1
|
Shirvani P, Shirvani A, Holick MF. Decoding the Genetic Basis of Mast Cell Hypersensitivity and Infection Risk in Hypermobile Ehlers-Danlos Syndrome. Curr Issues Mol Biol 2024; 46:11613-11629. [PMID: 39451569 PMCID: PMC11506785 DOI: 10.3390/cimb46100689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Hypermobile Ehlers-Danlos syndrome (hEDS) is a connective tissue disorder marked by joint hypermobility, skin hyperextensibility, and tissue fragility. Recent studies have linked hEDS with mast cell activation syndrome (MCAS), suggesting a genetic interplay affecting immune regulation and infection susceptibility. This study aims to decode the genetic basis of mast cell hypersensitivity and increased infection risk in hEDS by identifying specific genetic variants associated with these conditions. We conducted whole-genome sequencing (WGS) on 18 hEDS participants and 7 first-degree relatives as controls, focusing on identifying genetic variants associated with mast cell dysregulation. Participants underwent clinical assessments to document hEDS symptoms and mast cell hypersensitivity, with particular attention to past infections and antihistamine response. Our analysis identified specific genetic variants in MT-CYB, HTT, MUC3A, HLA-B and HLA-DRB1, which are implicated in hEDS and MCAS. Protein-protein interaction (PPI) network analysis revealed significant interactions among identified variants, highlighting their involvement in pathways related to antigen processing, mucosal protection, and collagen synthesis. Notably, 61.1% of the hEDS cohort reported recurrent infections compared to 28.5% in controls, and 72.2% had documented mast cell hypersensitivity versus 14.2% in controls. These findings provide a plausible explanation for the complex interplay between connective tissue abnormalities and immune dysregulation in hEDS. The identified genetic variants offer insights into potential therapeutic targets for modulating mast cell activity and improving patient outcomes. Future research should validate these findings in larger cohorts and explore the functional implications of these variants to develop effective treatment strategies for hEDS and related mast cell disorders.
Collapse
Affiliation(s)
| | - Arash Shirvani
- Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Michael F. Holick
- Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
2
|
Pal DS, Banerjee T, Lin Y, de Trogoff F, Borleis J, Iglesias PA, Devreotes PN. Actuation of single downstream nodes in growth factor network steers immune cell migration. Dev Cell 2023; 58:1170-1188.e7. [PMID: 37220748 PMCID: PMC10524337 DOI: 10.1016/j.devcel.2023.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/14/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023]
Abstract
Ras signaling is typically associated with cell growth, but not direct regulation of motility or polarity. By optogenetically targeting different nodes in the Ras/PI3K/Akt network in differentiated human HL-60 neutrophils, we abruptly altered protrusive activity, bypassing the chemoattractant receptor/G-protein network. First, global recruitment of active KRas4B/HRas isoforms or a RasGEF, RasGRP4, immediately increased spreading and random motility. Second, activating Ras at the cell rear generated new protrusions, reversed pre-existing polarity, and steered sustained migration in neutrophils or murine RAW 264.7 macrophages. Third, recruiting a RasGAP, RASAL3, to cell fronts extinguished protrusions and changed migration direction. Remarkably, persistent RASAL3 recruitment at stable fronts abrogated directed migration in three different chemoattractant gradients. Fourth, local recruitment of the Ras-mTORC2 effector, Akt, in neutrophils or Dictyostelium amoebae generated new protrusions and rearranged pre-existing polarity. Overall, these optogenetic effects were mTORC2-dependent but relatively independent of PI3K. Thus, receptor-independent, local activations of classical growth-control pathways directly control actin assembly, cell shape, and migration modes.
Collapse
Affiliation(s)
- Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yiyan Lin
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Félix de Trogoff
- Department of Mechanical Engineering, STI School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jane Borleis
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A Iglesias
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Langhammer M, Schöpf J, Jaquet T, Horn K, Angel M, Spohr C, Christen D, Uhl FM, Maié T, Jacobi H, Feyerabend TB, Huber J, Panning M, Sitaru C, Costa I, Zeiser R, Aumann K, Becker H, Braunschweig T, Koschmieder S, Shoumariyeh K, Huber M, Schemionek-Reinders M, Brummer T, Halbach S. Mast cell deficiency prevents BCR::ABL1 induced splenomegaly and cytokine elevation in a CML mouse model. Leukemia 2023; 37:1474-1484. [PMID: 37161070 PMCID: PMC10317838 DOI: 10.1038/s41375-023-01916-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023]
Abstract
The persistence of leukemic stem cells (LSCs) represents a problem in the therapy of chronic myeloid leukemia (CML). Hence, it is of utmost importance to explore the underlying mechanisms to develop new therapeutic approaches to cure CML. Using the genetically engineered ScltTA/TRE-BCR::ABL1 mouse model for chronic phase CML, we previously demonstrated that the loss of the docking protein GAB2 counteracts the infiltration of mast cells (MCs) in the bone marrow (BM) of BCR::ABL1 positive mice. Here, we show for the first time that BCR::ABL1 drives the cytokine independent expansion of BM derived MCs and sensitizes them for FcεRI triggered degranulation. Importantly, we demonstrate that genetic mast cell deficiency conferred by the Cpa3Cre allele prevents BCR::ABL1 induced splenomegaly and impairs the production of pro-inflammatory cytokines. Furthermore, we show in CML patients that splenomegaly is associated with high BM MC counts and that upregulation of pro-inflammatory cytokines in patient serum samples correlates with tryptase levels. Finally, MC-associated transcripts were elevated in human CML BM samples. Thus, our study identifies MCs as essential contributors to disease progression and suggests considering them as an additional target in CML therapy. Mast cells play a key role in the pro-inflammatory tumor microenvironment of the bone marrow. Shown is a cartoon summarizing our results from the mouse model. BCR::ABL1 transformed MCs, as part of the malignant clone, are essential for the elevation of pro-inflammatory cytokines, known to be important in disease initiation and progression.
Collapse
Affiliation(s)
- Melanie Langhammer
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Julia Schöpf
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Timo Jaquet
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Katharina Horn
- Institute of Biochemistry and Molecular Immunology, RWTH Aachen University, Aachen, Germany
| | - Moritz Angel
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Corinna Spohr
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Christen
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Franziska Maria Uhl
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Medicine I, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tiago Maié
- Institute for Computational Genomics, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Henrike Jacobi
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Thorsten B Feyerabend
- Division of Cellular Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia Huber
- Department of Pathology, Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marcus Panning
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cassian Sitaru
- Department of Dermatology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ivan Costa
- Institute for Computational Genomics, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konrad Aumann
- Department of Pathology, Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heiko Becker
- Department of Medicine I, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Till Braunschweig
- Department of Pathology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Khalid Shoumariyeh
- Department of Medicine I, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, RWTH Aachen University, Aachen, Germany
| | - Mirle Schemionek-Reinders
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
| | - Sebastian Halbach
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
4
|
Zhou Q, Zhang G, Liu Z, Zhang J, Shi R. Identification and exploration of novel M2 macrophage-related biomarkers in the development of acute myocardial infarction. Front Cardiovasc Med 2022; 9:974353. [PMID: 36440001 PMCID: PMC9685672 DOI: 10.3389/fcvm.2022.974353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/24/2022] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI), one of the most severe and fatal cardiovascular diseases, is a major cause of morbidity and mortality worldwide. Macrophages play a critical role in ventricular remodeling after AMI. The regulatory mechanisms of the AMI progression remain unclear. This study aimed to identify hub regulators of macrophage-related modules and provide translational experiments with potential therapeutic targets. MATERIALS AND METHODS The GSE59867 dataset was downloaded from the Gene Expression Omnibus (GEO) database for bioinformatics analysis. The expression patterns of 22 types of immune cells were determined using CIBERSORT. GEO2R was used to identify differentially expressed genes (DEGs) through the limma package. Then, DEGs were clustered into different modules, and relationships between modules and macrophage types were analyzed using weighted gene correlation network analysis (WGCNA). Further functional enrichment analysis was performed using significantly associated modules. The module most significantly associated with M2 macrophages (Mϕ2) was chosen for subsequent analysis. Co-expressed DEGs of AMI were identified in the GSE123342 and GSE97320 datasets and module candidate hub genes. Additionally, hub gene identification was performed in GSE62646 dataset and clinical samples. RESULTS A total of 8,760 DEGs were identified and clustered into ten modules using WGCNA analysis. The blue and turquoise modules were significantly related to Mϕ2, and 482 hub genes were discerned from two hub modules that conformed to module membership values > 0.8 and gene significance values > 0.25. Subsequent analysis using a Venn diagram assessed 631 DEGs in GSE123342, 1457 DEGs in GSE97320, and module candidate hub genes for their relationship with Mϕ2 in the progression of AMI. Finally, four hub genes (CSF2RB, colony stimulating factor 2 receptor subunit beta; SIGLEC9, sialic acid-binding immunoglobulin-like lectin 9; LRRC25, leucine-rich repeat containing 25; and CSF3R, colony-stimulating factor-3 receptor) were validated to be differentially expressed and to have high diagnostic value in both GSE62646 and clinical samples. CONCLUSION Using comprehensive bioinformatics analysis, we identified four novel genes that may play crucial roles in the pathophysiological mechanism of AMI. This study provides novel insights into the impact of macrophages on the progression of AMI and directions for Mϕ2-targeted molecular therapies for AMI.
Collapse
Affiliation(s)
- Qiaoyu Zhou
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Guogang Zhang
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhaoya Liu
- Department of Geriatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiayi Zhang
- Department of Gastroenterology, The First Hospital of Changsha, Changsha, China
| | - Ruizheng Shi
- Department of Cardiovascular Medicine, The Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Motelow JE, Lippa NC, Hostyk J, Feldman E, Nelligan M, Ren Z, Alkelai A, Milner JD, Gharavi AG, Tang Y, Goldstein DB, Kernie SG. Risk Variants in the Exomes of Children With Critical Illness. JAMA Netw Open 2022; 5:e2239122. [PMID: 36306130 PMCID: PMC9617179 DOI: 10.1001/jamanetworkopen.2022.39122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Diagnostic genetic testing can lead to changes in management in the pediatric intensive care unit. Genetic risk in children with critical illness but nondiagnostic exome sequencing (ES) has not been explored. OBJECTIVE To assess the association between loss-of-function (LOF) variants and pediatric critical illness. DESIGN, SETTING, AND PARTICIPANTS This genetic association study examined ES first screened for causative variants among 267 children at the Morgan Stanley Children's Hospital of NewYork-Presbyterian, of whom 22 were otherwise healthy with viral respiratory failure; 18 deceased children with bronchiolitis from the Office of the Chief Medical Examiner of New York City, of whom 14 were previously healthy; and 9990 controls from the Institute for Genomic Medicine at Columbia University Irving Medical Center. The ES data were generated between January 1, 2015, and December 31, 2020, and analyzed between January 1, 2017, and September 2, 2022. EXPOSURE Critical illness. MAIN OUTCOMES AND MEASURES Odds ratios and P values for genes and gene-sets enriched for rare LOF variants and the loss-of-function observed/expected upper bound fraction (LOEUF) score at which cases have a significant enrichment. RESULTS This study included 285 children with critical illness (median [range] age, 4.1 [0-18.9] years; 148 [52%] male) and 9990 controls. A total of 228 children (80%) did not receive a genetic diagnosis. After quality control (QC), 231 children harbored excess rare LOF variants in genes with a LOEUF score of 0.680 or less (intolerant genes) (P = 1.0 × 10-5). After QC, 176 children without a diagnosis harbored excess ultrarare LOF variants in intolerant genes but only in those without a known disease association (odds ratio, 1.8; 95% CI, 1.3-2.5). After QC, 25 children with viral respiratory failure harbored excess ultrarare LOF variants in intolerant genes but only in those without a known disease association (odds ratio, 2.8; 95% CI, 1.1-6.6). A total of 114 undiagnosed children were enriched for de novo LOF variants in genes without a known disease association (observed, 14; expected, 6.8; enrichment, 2.05). CONCLUSIONS AND RELEVANCE In this genetic association study, excess LOF variants were observed among critically ill children despite nondiagnostic ES. Variants lay in genes without a known disease association, suggesting future investigation may connect phenotypes to causative genes.
