1
|
Zou Y, Zhou Y, Chen Z, Zou P, Zhu Y, Zhang J, Zhang Z, Wang Y. Members of the TRAF gene family in Octopus sinensis and their response to PGN, poly I:C, and Vibrio parahaemolyticus. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109905. [PMID: 39276812 DOI: 10.1016/j.fsi.2024.109905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Octopus sinensis, the species of Cephalopoda, is known as the highest Mollusca and is an economic and new aquaculture species in the coastal waters of southern China. The immune system has been well documented to have a function of resisting the invasion of pathogens in the external environment among mollusca species. As a kind of signaling molecule in the innate immune system, tumor necrosis factor (TNF) receptor-associated factor (TRAF) plays significant roles in TNF receptor (TNFR)/interleukin-1 receptor (IL-1R)/Toll-like receptor (TLR) signaling pathways. Until now, seven TRAF members (TRAF1-7) have been discovered, and they have been reported to participate in regulating signal pathways mediated by pattern recognition receptors and play important roles in the innate immune response of the hosts. In this study, five TRAF genes of O. sinensis (OsTRAF2, OsTRAF3, OsTRAF4, OsTRAF6, and OsTRAF7) were identified, whose full length of the open reading frame is 1473 bp, 1629 bp, 1431 bp, 1353 bp and 2121 bp respectively, encoding 490, 542, 476, 450 and 706 amino acids, respectively. Bioinformatics analysis showed that each OsTRAF has different chromosome locations. In addition to seven consecutive WD40 domains on the C-terminal of OsTRAF7 protein, the C-terminal of OsTRAF proteins all contain a conserved TRAF domain, namely the MATH domain. Phylogenetic analysis showed that OsTRAF proteins were clustered together with TRAF proteins of bivalves. Moreover, TRAF1 and TRAF2, TRAF3 and TRAF5 were clustered together in a large clade, respectively, revealing they have a close genetic relationship. The results of quantitative Real-time PCR showed that OsTRAF genes were highly expressed in the gill, hepatopancreas and white body. After stimulation with PGN, poly I:C and V. parahaemolyticus, the expression levels of OsTRAF genes were up-regulated in the gill, hepatopancreas and white body at different time points. These results indicated that OsTRAF genes play an important role in the antibacterial and antiviral immune response of O. sinensis.
Collapse
Affiliation(s)
- Yihua Zou
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yuquan Zhou
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Zebin Chen
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Pengfei Zou
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Youfang Zhu
- Putian Municipal Institute of Fishery Science, Putian, 351100, China
| | - Jianming Zhang
- Putian Municipal Institute of Fishery Science, Putian, 351100, China
| | - Ziping Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yilei Wang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
2
|
Jones R, Robinson AT, Beach LB, Lindsey ML, Kirabo A, Hinton A, Erlandson KM, Jenkins ND. Exercise to Prevent Accelerated Vascular Aging in People Living With HIV. Circ Res 2024; 134:1607-1635. [PMID: 38781293 PMCID: PMC11126195 DOI: 10.1161/circresaha.124.323975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Given advances in antiretroviral therapy, the mortality rate for HIV infection has dropped considerably over recent decades. However, people living with HIV (PLWH) experience longer life spans coupled with persistent immune activation despite viral suppression and potential toxicity from long-term antiretroviral therapy use. Consequently, PLWH face a cardiovascular disease (CVD) risk more than twice that of the general population, making it the leading cause of death among this group. Here, we briefly review the epidemiology of CVD in PLWH highlighting disparities at the intersections of sex and gender, age, race/ethnicity, and the contributions of social determinants of health and psychosocial stress to increased CVD risk among individuals with marginalized identities. We then overview the pathophysiology of HIV and discuss the primary factors implicated as contributors to CVD risk among PLWH on antiretroviral therapy. Subsequently, we highlight the functional evidence of premature vascular dysfunction as an early pathophysiological determinant of CVD risk among PLWH, discuss several mechanisms underlying premature vascular dysfunction in PLWH, and synthesize current research on the pathophysiological mechanisms underlying accelerated vascular aging in PLWH, focusing on immune activation, chronic inflammation, and oxidative stress. We consider understudied aspects such as HIV-related changes to the gut microbiome and psychosocial stress, which may serve as mechanisms through which exercise can abrogate accelerated vascular aging. Emphasizing the significance of exercise, we review various modalities and their impacts on vascular health, proposing a holistic approach to managing CVD risks in PLWH. The discussion extends to critical future study areas related to vascular aging, CVD, and the efficacy of exercise interventions, with a call for more inclusive research that considers the diversity of the PLWH population.
Collapse
Affiliation(s)
- Raymond Jones
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | | | - Lauren B. Beach
- Department of Medical Social Sciences, Northwestern, Chicago, IL
- Department of Preventive Medicine, Northwestern, Chicago, IL
| | - Merry L. Lindsey
- School of Graduate Studies, Meharry Medical College, Nashville, TN
- Research Service, Nashville VA Medical Center, Nashville, TN
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Nashville, TN
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN
- Vanderbilt Institute for Global Health, Nashville, TN
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | | | - Nathaniel D.M. Jenkins
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| |
Collapse
|
3
|
Fanfarillo F, Ferraguti G, Lucarelli M, Francati S, Barbato C, Minni A, Ceccanti M, Tarani L, Petrella C, Fiore M. The Impact of ROS and NGF in the Gliomagenesis and their Emerging Implications in the Glioma Treatment. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:449-462. [PMID: 37016521 DOI: 10.2174/1871527322666230403105438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/19/2022] [Accepted: 02/01/2023] [Indexed: 04/06/2023]
Abstract
Reactive oxygen species (ROS) are highly reactive molecules derived from molecular oxygen (O2). ROS sources can be endogenous, such as cellular organelles and inflammatory cells, or exogenous, such as ionizing radiation, alcohol, food, tobacco, chemotherapeutical agents and infectious agents. Oxidative stress results in damage of several cellular structures (lipids, proteins, lipoproteins, and DNA) and is implicated in various disease states such as atherosclerosis, diabetes, cancer, neurodegeneration, and aging. A large body of studies showed that ROS plays an important role in carcinogenesis. Indeed, increased production of ROS causes accumulation in DNA damage leading to tumorigenesis. Various investigations demonstrated the involvement of ROS in gliomagenesis. The most common type of primary intracranial tumor in adults is represented by glioma. Furthermore, there is growing attention on the role of the Nerve Growth Factor (NGF) in brain tumor pathogenesis. NGF is a growth factor belonging to the family of neurotrophins. It is involved in neuronal differentiation, proliferation and survival. Studies were conducted to investigate NGF pathogenesis's role as a pro- or anti-tumoral factor in brain tumors. It has been observed that NGF can induce both differentiation and proliferation in cells. The involvement of NGF in the pathogenesis of brain tumors leads to the hypothesis of a possible implication of NGF in new therapeutic strategies. Recent studies have focused on the role of neurotrophin receptors as potential targets in glioma therapy. This review provides an updated overview of the role of ROS and NGF in gliomagenesis and their emerging role in glioma treatment.
Collapse
Affiliation(s)
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Antonio Minni
- Department of Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell'Alcolismo e le sue Complicanze, Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| |
Collapse
|
4
|
You SL, Jiang XX, Zhang GR, Ji W, Ma XF, Zhou X, Wei KJ. Molecular Characterization of Nine TRAF Genes in Yellow Catfish ( Pelteobagrus fulvidraco) and Their Expression Profiling in Response to Edwardsiella ictaluri Infection. Int J Mol Sci 2023; 24:ijms24098363. [PMID: 37176078 PMCID: PMC10179116 DOI: 10.3390/ijms24098363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The yellow catfish (Pelteobagrus fulvidraco) is an economic fish with a large breeding scale, and diseases have led to huge economic losses. Tumor necrosis factor receptor-associated factors (TRAFs) are a class of intracellular signal transduction proteins that play an important role in innate and adaptive immune responses by mediating NF-κB, JNK and MAPK signaling pathways. However, there are few studies on the TRAF gene family in yellow catfish. In this study, the open reading frame (ORF) sequences of TRAF1, TRAF2a, TRAF2b, TRAF3, TRAF4a, TRAF4b, TRAF5, TRAF6 and TRAF7 genes were cloned and identified in yellow catfish. The ORF sequences of the nine TRAF genes of yellow catfish (Pf_TRAF1-7) were 1413-2025 bp in length and encoded 470-674 amino acids. The predicted protein structures of Pf_TRAFs have typically conserved domains compared to mammals. The phylogenetic relationships showed that TRAF genes are conserved during evolution. Gene structure, motifs and syntenic analyses of TRAF genes showed that the exon-intron structure and conserved motifs of TRAF genes are diverse among seven vertebrate species, and the TRAF gene family is relatively conserved evolutionarily. Among them, TRAF1 is more closely related to TRAF2a and TRAF2b, and they may have evolved from a common ancestor. TRAF7 is quite different and distantly related to other TRAFs. Real-time quantitative PCR (qRT-PCR) results showed that all nine Pf_TRAF genes were constitutively expressed in 12 tissues of healthy yellow catfish, with higher mRNA expression levels in the gonad, spleen, brain and gill. After infection with Edwardsiella ictaluri, the expression levels of nine Pf_TRAF mRNAs were significantly changed in the head kidney, spleen, gill and brain tissues of yellow catfish, of which four genes were down-regulated and one gene was up-regulated in the head kidney; four genes were up-regulated and four genes were down-regulated in the spleen; two genes were down-regulated, one gene was up-regulated, and one gene was up-regulated and then down-regulated in the gill; one gene was up-regulated, one gene was down-regulated, and four genes were down-regulated and then up-regulated in the brain. These results indicate that Pf_TRAF genes might be involved in the immune response against bacterial infection. Subcellular localization results showed that all nine Pf_TRAFs were found localized in the cytoplasm, and Pf_TRAF2a, Pf_TRAF3 and Pf_TRAF4a could also be localized in the nucleus, uncovering that the subcellular localization of TRAF protein may be closely related to its structure and function in cellular mechanism. The results of this study suggest that the Pf_TRAF gene family plays important roles in the immune response against pathogen invasion and will provide basic information to further understand the roles of TRAF gene against bacterial infection in yellow catfish.
