. gigantica, and Schistosoma mansoni). Moreover, the possible biological functions of these serine proteases in the endogenous biological phenomena of these parasites and in the host-parasite interaction were also discussed.
Collapse
Affiliation(s)
- Yong Yang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
- ANSES, ENVA, UPVM, PRES Paris Est, JRU BIPAR, Animal Health Laboratory, Maisons-Alfort, France
| | - Yun jun Wen
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ya Nan Cai
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Isabelle Vallée
- ANSES, ENVA, UPVM, PRES Paris Est, JRU BIPAR, Animal Health Laboratory, Maisons-Alfort, France
| | - Pascal Boireau
- ANSES, ENVA, UPVM, PRES Paris Est, JRU BIPAR, Animal Health Laboratory, Maisons-Alfort, France
| | - Ming Yuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Shi Peng Cheng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
23
|
Horn M, Fajtová P, Rojo Arreola L, Ulrychová L, Bartošová-Sojková P, Franta Z, Protasio AV, Opavský D, Vondrášek J, McKerrow JH, Mareš M, Caffrey CR, Dvořák J. Trypsin- and Chymotrypsin-like serine proteases in schistosoma mansoni-- 'the undiscovered country'. PLoS Negl Trop Dis 2014; 8:e2766. [PMID: 24676141 PMCID: PMC3967958 DOI: 10.1371/journal.pntd.0002766] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/16/2014] [Indexed: 11/23/2022] Open
Abstract
Background Blood flukes (Schistosoma spp.) are parasites that can survive for years or decades in the vasculature of permissive mammalian hosts, including humans. Proteolytic enzymes (proteases) are crucial for successful parasitism, including aspects of invasion, maturation and reproduction. Most attention has focused on the ‘cercarial elastase’ serine proteases that facilitate skin invasion by infective schistosome larvae, and the cysteine and aspartic proteases that worms use to digest the blood meal. Apart from the cercarial elastases, information regarding other S. mansoni serine proteases (SmSPs) is limited. To address this, we investigated SmSPs using genomic, transcriptomic, phylogenetic and functional proteomic approaches. Methodology/Principal Findings Genes encoding five distinct SmSPs, termed SmSP1 - SmSP5, some of which comprise disparate protein domains, were retrieved from the S. mansoni genome database and annotated. Reverse transcription quantitative PCR (RT- qPCR) in various schistosome developmental stages indicated complex expression patterns for SmSPs, including their constituent protein domains. SmSP2 stood apart as being massively expressed in schistosomula and adult stages. Phylogenetic analysis segregated SmSPs into diverse clusters of family S1 proteases. SmSP1 to SmSP4 are trypsin-like proteases, whereas SmSP5 is chymotrypsin-like. In agreement, trypsin-like activities were shown to predominate in eggs, schistosomula and adults using peptidyl fluorogenic substrates. SmSP5 is particularly novel in the phylogenetics of family S1 schistosome proteases, as it is part of a cluster of sequences that fill a gap between the highly divergent cercarial elastases and other family S1 proteases. Conclusions/Significance Our series of post-genomics analyses clarifies the complexity of schistosome family S1 serine proteases and highlights their interrelationships, including the cercarial elastases and, not least, the identification of a ‘missing-link’ protease cluster, represented by SmSP5. A framework is now in place to guide the characterization of individual proteases, their stage-specific expression and their contributions to parasitism, in particular, their possible modulation of host physiology. Schistosomes are blood flukes that live in the blood system and cause chronic and debilitating infection in hundreds of millions of people. Proteolytic enzymes (proteases) produced by the parasite allow it to survive and reproduce. We focused on understanding the repertoire of trypsin- and chymotrypsin-like Schistosoma mansoni serine proteases (SmSPs) using a variety of genomic, bioinformatics, RNA- and protein-based techniques. We identified five SmSPs that are produced at different stages of the parasite's development. Based on bioinformatics and cleavage preferences for small peptide substrates, SmSP1 to SmSP4 are trypsin-like, whereas SmSP5 is chymotrypsin-like. Interestingly, SmSP5 forms part of a ‘missing link’ group of enzymes between the specialized chymotrypsin-like ‘cercarial elastases’ that help the parasite invade human skin and the more typical chymotrypsins and trypsins found in the nature. Our findings form a basis for further exploration of the functions of the individual enzymes, including their possible contributions to influencing host physiology.
Collapse
Affiliation(s)
- Martin Horn
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavla Fajtová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Liliana Rojo Arreola
- Center for Discovery and Innovation in Parasitic Diseases, Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Lenka Ulrychová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Pavla Bartošová-Sojková
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic
| | - Zdeněk Franta
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Bioresources, Gießen, Germany
| | - Anna V. Protasio
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - David Opavský
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic
| | - Jiří Vondrášek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - James H. McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Jan Dvořák
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic
- * E-mail:
| |
Collapse
|
24
|
Kolářová L, Horák P, Skírnisson K, Marečková H, Doenhoff M. Cercarial dermatitis, a neglected allergic disease. Clin Rev Allergy Immunol 2014; 45:63-74. [PMID: 22915284 DOI: 10.1007/s12016-012-8334-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cercarial dermatitis (swimmer's itch) is a common non-communicable water-borne disease. It is caused by penetration of the skin by larvae (cercariae) of schistosomatid flukes and develops as a maculopapular skin eruption after repeated contacts with the parasites. The number of outbreaks of the disease is increasing, and cercarial dermatitis can therefore be considered as an emerging problem. Swimmer's itch is mostly associated with larvae of the bird schistosomes of Trichobilharzia spp. Recent results have shown that mammalian infections (including man) manifest themselves as an allergic reaction which is able to trap and eliminate parasites in the skin. Studies on mammals experimentally infected by bird schistosome cercariae revealed, however, that during primary infection, parasites are able to escape from the skin to the lungs or central nervous system. This review covers basic information on detection of the infectious agents in the field and the clinical course of the disease, including other pathologies which may develop after infection by cercariae, and diagnosis of the disease.