Collapse
Affiliation(s)
- Joshua E. Motelow
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
- Division of Critical Care and Hospital Medicine, Department of Pediatrics, Columbia University Irving Medical Center, NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, New York
| | - Natalie C. Lippa
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
| | - Joseph Hostyk
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
| | - Evin Feldman
- Division of Critical Care and Hospital Medicine, Department of Pediatrics, Columbia University Irving Medical Center, NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, New York
| | - Matthew Nelligan
- Division of Critical Care and Hospital Medicine, Department of Pediatrics, Columbia University Irving Medical Center, NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, New York
| | - Zhong Ren
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
| | - Anna Alkelai
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, New York
| | | | - Ali G. Gharavi
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, NewYork-Presbyterian, New York, New York
| | - Yingying Tang
- Molecular Genetics Laboratory, New York City Office of Chief Medical Examiner, New York, New York
| | - David B. Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
| | - Steven G. Kernie
- Division of Critical Care and Hospital Medicine, Department of Pediatrics, Columbia University Irving Medical Center, NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, New York
- NewYork-Presbyterian Hospital, New York, New York
| |
Collapse
|
6
|
Huang S, Wang J, Zhang L, Tian S, Wang Y, Shao X, Zhou S, Yu P. Ras guanine nucleotide-releasing protein-4 promotes renal inflammatory injury in type 2 diabetes mellitus. Metabolism 2022; 131:155177. [PMID: 35218794 DOI: 10.1016/j.metabol.2022.155177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/31/2022] [Accepted: 02/18/2022] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Ras guanine nucleotide-releasing protein-4 (RasGRP4) is an activator of Ras protein, which plays significant roles in both the inflammatory response and immune activation. This study determined the role of RasGRP4 in diabetic kidney disease (DKD) progression. METHODS CRISPR/Cas9 technology was used to establish RasGRP4 knockout (KO) mice. Diabetes was induced by a high-fat diet combined with five consecutive daily intraperitoneal injections of streptozotocin (60 mg/kg) in C57BL/6J wild-type (WT) mice and RasGRP4 KO mice. Hematoxylin and eosin, periodic acid-Schiff, and Masson's trichrome staining were used to observe the histology of pathological injury. Immunohistochemical staining was used to analyze inflammatory cell infiltration. Quantitative PCR and Western blotting were used to detect the expression of inflammatory mediators and the activation of signaling pathways in renal tissues. In vitro cell co-culture experiments were performed to explore the interactions between peripheral blood mononuclear cells (PBMCs) and glomerular endothelial cells (GEnCs). RESULTS RasGRP4 KO mice developed less severe diabetic kidney injury compared to WT mice, exhibiting lower proteinuria, reduced CD3+ T lymphocyte and F4/80+ macrophage infiltration, less inflammatory mediator expression including interleukin 6, tumor necrosis alpha, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1, and lower expression levels of critical signal transduction molecules in the NLR family pyrin domain-containing 3 inflammasome and mitogen-activated protein kinase (MAPK)/nuclear factor kappa B (NF-κB) signaling pathways in the diabetic kidney. In vitro experiments showed that the adhesion function of PBMCs of RasGRP4 KO mice was reduced compared to that of WT mice. Moreover, the expression of adhesion molecules and critical signal transduction molecules in the NLRP3 inflammasome and MAPK/NF-κB signaling pathways in GEnCs was stimulated by the supernatant of PBMCs, which were derived from RasGRP4 KO mice treated with high glucose and were also significantly reduced compared to those derived from WT mice. CONCLUSION RasGRP4 promotes the inflammatory injury mediated by PBMCs in diabetes, probably by regulating the interaction between PBMCs and GEnCs and further activating the NLRP3 inflammasome and MAPK/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Shuai Huang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Junmei Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Li Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Shasha Tian
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Yao Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xian Shao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Saijun Zhou
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
| |
Collapse
|
7
|
Cooke M, Kazanietz MG. Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Sci Signal 2022; 15:eabo0264. [PMID: 35412850 DOI: 10.1126/scisignal.abo0264] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diacylglycerol (DAG) is a lipid second messenger that is generated in response to extracellular stimuli and channels intracellular signals that affect mammalian cell proliferation, survival, and motility. DAG exerts a myriad of biological functions through protein kinase C (PKC) and other effectors, such as protein kinase D (PKD) isozymes and small GTPase-regulating proteins (such as RasGRPs). Imbalances in the fine-tuned homeostasis between DAG generation by phospholipase C (PLC) enzymes and termination by DAG kinases (DGKs), as well as dysregulation in the activity or abundance of DAG effectors, have been widely associated with tumor initiation, progression, and metastasis. DAG is also a key orchestrator of T cell function and thus plays a major role in tumor immunosurveillance. In addition, DAG pathways shape the tumor ecosystem by arbitrating the complex, dynamic interaction between cancer cells and the immune landscape, hence representing powerful modifiers of immune checkpoint and adoptive T cell-directed immunotherapy. Exploiting the wide spectrum of DAG signals from an integrated perspective could underscore meaningful advances in targeted cancer therapy.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Integration of Rap1 and Calcium Signaling. Int J Mol Sci 2020; 21:ijms21051616. [PMID: 32120817 PMCID: PMC7084553 DOI: 10.3390/ijms21051616] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Ca2+ is a universal intracellular signal. The modulation of cytoplasmic Ca2+ concentration regulates a plethora of cellular processes, such as: synaptic plasticity, neuronal survival, chemotaxis of immune cells, platelet aggregation, vasodilation, and cardiac excitation–contraction coupling. Rap1 GTPases are ubiquitously expressed binary switches that alternate between active and inactive states and are regulated by diverse families of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Active Rap1 couples extracellular stimulation with intracellular signaling through secondary messengers—cyclic adenosine monophosphate (cAMP), Ca2+, and diacylglycerol (DAG). Much evidence indicates that Rap1 signaling intersects with Ca2+ signaling pathways to control the important cellular functions of platelet activation or neuronal plasticity. Rap1 acts as an effector of Ca2+ signaling when activated by mechanisms involving Ca2+ and DAG-activated (CalDAG-) GEFs. Conversely, activated by other GEFs, such as cAMP-dependent GEF Epac, Rap1 controls cytoplasmic Ca2+ levels. It does so by regulating the activity of Ca2+ signaling proteins such as sarcoendoplasmic reticulum Ca2+-ATPase (SERCA). In this review, we focus on the physiological significance of the links between Rap1 and Ca2+ signaling and emphasize the molecular interactions that may offer new targets for the therapy of Alzheimer’s disease, hypertension, and atherosclerosis, among other diseases.
Collapse
|
9
|
Canault M, Alessi MC. RasGRP2 Structure, Function and Genetic Variants in Platelet Pathophysiology. Int J Mol Sci 2020; 21:E1075. [PMID: 32041177 PMCID: PMC7037602 DOI: 10.3390/ijms21031075] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/18/2022] Open
Abstract
RasGRP2 is calcium and diacylglycerol-regulated guanine nucleotide exchange factor I that activates Rap1, which is an essential signaling-knot in "inside-out" αIIbβ3 integrin activation in platelets. Inherited platelet function disorder caused by variants of RASGRP2 represents a new congenital bleeding disorder referred to as platelet-type bleeding disorder-18 (BDPLT18). We review here the structure of RasGRP2 and its functions in the pathophysiology of platelets and of the other cellular types that express it. We will also examine the different pathogenic variants reported so far as well as strategies for the diagnosis and management of patients with BDPLT18.
Collapse
Affiliation(s)
- Matthias Canault
- Aix Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France
| | - Marie-Christine Alessi
- Aix Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France
- Hematology laboratory, APHM, CHU Timone, 13005 Marseille, France
| |
Collapse
|
10
|
Zhu L, Xia C, Wu L, Zhang Y, Liu J, Chen Y, Liu J, Xiao Y, Nie K, Huang L, Qu N, Yu H. The critical role of RasGRP4 in the growth of diffuse large B cell lymphoma. Cell Commun Signal 2019; 17:92. [PMID: 31409422 PMCID: PMC6693169 DOI: 10.1186/s12964-019-0415-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/06/2019] [Indexed: 12/22/2022] Open
Abstract
Background This study aimed to confirm that blocking RasGRP4 can effectively slow down the growth of DLBCL both in vitro and in vivo and ascertain the role of RasGRP4 in the prognosis of DLBCL clinically. Methods RasGRP4 expression levels were examined in benign tissues and lymphomas. In order to verify somatic mutation in RasGRP4 gene, cDNA sequencing was performed in DLBCL patients. RasGRP4-dependent cell proliferation, mitochondrial membrane potential, oxidative stress levels and signaling pathway changes were measured by knockdown of RasGRP4. Tumor growth was monitored in xenografted lymphoma model. Clinical data were collected to confirm the role of RasGRP4 in DLBCL. Results RasGRP4 expression was significantly elevated in DLBCL while no somatic mutations were detected of this gene in DLBCL patients. Decreased RasGRP4 significantly inhibited cell proliferation by simultaneously reducing mitosis and promoting apoptosis and increased the oxidative stress levels. Mechanistically, reduced expression of RasGRP4 decreased ERK while increased JNK expression in SUDHL-4 cells. Knockdown of RasGRP4 also significantly inhibited tumor formation in vivo. Furthermore, RasGRP4 expression levels were significantly higher in patients with larger DLBCL lesions (P = 0.0004), high-risk international prognostic index score groups (P = 0.0042), and its expression was positively correlated with maximum standardized uptake value in DLBCL (P = 0.0004). Conclusions These findings indicate the oncogenic role of RasGRP4 in DLBCL, suggesting it as a prognostic biomarker and potential therapeutic target in DLBCL. Electronic supplementary material The online version of this article (10.1186/s12964-019-0415-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lin Zhu
- Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University, No. 241 West Huaihai Road, Shanghai, 200030, China
| | - Chunyan Xia
- Shanghai Changzheng Hospital Affiliated to the Second Military Medical University, Shanghai, China
| | - Lin Wu
- Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Yuxuan Zhang
- School of Pharmacy, Queen's University Belfast Medical Biology Centre, Belfast, UK
| | - Junling Liu
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yinan Chen
- Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University, No. 241 West Huaihai Road, Shanghai, 200030, China
| | - Jing Liu
- Shanghai Changzheng Hospital Affiliated to the Second Military Medical University, Shanghai, China
| | - Yongxin Xiao
- Shanghai Changzheng Hospital Affiliated to the Second Military Medical University, Shanghai, China
| | - Kai Nie
- Shanghai Changzheng Hospital Affiliated to the Second Military Medical University, Shanghai, China
| | - Liyu Huang
- Shanghai Changzheng Hospital Affiliated to the Second Military Medical University, Shanghai, China
| | - Ning Qu
- Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hong Yu
- Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University, No. 241 West Huaihai Road, Shanghai, 200030, China.
| |
Collapse
|
11
|
Stimulus strength determines the BTK-dependence of the SHIP1-deficient phenotype in IgE/antigen-triggered mast cells. Sci Rep 2018; 8:15467. [PMID: 30341350 PMCID: PMC6195619 DOI: 10.1038/s41598-018-33769-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/05/2018] [Indexed: 01/27/2023] Open
Abstract
Antigen (Ag)-mediated crosslinking of IgE-loaded high-affinity receptors for IgE (FcεRI) on mast cells (MCs) triggers activation of proinflammatory effector functions relevant for IgE-associated allergic disorders. The cytosolic tyrosine kinase BTK and the SH2-containing inositol-5'-phosphatase SHIP1 are central positive and negative regulators of Ag-triggered MC activation, respectively, contrarily controlling Ca2+ mobilisation, degranulation, and cytokine production. Using genetic and pharmacological techniques, we examined whether BTK activation in Ship1-/- MCs is mandatory for the manifestation of the well-known hyperactive phenotype of Ship1-/- MCs. We demonstrate the prominence of BTK for the Ship1-/- phenotype in a manner strictly dependent on the strength of the initial Ag stimulus; particular importance for BTK was identified in Ship1-/- bone marrow-derived MCs in response to stimulation with suboptimal Ag concentrations. With respect to MAPK activation, BTK showed particular importance at suboptimal Ag concentrations, allowing for an analogous-to-digital switch resulting in full activation of ERK1/2 already at low Ag concentrations. Our data allow for a more precise definition of the role of BTK in FcεRI-mediated signal transduction and effector function in MCs. Moreover, they suggest that reduced activation or curtate expression of SHIP1 can be compensated by pharmacological inhibition of BTK and vice versa.