Collapse
Affiliation(s)
- Shen-Li You
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin-Xin Jiang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Gui-Rong Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Ji
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu-Fa Ma
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Zhou
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai-Jian Wei
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Gu Y, Gao H, Zhang H, John A, Zhu X, Shivaram S, Yu J, Weinshilboum RM, Wang L. TRAF4 hyperactivates HER2 signaling and contributes to Trastuzumab resistance in HER2-positive breast cancer. Oncogene 2022; 41:4119-4129. [PMID: 35864174 PMCID: PMC9417995 DOI: 10.1038/s41388-022-02415-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/09/2022]
Abstract
The HER2 receptor modulates downstream signaling by forming homodimers and heterodimers with other members of the HER family. For patients with HER2-positive breast cancer, Trastuzumab, an anti-HER2 monoclonal antibody as first-line therapy has shown significant survival benefits. However, the development of acquired resistance to Trastuzumab continues to be a significant obstacle. TNF receptor-associated factor 4 (TRAF4) upregulation was discovered to be associated with a worse clinical outcome. Here we identified TRAF4 overexpression as one of the putative mechanisms for HER2-positive breast cancer cells to maintain HER2 signaling during Trastuzumab treatment, while TRAF4 knockdown reduced HER2 stability and improved Trastuzumab sensitivity. Mechanistically, TRAF4 regulates HER2 level through its impact on SMAD specific E3 ubiquitin protein ligase protein 2 (SMURF2). The development of a membrane-associated protein complex containing HER2, TRAF4, and SMURF2 has been observed. SMURF2 bound to the HER2 cytoplasmic domain, and directly ubiquitinated it leading to HER2 degradation, whereas TRAF4 stabilized HER2 by degrading SMURF2 and inhibiting the binding of SMURF2 to HER2. Moreover, downregulation of TRAF4 has decreased the AKT/mTOR signaling. In conclusion, we discovered a new HER2 signaling regulation that involves the TRAF4-SMURF2 complex, a possible mechanism that might contribute to anti-HER2 resistance, making TRAF4 a viable target for treating HER2 + breast cancer.
Collapse
Affiliation(s)
- Yayun Gu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Huanyao Gao
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Huan Zhang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - August John
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Xiujuan Zhu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Suganti Shivaram
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Jia Yu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Richard M Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Liewei Wang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Chen Y, Li Y, Li PT, Luo ZH, Zhang ZP, Wang YL, Zou PF. Novel Findings in Teleost TRAF4, a Protein Acts as an Enhancer in TRIF and TRAF6 Mediated Antiviral and Inflammatory Signaling. Front Immunol 2022; 13:944528. [PMID: 35898509 PMCID: PMC9310645 DOI: 10.3389/fimmu.2022.944528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022] Open
Abstract
Tumor necrosis factor receptor-associated factors (TRAFs) are important adaptor molecules that play important roles in host immune regulation and inflammatory responses. Compared to other members of TRAFs, the function of TRAF4 in vertebrate immunity remains unclear, especially in teleosts. In the present study, TRAF4 ortholog was cloned and identified in large yellow croaker (Larimichthys crocea), named as Lc-TRAF4. The open reading frame (ORF) of Lc-TRAF4 is 1,413 bp and encodes a protein of 470 amino acids (aa), which is consisted of a RING finger domain, two zinc finger domains, and a MATH domain. The genome organization of Lc-TRAF4 is conserved in teleosts, amphibians, birds, and mammals, with 7 exons and 6 introns. Quantitative real-time PCR analysis revealed that Lc-TRAF4 was broadly distributed in various organs/tissues of healthy large yellow croakers and could be significantly up-regulated in the gill, intestine, spleen, head kidney, and blood under poly I:C, LPS, PGN, and Pseudomonas plecoglossicida stimulations. Notably, luciferase assays showed that overexpression of Lc-TRAF4 could significantly induce the activation of IRF3, IRF7, and type I IFN promoters, with the RING finger and zinc finger domains function importantly in such promoter activation. Confocal microscopy revealed that Lc-TRAF4 is located in the cytoplasm, whereas the deletion of the RING finger, zinc finger or MATH domain showed little effect on the subcellular localization of Lc-TRAF4. Interestingly, Lc-TRAF4 overexpression could significantly enhance Lc-TRIF and Lc-TRAF6 medicated IRF3 and IRF7 promoter activation. In addition, co-expression of Lc-TRAF4 with Lc-TRIF or Lc-TRAF6 could significantly induce the expression of antiviral and inflammation-related genes, including IRF3, IRF7, ISG15, ISG56, Mx, RSAD2, TNF-α, and IL-1β compared to the only overexpression of Lc-TRAF4, Lc-TRIF or Lc-TRAF6. These results collectively imply that Lc-TRAF4 functions as an enhancer in Lc-TRIF and Lc-TRAF6 mediated antiviral and inflammatory signaling.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Ornamental Aquarium Engineering Research Centre in University of Fujian Province, Fisheries College, Jimei University, Xiamen, China
| | - Ying Li
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Tan Kah Kee College, Xiamen University, Zhangzhou, China
| | - Peng Tian Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Ornamental Aquarium Engineering Research Centre in University of Fujian Province, Fisheries College, Jimei University, Xiamen, China
| | - Zi Hao Luo
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Ornamental Aquarium Engineering Research Centre in University of Fujian Province, Fisheries College, Jimei University, Xiamen, China
| | - Zi Ping Zhang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Lei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Ornamental Aquarium Engineering Research Centre in University of Fujian Province, Fisheries College, Jimei University, Xiamen, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
- *Correspondence: Yi Lei Wang, ; Peng Fei Zou,
| | - Peng Fei Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Ornamental Aquarium Engineering Research Centre in University of Fujian Province, Fisheries College, Jimei University, Xiamen, China
- *Correspondence: Yi Lei Wang, ; Peng Fei Zou,
| |
Collapse
|
7
|
Hao M, Zhang J, Sun M, Diao K, Wang J, Li S, Cao Q, Dai S, Mi X. TRAF4 Inhibits the Apoptosis and Promotes the Proliferation of Breast Cancer Cells by Inhibiting the Ubiquitination of Spindle Assembly-Associated Protein Eg5. Front Oncol 2022; 12:855139. [PMID: 35692762 PMCID: PMC9174544 DOI: 10.3389/fonc.2022.855139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor necrosis factor receptor associated factor 4 (TRAF4) is a RING domain E3 ubiquitin ligase that mediates the ubiquitination of various proteins and plays an important role in driving tumor progression. By studying the relationship between TRAF4 and Eg5, a member of the kinesin family that plays a critical role in spindle assembly, we demonstrated that TRAF4 regulated Eg5 ubiquitination and contributed to Eg5-mediated breast cancer proliferation and inhibited breast cancer apoptosis. TRAF4 and Eg5 were both highly expressed in breast cancer and their protein level was positively correlated. Relying on its Zinc fingers domain, TRAF4 interacted with Eg5 in the cytoplasm of breast cancer cells. TRAF4 was a mitosis-related protein, and by up-regulating the protein level of Eg5 TRAF4 participated in spindle assembly. Loss of TRAF4 resulted in monopolar spindles formation, but loss of function could be rescued by Eg5. Relying on its RING domain, TRAF4 up-regulated Eg5 protein levels by inhibition of Eg5 ubiquitination, thus stabilizing Eg5 protein level during mitosis. Furthermore, we found that Smurf2, a TRAF4-targeted ubiquitination substrate, mediated the regulation of Eg5 ubiquitination by TRAF4. TRAF4 inhibited the interaction between Smurf2 and Eg5, and down-regulated the protein level of Smurf2 by promoting its ubiquitination, thereby inhibited the Smurf2-catalyzed ubiquitination of Eg5 and up-regulated Eg5 protein levels. We also demonstrate that TRAF4 plays an important role in promoting cell proliferation and in inhibiting cell apoptosis induced by Eg5. In summary, our study suggests a new direction for investigating the role of TRAF4 in driving breast cancer progression.