Collapse
Affiliation(s)
- Libuše Kolářová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Studničkova 7, 128 00, Prague 2, Czech Republic.
| | | | | | | | | |
Collapse
|
25
|
Silva LL, Marcet-Houben M, Nahum LA, Zerlotini A, Gabaldón T, Oliveira G. The Schistosoma mansoni phylome: using evolutionary genomics to gain insight into a parasite's biology. BMC Genomics 2012; 13:617. [PMID: 23148687 PMCID: PMC3534613 DOI: 10.1186/1471-2164-13-617] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 10/22/2012] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Schistosoma mansoni is one of the causative agents of schistosomiasis, a neglected tropical disease that affects about 237 million people worldwide. Despite recent efforts, we still lack a general understanding of the relevant host-parasite interactions, and the possible treatments are limited by the emergence of resistant strains and the absence of a vaccine. The S. mansoni genome was completely sequenced and still under continuous annotation. Nevertheless, more than 45% of the encoded proteins remain without experimental characterization or even functional prediction. To improve our knowledge regarding the biology of this parasite, we conducted a proteome-wide evolutionary analysis to provide a broad view of the S. mansoni's proteome evolution and to improve its functional annotation. RESULTS Using a phylogenomic approach, we reconstructed the S. mansoni phylome, which comprises the evolutionary histories of all parasite proteins and their homologs across 12 other organisms. The analysis of a total of 7,964 phylogenies allowed a deeper understanding of genomic complexity and evolutionary adaptations to a parasitic lifestyle. In particular, the identification of lineage-specific gene duplications pointed to the diversification of several protein families that are relevant for host-parasite interaction, including proteases, tetraspanins, fucosyltransferases, venom allergen-like proteins, and tegumental-allergen-like proteins. In addition to the evolutionary knowledge, the phylome data enabled us to automatically re-annotate 3,451 proteins through a phylogenetic-based approach rather than solely sequence similarity searches. To allow further exploitation of this valuable data, all information has been made available at PhylomeDB (http://www.phylomedb.org). CONCLUSIONS In this study, we used an evolutionary approach to assess S. mansoni parasite biology, improve genome/proteome functional annotation, and provide insights into host-parasite interactions. Taking advantage of a proteome-wide perspective rather than focusing on individual proteins, we identified that this parasite has experienced specific gene duplication events, particularly affecting genes that are potentially related to the parasitic lifestyle. These innovations may be related to the mechanisms that protect S. mansoni against host immune responses being important adaptations for the parasite survival in a potentially hostile environment. Continuing this work, a comparative analysis involving genomic, transcriptomic, and proteomic data from other helminth parasites, other parasites, and vectors will supply more information regarding parasite's biology as well as host-parasite interactions.
Collapse
Affiliation(s)
- Larissa Lopes Silva
- Grupo de Genômica e Biologia Computacional, Centro de Pesquisas René Rachou. Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais. Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG, 30190-002, Brazil
- Centro de Excelência em Bioinformática, Fundação Oswaldo Cruz – FIOCRUZ, Belo Horizonte, MG, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais – UFMG, Belo Horizonte, MG, Brazil
| | - Marina Marcet-Houben
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader, 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Laila Alves Nahum
- Grupo de Genômica e Biologia Computacional, Centro de Pesquisas René Rachou. Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais. Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG, 30190-002, Brazil
- Centro de Excelência em Bioinformática, Fundação Oswaldo Cruz – FIOCRUZ, Belo Horizonte, MG, Brazil
- Faculdade Infórium de Tecnologia, Belo Horizonte, MG, 30130-180, Brazil
| | - Adhemar Zerlotini
- Centro de Excelência em Bioinformática, Fundação Oswaldo Cruz – FIOCRUZ, Belo Horizonte, MG, Brazil
- Laboratório Multiusuário de Bioinformática, Embrapa Informática Agropecuária, Campinas, São Paulo, Brazil
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader, 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Guilherme Oliveira
- Grupo de Genômica e Biologia Computacional, Centro de Pesquisas René Rachou. Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais. Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG, 30190-002, Brazil
- Centro de Excelência em Bioinformática, Fundação Oswaldo Cruz – FIOCRUZ, Belo Horizonte, MG, Brazil
| |
Collapse
|
26
|
O’Donoghue AJ, Eroy-Reveles AA, Knudsen GM, Ingram J, Zhou M, Statnekov JB, Greninger AL, Hostetter DR, Qu G, Maltby DA, Anderson MO, DeRisi JL, McKerrow JH, Burlingame AL, Craik CS. Global identification of peptidase specificity by multiplex substrate profiling. Nat Methods 2012; 9:1095-100. [PMID: 23023596 PMCID: PMC3707110 DOI: 10.1038/nmeth.2182] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/29/2012] [Indexed: 11/08/2022]
Abstract
We developed a simple and rapid multiplex substrate-profiling method to reveal the substrate specificity of any endo- or exopeptidase using liquid chromatography-tandem mass spectrometry sequencing. We generated a physicochemically diverse library of peptides by incorporating all combinations of neighbor and near-neighbor amino acid pairs into decapeptide sequences that are flanked by unique dipeptides at each terminus. Addition of a panel of evolutionarily diverse peptidases to a mixture of these tetradecapeptides generated information on prime and nonprime sites as well as on substrate specificity that matched or expanded upon known substrate motifs. This method biochemically confirmed the activity of the klassevirus 3C protein responsible for polypeptide processing and allowed granzyme B substrates to be ranked by enzymatic turnover efficiency using label-free quantitation of precursor-ion abundance. Additionally, the proteolytic secretions from schistosome parasitic flatworm larvae and a pancreatic cancer cell line were deconvoluted in a subtractive strategy using class-specific peptidase inhibitors.
Collapse
Affiliation(s)
| | - A. Alegra Eroy-Reveles
- Dept. of Pharmaceutical Chemistry, UCSF
- Dept. of Chemistry and Biochemistry, San Francisco State University
| | | | | | - Min Zhou
- Dept. of Pharmaceutical Chemistry, UCSF
| | | | | | | | | | | | - Marc O. Anderson
- Dept. of Chemistry and Biochemistry, San Francisco State University
| | - Joseph L. DeRisi
- Howard Hughes Medical Institute and Dept. of Biochemistry and Biophysics, UCSF
| | | | | | | |
Collapse
|
27
|
Wilson RA. Virulence factors of schistosomes. Microbes Infect 2012; 14:1442-50. [PMID: 22982150 DOI: 10.1016/j.micinf.2012.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/18/2012] [Accepted: 09/03/2012] [Indexed: 12/25/2022]
Abstract
This review considers whether the products of schistosomes in the mammalian host can be considered as virulence factors. These include: the cercarial secretions used in infection, those of the migrating schistosomulum, surface-exposed proteins of adult worms in the portal system and their gut vomitus in the context of immune evasion, secretions of the egg facilitating its escape from gut tissues and micro-exon gene products.