Collapse
|
12
|
Niemz J, Kliche S, Pils MC, Morrison E, Manns A, Freund C, Crittenden JR, Graybiel AM, Galla M, Jänsch L, Huehn J. The Guanine-Nucleotide Exchange Factor Caldag Gefi Fine-Tunes Functional Properties of Regulatory T Cells. Eur J Microbiol Immunol (Bp) 2017; 7:112-126. [PMID: 28690878 PMCID: PMC5495083 DOI: 10.1556/1886.2017.00007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/27/2017] [Indexed: 12/12/2022] Open
Abstract
Using quantitative phosphopeptide sequencing of unstimulated versus stimulated primary murine Foxp3+ regulatory and Foxp3– conventional T cells (Tregs and Tconv, respectively), we detected a novel and differentially regulated tyrosine phosphorylation site within the C1 domain of the guanine-nucleotide exchange factor CalDAG GEFI. We hypothesized that the Treg-specific and activation-dependent reduced phosphorylation at Y523 allows binding of CalDAG GEFI to diacylglycerol, thereby impacting the formation of a Treg-specific immunological synapse. However, diacylglycerol binding assays of phosphomutant C1 domains of CalDAG GEFI could not confirm this hypothesis. Moreover, CalDAG GEFI–/– mice displayed normal Treg numbers in thymus and secondary lymphoid organs, and CalDAG GEFI–/– Tregs showed unaltered in vitro suppressive capacity when compared to CalDAG GEFI+/+ Tregs. Interestingly, when tested in vivo, CalDAG GEFI–/– Tregs displayed a slightly reduced suppressive ability in the transfer colitis model when compared to CalDAG GEFI+/+ Tregs. Additionally, CRISPR-Cas9-generated CalDAG GEFI–/– Jurkat T cell clones showed reduced adhesion to ICAM-1 and fibronectin when compared to CalDAG GEFI-competent Jurkat T cells. Therefore, we speculate that deficiency in CalDAG GEFI impairs adherence of Tregs to antigen-presenting cells, thereby impeding formation of a fully functional immunological synapse, which finally results in a reduced suppressive potential.
Collapse
Affiliation(s)
- Jana Niemz
- Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Stefanie Kliche
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Marina C Pils
- Mousepathology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Eliot Morrison
- Institute for Chemistry and Biochemistry, Free University Berlin, 14195 Berlin, Germany
| | - Annika Manns
- Institute for Chemistry and Biochemistry, Free University Berlin, 14195 Berlin, Germany
| | - Christian Freund
- Institute for Chemistry and Biochemistry, Free University Berlin, 14195 Berlin, Germany
| | - Jill R Crittenden
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ann M Graybiel
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Lothar Jänsch
- Cellular Proteomics, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
13
|
Zhou S, Tanaka K, O’Keeffe M, Qi M, El-Assaad F, Weaver JC, Chen G, Weatherall C, Wang Y, Giannakopoulos B, Chen L, Yu D, Hamilton MJ, Wensing LA, Stevens RL, Krilis SA. CD117+ Dendritic and Mast Cells Are Dependent on RasGRP4 to Function as Accessory Cells for Optimal Natural Killer Cell-Mediated Responses to Lipopolysaccharide. PLoS One 2016; 11:e0151638. [PMID: 26982501 PMCID: PMC4794117 DOI: 10.1371/journal.pone.0151638] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/02/2016] [Indexed: 11/25/2022] Open
Abstract
Ras guanine nucleotide-releasing protein-4 (RasGRP4) is an evolutionarily conserved calcium-regulated, guanine nucleotide exchange factor and diacylglycerol/phorbol ester receptor. While an important intracellular signaling protein for CD117+ mast cells (MCs), its roles in other immune cells is less clear. In this study, we identified a subset of in vivo-differentiated splenic CD117+ dendritic cells (DCs) in wild-type (WT) C57BL/6 mice that unexpectedly contained RasGRP4 mRNA and protein. In regard to the biologic significance of these data to innate immunity, LPS-treated splenic CD117+ DCs from WT mice induced natural killer (NK) cells to produce much more interferon-γ (IFN-γ) than comparable DCs from RasGRP4-null mice. The ability of LPS-responsive MCs to cause NK cells to increase their expression of IFN-γ was also dependent on this intracellular signaling protein. The discovery that RasGRP4 is required for CD117+ MCs and DCs to optimally induce acute NK cell-dependent immune responses to LPS helps explain why this signaling protein has been conserved in evolution.
Collapse
Affiliation(s)
- Saijun Zhou
- Department of Infectious Diseases, Immunology, and Sexual Health, St. George Hospital, and the St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Laboratory of Hormones and Development (Ministry of Health), Metabolic Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, TJ, China
| | - Kumiko Tanaka
- Department of Infectious Diseases, Immunology, and Sexual Health, St. George Hospital, and the St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Meredith O’Keeffe
- Dendritic Cell Research Laboratory, Immunity Vaccines and Immunisation, Burnet Institute, Prahran, Melbourne, Victoria, Australia
| | - Miao Qi
- Department of Infectious Diseases, Immunology, and Sexual Health, St. George Hospital, and the St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Fatima El-Assaad
- Department of Infectious Diseases, Immunology, and Sexual Health, St. George Hospital, and the St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - James C. Weaver
- Department of Infectious Diseases, Immunology, and Sexual Health, St. George Hospital, and the St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Department of Cardiology, St. George Hospital, Sydney, New South Wales, Australia
| | - Gang Chen
- Department of Infectious Diseases, Immunology, and Sexual Health, St. George Hospital, and the St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Christopher Weatherall
- Department of Infectious Diseases, Immunology, and Sexual Health, St. George Hospital, and the St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Ying Wang
- Department of Infectious Diseases, Immunology, and Sexual Health, St. George Hospital, and the St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Bill Giannakopoulos
- Department of Infectious Diseases, Immunology, and Sexual Health, St. George Hospital, and the St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Liming Chen
- Laboratory of Hormones and Development (Ministry of Health), Metabolic Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, TJ, China
| | - DeMint Yu
- Laboratory of Hormones and Development (Ministry of Health), Metabolic Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, TJ, China
| | - Matthew J. Hamilton
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Division of Gastroenterology, Brigham and Women’s Hospital, Boston, MA, United States of America
| | - Lislaine A. Wensing
- Departament of Immunology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Richard L. Stevens
- Department of Infectious Diseases, Immunology, and Sexual Health, St. George Hospital, and the St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Steven A. Krilis
- Department of Infectious Diseases, Immunology, and Sexual Health, St. George Hospital, and the St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
14
|
Kono M, Yasuda S, Stevens RL, Koide H, Kurita T, Shimizu Y, Kanetsuka Y, Oku K, Bohgaki T, Amengual O, Horita T, Shimizu T, Majima T, Koike T, Atsumi T. Ras guanine nucleotide-releasing protein 4 is aberrantly expressed in the fibroblast-like synoviocytes of patients with rheumatoid arthritis and controls their proliferation. Arthritis Rheumatol 2015; 67:396-407. [PMID: 25330932 DOI: 10.1002/art.38924] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/14/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Ras guanine nucleotide-releasing protein 4 (RasGRP-4) is a calcium-regulated guanine nucleotide exchange factor and diacylglycerol/phorbol ester receptor not normally expressed in fibroblasts. While RasGRP-4-null mice are resistant to arthritis induced by anti-glucose-6-phosphate isomerase autoantibodies, the relevance of these findings to humans is unknown. We undertook this study to evaluate the importance of RasGRP-4 in the pathogenesis of human and rat arthritis. METHODS Synovial tissue from patients with rheumatoid arthritis (RA) and osteoarthritis (OA) were evaluated immunohistochemically for the presence of RasGRP-4 protein. Fibroblast-like synoviocytes (FLS) were isolated from synovial samples, and expression of RasGRP-4 was evaluated by real-time quantitative reverse transcription-polymerase chain reaction analyses. The proliferation potency of FLS was evaluated by exposing the cells to a RasGRP-4-specific small interfering RNA (siRNA). Finally, the ability of RasGRP-4-specific siRNAs to hinder type II collagen-induced arthritis in rats was evaluated to confirm the importance of the signaling protein in the disease. RESULTS Unexpectedly, RasGRP-4 protein was detected in the synovial hyperplastic lining, where proliferating FLS preferentially reside. FLS isolated from tissues obtained from a subpopulation of RA patients expressed much more RasGRP-4 than did FLS from examined OA patients. Moreover, the level of RasGRP-4 transcript was correlated with the FLS proliferation rate. The ability of cultured FLS to divide was diminished when they were treated with RasGRP-4-specific siRNAs. The intraarticular injection of RasGRP-4-specific siRNAs also dampened experimental arthritis in rats. CONCLUSION RasGRP-4 is aberrantly expressed in FLS and helps regulate their growth. This intracellular signaling protein is therefore a candidate target for dampening proliferative synovitis and joint destruction.
Collapse
Affiliation(s)
- Michihito Kono
- Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Proteomic Analysis Reveals PGAM1 Altering cis-9, trans-11 Conjugated Linoleic Acid Synthesis in Bovine Mammary Gland. Lipids 2015; 50:469-81. [PMID: 25820808 DOI: 10.1007/s11745-015-4009-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
cis-9, trans-11 Conjugated linoleic acid (CLA) is one of the most extensively studied CLA isomers due to its multiple isomer-specific effects. However, the molecular mechanisms of cis-9,trans-11 CLA synthesis in ruminant mammary gland are still not clearly understood. This process may be mediated, to a certain extent, by trans-11 C18:1 regulated by stearoyl-CoA desaturase-1 (SCD1) and/or its syntrophic proteins. This study aimed to investigate the effects of TVA on SCD1-mediated cis-9,trans-11 CLA synthesis in MAC-T cells and its potential molecular mechanism. Results showed that trans-11 C18:1 was continually taken up and converted into cis-9,trans-11 CLA in MAC-T cells during the 4-h incubation of 50 μM trans-11 C18:1. SCD1 protein expression increased more than twofold at 2 h (P < 0.01) and 2.5 h (P < 0.05) before decreasing to less than half of the normal level at 4 h (P < 0.05). One up-regulated (RAS guanyl releasing protein 4 isoform 1 [RASGRP4]) and six down-regulated proteins (glucosamine-6-phosphate deaminase 1 [GNPDA1], triosephosphate isomerase [TPI1], phosphoglycerate mutase 1 [PGAM1], heat shock protein beta-1 [HSPB1], annexin A3 [ANXA3], thiopurine S-methyltransferase [TPMT]) were found in MAC-T cells treated with trans-11 C18:1. Of these seven identified proteins, the presence of GNPDA1 and PGAM1 was verified in several models. More trans-11 C18:1 was taken up after PGAM1 knockdown by small interfering RNA (siRNA). In conclusion, our data suggested that PGAM1 may have a negative relationship with SCD1 and seemed to be involved in cis-9, trans-11 CLA synthesis by facilitating the absorption of trans-11 C18:1 in the bovine mammary gland.