Collapse
Affiliation(s)
- Miaomiao Hao
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jie Zhang
- Department of Pathology, School of Basic Medical Sciences, Hebei University, Baoding, China
| | - Mingfang Sun
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Kexin Diao
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jian Wang
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Shiping Li
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Qixue Cao
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Shundong Dai
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xiaoyi Mi
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital, China Medical University, Shenyang, China
- *Correspondence: Xiaoyi Mi,
| |
Collapse
|
8
|
Traf4 is required for tight junction complex during mouse blastocyst formation. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2021. [DOI: 10.12750/jarb.36.4.307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
9
|
Das A, Sudhahar V, Ushio-Fukai M, Fukai T. Novel interaction of antioxidant-1 with TRAF4: role in inflammatory responses in endothelial cells. Am J Physiol Cell Physiol 2019; 317:C1161-C1171. [PMID: 31553645 DOI: 10.1152/ajpcell.00264.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NADPH oxidase (NOX)-derived reactive oxygen species (ROS) and copper (Cu), an essential micronutrient, have been implicated in vascular inflammatory diseases. We reported that in proinflammatory cytokine TNF-α-stimulated endothelial cells (ECs), cytosolic Cu chaperone antioxidant-1 (Atox1) functions as a Cu-dependent transcription factor for the NOX organizer p47phox, thereby increasing ROS-dependent inflammatory gene expression. However, the role and mechanism of Atox1 nuclear translocation in inflamed ECs remain unclear. Using enface staining and nuclear fractionation, here we show that Atox1 was localized in the nucleus in inflamed aortas from ApoE-/- mice with angiotensin II infusion on a high-fat diet, while it was found in cytosol in those from control mice. In cultured human ECs, TNF-α stimulation promoted Atox1 nuclear translocation within 15 min, which was associated with Atox1 binding to TNF-α receptor-associated factor 4 (TRAF4) in a Cu-dependent manner. TRAF4 depletion by siRNA significantly inhibited Atox1 nuclear translocation, p47phox expression, and ROS production as well as its downstream VCAM1/ICAM1 expression and monocyte adhesion to inflamed ECs, which were rescued by overexpression of nuclear targeted Atox1. Furthermore, Atox1 colocalized with TRAF4 at the nucleus in TNF-α-stimulated inflamed ECs and vessels. In summary, Cu-dependent Atox1 binding to TRAF4 plays an important role in Atox1 nuclear translocation and ROS-dependent inflammatory responses in TNF-α-stimulated ECs. Thus the Atox1-TRAF4 axis is a novel therapeutic target for vascular inflammatory disease such as atherosclerosis.
Collapse
Affiliation(s)
- Archita Das
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia.,Departments of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Varadarajan Sudhahar
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia.,Departments of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia.,Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia.,Department of Medicine (Cardiology), Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Tohru Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia.,Departments of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia.,Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| |
Collapse
|
10
|
Mitra S, Nguyen LN, Akter M, Park G, Choi EH, Kaushik NK. Impact of ROS Generated by Chemical, Physical, and Plasma Techniques on Cancer Attenuation. Cancers (Basel) 2019; 11:E1030. [PMID: 31336648 PMCID: PMC6678366 DOI: 10.3390/cancers11071030] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022] Open
Abstract
For the last few decades, while significant improvements have been achieved in cancer therapy, this family of diseases is still considered one of the deadliest threats to human health. Thus, there is an urgent need to find novel strategies in order to tackle this vital medical issue. One of the most pivotal causes of cancer initiation is the presence of reactive oxygen species (ROS) inside the body. Interestingly, on the other hand, high doses of ROS possess the capability to damage malignant cells. Moreover, several important intracellular mechanisms occur during the production of ROS. For these reasons, inducing ROS inside the biological system by utilizing external physical or chemical methods is a promising approach to inhibit the growth of cancer cells. Beside conventional technologies, cold atmospheric plasmas are now receiving much attention as an emerging therapeutic tool for cancer treatment due to their unique biophysical behavior, including the ability to generate considerable amounts of ROS. This review summarizes the important mechanisms of ROS generated by chemical, physical, and plasma approaches. We also emphasize the biological effects and cancer inhibition capabilities of ROS.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Linh Nhat Nguyen
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Mahmuda Akter
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea.
| |
Collapse
|
11
|
Lopez W, Page AM, Carlson DJ, Ericson BL, Cserhati MF, Guda C, Carlson KA. Analysis of immune-related genes during Nora virus infection of Drosophila melanogaster using next generation sequencing. AIMS Microbiol 2018; 4:123-139. [PMID: 29707694 PMCID: PMC5915338 DOI: 10.3934/microbiol.2018.1.123] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Drosophila melanogaster depends upon the innate immune system to regulate and combat viral infection. This is a complex, yet widely conserved process that involves a number of immune pathways and gene interactions. In addition, expression of genes involved in immunity are differentially regulated as the organism ages. This is particularly true for viruses that demonstrate chronic infection, as is seen with Nora virus. Nora virus is a persistent non-pathogenic virus that replicates in a horizontal manner in D. melanogaster. The genes involved in the regulation of the immune response to Nora virus infection are largely unknown. In addition, the temporal response of immune response genes as a result of infection has not been examined. In this study, D. melanogaster either infected with Nora virus or left uninfected were aged for 2, 10, 20 and 30 days. The RNA from these samples was analyzed by next generation sequencing (NGS) and the resulting immune-related genes evaluated by utilizing both the PANTHER and DAVID databases, as well as comparison to lists of immune related genes and FlyBase. The data demonstrate that Nora virus infected D. melanogaster exhibit an increase in immune related gene expression over time. In addition, at day 30, the data demonstrate that a persistent immune response may occur leading to an upregulation of specific immune response genes. These results demonstrate the utility of NGS in determining the potential immune system genes involved in Nora virus replication, chronic infection and involvement of antiviral pathways.
Collapse
Affiliation(s)
- Wilfredo Lopez
- Biology Department, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Alexis M Page
- Biology Department, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Darby J Carlson
- Biology Department, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Brad L Ericson
- Biology Department, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Matyas F Cserhati
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kimberly A Carlson
- Biology Department, University of Nebraska at Kearney, Kearney, NE 68849, USA
| |
Collapse
|
12
|
Al-Attrache H, Chamieh H, Hamzé M, Morel I, Taha S, Abdel-Razzak Z. N-acetylcysteine potentiates diclofenac toxicity in Saccharomyces cerevisiae: stronger potentiation in ABC transporter mutant strains. Drug Chem Toxicol 2017; 41:89-94. [DOI: 10.1080/01480545.2017.1320404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Houssein Al-Attrache
- Laboratory of Applied Biotechnology: Biomolecules, LBA3B – AZM Center, Tripoli, Lebanon
- Faculty of Pharmacy, Inserm U991, Rennes, France
- Rennes 1 University, Faculty of Pharmacy, Rennes, France
| | - Hala Chamieh
- Laboratory of Applied Biotechnology: Biomolecules, LBA3B – AZM Center, Tripoli, Lebanon
| | - Monzer Hamzé
- Laboratory of Medical Microbiology, AZM Center, Tripoli, Lebanon
| | - Isabelle Morel
- Faculty of Pharmacy, Inserm U991, Rennes, France
- Rennes 1 University, Faculty of Pharmacy, Rennes, France
- Laboratory of Emergency and Intensive Care, Pontchaillou Hospital, Rennes, France
| | - Samir Taha
- Laboratory of Applied Biotechnology: Biomolecules, LBA3B – AZM Center, Tripoli, Lebanon
| | - Ziad Abdel-Razzak
- Laboratory of Applied Biotechnology: Biomolecules, LBA3B – AZM Center, Tripoli, Lebanon
| |
Collapse
|
13
|
Kim KC, Lee S, Son J, Shin Y, Yoon CH, Kang C, Choi BS. Identification of novel genes associated with HIV-1 latency by analysis of histone modifications. Hum Genomics 2017; 11:9. [PMID: 28499422 PMCID: PMC5429561 DOI: 10.1186/s40246-017-0105-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/04/2017] [Indexed: 12/24/2022] Open
Abstract
Background A reservoir of HIV-1 is a major obstacle in eliminating HIV-1 in patients because it can reactivate in stopping antiretroviral therapy (ART). Histone modifications, such as acetylation and methylation, play a critical role in the organization of chromatin domains and the up- or downregulation of gene expression. Although many studies have reported that an epigenetic mechanism is strongly involved in the maintenance of HIV-1 transcriptional latency, neither the epigenetic control of viral replication nor how HIV-1 latency is maintained is not fully understood. Results We re-analyzed a high throughput parallel DNA sequencing (ChIP-seq) data from previous work to investigate the effect of histone modifications, H3K4me3 and H3K9ac, on HIV-1 latency in terms of chromosome distribution. The outputs of ChIP-seq from uninfected CD4+ T cell lines and HIV-1 latently infected cells were aligned to hg18 using bowtie and then analyzed using various software packages. Certain chromosomes (16, 17, 19, and 22) were significantly enriched for histone modifications in both decreased and increased islands. In the same chromosomes in HIV-1 latently infected cells, 38 decreased and 41 increased islands from common islands of H3K4me3 and H3K9ac were selected for functional annotation. In Gene Ontology analysis, the 38 genes associated with decreased islands were involved in the regulation of biological process, regulation of cellular process, biological regulation, and purinergic receptor signaling pathway, while the 41 genes associated with increased islands were involved in nucleic acid binding, calcium-activated cation channel activity, DNA binding, and zinc ion binding. In Pathway Commons analysis, the 38 genes were strongly involved in the p63 transcription factor network, while the 41 genes were involved in the RNA polymerase III transcription termination pathway. Several genes such as Nuclear factor I X (NFIX) and TNF receptor association factor 4 (TRAF4) were selected as candidate genes for HIV latency. Especially, NFIX was highly expressed in HIV-1 latently infected cell lines and showed a dramatic reduction in expression after phorbol-13-myristate-12-acetate (PMA) treatment. Conclusions These results show that the unique enrichment of histone modifications and its linked genes in specific chromosomes might play a critical role in the establishment and maintenance of HIV-1 latency. Electronic supplementary material The online version of this article (doi:10.1186/s40246-017-0105-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyung-Chang Kim
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, 28160, Republic of Korea.