Collapse
Affiliation(s)
- R Alan Wilson
- Centre for Immunology & Infection, Department of Biology, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
28
|
Silva LL, Marcet-Houben M, Zerlotini A, Gabaldón T, Oliveira G, Nahum LA. Evolutionary histories of expanded peptidase families in Schistosoma mansoni. Mem Inst Oswaldo Cruz 2012; 106:864-77. [PMID: 22124560 DOI: 10.1590/s0074-02762011000700013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 08/09/2011] [Indexed: 11/22/2022] Open
Abstract
Schistosoma mansoni is one of the three main causative agents of human schistosomiasis, a major health problem with a vast socio-economic impact. Recent advances in the proteomic analysis of schistosomes have revealed that peptidases are the main virulence factors involved in the pathogenesis of this disease. In this context, evolutionary studies can be applied to identify peptidase families that have been expanded in genomes over time in response to different selection pressures. Using a phylogenomic approach, we searched for expanded endopeptidase families in the S. mansoni predicted proteome with the aim of contributing to the knowledge of such enzymes as potential therapeutic targets. We found three endopeptidase families that comprise leishmanolysins (metallopeptidase M8 family), cercarial elastases (serine peptidase S1 family) and cathepsin D proteins (aspartic peptidase A1 family). Our results suggest that the Schistosoma members of these families originated from successive gene duplication events in the parasite lineage after its diversification from other metazoans. Overall, critical residues are conserved among the duplicated genes/proteins. Furthermore, each protein family displays a distinct evolutionary history. Altogether, this work provides an evolutionary view of three S. mansoni peptidase families, which allows for a deeper understanding of the genomic complexity and lineage-specific adaptations potentially related to the parasitic lifestyle.
Collapse
Affiliation(s)
- Larissa Lopes Silva
- Grupo de Genômica e Biologia Computacional, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Belo Horizonte, MG, Brasil
| | | | | | | | | | | |
Collapse
|
29
|
Granzin J, Huang Y, Topbas C, Huang W, Wu Z, Misra S, Hazen SL, Blanton RE, Lee X, Weiergräber OH. Three-dimensional structure of a schistosome serpin revealing an unusual configuration of the helical subdomain. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:686-94. [PMID: 22683791 PMCID: PMC3370883 DOI: 10.1107/s0907444912008372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/24/2012] [Indexed: 11/10/2022]
Abstract
Parasitic organisms are constantly challenged by the defence mechanisms of their respective hosts, which often depend on serine protease activities. Consequently, protease inhibitors such as those belonging to the serpin superfamily have emerged as protective elements that support the survival of the parasites. This report describes the crystal structure of ShSPI, a serpin from the trematode Schistosoma haematobium. The protein is exposed on the surface of invading cercaria as well as of adult worms, suggesting its involvement in the parasite-host interaction. While generally conforming to the well established serpin fold, the structure reveals several distinctive features, mostly concerning the helical subdomain of the protein. It is proposed that these peculiarities are related to the unique biological properties of a small serpin subfamily which is conserved among pathogenic schistosomes.
Collapse
Affiliation(s)
- Joachim Granzin
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Ying Huang
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Celalettin Topbas
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Wenying Huang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Zhiping Wu
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Saurav Misra
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Stanley L. Hazen
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ronald E. Blanton
- Department of Infectious Diseases, Case Western Reserve University, Cleveland, OH 44190, USA
| | - Xavier Lee
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Oliver H. Weiergräber
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
30
|
Proteomics at the schistosome-mammalian host interface: any prospects for diagnostics or vaccines? Parasitology 2012; 139:1178-94. [PMID: 22717150 DOI: 10.1017/s0031182012000339] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Since 2004 there has been a remarkable increment in our knowledge of the proteins and glycans that reside at, or are released from the surfaces of schistosomes in the mammalian host. Initial characterization of the soluble proteome permits distinctions to be made between the parasite secretome and its necrotome. The principal proteins secreted by the cercaria to gain access to the skin have been described as well as those released by migrating schistosomula. An inventory of transporters, enzymes and structural proteins has been shown to reside the tegument surface, but also immunoglobulins, complement factors and host CD44. The secreted membranocalyx that overlies the plasma membrane may contain a small number of proteins, not simply acting as physical barrier, but its lipid composition remains elusive. Analysis of worm vomitus has provided insights into blood feeding, increasing the number of known lysosomal hydrolases, and identifying a series of carrier proteins potentially involved in uptake of lipids and inorganic ions by the gut epithelium. The egg secretions that aid escape from the tissues include a mixture of MEG-2 and MEG-3 family variant proteins. The utility of identified proteins for the development of new diagnostics, and their potential as vaccines candidates is evaluated.
Collapse
|
31
|
Ingram JR, Rafi SB, Eroy-Reveles AA, Ray M, Lambeth L, Hsieh I, Ruelas D, Lim KC, Sakanari J, Craik CS, Jacobson MP, McKerrow JH. Investigation of the proteolytic functions of an expanded cercarial elastase gene family in Schistosoma mansoni. PLoS Negl Trop Dis 2012; 6:e1589. [PMID: 22509414 PMCID: PMC3317910 DOI: 10.1371/journal.pntd.0001589] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/16/2012] [Indexed: 11/18/2022] Open
Abstract
Background Cercarial elastase is the major invasive larval protease in Schistosoma mansoni, a parasitic blood fluke, and is essential for host skin invasion. Genome sequence analysis reveals a greatly expanded family of cercarial elastase gene isoforms in Schistosoma mansoni. This expansion appears to be unique to S. mansoni, and it is unknown whether gene duplication has led to divergent protease function. Methods Profiling of transcript and protein expression patterns reveals that cercarial elastase isoforms are similarly expressed throughout the S. mansoni life cycle. Computational modeling predicts key differences in the substrate-binding pockets of various cercarial elastase isoforms, suggesting a diversification of substrate preferences compared with the ancestral gene of the family. In addition, active site labeling of SmCE reveals that it is activated prior to exit of the parasite from its intermediate snail host. Conclusions The expansion of the cercarial gene family in S. mansoni is likely to be an example of gene dosage. In addition to its critical role in human skin penetration, data presented here suggests a novel role for the protease in egress from the intermediate snail host. This study demonstrates how enzyme activity-based analysis complements genomic and proteomic studies, and is key in elucidating proteolytic function. Schistosome parasites are a major cause of disease in the developing world. The larval stage of the parasite transitions between an intermediate snail host and a definitive human host in a dramatic fashion, burrowing out of the snail and subsequently penetrating human skin. This process is facilitated by secreted proteases. In Schistosoma mansoni, cercarial elastase is the predominant secreted protease and essential for host skin invasion. Genomic analysis reveals a greatly expanded cercarial elastase gene family in S. mansoni. Despite sequence divergence, SmCE isoforms show similar expression profiles throughout the S. mansoni life cycle and have largely similar substrate specificities, suggesting that the majority of protease isoforms are functionally redundant and therefore their expansion is an example of gene dosage. However, activity-based profiling also indicates that a subset of SmCE isoforms are activated prior to the parasite's exit from its intermediate snail host, suggesting that the protease may also have a role in this process.