Collapse
|
16
|
Molderings GJ. The genetic basis of mast cell activation disease - looking through a glass darkly. Crit Rev Oncol Hematol 2015; 93:75-89. [DOI: 10.1016/j.critrevonc.2014.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/14/2014] [Accepted: 09/16/2014] [Indexed: 01/08/2023] Open
|
17
|
RasGRP3 limits Toll-like receptor-triggered inflammatory response in macrophages by activating Rap1 small GTPase. Nat Commun 2014; 5:4657. [PMID: 25118589 PMCID: PMC4143924 DOI: 10.1038/ncomms5657] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/11/2014] [Indexed: 01/18/2023] Open
Abstract
Host immune cells can detect and destruct invading pathogens via pattern-recognition receptors. Small Rap GTPases act as conserved molecular switches coupling extracellular signals to various cellular responses, but their roles as regulators in Toll-like receptor (TLR) signalling have not been fully elucidated. Here we report that Ras guanine nucleotide-releasing protein 3 (RasGRP3), a guanine nucleotide-exchange factor activating Ras and Rap1, limits production of proinflammatory cytokines (especially IL-6) in macrophages by activating Rap1 on activation by low levels of TLR agonists. We demonstrate that RasGRP3, a dominant member of RasGRPs in macrophages, impairs TLR3/4/9-induced IL-6 production and relieves dextrane sulphate sodium-induced colitis and collagen-induced arthritis. In RasGRP3-deficient RAW264.7 cells obtained by CRISPR-Cas9 genome editing, TLR3/4/9-induced activation of Rap1 was inhibited while ERK1/2 activation was enhanced. Our study suggests that RasGRP3 limits inflammatory response by activating Rap1 on low-intensity pathogen infection, setting a threshold for preventing excessive inflammatory response. Toll like receptors (TLRs) couple microbial sensing to initiation of immune responses, which are essential for defense against pathogens but may cause immunopathology when activated excessively. Here the authors show that RasGRP3 sets a threshold of TLR activation to prevent immunopathology.
Collapse
|
18
|
Douaiher J, Succar J, Lancerotto L, Gurish MF, Orgill DP, Hamilton MJ, Krilis SA, Stevens RL. Development of mast cells and importance of their tryptase and chymase serine proteases in inflammation and wound healing. Adv Immunol 2014; 122:211-52. [PMID: 24507159 DOI: 10.1016/b978-0-12-800267-4.00006-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mast cells (MCs) are active participants in blood coagulation and innate and acquired immunity. This review focuses on the development of mouse and human MCs, as well as the involvement of their granule serine proteases in inflammation and the connective tissue remodeling that occurs during the different phases of the healing process of wounded skin and other organs. The accumulated data suggest that MCs, their tryptases, and their chymases play important roles in tissue repair. While MCs initially promote healing, they can be detrimental if they are chronically stimulated or if too many MCs become activated at the same time. The possibility that MCs and their granule serine proteases contribute to the formation of keloid and hypertrophic scars makes them potential targets for therapeutic intervention in the repair of damaged skin.
Collapse
Affiliation(s)
- Jeffrey Douaiher
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Julien Succar
- Division of General Surgery, Department of Surgery, University of Kentucky, Lexington, Kentucky, USA
| | - Luca Lancerotto
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Michael F Gurish
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Dennis P Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Matthew J Hamilton
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Steven A Krilis
- Department of Infectious Disease, Immunology, and Sexual Health, The St. George Hospital, University of New South Wales, Kogarah, New South Wales, Australia
| | - Richard L Stevens
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
19
|
Ksionda O, Limnander A, Roose JP. RasGRP Ras guanine nucleotide exchange factors in cancer. FRONTIERS IN BIOLOGY 2013; 8:508-532. [PMID: 24744772 PMCID: PMC3987922 DOI: 10.1007/s11515-013-1276-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RasGRP proteins are activators of Ras and other related small GTPases by the virtue of functioning as guanine nucleotide exchange factors (GEFs). In vertebrates, four RasGRP family members have been described. RasGRP-1 through -4 share many structural domains but there are also subtle differences between each of the different family members. Whereas SOS RasGEFs are ubiquitously expressed, RasGRP proteins are expressed in distinct patterns, such as in different cells of the hematopoietic system and in the brain. Most studies have concentrated on the role of RasGRP proteins in the development and function of immune cell types because of the predominant RasGRP expression profiles in these cells and the immune phenotypes of mice deficient for Rasgrp genes. However, more recent studies demonstrate that RasGRPs also play an important role in tumorigenesis. Examples are skin- and hematological-cancers but also solid malignancies such as melanoma or prostate cancer. These novel studies bring up many new and unanswered questions related to the molecular mechanism of RasGRP-driven oncogenesis, such as new receptor systems that RasGRP appears to respond to as well as regulatory mechanism for RasGRP expression that appear to be perturbed in these cancers. Here we will review some of the known aspects of RasGRP biology in lymphocytes and will discuss the exciting new notion that RasGRP Ras exchange factors play a role in oncogenesis downstream of various growth factor receptors.
Collapse
Affiliation(s)
- Olga Ksionda
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andre Limnander
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeroen P. Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
20
|
Song X, Lopez-Campistrous A, Sun L, Dower NA, Kedei N, Yang J, Kelsey JS, Lewin NE, Esch TE, Blumberg PM, Stone JC. RasGRPs are targets of the anti-cancer agent ingenol-3-angelate. PLoS One 2013; 8:e72331. [PMID: 23991094 PMCID: PMC3749120 DOI: 10.1371/journal.pone.0072331] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 07/08/2013] [Indexed: 11/26/2022] Open
Abstract
Ingenol-3–angelate (I3A) is a non-tumor promoting phorbol ester-like compound identified in the sap of Euphoria peplus. Similar to tumor promoting phorbol esters, I3A is a diacylglycerol (DAG) analogue that binds with high affinity to the C1 domains of PKCs, recruits PKCs to cellular membranes and promotes enzyme activation. Numerous anti-cancer activities have been attributed to I3A and ascribed to I3A’s effects on PKCs. We show here that I3A also binds to and activates members of the RasGRP family of Ras activators leading to robust elevation of Ras-GTP and engagement of the Raf-Mek-Erk kinase cascade. In response to I3A, recombinant proteins consisting of GFP fused separately to full-length RasGRP1 and RasGRP3 were rapidly recruited to cell membranes, consistent with direct binding of the compound to RasGRP’s C1 domain. In the case of RasGRP3, IA3 treatment led to positive regulatory phosphorylation on T133 and activation of the candidate regulatory kinase PKCδ. I3A treatment of select B non-Hodgkin’s lymphoma cell lines resulted in quantitative and qualitative changes in Bcl-2 family member proteins and induction of apoptosis, as previously demonstrated with the DAG analogue bryostatin 1 and its synthetic analogue pico. Our results offer further insights into the anticancer properties of I3A, support the idea that RasGRPs represent potential cancer therapeutic targets along with PKC, and expand the known range of ligands for RasGRP regulation.
Collapse
Affiliation(s)
- Xiaohua Song
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Lucy Sun
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nancy A. Dower
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jing Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jessica S. Kelsey
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nancy E. Lewin
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tim E. Esch
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter M. Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James C. Stone
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
21
|
Iwig JS, Vercoulen Y, Das R, Barros T, Limnander A, Che Y, Pelton JG, Wemmer DE, Roose JP, Kuriyan J. Structural analysis of autoinhibition in the Ras-specific exchange factor RasGRP1. eLife 2013; 2:e00813. [PMID: 23908768 PMCID: PMC3728621 DOI: 10.7554/elife.00813] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/18/2013] [Indexed: 11/13/2022] Open
Abstract
RasGRP1 and SOS are Ras-specific nucleotide exchange factors that have distinct roles in lymphocyte development. RasGRP1 is important in some cancers and autoimmune diseases but, in contrast to SOS, its regulatory mechanisms are poorly understood. Activating signals lead to the membrane recruitment of RasGRP1 and Ras engagement, but it is unclear how interactions between RasGRP1 and Ras are suppressed in the absence of such signals. We present a crystal structure of a fragment of RasGRP1 in which the Ras-binding site is blocked by an interdomain linker and the membrane-interaction surface of RasGRP1 is hidden within a dimerization interface that may be stabilized by the C-terminal oligomerization domain. NMR data demonstrate that calcium binding to the regulatory module generates substantial conformational changes that are incompatible with the inactive assembly. These features allow RasGRP1 to be maintained in an inactive state that is poised for activation by calcium and membrane-localization signals. DOI:http://dx.doi.org/10.7554/eLife.00813.001 Individual cells within the human body must grow, divide or specialize to perform the tasks required of them. The fates of these cells are often directed by proteins in the Ras family, which detect signals from elsewhere in the body and orchestrate responses within each cell. The activities of these proteins must be tightly controlled, because cancers and developmental diseases can result if Ras proteins are not properly regulated. Binding to the small molecule GTP activates Ras and causes conformational changes that allow it to interact with other proteins in various signaling pathways in the cell. GTP is loaded into Ras by proteins called nucleotide exchange factors, which can replace ‘used’ nucleotides with ‘fresh’ ones to activate Ras. These nucleotide exchange factors are also tightly regulated. For example, the genes for many exchange factors are only switched on after particular signals are received, which can restrict their presence to defined times and locations (e.g., cells or tissues). Also, when activating signals are absent, nucleotide exchange factors commonly reside in the cytoplasm, whereas the Ras proteins remain bound to lipid membranes inside the cell. RasGRP1 is a nucleotide exchange factor that controls the development of immune cells, and leukemia and lupus can result if it is not regulated correctly. However, many questions about RasGRP1 remain unanswered, including how it is able to remain inactive, and how it is activated by various different signals. Iwig et al. have now revealed the mechanisms through which RasGRP1 suppresses Ras signaling in immune cells by solving the structures of two fragments of RasGRP1 and then using a combination of structural, biochemical and cell-based methods to explore how it is activated. These analyses revealed that inactive RasGRP1 adopts a conformation in which one of its regulatory elements blocks access to the Ras binding site. Surprisingly, RasGRP1 can form dimers; this hides the portions of the protein that associate with the membrane and thereby keeps RasGRP1 away from Ras. Iwig et al. also found that two signals, calcium ions and a lipid called diacylglycerol, overcome these inhibitory mechanisms by changing the conformation of RasGRP1 and recruiting it to the membrane. These studies provide a framework for understanding how disease-associated mutations in RasGRP1 bypass the regulatory mechanisms that insure proper immune cell development, and will be critical for developing therapeutic agents that inhibit RasGRP1 activity. DOI:http://dx.doi.org/10.7554/eLife.00813.002
Collapse
Affiliation(s)
- Jeffrey S Iwig
- Department of Molecular and Cell Biology , University of California, Berkeley , Berkeley , United States ; California Institute for Quantitative Biosciences , University of California, Berkeley , Berkeley , United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Magarinos NJ, Bryant KJ, Fosang AJ, Adachi R, Stevens RL, McNeil HP. Mast cell-restricted, tetramer-forming tryptases induce aggrecanolysis in articular cartilage by activating matrix metalloproteinase-3 and -13 zymogens. THE JOURNAL OF IMMUNOLOGY 2013; 191:1404-12. [PMID: 23797671 DOI: 10.4049/jimmunol.1300856] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mouse mast cell protease (mMCP)-6-null C57BL/6 mice lost less aggrecan proteoglycan from the extracellular matrix of their articular cartilage during inflammatory arthritis than wild-type (WT) C57BL/6 mice, suggesting that this mast cell (MC)-specific mouse tryptase plays prominent roles in articular cartilage catabolism. We used ex vivo mouse femoral head explants to determine how mMCP-6 and its human ortholog hTryptase-β mediate aggrecanolysis. Exposure of the explants to recombinant hTryptase-β, recombinant mMCP-6, or lysates harvested from WT mouse peritoneal MCs (PMCs) significantly increased the levels of enzymatically active matrix metalloproteinases (MMP) in cartilage and significantly induced aggrecan loss into the conditioned media, relative to replicate explants exposed to medium alone or lysates collected from mMCP-6-null PMCs. Treatment of cartilage explants with tetramer-forming tryptases generated aggrecan fragments that contained C-terminal DIPEN and N-terminal FFGVG neoepitopes, consistent with MMP-dependent aggrecanolysis. In support of these data, hTryptase-β was unable to induce aggrecan release from the femoral head explants obtained from Chloe mice that resist MMP cleavage at the DIPEN↓FFGVG site in the interglobular domain of aggrecan. In addition, the abilities of mMCP-6-containing lysates from WT PMCs to induce aggrecanolysis were prevented by inhibitors of MMP-3 and MMP-13. Finally, recombinant hTryptase-β was able to activate latent pro-MMP-3 and pro-MMP-13 in vitro. The accumulated data suggest that human and mouse tetramer-forming tryptases are MMP convertases that mediate cartilage damage and the proteolytic loss of aggrecan proteoglycans in arthritis, in part, by activating the zymogen forms of MMP-3 and MMP-13, which are constitutively present in articular cartilage.