| | - Sunyoung Lee
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, 28160, Republic of Korea
| | - Junseock Son
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, 28160, Republic of Korea
| | - Younghyun Shin
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, 28160, Republic of Korea
| | - Cheol-Hee Yoon
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, 28160, Republic of Korea
| | - Chun Kang
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, 28160, Republic of Korea
| | - Byeong-Sun Choi
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, 28160, Republic of Korea.
| |
Collapse
|
14
|
Choi H, Dikalova A, Stark RJ, Lamb FS. c-Jun N-terminal kinase attenuates TNFα signaling by reducing Nox1-dependent endosomal ROS production in vascular smooth muscle cells. Free Radic Biol Med 2015; 86:219-27. [PMID: 26001727 DOI: 10.1016/j.freeradbiomed.2015.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/23/2015] [Accepted: 05/12/2015] [Indexed: 12/20/2022]
Abstract
Tumor necrosis factor-α (TNFα), a proinflammatory cytokine, causes vascular smooth muscle cell (VSMC) proliferation and migration and promotes inflammatory vascular lesions. Nuclear factor-kappa B (NF-κB) activation by TNFα requires endosomal superoxide production by Nox1. In endothelial cells, TNFα stimulates c-Jun N-terminal kinase (JNK), which inhibits NF-κB signaling. The mechanism by which JNK negatively regulates TNFα-induced NF-κB activation has not been defined. We hypothesized that JNK modulates NF-κB activation in VSMC, and does so via a Nox1-dependent mechanism. TNFα-induced NF-κB activation was TNFR1- and endocytosis-dependent. Inhibition of endocytosis with dominant-negative dynamin (DynK44A) potentiated TNFα-induced JNK activation, but decreased ERK activation, while p38 kinase phosphorylation was not altered. DynK44A attenuated intracellular, endosomal superoxide production in wild-type (WT) VSMC, but not in NADPH oxidase 1 (Nox1) knockout (KO) cells. siRNA targeting JNK1 or JNK2 potentiated, while a JNK activator (anisomycin) inhibited, TNFα-induced NF-κB activation in WT, but not in Nox1 KO cells. TNFα-stimulated superoxide generation was enhanced by JNK1 inhibition in WT, but not in Nox1 KO VSMC. These data suggest that JNK suppresses the inflammatory response to TNFα by reducing Nox1-dependent endosomal ROS production. JNK and endosomal superoxide may represent novel targets for pharmacologic modulation of TNFα signaling and vascular inflammation.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Endocytosis
- Endosomes/enzymology
- JNK Mitogen-Activated Protein Kinases/physiology
- Mice, Inbred C57BL
- Mice, Knockout
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/enzymology
- NADH, NADPH Oxidoreductases/metabolism
- NADPH Oxidase 1
- NF-kappa B/metabolism
- Reactive Oxygen Species/metabolism
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Signal Transduction
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- Hyehun Choi
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Anna Dikalova
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ryan J Stark
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Fred S Lamb
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
15
|
Craige SM, Kant S, Keaney JF. Reactive oxygen species in endothelial function - from disease to adaptation - . Circ J 2015; 79:1145-55. [PMID: 25986771 DOI: 10.1253/circj.cj-15-0464] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endothelial function is largely dictated by its ability to rapidly sense environmental cues and adapt to these stimuli through changes in vascular tone, inflammation/immune recruitment, and angiogenesis. When any one of these abilities is compromised, the endothelium becomes dysfunctional, which ultimately leads to disease. Reactive oxygen species (ROS) have been established at the forefront of endothelial dysfunction; however, more careful examination has demonstrated that ROS are fundamental to each of the sensing/signaling roles of the endothelium. The purpose of this review is to document endothelial ROS production in both disease and physiological adaptation. Through understanding new endothelial signaling paradigms, we will gain insight into more targeted therapeutic strategies for vascular diseases.
Collapse
|
16
|
MicroRNAs associated with the efficacy of photodynamic therapy in biliary tract cancer cell lines. Int J Mol Sci 2014; 15:20134-57. [PMID: 25380521 PMCID: PMC4264160 DOI: 10.3390/ijms151120134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/27/2014] [Accepted: 10/27/2014] [Indexed: 12/18/2022] Open
Abstract
Photodynamic therapy (PDT) is a palliative treatment option for unresectable hilar biliary tract cancer (BTC) showing a considerable benefit for survival and quality of life with few side effects. Currently, factors determining the cellular response of BTC cells towards PDT are unknown. Due to their multifaceted nature, microRNAs (miRs) are a promising analyte to investigate the cellular mechanisms following PDT. For two photosensitizers, Photofrin® and Foscan®, the phototoxicity was investigated in eight BTC cell lines. Each cell line (untreated) was profiled for expression of n=754 miRs using TaqMan® Array Human MicroRNA Cards. Statistical analysis and bioinformatic tools were used to identify miRs associated with PDT efficiency and their putative targets, respectively. Twenty miRs correlated significantly with either high or low PDT efficiency. PDT was particularly effective in cells with high levels of clustered miRs 25-93*-106b and (in case of miR-106b) a phenotype characterized by high expression of the mesenchymal marker vimentin and high proliferation (cyclinD1 and Ki67 expression). Insensitivity towards PDT was associated with high miR-200 family expression and (for miR-cluster 200a/b-429) expression of differentiation markers Ck19 and Ck8/18. Predicted and validated downstream targets indicate plausible involvement of miRs 20a*, 25, 93*, 130a, 141, 200a, 200c and 203 in response mechanisms to PDT, suggesting that targeting these miRs could improve susceptibility to PDT in insensitive cell lines. Taken together, the miRNome pattern may provide a novel tool for predicting the efficiency of PDT and-following appropriate functional verification-may subsequently allow for optimization of the PDT protocol.
Collapse
|
17
|
CCHCR1 interacts with EDC4, suggesting its localization in P-bodies. Exp Cell Res 2014; 327:12-23. [DOI: 10.1016/j.yexcr.2014.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 01/17/2023]
|
18
|
Tang HW, Liao HM, Peng WH, Lin HR, Chen CH, Chen GC. Atg9 interacts with dTRAF2/TRAF6 to regulate oxidative stress-induced JNK activation and autophagy induction. Dev Cell 2013; 27:489-503. [PMID: 24268699 DOI: 10.1016/j.devcel.2013.10.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 09/09/2013] [Accepted: 10/24/2013] [Indexed: 02/07/2023]
Abstract
Autophagy is a highly conserved catabolic process that degrades and recycles intracellular components through the lysosomes. Atg9 is the only integral membrane protein among autophagy-related (Atg) proteins thought to carry the membrane source for forming autophagosomes. Here we show that Drosophila Atg9 interacts with Drosophila tumor necrosis factor receptor-associated factor 2 (dTRAF2) to regulate the c-Jun N-terminal kinase (JNK) signaling pathway. Significantly, depletion of Atg9 and dTRAF2 compromised JNK-mediated intestinal stem cell proliferation and autophagy induction upon bacterial infection and oxidative stress stimulation. In mammalian cells, mAtg9 interacts with TRAF6, the homolog of dTRAF2, and plays an essential role in regulating oxidative stress-induced JNK activation. Moreover, we found that ROS-induced autophagy acts as a negative feedback regulator of JNK activity by dissociating Atg9/mAtg9 from dTRAF2/TRAF6 in Drosophila and mammalian cells, respectively. Our findings indicate a dual role for Atg9 in the regulation of JNK signaling and autophagy under oxidative stress conditions.
Collapse
Affiliation(s)
- Hong-Wen Tang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Hsiao-Man Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Wen-Hsin Peng
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Hong-Ru Lin
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Chun-Hong Chen
- Institute of Molecular and Genomic Medicine, National Heath Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
19
|
Sinha K, Das J, Pal PB, Sil PC. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 2013; 87:1157-80. [PMID: 23543009 DOI: 10.1007/s00204-013-1034-4] [Citation(s) in RCA: 1178] [Impact Index Per Article: 107.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/28/2013] [Indexed: 12/15/2022]
Abstract
Oxidative stress basically defines a condition in which prooxidant-antioxidant balance in the cell is disturbed; cellular biomolecules undergo severe oxidative damage, ultimately compromising cells viability. In recent years, a number of studies have shown that oxidative stress could cause cellular apoptosis via both the mitochondria-dependent and mitochondria-independent pathways. Since these pathways are directly related to the survival or death of various cell types in normal as well as pathophysiological situations, a clear picture of these pathways for various active molecules in their biological functions would help designing novel therapeutic strategy. This review highlights the basic mechanisms of ROS production and their sites of formation; detail mechanism of both mitochondria-dependent and mitochondria-independent pathways of apoptosis as well as their regulation by ROS. Emphasis has been given on the redox-sensitive ASK1 signalosome and its downstream JNK pathway. This review also describes the involvement of oxidative stress under various environmental toxin- and drug-induced organ pathophysiology and diabetes-mediated apoptosis. We believe that this review would provide useful information about the most recent progress in understanding the mechanism of oxidative stress-mediated regulation of apoptotic pathways. It will also help to figure out the complex cross-talks between these pathways and their modulations by oxidative stress. The literature will also shed a light on the blind alleys of this field to be explored. Finally, readers would know about the ROS-regulated and apoptosis-mediated organ pathophysiology which might help to find their probable remedies in future.