Collapse
Affiliation(s)
- Jessica R. Ingram
- Tetrad Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - Salma B. Rafi
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - A. Alegra Eroy-Reveles
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Manisha Ray
- Tetrad Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - Laura Lambeth
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Ivy Hsieh
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Debbie Ruelas
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - K. C. Lim
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Judy Sakanari
- Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Matthew P. Jacobson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - James H. McKerrow
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
- Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Quezada LAL, Sajid M, Lim KC, McKerrow JH. A blood fluke serine protease inhibitor regulates an endogenous larval elastase. J Biol Chem 2012; 287:7074-83. [PMID: 22174417 PMCID: PMC3293575 DOI: 10.1074/jbc.m111.313304] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/13/2011] [Indexed: 11/06/2022] Open
Abstract
The larvae of Schistosoma mansoni invade their mammalian host by utilizing a serine protease, cercarial elastase (SmCE), to degrade macromolecular proteins in host skin. The catalytic activity of serine and cysteine proteases can be regulated after activation by serpins. SmSrpQ, one of two S. mansoni serpins found in larval secretions, is only expressed during larval development and in the early stages of mammalian infection. In vitro, (35)S-SmSrpQ was able to form an SDS-stable complex with a component of the larval lysate, but no complex was detected when (35)S-SmSrpQ was incubated with several mammalian host proteases. Formation of a complex was sensitive to the protease active site inhibitors PMSF, Z-AAPF-CMK, and Z-AAPL-CMK. Western blot analysis of parasite lysates from different life stages detected a complex of comparable size to SmCE bound to SmSrpQ using anti-SmSrpQ or anti-SmCE antibodies. SmSrpQ and SmCE are located in adjacent but discrete compartments in the secretion glands of the parasite. Fluorescence immunohistochemical analysis of simulated infection showed co-localization of SmCE and SmSrpQ in host tissue suggesting a post release regulation of parasite protease activity during skin transversal. The results of this study suggest that cercarial elastase degradation of skin tissue is carefully regulated by SmSrpQ.
Collapse
Affiliation(s)
- Landys A. Lopez Quezada
- From the Biomedical Science Graduate Program, University of California, San Francisco, California 94158
| | - Mohammed Sajid
- the Leiden University Medical Center, 2333 ZA Leiden, The Netherlands, and
| | - Kee C. Lim
- the Department of Pathology, Sandler Center for Drug Discovery, University of California, San Francisco, California 94158
| | - James H. McKerrow
- the Department of Pathology, Sandler Center for Drug Discovery, University of California, San Francisco, California 94158
| |
Collapse
|
33
|
Proteomic analysis of human skin treated with larval schistosome peptidases reveals distinct invasion strategies among species of blood flukes. PLoS Negl Trop Dis 2011; 5:e1337. [PMID: 21980548 PMCID: PMC3181243 DOI: 10.1371/journal.pntd.0001337] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/11/2011] [Indexed: 11/26/2022] Open
Abstract
Background Skin invasion is the initial step in infection of the human host by schistosome blood flukes. Schistosome larvae have the remarkable ability to overcome the physical and biochemical barriers present in skin in the absence of any mechanical trauma. While a serine peptidase with activity against insoluble elastin appears to be essential for this process in one species of schistosomes, Schistosoma mansoni, it is unknown whether other schistosome species use the same peptidase to facilitate entry into their hosts. Methods Recent genome sequencing projects, together with a number of biochemical studies, identified alternative peptidases that Schistosoma japonicum or Trichobilharzia regenti could use to facilitate migration through skin. In this study, we used comparative proteomic analysis of human skin treated with purified cercarial elastase, the known invasive peptidase of S. mansoni, or S. mansoni cathespin B2, a close homolog of the putative invasive peptidase of S. japonicum, to identify substrates of either peptidase. Select skin proteins were then confirmed as substrates by in vitro digestion assays. Conclusions This study demonstrates that an S. mansoni ortholog of the candidate invasive peptidase of S. japonicum and T. regenti, cathepsin B2, is capable of efficiently cleaving many of the same host skin substrates as the invasive serine peptidase of S. mansoni, cercarial elastase. At the same time, identification of unique substrates and the broader species specificity of cathepsin B2 suggest that the cercarial elastase gene family amplified as an adaptation of schistosomes to human hosts. Schistosome parasites are a major cause of disease in the developing world, but the mechanism by which these parasites first infect their host has been studied at the molecular level only for S. mansoni. In this paper, we have mined recent genome annotations of S. mansoni and S. japonicum, a zoonotic schistosome species, to identify differential expansion of peptidase gene families that may be involved in parasite invasion and subsequent migration through skin. Having identified a serine peptidase gene family in S. mansoni and a cysteine peptidase gene family in S. japonicum, we then used a comparative proteomic approach to identify potential substrates of representative members of both classes of enzymes from S. mansoni in human skin. The results of this study suggest that while these species evolved to use different classes of peptidases in host invasion, both are capable of cleaving components of the epidermis and dermal extracellular matrix, as well as proteins involved in the host immune response against the migrating parasite.