Collapse
Affiliation(s)
- Natalia J Magarinos
- South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | | | | | | | |
Collapse
|
23
|
Nagalingam RS, Sundaresan NR, Gupta MP, Geenen DL, Solaro RJ, Gupta M. A cardiac-enriched microRNA, miR-378, blocks cardiac hypertrophy by targeting Ras signaling. J Biol Chem 2013; 288:11216-32. [PMID: 23447532 DOI: 10.1074/jbc.m112.442384] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Understanding the regulation of cardiomyocyte growth is crucial for the management of adverse ventricular remodeling and heart failure. MicroRNA-378 (miR-378) is a newly described member of the cardiac-enriched miRNAs, which is expressed only in cardiac myocytes and not in cardiac fibroblasts. We have previously shown that miR-378 regulates cardiac growth during the postnatal period by direct targeting of IGF1R (Knezevic, I., Patel, A., Sundaresan, N. R., Gupta, M. P., Solaro, R. J., Nagalingam, R. S., and Gupta, M. (2012) J. Biol. Chem. 287, 12913-12926). Here, we report that miR-378 is an endogenous negative regulator of cardiac hypertrophy, and its levels are down-regulated during hypertrophic growth of the heart and during heart failure. In primary cultures of cardiomyocytes, overexpression of miR-378 blocked phenylephrine (PE)-stimulated Ras activity and also prevented activation of two major growth-promoting signaling pathways, PI3K-AKT and Raf1-MEK1-ERK1/2, acting downstream of Ras signaling. Overexpression of miR-378 suppressed PE-induced phosphorylation of S6 ribosomal kinase, pERK1/2, pAKT, pGSK-3β, and nuclear accumulation of NFAT. There was also suppression of the fetal gene program that was induced by PE. Experiments carried out to delineate the mechanism behind the suppression of Ras, led us to identify Grb2, an upstream component of Ras signaling, as a bona fide direct target of miR-378-mediated regulation. Deficiency of miR-378 alone was sufficient to induce fetal gene expression, which was prevented by knocking down Grb2 expression and blocking Ras activation, thus suggesting that miR-378 interferes with Ras activation by targeting Grb2. Our study demonstrates that miR-378 is an endogenous negative regulator of Ras signaling and cardiac hypertrophy and its deficiency contributes to the development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Raghu S Nagalingam
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|
24
|
Haenisch B, Nöthen MM, Molderings GJ. Systemic mast cell activation disease: the role of molecular genetic alterations in pathogenesis, heritability and diagnostics. Immunology 2012; 137:197-205. [PMID: 22957768 DOI: 10.1111/j.1365-2567.2012.03627.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite increasing understanding of its pathophysiology, the aetiology of systemic mast cell activation disease (MCAD) remains largely unknown. Research has shown that somatic mutations in kinases are necessary for the establishment of a clonal mast cell population, in particular mutations in the tyrosine kinase Kit and in enzymes and receptors with crucial involvement in the regulation of mast cell activity. However, other, as yet undetermined, abnormalities are necessary for the manifestation of clinical disease. The present article reviews molecular genetic research into the identification of disease-associated genes and their mutational alterations. The authors also present novel data on familial systemic MCAD and review the associated literature. Finally, the importance of understanding the molecular basis of inherited mutations in terms of diagnostics and therapy is emphasized.
Collapse
Affiliation(s)
- Britta Haenisch
- Institute of Human Genetics, University Hospital of Bonn, Germany
| | | | | |
Collapse
|
25
|
GPCR activation of Ras and PI3Kc in neutrophils depends on PLCb2/b3 and the RasGEF RasGRP4. EMBO J 2012; 31:3118-29. [PMID: 22728827 PMCID: PMC3400018 DOI: 10.1038/emboj.2012.167] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 05/15/2012] [Indexed: 12/31/2022] Open
Abstract
The molecular mechanisms by which receptors regulate the Ras Binding Domains of the PIP3-generating, class I PI3Ks remain poorly understood, despite their importance in a range of biological settings, including tumorigenesis, activation of neutrophils by pro-inflammatory mediators, chemotaxis of Dictyostelium and cell growth in Drosophila. We provide evidence that G protein-coupled receptors (GPCRs) can stimulate PLCb2/b3 and diacylglycerol- dependent activation of the RasGEF, RasGRP4 in neutrophils. The genetic loss of RasGRP4 phenocopies knock-in of a Ras-insensitive version of PI3Kc in its effects on PI3Kc-dependent PIP3 accumulation, PKB activation, chemokinesis and reactive oxygen species (ROS) formation. These results establish a new mechanism by which GPCRs can stimulate Ras, and the broadly important principle that PLCs can control activation of class I PI3Ks.
Collapse
|
26
|
Adachi R, Krilis SA, Nigrovic PA, Hamilton MJ, Chung K, Thakurdas SM, Boyce JA, Anderson P, Stevens RL. Ras guanine nucleotide-releasing protein-4 (RasGRP4) involvement in experimental arthritis and colitis. J Biol Chem 2012; 287:20047-55. [PMID: 22511759 DOI: 10.1074/jbc.m112.360388] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RasGRP4 (Ras guanine nucleotide-releasing protein-4) is an intracellular, calcium-regulated guanine nucleotide exchange factor and diacylglycerol/phorbol ester receptor expressed in mast cells (MCs) and their progenitors. To study the function of this signaling protein in inflammatory disorders, a homologous recombination approach was used to create a RasGRP4-null C57BL/6 mouse line. The resulting transgenic animals had normal numbers of MCs in their tissues that histochemically and morphologically resembled those in WT C57BL/6 mice. MCs could also be generated from RasGRP4-null mice by culturing their bone marrow cells in IL-3-enriched conditioned medium. Despite these data, the levels of the transcripts that encode the proinflammatory cytokines IL-1β and TNF-α were reduced in phorbol 12-myristate 13-acetate-treated MCs developed from RasGRP4-null mice. Although inflammation was not diminished in a Dermatophagoides farinae-dependent model of allergic airway disease, dextran sodium sulfate-induced colitis was significantly reduced in RasGRP4-null mice relative to similarly treated WT mice. Furthermore, experimental arthritis could not be induced in RasGRP4-null mice that had received K/BxN mouse serum. The latter findings raise the possibility that the pharmacologic inactivation of this intracellular signaling protein might be an effective treatment for arthritis or inflammatory bowel disease.
Collapse
Affiliation(s)
- Roberto Adachi
- Department of Pulmonary Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhu M, Fuller DM, Zhang W. The role of Ras guanine nucleotide releasing protein 4 in Fc epsilonRI-mediated signaling, mast cell function, and T cell development. J Biol Chem 2012; 287:8135-43. [PMID: 22262848 DOI: 10.1074/jbc.m111.320580] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The RasGRP (Ras guanine nucleotide-releasing protein) family proteins are guanine nucleotide exchange factors that activate Ras GTPases, ultimately leading to MAPK activation and many cellular processes. The RasGRP family has four members. Published studies demonstrate that RasGRP1, RasGRP2, and RasGRP3 play critical roles in T cells, platelets, and B cells, respectively. RasGRP4 is highly expressed in mast cells. Although previous data suggest that it is important in mast cell development and function, the role of RasGRP4 in mast cells and allergic responses has not been clearly demonstrated. In this study, we generated RasGRP4(-/-) mice to examine the function of RasGRP4. Analyses of these mice showed that mast cells were able to develop normally in vivo and in vitro. Despite high levels of RasGRP4 expression in mast cells, RasGRP4 deficiency led to only a modest reduction in FcεRI-mediated degranulation and cytokine production. Interestingly, mast cells deficient in both RasGRP1 and RasGRP4 had a much more severe block in FcεRI-mediated signaling and mast cell function. We also made the unexpected finding that RasGRP4 functions during thymocyte development. Our data suggest that after the engagement of immunoreceptors, immune cells likely employ multiple members of the RasGRP family to transduce critical signals.
Collapse
Affiliation(s)
- Minghua Zhu
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
28
|
Aberrant expression of RasGRP1 cooperates with gain-of-function NOTCH1 mutations in T-cell leukemogenesis. Leukemia 2011; 26:1038-45. [PMID: 22116551 DOI: 10.1038/leu.2011.328] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ras guanyl nucleotide-releasing proteins (RasGRPs) are activators of Ras. Previous studies have indicated the possible involvement of RasGRP1 and RasGRP4 in leukemogenesis. Here, the predominant role of RasGRP1 in T-cell leukemogenesis is clarified. Notably, increased expression of RasGRP1, but not RasGRP4, was frequently observed in human T-cell malignancies. In a mouse bone marrow transplantation model, RasGRP1 exclusively induced T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) after a shorter latency when compared with RasGRP4. Accordingly, Ba/F3 cells transduced with RasGRP1 survived longer under growth factor withdrawal or phorbol ester stimulation than those transduced with RasGRP4, presumably due to the efficient activation of Ras. Intriguingly, NOTCH1 mutations resulting in a gain of function were found in 77% of the RasGRP1-mediated mouse T-ALL samples. In addition, gain-of-function NOTCH1 mutation was found in human T-cell malignancy with elevated expression of RasGRP1. Importantly, RasGRP1 and NOTCH1 signaling cooperated in the progression of T-ALL in the murine model. The leukemogenic advantage of RasGRP1 over RasGRP4 was attenuated by the disruption of a protein kinase C phosphorylation site (RasGRP1(Thr184)) not present on RasGRP4. In conclusion, cooperation between aberrant expression of RasGRP1, a strong activator of Ras, and secondary gain-of-function mutations of NOTCH1 have an important role in T-cell leukemogenesis.