Collapse
Affiliation(s)
- Krishnendu Sinha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Calcutta 700054, West Bengal, India
| | | | | | | |
Collapse
|
20
|
Teng L, Fan LM, Meijles D, Li JM. Divergent effects of p47(phox) phosphorylation at S303-4 or S379 on tumor necrosis factor-α signaling via TRAF4 and MAPK in endothelial cells. Arterioscler Thromb Vasc Biol 2012; 32:1488-96. [PMID: 22460559 DOI: 10.1161/atvbaha.112.247775] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To define the mechanism of p47(phox) phosphorylation in regulating endothelial cell response to tumor necrosis factor-α (TNFα) stimulation. METHODS AND RESULTS We replaced 11 serines (303-4, 310, 315, 320, 328, 345, 348, 359, 370, and 379) with alanines and investigated their effects on TNFα (100 U/mL, 30 minutes)-induced acute O(2)(.-) production and mitogen-activated protein kinase phosphorylation in endothelial cells. Seven constructs, S303-4A (double), S310A, S315A, S328A, S345A, S370A, and S379A, significantly reduced the O(2)(.-) production, and 4 of them (S328A, S345A, S370A, and S379A) also inhibited TNFα-induced extracellular-signal-regulated kinase (ERK) 1/2 phosphorylation. Blocking the phosphorylation of S303-4 and S379 inhibited most effectively TNFα-induced O(2)(.-) production. However, phosphorylation of S303-4 was not required for TNFα-induced p47(phox) membrane translocation and binding to TNF receptor-associated factor 4, ERK1/2 activation, and subsequent vascular cell adhesion molecule-1 expression. Knockout of p47(phox) or knockdown of TNF receptor-associated factor 4 using siRNA abolished TNFα-induced ERK1/2 phosphorylation, and inhibition of ERK1/2 activation significantly reduced the TNFα-induced vascular cell adhesion molecule-1 expression. CONCLUSIONS Phosphorylation of p47(phox) at different serine sites plays distinct roles in endothelial cell response to TNFα stimulation. Double serine (S303-4) phosphorylation is crucial for acute O(2)(.-) production, but is not involved in TNFα signaling through TNF receptor-associated factor 4 and ERK1/2. p47(phox) requires serine phosphorylation at distinct sites to support specific signaling events in response to TNFα.
Collapse
Affiliation(s)
- Lei Teng
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | | | | | | |
Collapse
|
21
|
Role for Traf4 in polarizing adherens junctions as a prerequisite for efficient cell shape changes. Mol Cell Biol 2011; 31:4978-93. [PMID: 21986496 DOI: 10.1128/mcb.05542-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Apical constriction of epithelial cells is a widely used morphogenetic mechanism. In the Drosophila embryo, the apical constrictions that internalize the mesoderm are controlled by the transcription factor Twist and require intact adherens junctions and a contractile acto-myosin network. We find that adherens junctions in constricting mesodermal cells undergo extensive remodeling. A Twist target gene encoding a member of the tumor necrosis factor (TNF) receptor-associated factor (TRAF) family, Traf4, is involved in this process. While TRAFs are best known for their functions in inflammatory responses, Traf4 appears to have a different role, and its mechanism of action is poorly understood. We show that Traf4 is required for efficient apical constriction during ventral furrow formation and for proper localization of Armadillo to the apical position in constricting cells. Traf4 and Armadillo interact with each other physically and functionally. Traf4 acts in a TNF receptor- and Jun N-terminal protein kinase (JNK)-independent manner to fine-tune the assembly of adherens junctions in the invaginating mesodermal cells.
Collapse
|
22
|
Rousseau A, Rio MC, Alpy F. TRAF4, at the Crossroad between Morphogenesis and Cancer. Cancers (Basel) 2011; 3:2734-49. [PMID: 24212830 PMCID: PMC3757440 DOI: 10.3390/cancers3022734] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 02/07/2023] Open
Abstract
Tumor Necrosis Factor Receptor-Associated Factor 4 (TRAF4) is a gene whose expression is altered in cancers. It is overexpressed in a variety of carcinomas of different origins, often as a consequence of amplification. TRAF4 encodes an adaptor protein that belongs to the TRAF protein family. While most TRAF proteins influence immune and inflammation processes, TRAF4 is mainly involved in developmental and morphogenic processes. Interestingly, this protein has been shown to be linked to crucial cellular functions such as cell polarity and the regulation of reactive oxygen species production.
Collapse
Affiliation(s)
- Adrien Rousseau
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, U964 INSERM, Université de Strasbourg, BP 10142, 67404 Illkirch, C.U. de Strasbourg, France.
| | | | | |
Collapse
|
23
|
Arthur JF, Shen Y, Gardiner EE, Coleman L, Murphy D, Kenny D, Andrews RK, Berndt MC. TNF receptor-associated factor 4 (TRAF4) is a novel binding partner of glycoprotein Ib and glycoprotein VI in human platelets. J Thromb Haemost 2011; 9:163-72. [PMID: 20946164 DOI: 10.1111/j.1538-7836.2010.04091.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Reactive oxygen species generation is one consequence of ligand engagement of platelet glycoprotein (GP) receptors GPIb-IX-V and GPVI, which bind VWF/collagen and initiate thrombosis at arterial shear; however, the precise molecular mechanism coupling redox pathway activation to engagement of these receptors is unknown. OBJECTIVE The objective of this study was to identify novel binding partners for GPIb-IX-V and GPVI that could provide a potential link between redox pathways and early platelet signaling events. METHODS AND RESULTS Using protein array analysis and affinity-binding assays, we demonstrated that the orphan TNF receptor-associated factor (TRAF) family member, TRAF4, selectively binds cytoplasmic sequences of GPIbβ and GPVI. TRAF4, p47(phox) [of the NADPH oxidase (Nox2) enzyme complex] and other redox relevant signaling proteins such as Hic-5, co-immunoprecipitate with GPIb/GPVI from human platelet lysates whilst MBP-TRAF4 or MBP-p47(phox) fusion proteins specifically pull-down GPIb/GPVI. GPIb- or GPVI-selective agonists induce phosphorylation of the TRAF4-associated proteins, Hic-5 and Pyk2, with phosphorylation attenuated by Nox2 inhibition. CONCLUSION These results describe the first direct association of TRAF4 with a receptor, and identify a novel binding partner for GPIb-IX-V and GPVI, providing a potential link between these platelet receptors and downstream TRAF4/Nox2-dependent redox pathways.
Collapse
Affiliation(s)
- J F Arthur
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Marinis JM, Homer CR, McDonald C, Abbott DW. A novel motif in the Crohn's disease susceptibility protein, NOD2, allows TRAF4 to down-regulate innate immune responses. J Biol Chem 2010; 286:1938-50. [PMID: 21097508 DOI: 10.1074/jbc.m110.189308] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Crohn's disease and early onset sarcoidosis susceptibility protein, NOD2, coordinates innate immune signaling pathways. Because dysregulation of this coordination can lead to inflammatory disease, maintaining appropriate activation of the NOD2 signaling pathway is paramount in immunologic homeostasis. In this work, we identify the atypical tumor necrosis factor-associated factor (TRAF) family member, TRAF4, as a key negative regulator of NOD2 signaling. TRAF4 inhibits NOD2-induced NF-κB activation and directly binds to NOD2 to inhibit NOD2-induced bacterial killing. We find that two consecutive glutamate residues in NOD2 are required for interaction with TRAF4 and inhibition of NOD2 signaling because mutation of these residues abrogated both TRAF4 binding and inhibition of NOD2. This work identifies a novel negative regulator of NOD2 signaling. Additionally, it defines a TRAF4 binding motif within NOD2 involved in termination of innate immune signaling responses.
Collapse
Affiliation(s)
- Jill M Marinis
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Elevated rates of reactive oxygen species (ROS) have been detected in almost all cancers, where they promote many aspects of tumour development and progression. However, tumour cells also express increased levels of antioxidant proteins to detoxify from ROS, suggesting that a delicate balance of intracellular ROS levels is required for cancer cell function. Further, the radical generated, the location of its generation, as well as the local concentration is important for the cellular functions of ROS in cancer. A challenge for novel therapeutic strategies will be the fine tuning of intracellular ROS signalling to effectively deprive cells from ROS-induced tumour promoting events, towards tipping the balance to ROS-induced apoptotic signalling. Alternatively, therapeutic antioxidants may prevent early events in tumour development, where ROS are important. However, to effectively target cancer cells specific ROS-sensing signalling pathways that mediate the diverse stress-regulated cellular functions need to be identified. This review discusses the generation of ROS within tumour cells, their detoxification, their cellular effects, as well as the major signalling cascades they utilize, but also provides an outlook on their modulation in therapeutics.