Collapse
|
34
|
Ligasová A, Bulantová J, Sebesta O, Kašný M, Koberna K, Mikeš L. Secretory glands in cercaria of the neuropathogenic schistosome Trichobilharzia regenti - ultrastructural characterization, 3-D modelling, volume and pH estimations. Parasit Vectors 2011; 4:162. [PMID: 21854564 PMCID: PMC3171358 DOI: 10.1186/1756-3305-4-162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 08/19/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cercariae of schistosomes employ bioactive molecules for penetration into their hosts. These are released from specialized unicellular glands upon stimuli from host skin. The glands were previously well-described in the human pathogen Schistosoma mansoni. As bird schistosomes can also penetrate human skin and cause cercarial dermatitis, our aim was to characterize the architecture and ultrastructure of glands in the neurotropic bird schistosome Trichobilharzia regenti and compare it with S. mansoni. In the context of different histolytic enzymes used by these two species, we focused also on the estimations of gland volumes and pH in T. regenti. RESULTS The architecture and 3-D models of two types of acetabular penetration glands, their ducts and of the head gland are shown here. We characterized secretory vesicles in all three gland types by means of TEM and confirmed accuracy of the models obtained by confocal microscopy. The results of two independent approaches showed that the glands occupy ca. one third of cercarial body volume (postacetabular glands ca. 15%, circumacetabular 12% and head gland 6%). The inner environment within the two types of acetabular glands differed significantly as evidenced by dissimilar ability to bind fluorescent markers and by pH value which was higher in circumacetabular (7.44) than in postacetabular (7.08) glands. CONCLUSIONS As far as we know, this is the first presentation of a 3-D model of cercarial glands and the first exact estimation of the volumes of the three gland types in schistosomes. Our comparisons between T. regenti and S. mansoni implied that the architecture and ultrastructure of the glands is most likely conserved within the family. Only minor variations were found between the two species. It seems that the differences in molecular composition have no effect on general appearance of the secretory cells in TEM. Fluorescent markers employed in this study, distinguishing between secretory vesicles and gland types, can be useful in further studies of mechanisms used by cercariae for host invasion. Results of the first attempts to estimate pH within schistosome glands may help further understanding of regulation of enzymatic activities present within the glands.
Collapse
Affiliation(s)
- Anna Ligasová
- Department of Parasitology, Charles University, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
35
|
Parker-Manuel SJ, Ivens AC, Dillon GP, Wilson RA. Gene expression patterns in larval Schistosoma mansoni associated with infection of the mammalian host. PLoS Negl Trop Dis 2011; 5:e1274. [PMID: 21912711 PMCID: PMC3166049 DOI: 10.1371/journal.pntd.0001274] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 06/28/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The infective schistosome cercaria develops within the intramolluscan daughter sporocyst from an undifferentiated germ ball, during which synthesis of proteins essential for infection occurs. When the aquatic cercaria locates the mammalian host it rapidly penetrates into the epidermis using glandular secretions. It then undergoes metamorphosis into the schistosomulum, including replacement of its tegument surface membranes, a process taking several days before it exits the skin. Patterns of gene expression underlying this transition have been characterised. METHODS AND PRINCIPAL FINDINGS All gene models from the S. mansoni genome (www.GeneDB.org) were incorporated into a high-density oligonucleotide array. Double-stranded cDNA from germ balls, cercariae, and day 3 schistosomula was hybridised to the array without amplification. Statistical analysis was performed using Bioconductor to reveal differentially transcribed loci. Genes were categorised on the basis of biological process, tissue association or molecular function to aid understanding of the complex processes occurring. Genes necessary for DNA replication were enriched only in the germ ball, while those involved in translation were up-regulated in the germ ball and/or day 3 schistosomulum. Different sets of developmental genes were up-regulated at each stage. A large number of genes encoding elastases and invadolysins, and some venom allergen-like proteins were up-regulated in the germ ball, those encoding cysteine and aspartic proteases in the cercaria and schistosomulum. Micro exon genes encoding variant secreted proteins were highly up-regulated in the schistosomulum along with tegument and gut-associated genes, coincident with remodelling of the parasite body. Genes encoding membrane proteins were prominently up-regulated in the cercaria and/or day 3 schistosomulum. CONCLUSIONS/SIGNIFICANCE Our study highlights an expanded number of transcripts encoding proteins potentially involved in skin invasion. It illuminates the process of metamorphosis into the schistosomulum and highlights the very early activation of gut-associated genes whilst revealing little change in the parasite's energy metabolism or stress responses.
Collapse
|
36
|
Quezada LAL, McKerrow JH. Schistosome serine protease inhibitors: parasite defense or homeostasis? AN ACAD BRAS CIENC 2011; 83:663-72. [DOI: 10.1590/s0001-37652011000200025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 03/16/2011] [Indexed: 12/13/2022] Open
Abstract
Serpins are a structurally conserved family of macromolecular inhibitors found in numerous biological systems. The completion and annotation of the genomes of Schistosoma mansoni and Schistosoma japonicum has enabled the identification by phylogenetic analysis of two major serpin clades. S. mansoni shows a greater multiplicity of serpin genes, perhaps reflecting adaptation to infection of a human host. Putative targets of schistosome serpins can be predicted from the sequence of the reactive center loop (RCL). Schistosome serpins may play important roles in both post-translational regulation of schistosome-derived proteases, as well as parasite defense mechanisms against the action of host proteases.
Collapse
|
37
|
Cathepsins B1 and B2 of Trichobilharzia SPP., bird schistosomes causing cercarial dermatitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 712:136-54. [PMID: 21660663 DOI: 10.1007/978-1-4419-8414-2_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Trichobilharzia regenti and T. szidati are schistosomes that infect birds. although T. regenti/T. szidati can only complete their life cycle in specific bird hosts (waterfowl), their larvae-cercariae are able to penetrate, transform and then migrate as schistosomula in nonspecific hosts (e.g., mouse, man). Peptidases are among the key molecules produced by these schistosomes that enable parasite invasion and survival within the host and include cysteine peptidases such as cathepsins B1 and B2. These enzymes are indispensable bio-catalysts in a number of basal biological processes and host-parasite interactions, e.g., tissue invasion/migration, nutrition and immune evasion. Similar biochemical and functional characteristics were observed for cathepsins B1 and B2 in bird schistosomes (T. regenti, T. szidati) and also for their homologs in human schistosomes (Schistosoma mansoni, S. japonicum). Therefore, data obtained in the research of bird schistosomes can also be exploited for the control of human schistosomes such as the search for targets of novel chemotherapeutic drugs and vaccines.