Collapse
|
29
|
Abstract
Ras guanyl nucleotide releasing proteins (RasGRPs) are guanyl nucleotide exchange factors that activate Ras and related GTPases such as Rap. Like Sos proteins, RasGRPs have a catalytic region composed of a Ras exchange motif (REM) and a CDC25 domain. RasGRPs also possess a pair of atypical EF hands that may bind calcium in vivo and a C1 domain resembling the diacylglycerol (DAG)-binding domain of protein kinase C. DAG directly activates RasGRPs by a membrane recruitment mechanism as well as indirectly by PKC-mediated phosphorylation. RasGRPs are prominently expressed in blood cells. RasGRP1 acts downstream of TCR, while RasGRP1 and RasGRP3 both act downstream of BCR. Together, they regulate Ras in adaptive immune cells. RasGRP2, through Rap, plays a role in controlling platelet adhesion, while RasGRP4 controls Ras activation in mast cells. RasGRP malfunction likely contributes to autoimmunity and may contribute to blood malignancies. RasGRPs might prove to be viable drug targets. The intracellular site of RasGRP action and the relationship between RasGRPs and other Ras regulatory mechanisms are subjects of lively debate.
Collapse
Affiliation(s)
- James C Stone
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
30
|
Hashimoto T, Yasuda S, Koide H, Kataoka H, Horita T, Atsumi T, Koike T. Aberrant splicing of the hRasGRP4 transcript and decreased levels of this signaling protein in the peripheral blood mononuclear cells in a subset of patients with rheumatoid arthritis. Arthritis Res Ther 2011; 13:R154. [PMID: 21933395 PMCID: PMC3308084 DOI: 10.1186/ar3470] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/25/2011] [Accepted: 09/20/2011] [Indexed: 12/26/2022] Open
Abstract
Introduction An unidentified population of peripheral blood mononuclear cells (PBMCs) express Ras guanine nucleotide releasing protein 4 (RasGRP4). The aim of our study was to identify the cells in human blood that express hRasGRP4, and then to determine if hRasGRP4 was altered in any patient with rheumatoid arthritis (RA). Methods Monocytes and T cells were purified from PBMCs of normal individuals, and were evaluated for their expression of RasGRP4 mRNA/protein. The levels of RasGRP4 transcripts were evaluated in the PBMCs from healthy volunteers and RA patients by real-time quantitative PCR. The nucleotide sequences of RasGRP4 cDNAs were also determined. RasGRP4 protein expression in PBMCs/monocytes was evaluated. Recombinant hRasGRP4 was expressed in mammalian cells. Results Circulating CD14+ cells in normal individuals were found to express hRasGRP4. The levels of the hRasGRP4 transcript were significantly higher in the PBMCs of our RA patients relative to healthy individuals. Sequence analysis of hRasGRP4 cDNAs from these PBMCs revealed 10 novel splice variants. Aberrantly spliced hRasGRP4 transcripts were more frequent in the RA patients than in normal individuals. The presence of one of these abnormal splice variants was linked to RA. The levels of hRasGRP4 protein in PBMCs tended to be lower. As expected, the defective transcripts led to altered and/or nonfunctional protein in terms of P44/42 mitogen-activated protein (MAP) kinase activation. Conclusions The identification of defective isoforms of hRasGRP4 transcripts in the PBMCs of RA patients raises the possibility that dysregulated expression of hRasGRP4 in developing monocytes plays a pathogenic role in a subset of RA patients.
Collapse
Affiliation(s)
- Toko Hashimoto
- Department of Medicine II, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo, 060-8638, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Sharma A, Luke CT, Dower NA, Stone JC, Lorenzo PS. RasGRP1 is essential for ras activation by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate in epidermal keratinocytes. J Biol Chem 2010; 285:15724-30. [PMID: 20308057 PMCID: PMC2871438 DOI: 10.1074/jbc.m109.100016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 02/24/2010] [Indexed: 11/06/2022] Open
Abstract
RasGRP1 is a guanine nucleotide exchange factor for Ras that binds with high affinity to diacylglycerol analogs like the phorbol esters. Recently, we demonstrated a role for RasGRP1 in skin carcinogenesis and suggested its participation in the action of tumor-promoting phorbol esters like 12-O-tetradecanoylphorbol-13-acetate (TPA) on Ras pathways in epidermal cells. Given the importance of Ras in carcinogenesis, we sought to discern whether RasGRP1 was a critical pathway in Ras activation, using a RasGRP1 knockout (KO) mouse model to examine the response of keratinocytes to TPA. In contrast to the effect seen in wild type keratinocytes, Ras(GTP) levels were barely detected in RasGRP1 KO cells even after 60 min of exposure to phorbol esters. The lack of response was rescued by enforced expression of RasGRP1. Furthermore, small hairpin RNA-induced silencing of RasGRP1 abrogated the effect of TPA on Ras. Analysis of Ras isoforms showed that both H-Ras and N-Ras depended on RasGRP1 for activation by TPA, whereas activation of K-Ras could not be detected. Although RasGRP1 was dispensable for ERK activation in response to TPA, JNK activation was reduced in the KO keratinocytes. Notably, TPA-induced phosphorylation of JNK2, but not JNK1, was reduced by RasGRP1 depletion. These data identify RasGRP1 as a critical molecule in the activation of Ras by TPA in primary mouse keratinocytes and suggest JNK2 as one of the relevant downstream targets. Given the role of TPA as a skin tumor promoter, our findings provide additional support for a role for RasGRP1 in skin carcinogenesis.
Collapse
Affiliation(s)
- Amrish Sharma
- From the Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, Hawaii 96813 and
| | - Courtney T. Luke
- From the Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, Hawaii 96813 and
| | | | - James C. Stone
- Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Patricia S. Lorenzo
- From the Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, Hawaii 96813 and
| |
Collapse
|
33
|
Botelho RJ, Harrison RE, Stone JC, Hancock JF, Philips MR, Jongstra-Bilen J, Mason D, Plumb J, Gold MR, Grinstein S. Localized diacylglycerol-dependent stimulation of Ras and Rap1 during phagocytosis. J Biol Chem 2009; 284:28522-32. [PMID: 19700408 DOI: 10.1074/jbc.m109.009514] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe a role for diacylglycerol in the activation of Ras and Rap1 at the phagosomal membrane. During phagocytosis, Ras density was similar on the surface and invaginating areas of the membrane, but activation was detectable only in the latter and in sealed phagosomes. Ras activation was associated with the recruitment of RasGRP3, a diacylglycerol-dependent Ras/Rap1 exchange factor. Recruitment to phagosomes of RasGRP3, which contains a C1 domain, parallels and appears to be due to the formation of diacylglycerol. Accordingly, Ras and Rap1 activation was precluded by antagonists of phospholipase C and of diacylglycerol binding. Ras is dispensable for phagocytosis but controls activation of extracellular signal-regulated kinase, which is partially impeded by diacylglycerol inhibitors. By contrast, cross-activation of complement receptors by stimulation of Fcgamma receptors requires Rap1 and involves diacylglycerol. We suggest a role for diacylglycerol-dependent exchange factors in the activation of Ras and Rap1, which govern distinct processes induced by Fcgamma receptor-mediated phagocytosis to enhance the innate immune response.
Collapse
Affiliation(s)
- Roberto J Botelho
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Watanabe-Okochi N, Oki T, Komeno Y, Kato N, Yuji K, Ono R, Harada Y, Harada H, Hayashi Y, Nakajima H, Nosaka T, Kitaura J, Kitamura T. Possible involvement of RasGRP4 in leukemogenesis. Int J Hematol 2009; 89:470-481. [DOI: 10.1007/s12185-009-0299-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Revised: 02/24/2009] [Accepted: 03/08/2009] [Indexed: 10/20/2022]
|
35
|
Topham MK, Epand RM. Mammalian diacylglycerol kinases: molecular interactions and biological functions of selected isoforms. Biochim Biophys Acta Gen Subj 2009; 1790:416-24. [PMID: 19364481 DOI: 10.1016/j.bbagen.2009.01.010] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 01/27/2009] [Accepted: 01/30/2009] [Indexed: 12/28/2022]
Abstract
The mammalian diacylglycerol kinases (DGK) are a group of enzymes having important roles in regulating many biological processes. Both the product and the substrate of these enzymes, i.e. diacylglycerol and phosphatidic acid, are important lipid signalling molecules. Each DGK isoform appears to have a distinct biological function as a consequence of its location in the cell and/or the proteins with which it associates. This review discusses three of the more extensively studied forms of this enzyme, DGKalpha, DGKvarepsilon, and DGKzeta. DGKalpha has an important role in immune function and its activity is modulated by several mechanisms. DGKvarepsilon has several unique features among which is its specificity for arachionoyl-containing substrates, suggesting its importance in phosphatidylinositol cycling. DGKzeta is expressed in many tissues and also has several mechanisms to regulate its functions. It is localized in several subcellular organelles, including the nucleus. The current state of our understanding of the properties and functions of these proteins is reviewed.
Collapse
Affiliation(s)
- Matthew K Topham
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
36
|
Tazmini G, Beaulieu N, Woo A, Zahedi B, Goulding RE, Kay RJ. Membrane localization of RasGRP1 is controlled by an EF-hand, and by the GEF domain. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:447-61. [PMID: 19168098 DOI: 10.1016/j.bbamcr.2008.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 11/14/2008] [Accepted: 12/19/2008] [Indexed: 12/18/2022]
Abstract
RasGRP1 is an exchange factor for membrane-localized Ras GTPases. Activation of RasGRP1 requires its translocation to membranes, which can be directly mediated by either its PT or C1 domains. RasGRP1 also has a pair of EF-hands which have been proposed to regulate RasGRP1 by sensing receptor-induced calcium fluxes. We determined that one of these EF-hands, EF1, is required for receptor-induced translocation of RasGRP1 to the plasma membrane in B cell lines. EF1 enables plasma membrane targeting of RasGRP1 by counteracting the SuPT domain, a negative regulator of the PT domain. Contrary to expectations, EF1-mediated translocation of RasGRP1 does not involve antigen receptor-induced intracellular calcium flux. Instead, alternative splicing affecting EF1 serves to modulate RasGRP1 localization. Excision of an exon encoding part of EF1 selectively disables PT domain-mediated plasma membrane targeting of RasGRP1, without affecting C1 domain-mediated localization to endomembranes. While EF1 specifically controls PT-mediated plasma membrane targeting, the Ras binding site in the catalytic GEF domain of RasGRP1 is required for both PT-mediated plasma membrane targeting and C1-mediated localization to endomembranes. Positive feedback between its GEF domain and membrane-binding domains could be important for full activation of RasGRP1, with occupation of the Ras binding sites in the GEF domain resulting in functional liberation of the PT and C1 domains, and membrane binding by these domains serving to maintain the Ras-GEF interaction.
Collapse
Affiliation(s)
- Ghazaleh Tazmini
- Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver BC, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Sabbatini ME, Chen X, Ernst SA, Williams JA. Rap1 activation plays a regulatory role in pancreatic amylase secretion. J Biol Chem 2008; 283:23884-94. [PMID: 18577515 PMCID: PMC2527106 DOI: 10.1074/jbc.m800754200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 06/02/2008] [Indexed: 11/06/2022] Open
Abstract
Rap1 is a member of the Ras superfamily of small GTP-binding proteins and is localized on pancreatic zymogen granules. The current study was designed to determine whether GTP-Rap1 is involved in the regulation of amylase secretion. Rap1A/B and the two Rap1 guanine nucleotide exchange factors, Epac1 and CalDAG-GEF III, were identified in mouse pancreatic acini. A fraction of both Rap1 and Epac1 colocalized with amylase in zymogen granules, but only Rap1 was integral to the zymogen granule membranes. Stimulation with cholecystokinin (CCK), carbachol, and vasoactive intestinal peptide all induced Rap1 activation, as did calcium ionophore A23187, phorbol ester, forskolin, 8-bromo-cyclic AMP, and the Epac-specific cAMP analog 8-pCPT-2'-O-Me-cAMP. The phospholipase C inhibitor U-73122 abolished carbachol- but not forskolin-induced Rap1 activation. Co-stimulation with carbachol and 8-pCPT-2'-O-Me-cAMP led to an additive effect on Rap1 activation, whereas a synergistic effect was seen on amylase release. Although the protein kinase A inhibitor H-89 abolished forskolin-stimulated CREB phosphorylation, it did not modify forskolin-induced GTP-Rap1 levels, excluding PKA participation. Overexpression of Rap1 GTPase-activating protein, which blocked Rap1 activation, reduced the effect of 8-bromo-cyclic AMP, 8-pCPT-2'-O-Me-cAMP, and vasoactive intestinal peptide on amylase release by 60% and reduced CCK- as well as carbachol-stimulated pancreatic amylase release by 40%. These findings indicate that GTP-Rap1 is required for pancreatic amylase release. Rap1 activation not only mediates the cAMP-evoked response via Epac1 but is also involved in CCK- and carbachol-induced amylase release, with their action most likely mediated by CalDAG-GEF III.