Collapse
Affiliation(s)
- Geou-Yarh Liou
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville FL 32224, USA
| | | |
Collapse
|
26
|
Dharmarajah J, Arthur JF, Sobey CG, Drummond GR. The anti-platelet effects of apocynin in mice are not mediated by inhibition of NADPH oxidase activity. Naunyn Schmiedebergs Arch Pharmacol 2010; 382:377-84. [PMID: 20809239 DOI: 10.1007/s00210-010-0552-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 08/12/2010] [Indexed: 11/27/2022]
Abstract
Apocynin, or a (myelo)peroxidase-derived product thereof, is a powerful inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Apocynin has also been shown to prevent aggregation of platelets in response to agonists such as collagen and thrombin. The aims of this study were to establish whether NADPH oxidase activity is required for aggregation of murine platelets to collagen and other agonists and whether the anti-aggregatory effects of apocynin are due to an inhibitory action against this enzyme. Washed platelets were isolated from male C57BL6 (wild-type), Nox2-deficient (Nox2(-/y )), and p47phox-deficient (p47phox(-/-)) mice for assessment of aggregation and NADPH oxidase subunit (Nox2, p47phox) expression. Collagen and U46619 elicited aggregation of murine platelets, and these responses were inhibited by apocynin at concentrations ≥100 μM. By contrast, aggregations to a direct protein kinase C activator, phorbol-12,13-dibutyrate, were insensitive to apocynin. Immunoblotting of platelet protein homogenates from wild-type mice with anti-Nox2 or p47phox antibodies revealed strong bands at 58 and 50 kDa, respectively. While expression of these immunoreactive bands was greatly diminished in platelets from Nox2(-/y ) and p47phox(-/-) mice, collagen still elicited aggregations that were similar to those observed in platelets from wild-types. Moreover, apocynin was an equally effective inhibitor of aggregation in platelets from all three mouse strains. In conclusion, these data suggest that NADPH oxidase-derived reactive oxygen species play no role in the aggregation response of washed murine platelets to collagen. Thus, our observation that apocynin is a powerful inhibitor of platelet aggregation raises further questions about the selectivity of this drug as an NADPH oxidase inhibitor.
Collapse
|
27
|
Chen K, Craige SE, Keaney JF. Downstream targets and intracellular compartmentalization in Nox signaling. Antioxid Redox Signal 2009; 11:2467-80. [PMID: 19309256 PMCID: PMC2861540 DOI: 10.1089/ars.2009.2594] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS) have become recognized for their role as second messengers in a multitude of physiologic responses. Emerging evidence points to the importance of the NADPH oxidase family of ROS-producing enzymes in mediating redox-sensitive signal transduction. However, a clear paradox exists between the specificity required for signaling and the nature of ROS as both diffusible and highly reactive molecules. We seek to understand the targets and compartmentalization of the NADPH oxidase signaling to determine how NADPH oxidase-derived ROS fit into established signaling paradigms. Herein we review recent data that link cellular NADPH oxidase enzymes to ROS signaling, with a particular focus on the mechanism(s) involved in achieving signaling specificity.
Collapse
Affiliation(s)
- Kai Chen
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School Worcester, Massachusetts 01605, USA.
| | | | | |
Collapse
|
28
|
Kalkan T, Iwasaki Y, Park CY, Thomsen GH. Tumor necrosis factor-receptor-associated factor-4 is a positive regulator of transforming growth factor-beta signaling that affects neural crest formation. Mol Biol Cell 2009; 20:3436-50. [PMID: 19458200 DOI: 10.1091/mbc.e08-03-0325] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The transforming growth factor (TGF)-beta superfamily regulates cell proliferation, apoptosis, differentiation, migration, and development. Canonical TGFbeta signals are transduced to the nucleus via Smads in both major signaling branches, bone morphogenetic protein (BMP) or Activin/Nodal/TGFbeta. Smurf ubiquitin (Ub) ligases attenuate these pathways by targeting Smads and other signaling components for degradation by the 26S proteasome. Here, we identify tumor necrosis factor (TNF)-receptor-associated factor-4 (TRAF4) as a new target of Smurf1, which polyubiquitylates TRAF4 to trigger its proteasomal destruction. Unlike other TRAF family members, which mediate signal transduction by TNF, interleukin, or Toll-like receptors, we find that TRAF4 potentiates BMP and Nodal signaling. In the frog Xenopus laevis, TRAF4 mRNA is stored maternally in the egg animal pole, and in the embryo it is expressed in the gastrula marginal zone, neural plate, and cranial and trunk neural crest. Knockdown of embryonic TRAF4 impairs signaling, neural crest development and neural folding, whereas TRAF4 overexpression boosts signaling and expands the neural crest. In human embryonic kidney 293 cells, small interfering RNA knockdown of Smurf1 elevates TRAF4 levels, indicating endogenous regulation of TRAF4 by Smurf1. Our results uncover new functions for TRAF4 as a Smurf1-regulated mediator of BMP and Nodal signaling that are essential for neural crest development and neural plate morphogenesis.
Collapse
Affiliation(s)
- Tuzer Kalkan
- Graduate Program in Molecular and Cellular Biology and Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
29
|
Hu BH, Cai Q, Manohar S, Jiang H, Ding D, Coling DE, Zheng G, Salvi R. Differential expression of apoptosis-related genes in the cochlea of noise-exposed rats. Neuroscience 2009; 161:915-25. [PMID: 19348871 DOI: 10.1016/j.neuroscience.2009.03.072] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 03/17/2009] [Accepted: 03/30/2009] [Indexed: 02/07/2023]
Abstract
Exposure to intense noise induces apoptosis in hair cells in the cochlea. To identify the molecular changes associated with noise-induced apoptosis, we used quantitative real-time PCR to evaluate the changes in 84 apoptosis-related genes in cochlear samples from the sensory epithelium and lateral wall. Sprague-Dawley rats exposed to a continuous noise at 115 dB SPL for 2 h. The exposure caused a 40-60 dB threshold shift 4 h post-exposure that decreased to 20-30 dB 7 days post-exposure. These functional changes were associated with apoptotic markers including nuclear condensation and fragmentation and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Immediately after the noise exposure, 12 genes were downregulated, whereas only one gene (Traf4) was upregulated. At 4 h post-exposure, eight genes were upregulated; three (Tnrsf1a, Tnfrsf1b, Tnfrst5) belonged to the Tnfrsf family, three (Bir3, Mcl1 and Prok2) have anti-apoptotic properties and one (Gadd45a) is a target of p53. At 7 days post-exposure, all the upregulated genes returned to pre-noise levels. Interestingly, the normal control cochlea had high constitutive levels of several apoptosis-related genes. These constitutively expressed genes, together with the inducible genes, may participate in the induction of cochlear apoptotic activity.
Collapse
Affiliation(s)
- B H Hu
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, NY 14214, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Chen X, Andresen1 BT, Hill M, Zhang J, Booth F, Zhang C. Role of Reactive Oxygen Species in Tumor Necrosis Factor-alpha Induced Endothelial Dysfunction. Curr Hypertens Rev 2008; 4:245-255. [PMID: 20559453 DOI: 10.2174/157340208786241336] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Endothelial cell injury and dysfunction are the major triggers of pathophysiological processes leading to cardiovascular disease. Endothelial dysfunction (ED) has been implicated in atherosclerosis, hypertension, coronary artery disease, vascular complications of diabetes, chronic renal failure, insulin resistance and hypercholesterolemia. Although now recognized as a class of physiological second messengers, reactive oxygen species (ROS) are important mediators in cellular injury, specifically, as a factor in endothelial cell damage. Uncontrolled ROS production and/or decreased antioxidant activity results in a deleterious state referred to as 'oxidative stress'. A candidate factor in causing ROS production in endothelial cells is tumor necrosis factor alpha (TNF-α), a pleiotropic inflammatory cytokine. TNF-α has been shown to both be secreted by endothelial cells and to induce intracellular ROS formation. These observations provide a potential mechanism by which TNF-α may activate and injure endothelial cells resulting in ED. In this review, we focus on the relationship between intracellular ROS formation and ED in endothelial cells or blood vessels exposed to TNF-α to provide insight into the role of this important cytokine in cardiovascular disease.
Collapse
Affiliation(s)
- Xiuping Chen
- Department of Internal Medicine, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Oxidative stress is defined as an imbalance between generation of reactive oxygen species (ROS) and decreased antioxidant defense systems. Oxidative stress develops particularly in inflammatory reactions because the inflammatory cells, neutrophils, and macrophages produce large amounts of ROS. It has been known for a long time that oxidative stress in inflamed tissue can pave the way for malignant tumors, and that it is a major pathogenetic factor for the well-established correlation between inflammatory diseases and cancer. Oxidative stress has long been associated with the pathogenesis of chronic inflammatory bowel disease (IBD)-related colorectal cancer. This article provides an overview of the pathology of ROS and presents recent advances concerning the role of ROS in IBD-related colorectal carcinogenesis (Fig. 1).