Collapse
|
38
|
Gobert GN, Tran MH, Moertel L, Mulvenna J, Jones MK, McManus DP, Loukas A. Transcriptional changes in Schistosoma mansoni during early schistosomula development and in the presence of erythrocytes. PLoS Negl Trop Dis 2010; 4:e600. [PMID: 20161728 PMCID: PMC2817720 DOI: 10.1371/journal.pntd.0000600] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 12/17/2009] [Indexed: 12/27/2022] Open
Abstract
Background Schistosomes cause more mortality and morbidity than any other human helminth, but control primarily relies on a single drug that kills adult worms. The newly transformed schistosomulum stage is susceptible to the immune response and is a target for vaccine development and rational drug design. Methodology/Principal Findings To identify genes which are up-regulated during the maturation of Schistosoma mansoni schistosomula in vitro, we cultured newly transformed parasites for 3 h or 5 days with and without erythrocytes and compared their transcriptional profiles using cDNA microarrays. The most apparent changes were in the up-regulation of genes between 3 h and 5 day schistosomula involved in blood feeding, tegument and cytoskeletal development, cell adhesion, and stress responses. The most highly up-regulated genes included a tegument tetraspanin Sm-tsp-3 (1,600-fold up-regulation), a protein kinase, a novel serine protease and serine protease inhibitor, and intestinal proteases belonging to distinct mechanistic classes. The inclusion of erythrocytes in the culture medium resulted in a general but less pronounced increase in transcriptional activity, with the highest up-regulation of genes involved in iron metabolism, proteolysis, and transport of fatty acids and sugars. Conclusions We have identified the genes that are up-regulated during the first 5 days of schistosomula development in vitro. Using a combination of gene silencing techniques and murine protection studies, some of these highly up-regulated transcripts can be targeted for future development of new vaccines and drugs. Schistosome blood flukes cause more mortality and morbidity than any other human worm infection, but current control methods primarily rely on a single drug. There is a desperate need for new approaches to control this parasite, including vaccines. People become infected when the free-swimming larva, the cercaria, enters through the skin and becomes the schistosomulum. Schistosomula are susceptible to immune responses during their first few days in the host before they become adult parasites. We characterised the genes that these newly transformed parasites switch on when they enter the host to identify molecules that are critical for survival in the human host. Some of these highly up-regulated genes can be targeted for future development of new vaccines and drugs.
Collapse
Affiliation(s)
- Geoffrey N. Gobert
- Division of Infectious Diseases, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Mai H. Tran
- Division of Infectious Diseases, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Luke Moertel
- Division of Infectious Diseases, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Jason Mulvenna
- Division of Infectious Diseases, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Malcolm K. Jones
- School of Veterinary Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Donald P. McManus
- Division of Infectious Diseases, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Alex Loukas
- Division of Infectious Diseases, Queensland Institute of Medical Research, Herston, Queensland, Australia
- * E-mail:
| |
Collapse
|
39
|
Hu S, Law PK, Fung MC. Microarray analysis of genes highly expressed in cercarial stage of Schistosoma japonicum and the characterization of the antigen Sj20H8. Acta Trop 2009; 112:26-32. [PMID: 19520053 DOI: 10.1016/j.actatropica.2009.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 05/29/2009] [Accepted: 06/01/2009] [Indexed: 01/11/2023]
Abstract
Schistosomes have a complex life cycle which alternates between two hosts and includes two short-lived water-born forms. Cercariae are the larval forms of schistosomes responsible for infection of the vertebrate hosts. The infection is initiated when the cercariae penetrate host skin. During penetration, cercariae will undergo profound changes and release excretory/secretory products to adapt to the new environment and to escape from host's immune attack. Part of these events should be determined, to some degree, by the activation of certain genes in the cercariae. In this study, we performed cDNA microarray analysis to monitor the profile of the genes actively expressed in Schistosoma japonicum cercariae. Microarray analysis showed that 76 of 3840 cDNA clones were expressed more than 20-fold in cercariae compared to adult worms. After cluster analysis, 19 non-redundant expressed sequence tags (ESTs) were obtained, 4 of which represented functionally annotated genes, 14 of which represented functionally un-characterized genes, and 1 of which represented a novel gene sequence. The full-length cDNA of the second most abundant EST, Sj20H8, was cloned and preliminarily characterized. Although the precise biological role of all cercarial actively expressed transcripts identified in this investigation awaits further functional analysis, our findings may offer insight into novel control strategies or help to develop potential vaccine candidates against schistosomiasis.
Collapse
|
40
|
The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 2009; 460:345-51. [PMID: 19606140 DOI: 10.1038/nature08140] [Citation(s) in RCA: 534] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 05/08/2009] [Indexed: 11/09/2022]
Abstract
Schistosoma japonicum is a parasitic flatworm that causes human schistosomiasis, which is a significant cause of morbidity in China and the Philippines. Here we present a draft genomic sequence for the worm. The genome provides a global insight into the molecular architecture and host interaction of this complex metazoan pathogen, revealing that it can exploit host nutrients, neuroendocrine hormones and signalling pathways for growth, development and maturation. Having a complex nervous system and a well-developed sensory system, S. japonicum can accept stimulation of the corresponding ligands as a physiological response to different environments, such as fresh water or the tissues of its intermediate and mammalian hosts. Numerous proteases, including cercarial elastase, are implicated in mammalian skin penetration and haemoglobin degradation. The genomic information will serve as a valuable platform to facilitate development of new interventions for schistosomiasis control.