Collapse
Affiliation(s)
- Maria E Sabbatini
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-0622, USA.
| | | | | | | |
Collapse
|
38
|
Shefler I, Mekori YA, Mor A. Stimulation of human mast cells by activated T cells leads to N-Ras activation through Ras guanine nucleotide releasing protein 1. J Allergy Clin Immunol 2008; 122:1222-5. [PMID: 18760455 DOI: 10.1016/j.jaci.2008.07.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 07/22/2008] [Accepted: 07/25/2008] [Indexed: 11/28/2022]
|
39
|
Many faces of Ras activation. Biochim Biophys Acta Rev Cancer 2008; 1786:178-87. [PMID: 18541156 DOI: 10.1016/j.bbcan.2008.05.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 05/13/2008] [Accepted: 05/13/2008] [Indexed: 11/23/2022]
Abstract
Ras proteins were originally identified as the products of oncogenes capable of inducing cell transformation. Over the last twenty-five years they have been studied in great detail because mutant Ras proteins are associated with many types of human cancer. Wild type Ras proteins play a central role in the regulation of proliferation and differentiation of various cell types. They alternate between an active GTP-bound state and an inactive GDP-bound state. Their activation is catalysed by a specialized group of enzymes known as guanine nucleotide exchange factors (GEFs). To date, four subfamilies of GEF molecules have been identified. Although all of them are able to activate Ras, their structure, tissue expression and regulation are significantly diverse. In this review we will summarize the various mechanisms by which these exchange factors activate Ras.
Collapse
|
40
|
Shalom-Feuerstein R, Levy R, Makovski V, Raz A, Kloog Y. Galectin-3 regulates RasGRP4-mediated activation of N-Ras and H-Ras. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:985-93. [PMID: 18413234 DOI: 10.1016/j.bbamcr.2008.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 01/19/2023]
Abstract
Galectin-3 (Gal-3) is a pleiotropic beta-galactoside-binding protein expressed at relatively high levels in human neoplasms. Its carbohydrate recognition domain (CRD) contains a hydrophobic pocket that can accommodate the farnesyl moiety of K-Ras. Binding of K-Ras to Gal-3 stabilizes K-Ras in its active (GTP-bound) state. Gal-3, which does not interact with N-Ras, was nevertheless shown to reduce N-Ras-GTP in BT-549 cells by an unknown mechanism that we explored here. First, comparative analysis of various cancer cell lines (glioblastomas, breast cancer cells and ovarian carcinomas) showed a positive correlation between low N-Ras-GTP/high K-Ras-GTP phenotype and Gal-3 expression levels. Next we found that epidermal growth factor-stimulated GTP loading of N-Ras, but not of K-Ras, is blocked in cells expressing high levels of Gal-3. Activation of Ras guanine nucleotide releasing proteins (RasGRPs) by phorbol 12-myristate 13-acetate (PMA) or downregulation of Gal-3 by Gal-3 shRNA increased the levels of N-Ras-GTP in Gal-3 expressing cells. We further show that the N-terminal domain of Gal-3 interacts with and inhibits RasGRP4-mediated GTP loading on N-Ras and H-Ras proteins. Growth of BT-549 cells stably expressing the Gal-3 N-terminal domain was strongly attenuated. Overall, these experiments demonstrate a new control mechanism of Ras activation in cancer cells whereby the Gal-3 N-terminal domain inhibits activation of N-Ras and H-Ras proteins.
Collapse
Affiliation(s)
- Ruby Shalom-Feuerstein
- Department of Neurobiochemistry, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | | | | | | | | |
Collapse
|
41
|
Katsoulotos GP, Qi M, Qi JC, Tanaka K, Hughes WE, Molloy TJ, Adachi R, Stevens RL, Krilis SA. The Diacylglycerol-dependent translocation of ras guanine nucleotide-releasing protein 4 inside a human mast cell line results in substantial phenotypic changes, including expression of interleukin 13 receptor alpha2. J Biol Chem 2007; 283:1610-1621. [PMID: 18024961 DOI: 10.1074/jbc.m707042200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ras guanine nucleotide-releasing protein 4 (RasGRP4) is a mast cell (MC)-restricted guanine nucleotide exchange factor and diacylglycerol (DAG)/phorbol ester receptor. An RasGRP4-defective variant of the human MC line HMC-1 was used to create stable clones expressing green fluorescent protein-labeled RasGRP4 for monitoring the movement of this protein inside MCs after exposure to phorbol 12-myristate 13-acetate (PMA), and for evaluating the protein's ability to control gene expression. RasGRP4 resided primarily in the cytosol. After exposure to PMA, RasGRP4 quickly translocated to the inner leaflet of the cell's plasma membrane. 15-30 min later, this signaling protein translocated from the plasma membrane to other intracellular sites. The translocation of RasGRP4 from the cytosol to its varied membrane compartments was found to be highly dependent on Phe(548) in the protein's C1 DAG/PMA-binding domain. Extracellular signal-regulated kinases 1 and 2 were activated during this translocation process, and c-kit/CD117 was lost from the cell's surface. Transcript-profiling approaches revealed that RasGRP4 profoundly regulated the expression of hundreds of genes in HMC-1 cells. For example, the expression of the transcript that encodes the interleukin (IL) 13 receptor IL-13Ralpha2 increased 61- to 860-fold in RasGRP4-expressing HMC-1 cells. A marked increase in IL-13Ralpha2 protein levels also was found. The accumulated data suggest RasGRP4 translocates to varied intracellular compartments via its DAG/PMA-binding domain to regulate signaling pathways that control gene and protein expression in MCs, including the cell's ability to respond to IL-13.
Collapse
Affiliation(s)
- Gregory P Katsoulotos
- Department of Medicine, University of New South Wales, and Department of Immunology, Allergy, and Infectious Diseases, St. George Hospital, 2 South St. Centre, New South Wales 2217, Australia
| | - Miao Qi
- Department of Medicine, University of New South Wales, and Department of Immunology, Allergy, and Infectious Diseases, St. George Hospital, 2 South St. Centre, New South Wales 2217, Australia
| | - Jian Cheng Qi
- Department of Medicine, University of New South Wales, and Department of Immunology, Allergy, and Infectious Diseases, St. George Hospital, 2 South St. Centre, New South Wales 2217, Australia
| | - Kumiko Tanaka
- Department of Medicine, University of New South Wales, and Department of Immunology, Allergy, and Infectious Diseases, St. George Hospital, 2 South St. Centre, New South Wales 2217, Australia
| | - William E Hughes
- The Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia
| | - Timothy J Molloy
- Blood Diseases and Cancer Research Laboratory, St Vincent's Hospital, New South Wales 2010, Australia
| | - Roberto Adachi
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Richard L Stevens
- Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Steven A Krilis
- Department of Medicine, University of New South Wales, and Department of Immunology, Allergy, and Infectious Diseases, St. George Hospital, 2 South St. Centre, New South Wales 2217, Australia.
| |
Collapse
|
42
|
Yasuda S, Stevens RL, Terada T, Takeda M, Hashimoto T, Fukae J, Horita T, Kataoka H, Atsumi T, Koike T. Defective expression of Ras guanyl nucleotide-releasing protein 1 in a subset of patients with systemic lupus erythematosus. THE JOURNAL OF IMMUNOLOGY 2007; 179:4890-900. [PMID: 17878389 DOI: 10.4049/jimmunol.179.7.4890] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dysregulation of Ras guanyl nucleotide-releasing protein 1 (RasGRP1) in mice results in a systemic lupus erythematosus (SLE)-like disorder. We therefore looked for defective isoforms and/or diminished levels of human RasGRP1 in a cohort of SLE patients. PBMCs were collected from twenty healthy individuals and thirty-two patients with SLE. mRNA was isolated and five RasGRP1 cDNAs from each subject were sequenced. T cell lysates from healthy controls and SLE patients also were evaluated for their levels of RasGRP1 protein. The accumulated data led to the identification of 13 new splice variants of the human RasGRP1 gene. Not only did our SLE patients have increased levels and types of these defective transcripts relative to normal individuals, two SLE patients were identified whose PBMCs and T cells contained very little, if any, functional RasGRP1 mRNA and protein. The presence of aberrantly spliced RasGRP1 transcripts also was correlated with lower levels of RasGRP1 protein in the patients' T cells. The lack of the normal isoform of RasGRP1 in some SLE patients and the increased prevalence of defective isoforms of RasGRP1 in others raise the possibility that dysregulation of this signaling protein contributes to the development of autoimmunity in a subset of SLE patients.
Collapse
Affiliation(s)
- Shinsuke Yasuda
- Department of Medicine II, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Johnson J, Goulding R, Ding Z, Partovi A, Anthony K, Beaulieu N, Tazmini G, Cornell R, Kay R. Differential membrane binding and diacylglycerol recognition by C1 domains of RasGRPs. Biochem J 2007; 406:223-36. [PMID: 17523924 PMCID: PMC1948961 DOI: 10.1042/bj20070294] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RasGRPs (guanine-nucleotide-releasing proteins) are exchange factors for membrane-bound GTPases. All RasGRP family members contain C1 domains which, in other proteins, bind DAG (diacylglycerol) and thus mediate the proximal signal-transduction events induced by this lipid second messenger. The presence of C1 domains suggests that all RasGRPs could be regulated by membrane translocation driven by C1-DAG interactions. This has been demonstrated for RasGRP1 and RasGRP3, but has not been tested directly for RasGRP2, RasGRP4alpha and RasGRP4beta. Sequence alignments indicate that all RasGRP C1 domains have the potential to bind DAG. In cells, the isolated C1 domains of RasGRP1, RasGRP3 and RasGRP4alpha co-localize with membranes and relocalize in response to DAG, whereas the C1 domains of RasGRP2 and RasGRP4beta do not. Only the C1 domains of RasGRP1, RasGRP3 and RasGRP4alpha recognize DAG as a ligand within phospholipid vesicles and do so with differential affinities. Other lipid second messengers were screened as ligands for RasGRP C1 domains, but none was found to serve as an alternative to DAG. All of the RasGRP C1 domains bound to vesicles which contained a high concentration of anionic phospholipids, indicating that this could provide a DAG-independent mechanism for membrane binding by C1 domains. This concept was supported by demonstrating that the C1 domain of RasGRP2 could functionally replace the membrane-binding role of the C1 domain within RasGRP1, despite the inability of the RasGRP2 C1 domain to bind DAG. The RasGRP4beta C1 domain was non-functional when inserted into either RasGRP1 or RasGRP4, implying that the alternative splicing which produces this C1 domain eliminates its contribution to membrane binding.