Collapse
|
32
|
Babu D, Lee JS, Park SY, Thapa D, Choi MK, Kim AR, Park YJ, Kim JA. Involvement of NF-kappaB in the inhibitory actions of Platycarya strobilacea on the TNF-alpha-induced monocyte adhesion to colon epithelial cells and chemokine expression. Arch Pharm Res 2008; 31:727-35. [PMID: 18563354 DOI: 10.1007/s12272-001-1219-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2007] [Revised: 02/04/2008] [Accepted: 04/29/2008] [Indexed: 11/26/2022]
Abstract
Oxidative stress and the activation of nuclear factor (NF)-kappaB play crucial roles in the pathogenesis of inflammatory bowel disease (IBD). In the present study, we examined the effects of the ethanol extract of Platycarya strobilacea Sieb. stem (EPS) on TNF-alpha-induced monocyte adhesion to HT29 human colon epithelial cells, an initial step of colon inflammation. EPS contained high amount of polyphenols (0.241+/-0.017 mg of catechin equivalent/g of extract) and showed substantial DPPH radical scavenging activity. In addition, EPS significantly suppressed TNF-alpha-induced reactive oxygen species (ROS) increase. Moreover, TNF-alpha-induced monocyte adhesion to HT29 colon epithelial cells was significantly suppressed by EPS in a concentration-dependent manner. The reduced adhesion by EPS was correlated with suppressed expression of MCP-1 and IL-8, the major chemokines in IBD. EPS also prevented the TNF-alpha-induced nuclear translocation of NF-kappaB, one of the redox-sensitive transcription factors, in a concentration-dependent manner. Taken together, our results suggest that the anti-oxidant components of EPS prevent TNF-alpha-induced NF-kappaB activation, chemokine induction, and monocyte adhesion at the site of intestinal inflammation.
Collapse
Affiliation(s)
- Dinesh Babu
- College of Pharmacy, Yeungnam University, Gyeongsan, 712-749, Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Several recent findings point to an important role for redox regulation of platelet responses to collagen involving the receptor, glycoprotein (GP)VI. First, the antioxidant dietary compound, quercetin, was shown to inhibit GPVI-dependent platelet activation and signaling responses to collagen. Second, collagen increased platelet production of the oxygen radical, superoxide anion (O2-), mediated by the multi-subunit enzyme nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) oxidase. In that case, O2- was implicated in regulating not initial aggregation, but collagen-induced thrombus stabilization involving release of ADP. Third, our laboratory showed that an unpaired thiol in the GPVI cytoplasmic tail undergoes rapid oxidation to form GPVI homodimers following ligand binding, preceding GPVI signaling and ectodomain metalloproteolysis, and indicating formation of an oxidative submembranous environment in activated platelets. This review examines receptor/redox regulation in other cells, and relevance to the pathophysiological function of GPVI and other platelet receptors initiating thrombus formation in haemostasis or thrombotic diseases such as heart attack and stroke.
Collapse
Affiliation(s)
- Jane F Arthur
- Department of Immunology, Monash University, Alfred Medical Research & Education Precinct, Melbourne 3004, Victoria, Australia
| | | | | | | | | |
Collapse
|
34
|
Abstract
Endothelial activation refers to a specific change in endothelial phenotype, characterized most notably by an increase in endothelial-leukocyte interactions and permeability, which is pivotal to inflammatory responses in both physiologic and pathologic settings. An increasing body of evidence indicates an important role for reactive oxygen species (ROS)-mediated modulation of signal-transduction pathways in many of the processes involved in endothelial activation. ROS generated by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes may be especially important in this regard. We discuss the evidence implicating redox signaling pathways in the molecular and cellular processes underlying endothelial activation and the role in cardiovascular diseases, and also provide a detailed description of NADPH oxidase regulation in endothelial cells, in view of its likely importance in this context.
Collapse
Affiliation(s)
- Sara P Alom-Ruiz
- King's College London School of Medicine, The James Black Centre, Cardiovascular Division, London, United Kingdom
| | | | | |
Collapse
|
35
|
Park SY, Lee JS, Ko YJ, Kim AR, Choi MK, Kwak MK, Choi HG, Yong CS, Kim JA. Inhibitory effect of simvastatin on the TNF-alpha- and angiotensin II-induced monocyte adhesion to endothelial cells is mediated through the suppression of geranylgeranyl isoprenoid-dependent ROS generation. Arch Pharm Res 2008; 31:195-204. [PMID: 18365690 DOI: 10.1007/s12272-001-1141-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Vascular endothelial cell activation by cytokines and other pro-inflammatory mediators is an initial event in atherosclerosis and in other vascular diseases. Simvastatin, a HMG-CoA reductase inhibitor, suppressed both tumor necrosis factor (TNF)-alpha- and angiotensin (Ang) II-induced monocyte adhesion to endothelial cells (an initial step in vascular inflammation) and reactive oxygen species (ROS) production. Diphenyleneiodonium and apocynin, both NADPH oxidase inhibitors, also suppressed TNF-alpha-induced ROS and monocyte-endothelial cell adhesion, demonstrating that TNF-alpha-induced monocyte adhesion is mediated through ROS produced by NADPH oxidase activation. Furthermore, exogenously applied mevalonate or geranylgeranylpyrophosphate in combination with simvastatin completely prevented the inhibitory effects of simvastatin on ROS generation and monocyte-endothelial cell adhesion by TNFalpha and Ang II. These results suggest that monocyte adhesion to endothelial cells induced by TNF-alpha or Ang II is mediated via the geranylgeranyl isoprenoid-dependent generation of ROS, and that this is inhibited by simvastatin.
Collapse
Affiliation(s)
- Su-Young Park
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jin S, Ray RM, Johnson LR. TNF-alpha/cycloheximide-induced apoptosis in intestinal epithelial cells requires Rac1-regulated reactive oxygen species. Am J Physiol Gastrointest Liver Physiol 2008; 294:G928-37. [PMID: 18218673 DOI: 10.1152/ajpgi.00219.2007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previously we have shown that both Rac1 and c-Jun NH(2)-terminal kinase (JNK1/2) are key proapoptotic molecules in tumor necrosis factor (TNF)-alpha/cycloheximide (CHX)-induced apoptosis in intestinal epithelial cells, whereas the role of reactive oxygen species (ROS) in apoptosis is unclear. The present studies tested the hypothesis that Rac1-mediated ROS production is involved in TNF-alpha-induced apoptosis. In this study, we showed that TNF-alpha/CHX-induced ROS production and hydrogen peroxide (H(2)O(2))-induced oxidative stress increased apoptosis. Inhibition of Rac1 by a specific inhibitor NSC23766 prevented TNF-alpha-induced ROS production. The antioxidant, N-acetylcysteine (NAC), or rotenone (Rot), the mitochondrial electron transport chain inhibitor, attenuated mitochondrial ROS production and apoptosis. Rot also prevented JNK1/2 activation during apoptosis. Inhibition of Rac1 by expression of dominant negative Rac1 decreased TNF-alpha-induced mitochondrial ROS production. Moreover, TNF-alpha-induced cytosolic ROS production was inhibited by Rac1 inhibition, diphenyleneiodonium (DPI, an inhibitor of NADPH oxidase), and NAC. In addition, DPI inhibited TNF-alpha-induced apoptosis as judged by morphological changes, DNA fragmentation, and JNK1/2 activation. Mitochondrial membrane potential change is Rac1 or cytosolic ROS dependent. Lastly, all ROS inhibitors inhibited caspase-3 activity. Thus these results indicate that TNF-alpha-induced apoptosis requires Rac1-dependent ROS production in intestinal epithelial cells.
Collapse
Affiliation(s)
- Shi Jin
- Dept. of Physiology, Univ. of Tennessee Health Science Center, 894 Union Ave., Memphis, TN 38163, USA
| | | | | |
Collapse
|
37
|
Search for cellular partners of human papillomavirus type 16 E2 protein. Arch Virol 2008; 153:983-90. [PMID: 18305892 DOI: 10.1007/s00705-008-0061-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 01/25/2008] [Indexed: 12/14/2022]
Abstract
Human papillomaviruses (HPVs) are small, double-stranded DNA viruses that infect cutaneous and mucosal epithelia. Type 16 (HPV16) displays tropism to genital epithelia, giving rise to genital warts and cervical intraepithelial neoplasia (CIN), which is a precursor lesion to invasive carcinoma of the cervix. The great majority of human cervical cancers contain integrated HPV DNA where the E2 gene is usually disrupted, suggesting that the loss of the E2 protein is an important step in HPV-induced carcinogenesis. The HPV16 E2 protein is a regulatory protein that seems to be essential for creating favourable conditions for establishment of infection and proper completion of the viral life cycle. Recently, diverse activities of the E2 proteins have been described, but the molecular basis of these processes has not beenfully elucidated. Using a yeast two-hybrid system, we have identified epithelial cellular proteins that bind to the E2 protein of HPV16.