Collapse
|
41
|
Haas W, Haeberlein S. Penetration of cercariae into the living human skin: Schistosoma mansoni vs. Trichobilharzia szidati. Parasitol Res 2009; 105:1061-6. [PMID: 19543747 DOI: 10.1007/s00436-009-1516-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
Abstract
We studied the skin invasion of Schistosoma mansoni cercariae by placing gamma-irradiated and nonirradiated cercariae onto the living human skin and timing the behavior of 53 individuals. The skin invasion of S. mansoni was less efficient compared to the bird schistosome Trichobilharzia szidati. S. mansoni cercariae crept longer on the skin after attachment until they started penetration movements (median of 43 s [range of 15 s-6.58 min]; T. szidati, median of 8 s [range of 0-80 s]). Subsequent to this longer exploratory phase, 74% penetrated into wrinkles (T. szidati 84%), 22% into the smooth skin surface (T. szidati 0%), and 4% into hair follicles (T. szidati 16%). The S. mansoni cercariae needed, on average, 6.58 min (range of 1.57-13.13 min) for full entry, while T. szidati needed 4.0 min (range of 1.38-13.34 min); the fastest S. mansoni cercaria entered the skin within 94 s, while T. szidati entered within 83 s. Sixty percent of the S. mansoni cercariae had the tails still attached when the bodies disappeared in the skin whereas all T. szidati cercariae shed their tails within 0-105 s after the onset of penetration movements. The faster invasion of T. szidati may result from the more sophisticated host-finding mechanisms of this species. Regarding S. mansoni, cercarial dermatitis, as immediate skin response, developed after a sensitization period of 19 days.
Collapse
Affiliation(s)
- Wilfried Haas
- Department of Biology, University of Erlangen-Nuremberg, Staudtstr. 5, Erlangen 91058, Germany.
| | | |
Collapse
|
42
|
Signal sequence analysis of protein sequences from the filarial nematode parasite Brugia malayi and the evolution of secreted proteins in parasites. Parasitol Res 2009; 104:1321-6. [PMID: 19165503 DOI: 10.1007/s00436-009-1331-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 01/05/2009] [Indexed: 10/21/2022]
Abstract
Taking a genomic approach to characterize potential secreted products, we analyzed putative protein sequences from Brugia malayi whole-genome shotgun sequencing project. SignalP analysis was applied to predict protein sequences and to identify potential signal peptides and anchors. We randomly analyzed 552 sequences, of which 88 (15.9%) bear predicted signal sequence coding regions. Through comparisons of sequences with homologs from other species, we found that although some of the sequences with signal sequences have no homologs with others, there are almost the same amounts of the sequences with signals which are highly conserved. Considering the distribution of secretory proteins of B. malayi in three categories has not made big differences, and most of the homologues of free-living nematodes of these secretory proteins also contained either N-signal signal peptides or signal anchors; we speculated that secretory proteins may be in the same evolutional status as the non-secretory proteins.
Collapse
|
43
|
Kašný M, Mikeš L, Hampl V, Dvořák J, Caffrey CR, Dalton JP, Horák P. Chapter 4 Peptidases of Trematodes. ADVANCES IN PARASITOLOGY 2009; 69:205-97. [DOI: 10.1016/s0065-308x(09)69004-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
44
|
KARIUKI TM, FARAH IO, WILSON RA, COULSON PS. Antibodies elicited by the secretions from schistosome cercariae and eggs are predominantly against glycan epitopes. Parasite Immunol 2008; 30:554-62. [DOI: 10.1111/j.1365-3024.2008.01054.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Dolecková K, Kasný M, Mikes L, Cartwright J, Jedelský P, Schneider EL, Dvorák J, Mountford AP, Craik CS, Horák P. The functional expression and characterisation of a cysteine peptidase from the invasive stage of the neuropathogenic schistosome Trichobilharzia regenti. Int J Parasitol 2008; 39:201-11. [PMID: 18708063 PMCID: PMC2625449 DOI: 10.1016/j.ijpara.2008.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/04/2008] [Accepted: 06/06/2008] [Indexed: 11/03/2022]
Abstract
A transcriptional product of a gene encoding cathepsin B-like peptidase in the bird schistosome Trichobilharzia regenti was identified and cloned. The enzyme was named TrCB2 due to its 77% sequence similarity to cathepsin B2 from the important human parasite Schistosoma mansoni. The zymogen was expressed in the methylotropic yeast Pichia pastoris; procathepsin B2 underwent self-processing in yeast media. The peptidolytic activity of the recombinant enzyme was characterised using synthetic fluorogenic peptide substrates at optimal pH 6.0. Functional studies using different specific inhibitors proved the typical cathepsin B-like nature of the enzyme. The S(2) subsite specificity profile of recombinant TrCB2 was obtained. Using monospecific antibodies against the recombinant enzyme, the presence of cathepsin B2 was confirmed in extracts from cercariae (infective stage) and schistosomula (early post-cercarial stage) of T. regenti on Western blots. Also, cross-reactivity was observed between T. regenti and S. mansoni cathepsins B2 in extracts of cercariae, schistosomula or adults. In T. regenti, the antisera localised the enzyme to post-acetabular penetration glands of cercariae implying an important role in the penetration of host skin. The ability of recombinant TrCB2 to degrade skin, serum and nervous tissue proteins was evident. Elastinolytic activity suggests that the enzyme might functionally substitute the histolytic role of the serine class elastase known from S. mansoni and Schistosoma haematobium but not found in Schistosoma japonicum or in bird schistosomes.