Collapse
Affiliation(s)
- Joanne E. Johnson
- *Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada, V5A 1S6
| | - Rebecca E. Goulding
- †Terry Fox Laboratory, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada, V5Z 1L3
| | - Ziwei Ding
- *Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada, V5A 1S6
| | - Amir Partovi
- *Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada, V5A 1S6
| | - Kira V. Anthony
- †Terry Fox Laboratory, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada, V5Z 1L3
| | - Nadine Beaulieu
- †Terry Fox Laboratory, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada, V5Z 1L3
| | - Ghazaleh Tazmini
- †Terry Fox Laboratory, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada, V5Z 1L3
| | - Rosemary B. Cornell
- *Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada, V5A 1S6
- Correspondence may be addressed to either of these authors (email or )
| | - Robert J. Kay
- †Terry Fox Laboratory, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada, V5Z 1L3
- Correspondence may be addressed to either of these authors (email or )
| |
Collapse
|
44
|
Ostler KR, Davis EM, Payne SL, Gosalia BB, Expósito-Céspedes J, Le Beau MM, Godley LA. Cancer cells express aberrant DNMT3B transcripts encoding truncated proteins. Oncogene 2007; 26:5553-63. [PMID: 17353906 PMCID: PMC2435620 DOI: 10.1038/sj.onc.1210351] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 01/17/2007] [Accepted: 01/17/2007] [Indexed: 12/21/2022]
Abstract
Cancer cells display an altered distribution of DNA methylation relative to normal cells. Certain tumor suppressor gene promoters are hypermethylated and transcriptionally inactivated, whereas repetitive DNA is hypomethylated and transcriptionally active. Little is understood about how the abnormal DNA methylation patterns of cancer cells are established and maintained. Here, we identify over 20 DNMT3B transcripts from many cancer cell lines and primary acute leukemia cells that contain aberrant splicing at the 5' end of the gene, encoding truncated proteins lacking the C-terminal catalytic domain. Many of these aberrant transcripts retain intron sequences. Although the aberrant transcripts represent a minority of the DNMT3B transcripts present, Western blot analysis demonstrates truncated DNMT3B isoforms in the nuclear protein extracts of cancer cells. To test if expression of a truncated DNMT3B protein could alter the DNA methylation patterns within cells, we expressed DNMT3B7, the most frequently expressed aberrant transcript, in 293 cells. DNMT3B7-expressing 293 cells have altered gene expression as identified by microarray analysis. Some of these changes in gene expression correlate with altered DNA methylation of corresponding CpG islands. These results suggest that truncated DNMT3B proteins could play a role in the abnormal distribution of DNA methylation found in cancer cells.
Collapse
Affiliation(s)
- KR Ostler
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA and
| | - EM Davis
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA and
| | - SL Payne
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA and
| | - BB Gosalia
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA and
| | - J Expósito-Céspedes
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA and
| | - MM Le Beau
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA and
- University of Chicago Cancer Research Center, University of Chicago, Chicago, IL, USA
| | - LA Godley
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA and
- University of Chicago Cancer Research Center, University of Chicago, Chicago, IL, USA
| |
Collapse
|
45
|
Yamasaki S, Ishikawa E, Sakuma M, Kanagawa O, Cheng AM, Malissen B, Saito T. LAT and NTAL mediate immunoglobulin E-induced sustained extracellular signal-regulated kinase activation critical for mast cell survival. Mol Cell Biol 2007; 27:4406-15. [PMID: 17420272 PMCID: PMC1900065 DOI: 10.1128/mcb.02109-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Immunoglobulin E (IgE) induces mast cell survival in the absence of antigen (Ag) through the high-affinity IgE receptor, Fcepsilon receptor I (FcepsilonRI). Although we have shown that protein tyrosine kinase Syk and sustained extracellular signal-regulated kinase (Erk) activation are required for IgE-induced mast cell survival, how Syk couples with sustained Erk activation is still unclear. Here, we report that the transmembrane adaptors LAT and NTAL are phosphorylated slowly upon IgE stimulation and that sustained but not transient Erk activation induced by IgE was inhibited in LAT(-/-) NTAL(-/-) bone marrow-derived mast cells (BMMCs). IgE-induced survival requires Ras activation, and both were impaired in LAT(-/-) NTAL(-/-) BMMCs. Sos was preferentially required for FcepsilonRI signals by IgE rather than IgE plus Ag. Survival impaired in LAT(-/-) NTAL(-/-) BMMCs was restored to levels comparable to those of the wild type by membrane-targeted Sos, which bypasses the Grb2-mediated membrane recruitment of Sos. The IgE-induced survival of BMMCs lacking Gads, an adaptor critical for the formation of the LAT-SLP-76-phospholipase Cgamma (PLCgamma) complex, was observed to be normal. IgE stimulation induced the membrane retention of Grb2-green fluorescent protein fusion proteins in wild-type but not LAT(-/-) NTAL(-/-) BMMCs. These results suggest that LAT and NTAL contribute to the maintenance of Erk activation and survival through the membrane retention of the Ras-activating complex Grb2-Sos and, further, that the LAT-Gads-SLP-76-PLCgamma and LAT/NTAL-Grb2-Sos pathways are differentially required for degranulation and survival, respectively.
Collapse
Affiliation(s)
- Sho Yamasaki
- Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Almost three decades after the discovery of protein kinase C (PKC), we still have only a partial understanding of how this family of serine/threonine kinases is involved in tumour promotion. PKC isozymes - effectors of diacylglycerol (DAG) and the main targets of phorbol-ester tumour promoters - have important roles in cell-cycle regulation, cellular survival, malignant transformation and apoptosis. How do PKC isozymes regulate these diverse cellular processes and what are their contributions to carcinogenesis? Moreover, what is the contribution of all phorbol-ester effectors, which include PKCs and small G-protein regulators? We now face the challenge of dissecting the relative contribution of each DAG signal to cancer progression.
Collapse
Affiliation(s)
- Erin M Griner
- Department of Pharmacology and Institute for Translational Medicine and Therapeutics (ITMAT), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160, USA
| | | |
Collapse
|
47
|
Roose JP, Mollenauer M, Ho M, Kurosaki T, Weiss A. Unusual interplay of two types of Ras activators, RasGRP and SOS, establishes sensitive and robust Ras activation in lymphocytes. Mol Cell Biol 2007; 27:2732-45. [PMID: 17283063 PMCID: PMC1899892 DOI: 10.1128/mcb.01882-06] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ras activation is crucial for lymphocyte development and effector function. Both T and B lymphocytes contain two types of Ras activators: ubiquitously expressed SOS and specifically expressed Ras guanyl nucleotide-releasing protein (RasGRP). The need for two activators is enigmatic since both are activated following antigen receptor stimulation. In addition, RasGRP1 appears to be dominant over SOS in an unknown manner. The crystal structure of SOS provides a clue: an unusual allosteric Ras-GTP binding pocket. Here, we demonstrate that RasGRP orchestrates Ras signaling in two ways: (i) by activating Ras directly and (ii) by facilitating priming of SOS with RasGTP that binds the allosteric pocket. Priming enhances SOS' in vivo activity and creates a positive RasGTP-SOS feedback loop that functions as a rheostat for Ras activity. Without RasGRP1, initiation of this loop is impaired because SOS' catalyst is its own product (RasGTP)-hence the dominance of RasGRP1. Introduction of an active Ras-like molecule (RasV12C40) in T- and B-cell lines can substitute for RasGRP function and enhance SOS' activity via its allosteric pocket. The unusual RasGRP-SOS interplay results in sensitive and robust Ras activation that cannot be achieved with either activator alone. We hypothesize that this mechanism enables lymphocytes to maximally respond to physiologically low levels of stimulation.
Collapse
Affiliation(s)
- Jeroen P Roose
- Department of Medicine, University of California-San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0795, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
RasGRPs (guanine nucleotide releasing proteins) are a family of four GEFs (guanine nucleotide-exchange factors) (Ras GEFs) that positively regulate Ras and related small GTPases. RasGRP1 possesses a catalytic region consisting of a REM (Ras exchange motif) and a CDC25 (cell division cycle 25) domain. RasGRP1 also possesses a DAG (diacylglycerol)-binding C1 domain and a pair of EF hands that bind calcium. RasGRP1 is selectively expressed in lymphocytes as well as in some cells of the brain, kidney and skin. Functional analysis supports the hypothesis that RasGRP1 serves to couple TCR (T-cell receptor) stimulation and phospholipase C activation with Ras signalling. In B-cells, both RasGRP1 and RasGRP3 play a similar role downstream of the B-cell receptor. RasGRP2 acts on the Ras-related protein Rap and functions in platelet adhesion. RasGRP4 is expressed in mast cells and certain myeloid leukaemia cells. Membrane DAG regulates RasGRPs directly by recruitment to cellular membranes, as well as indirectly by protein kinase C-mediated phosphorylation. The properties of RasGRPs provide a novel view of Ras regulation in lymphocytes and explain several earlier observations. Many experimental results obtained with DAG analogues could be reviewed in light of these findings.
Collapse
Affiliation(s)
- J C Stone
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada T6G 2H7.
| |
Collapse
|
49
|
Chen Y, Pappu BP, Zeng H, Xue L, Morris SW, Lin X, Wen R, Wang D. B cell lymphoma 10 is essential for FcepsilonR-mediated degranulation and IL-6 production in mast cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:49-57. [PMID: 17182539 DOI: 10.4049/jimmunol.178.1.49] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adaptor protein B cell lymphoma 10 (Bcl10) plays an essential role in the functions of the AgRs in T and B cells. In this study, we report that Bcl10 also plays an important role in mast cells. Bcl10 is expressed in mast cells. Although Bcl10-deficient mast cells undergo normal development, we demonstrate that Bcl10 is essential for specific functions of FcepsilonR. Although Bcl10-deficient mast cells have normal de novo synthesis and release of the lipid mediator arachidonic acid, the mutant cells possess impaired FcepsilonR-mediated degranulation, indicated by decreased serotonin release, and impaired cytokine production, measured by release of IL-6. In addition, Bcl10-deficient mice display impaired IgE-mediated passive cutaneous anaphylaxis. Moreover, although Bcl10-deficient mast cells have normal FcepsilonR-mediated Ca(2+) flux, activation of PI3K, and activation of the three types of MAPKs (ERKs, JNK, and p38), the mutant cells have markedly diminished FcepsilonR-mediated activation of NF-kappaB and decreased activation of AP-1. Thus, Bcl10 is essential for FcepsilonR-induced activation of AP-1, NF-kappaB, degranulation, and cytokine production in mast cells.
Collapse
Affiliation(s)
- Yuhong Chen
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Liu Y, Zhu M, Nishida K, Hirano T, Zhang W. An essential role for RasGRP1 in mast cell function and IgE-mediated allergic response. ACTA ACUST UNITED AC 2006; 204:93-103. [PMID: 17190838 PMCID: PMC2118421 DOI: 10.1084/jem.20061598] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cross-linking of the FcepsilonRI activates the phosphatidyl inositol 3 kinase (PI3K) and mitogen-activated protein kinase pathways. Previous studies demonstrate that Ras guanyl nucleotide-releasing protein (RasGRP)1 is essential in T cell receptor-mediated Ras-Erk activation. Here, we report that RasGRP1 plays an important role in FcepsilonRI-mediated PI3K activation and mast cell function. RasGRP1-deficient mice failed to mount anaphylactic allergic reactions. RasGRP1-/- mast cells had markedly reduced degranulation and cytokine production. Although FcepsilonRI-mediated Erk activation was normal, PI3K activation was diminished. Consequently, activation of Akt, PIP3-dependent kinase, and protein kinase C delta was defective. Expression of a constitutively active form of N-Ras could rescue the degranulation defect and Akt activation. We further demonstrated that RasGRP1-/- mast cells were defective in granule translocation, microtubule formation, and RhoA activation. Our results identified RasGRP1 as an essential regulator of mast cell function.
Collapse
Affiliation(s)
- Yan Liu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|