Collapse
Affiliation(s)
- Katerina Dolecková
- Department of Parasitology, Faculty of Science, Charles University in Prague, Vinicná 7, 12844 Prague 2, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hansell E, Braschi S, Medzihradszky KF, Sajid M, Debnath M, Ingram J, Lim KC, McKerrow JH. Proteomic analysis of skin invasion by blood fluke larvae. PLoS Negl Trop Dis 2008; 2:e262. [PMID: 18629379 PMCID: PMC2467291 DOI: 10.1371/journal.pntd.0000262] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 06/12/2008] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND During invasion of human skin by schistosome blood fluke larvae (cercariae), a multicellular organism breaches the epidermis, basement membrane, and dermal barriers of skin. To better understand the pathobiology of this initial event in schistosome infection, a proteome analysis of human skin was carried out following invasion by cercariae of Schistosoma mansoni. METHODOLOGY AND RESULTS Human skin samples were exposed to cercariae for one-half hour to two hours. Controls were exposed to water used to collect cercariae in an identical manner, and punctured to simulate cercarial tunnels. Fluid from both control and experimental samples was analyzed by LC/MS/MS using a linear ion trap in "triple play" mode. The coexistence of proteins released by cercariae and host skin proteins from epidermis and basement membrane confirmed that cercarial tunnels in skin were sampled. Among the abundant proteins secreted by cercariae was the cercarial protease that has been implicated in degradation of host proteins, secreted proteins proposed to mediate immune invasion by larvae, and proteins implicated in protection of parasites against oxidative stress. Components of the schistosome surface tegument, previously identified with immune serum, were also released. Both lysis and apoptosis of epidermal cells took place during cercarial invasion of the epidermis. Components of lysed epidermal cells, including desmosome proteins which link cells in the stratum granulosum and stratum spinosum, were identified. While macrophage-derived proteins were present, no mast cell or lymphocyte cytokines were identified. There were, however, abundant immunoglobulins, complement factors, and serine protease inhibitors in skin. Control skin samples incubated with water for the same period as experimental samples ensured that invasion-related proteins and host protein fragments were not due to nonspecific degeneration of the skin samples. CONCLUSIONS This analysis identified secreted proteins from invasive larvae that are released during invasion of human skin. Analysis of specific host proteins in skin invaded by cercariae served to highlight both the histolytic events facilitating cercarial invasion, and the host defenses that attempt to arrest or retard invasion. Proteins abundant in psoriatic skin or UV and heat-stressed skin were not abundant in skin invaded by cercariae, suggesting that results did not reflect general stress in the surgically removed skin specimen. Abundant immunoglobulins, complement factors, and serine protease inhibitors in skin form a biochemical barrier that complements the structural barrier of the epidermis, basement membrane, and dermis. The fragmentation of some of these host proteins suggests that breaching of host defenses by cercariae includes specific degradation of immunoglobulins and complement, and either degradation of, or overwhelming the host protease inhibitor repertoire.
Collapse
Affiliation(s)
- Elizabeth Hansell
- Sandler Center, California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, California, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Pleass RJ, Aboobaker AA, Schmitt AO. Piggybacking schistosome invasion: similarities are only skin deep. Trends Parasitol 2008; 24:153-6. [DOI: 10.1016/j.pt.2008.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/07/2008] [Accepted: 01/09/2008] [Indexed: 12/11/2022]
|
48
|
Chalmers IW, McArdle AJ, Coulson RM, Wagner MA, Schmid R, Hirai H, Hoffmann KF. Developmentally regulated expression, alternative splicing and distinct sub-groupings in members of the Schistosoma mansoni venom allergen-like (SmVAL) gene family. BMC Genomics 2008; 9:89. [PMID: 18294395 PMCID: PMC2270263 DOI: 10.1186/1471-2164-9-89] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 02/23/2008] [Indexed: 11/10/2022] Open
Abstract
Background The Sperm-coating protein/Tpx-1/Ag5/PR-1/Sc7 (SCP/TAPS) domain is found across phyla and is a major structural feature of insect allergens, mammalian sperm proteins and parasitic nematode secreted molecules. Proteins containing this domain are implicated in diverse biological activities and may be important for chronic host/parasite interactions. Results We report the first description of an SCP/TAPS gene family (Schistosoma mansoni venom allergen-like (SmVALs)) in the medically important Platyhelminthes (class Trematoda) and describe individual members' phylogenetic relationships, genomic organization and life cycle expression profiles. Twenty-eight SmVALs with complete SCP/TAPS domains were identified and comparison of their predicted protein features and gene structures indicated the presence of two distinct sub-families (group 1 & group 2). Phylogenetic analysis demonstrated that this group 1/group 2 split is zoologically widespread as it exists across the metazoan sub-kingdom. Chromosomal localisation and PCR analysis, coupled to inspection of the current S. mansoni genomic assembly, revealed that many of the SmVAL genes are spatially linked throughout the genome. Quantitative lifecycle expression profiling demonstrated distinct SmVAL expression patterns, including transcripts specifically associated with lifestages involved in definitive host invasion, transcripts restricted to lifestages involved in the invasion of the intermediate host and transcripts ubiquitously expressed. Analysis of SmVAL6 transcript diversity demonstrated statistically significant, developmentally regulated, alternative splicing. Conclusion Our results highlight the existence of two distinct SCP/TAPS protein types within the Platyhelminthes and across taxa. The extensive lifecycle expression analysis indicates several SmVAL transcripts are upregulated in infective stages of the parasite, suggesting that these particular protein products may be linked to the establishment of chronic host/parasite interactions.
Collapse
Affiliation(s)
- Iain W Chalmers
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| | | | | | | | | | | | | |
Collapse
|
49
|
Wilson RA, Coulson PS. Schistosome vaccines: a critical appraisal. Mem Inst Oswaldo Cruz 2008; 101 Suppl 1:13-20. [PMID: 17308743 DOI: 10.1590/s0074-02762006000900004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 06/26/2006] [Indexed: 11/22/2022] Open
Abstract
An effective schistosome vaccine is a desirable control tool but progress towards that goal has been slow. Protective immunity has been difficult to demonstrate in humans, particularly children, so no routes to a vaccine have emerged from that source. The concept of concomitant immunity appeared to offer a paradigm for a vaccine operating against incoming larvae in the skin but did not yield the expected dividends. The mining of crude parasite extracts, the use of monoclonal antibodies and protein selection based on immunogenicity produced a panel of vaccine candidates, mostly of cytoplasmic origin. However, none of these performed well in independent rodent trials, but glutathione-S-transferase from Schistosoma haematobium is currently undergoing clinical trials as an anti-fecundity vaccine. The sequencing of the S. mansoni transcriptome and genome and the development of proteomic and microarray technologies has dramatically improved the possibilities for identifying novel vaccine candidates, particularly proteins secreted from or exposed at the surface of schistosomula and adult worms. These discoveries are leading to a new round of protein expression and protection experiments that will enable us to evaluate systematically all the major targets available for immune intervention. Only then will we know if schistosomes have an Achilles' heel.
Collapse
Affiliation(s)
- R Alan Wilson
- Department of Biology, University of York, York, UK.
| | | |
Collapse
|
50
|
Dvořák J, Mashiyama ST, Braschi S, Sajid M, Knudsen GM, Hansell E, Lim KC, Hsieh I, Bahgat M, Mackenzie B, Medzihradszky KF, Babbitt PC, Caffrey CR, McKerrow JH. Differential use of protease families for invasion by schistosome cercariae. Biochimie 2008; 90:345-58. [DOI: 10.1016/j.biochi.2007.08.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Accepted: 08/30/2007] [Indexed: 10/22/2022]
|