Collapse
|
38
|
Signal cross talks for sustained MAPK activation and cell migration: the potential role of reactive oxygen species. Cancer Metastasis Rev 2008; 27:303-14. [DOI: 10.1007/s10555-008-9112-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Cherfils-Vicini J, Vingert B, Varin A, Tartour E, Fridman WH, Sautès-Fridman C, Régnier CH, Cremer I. Characterization of immune functions in TRAF4-deficient mice. Immunology 2008; 124:562-74. [PMID: 18284467 DOI: 10.1111/j.1365-2567.2008.02810.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tumour necrosis factor receptor associated factor 4 (TRAF4) is a member of the TRAF family of proteins which are cytoplasmic adaptor molecules strongly implicated in multiple immune functions. A previous investigation of TRAF4 biological functions by gene targeting in mice has shown a role for TRAF4 in embryonic development and neurulation in vivo. However, unlike other TRAF family members, the role of TRAF4 in the immune system is still unknown. To address this question, we performed an extensive characterization of the immune development and immune functions of TRAF4-deficient mice. Our analyses did not reveal any defects in development of T and B lymphocytes, granulocytes, macrophages and dendritic cells, and no defects in reactive oxygen species production and phagocytosis by neutrophils. Cellular and humoral responses against T-cell-dependent antigens were normal, as was dendritic cell maturation in response to microbial components and antigen uptake by dendritic cells. However, we demonstrated that dendritic cells from TRAF4-deficient mice exhibited reduced migration both in transwell experiments and in vivo. These results suggest that TRAF4 is not strictly required for immune development and functions but could participate in immune functions by facilitating immune cell migration.
Collapse
Affiliation(s)
- Julien Cherfils-Vicini
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ushio-Fukai M, Frey RS, Fukai T, Malik AB. Chapter 8 Reactive Oxygen Species and Endothelial Permeability. CURRENT TOPICS IN MEMBRANES 2008. [DOI: 10.1016/s1063-5823(08)00208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Zapata JM, Martínez-García V, Lefebvre S. Phylogeny of the TRAF/MATH domain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 597:1-24. [PMID: 17633013 DOI: 10.1007/978-0-387-70630-6_1] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The TNF-receptor associated factor (TRAF) domain (TD), also known as the meprin and TRAF-C homology (MATH) domain is a fold of seven anti-parallel p-helices that participates in protein-protein interactions. This fold is broadly represented among eukaryotes, where it is found associated with a discrete set of protein-domains. Virtually all protein families encompassing a TRAF/MATH domain seem to be involved in the regulation of protein processing and ubiquitination, strongly suggesting a parallel evolution of the TRAF/MATH domain and certain proteolysis pathways in eukaryotes. The restricted number of living organisms for which we have information of their genetic and protein make-up limits the scope and analysis of the MATH domain in evolution. However, the available information allows us to get a glimpse on the origins, distribution and evolution of the TRAF/MATH domain, which will be overviewed in this chapter.
Collapse
Affiliation(s)
- Juan M Zapata
- Burnham Institute for Medical Research, 10901 N. Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
42
|
Malorni W, Campesi I, Straface E, Vella S, Franconi F. Redox features of the cell: a gender perspective. Antioxid Redox Signal 2007; 9:1779-801. [PMID: 17822369 DOI: 10.1089/ars.2007.1596] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reactive oxygen and nitrogen species have been implicated in diverse subcellular activities, including cell proliferation,differentiation and, in some instances, cell injury and death. The implications of reactive species inhuman pathology have also been studied in detail. However, although the role of free radicals in the pathogenesis of human diseases has been extensively analyzed in different systems (i.e., in vitro, ex vivo, and in vivo),it is still far from elucidated. In particular, the possible role of gender 4 differences in human pathophysiology associated with reactive species is a promising new field of investigation. Although the complex scenario this presents is still incomplete, important gender-associated "redox features" of cells have already been described in the literature. Here we summarize the different aspects of redox-associated molecules and enzymes in regard to gender differences in terms of the intracellular production and biochemical activity of reactive species. These are often associated with the pathogenetic mechanisms underlying several human morbidities(e.g., degenerative diseases) and can represent a specific target for new pharmacologic strategies. Gender differences may thus pose an important challenge for future studies aimed at the clinical management of diseases characterized by a redox imbalance.
Collapse
Affiliation(s)
- Walter Malorni
- Department of Drug Research and Evaluation, Istituto Superiore di Sanita', Rome, Italy.
| | | | | | | | | |
Collapse
|
43
|
Wu RF, Ma Z, Myers DP, Terada LS. HIV-1 Tat activates dual Nox pathways leading to independent activation of ERK and JNK MAP kinases. J Biol Chem 2007; 282:37412-9. [PMID: 17940286 DOI: 10.1074/jbc.m704481200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human immunodeficiency virus, type 1 Tat is known to exert pleiotropic effects on the vascular endothelium through mitogen-activated protein (MAP) kinases, although the signaling pathways leading to MAP kinase activation are incompletely understood. We focused on proximal pathways potentially governing downstream MAP kinase activity by Tat. Within 2 min, Tat activated both Ras and Rho GTPases in endothelial cells, leading to ERK phosphorylation by 10 min. Notably, Rac1 was necessary for downstream activation of RhoA and both Rac1 and RhoA acted upstream of the Ras/ERK cassette. Antioxidants and the oxidase inhibitor diphenylene iodonium blocked ERK phosphorylation, but specific interference with the canonical Nox2 oxidase had no effect on ERK. Instead, knock down of the novel oxidase Nox4 completely suppressed Tat-dependent Ras and ERK activation downstream of Rac1 and RhoA. Conversely, interference with Rac1, PAK1, and Nox2 blocked JNK phosphorylation, whereas RhoA(N19) and Nox4 knock down did not. Further, knock down of Nox2, but not Nox4, blocked Tat-induced cytoskeletal rearrangement, whereas knock down of Nox4, but not Nox2, blocked Tat-dependent proliferation. Rac1, therefore, bifurcates Tat signaling, leading to concurrent but separate Nox4-dependent Ras/ERK activation, and Nox2-dependent JNK activation. Tat signaling, therefore, provides an example of Nox-specific differential control of MAP kinase pathways.
Collapse
Affiliation(s)
- Ru Feng Wu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
44
|
Kedinger V, Rio MC. TRAF4, the unique family member. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 597:60-71. [PMID: 17633017 DOI: 10.1007/978-0-387-70630-6_5] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The fourth member of the TRAF protein family (TRAF4) presents several characteristics that distinguish it from the other members of the family. These characteristics concern the primary sequence of the protein, a strong evolutionary conservation, and a tightly regulated physiological expression during development. The subcellular localization of TRAF4 is controversial as it has been detected at the cell membrane, in the cytoplasm and in the nucleus. Using mouse and fly models, it has been established that TRAF4 is a key molecule in diverse ontogenic processes, particularly in the nervous system. However, the molecular mechanisms of action of TRAF4 remain evasive as it was found to interact with diverse types of proteins, leading either to pro-apoptotic or anti-apoptotic functions. Finally, few studies implicated TRAF4 in human diseases.
Collapse
Affiliation(s)
- Valérie Kedinger
- Departement de Pathologie Moléculaire, Institut de Génétique et de Biologie Moléculaire, CNRS UPR 6520/INSERM Unité 596/Université Louis Pasteur, Illkirch, France
| | | |
Collapse
|
45
|
Taddei ML, Parri M, Mello T, Catalano A, Levine AD, Raugei G, Ramponi G, Chiarugi P. Integrin-mediated cell adhesion and spreading engage different sources of reactive oxygen species. Antioxid Redox Signal 2007; 9:469-81. [PMID: 17280488 DOI: 10.1089/ars.2006.1392] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The tightly regulated production of intracellular reactive oxygen species (ROS) participates in several biologic processes such as cellular growth, programmed cell death, senescence, and adhesion. It is increasingly evident that the same enzymatic processes that were originally linked to ROS generation during host defence or apoptosis execution are also involved in redox-mediated signal transduction. We investigated in murine NIH3T3 fibroblasts the contribution of a variety of redox-dependent events during signal transduction initiated by integrin engagement due to fibronectin stimulation and report that a mitochondrial ROS release occurs, strictly confined to the early phase of extracellular matrix (ECM) contact (10 min). Besides, 5-lipoxygenase (5-LOX) is engaged by integrin receptor ligation as another ROS source, contributing to the more-intense, second ROS burst (45 min), possibly orchestrating the spreading of cells in response to ECM contact. To define a potential mechanism for ROS signaling, we demonstrate that on integrin recruitment, the Src homology-2 domain-containing phosphatase 2 (SHP-2) undergoes a reversible oxidization/inactivation to which mitochondrial and 5-lipoxygenase ROS contribute differentially. In keeping with a key role of oxidants during integrin signaling, the inactivation of SHP-2 prevents the dephosphorylation and inactivation of SHP-2 substrates (p125FAK and SHPS-1), thus enabling the continued propagation of the signal arising by integrin engagement.
Collapse
|
46
|
Abstract
Reactive oxygen species (ROS) are generated as by-products of cellular metabolism, primarily in the mitochondria. Although ROS are essential participants in cell signaling and regulation, when their cellular production overwhelms the intrinsic antioxidant capacity, damage to cellular macromolecules such as DNA, proteins, and lipids ensues. Such a state of "oxidative stress" is thought to contribute to the pathogenesis of a number of neurodegenerative diseases. Growing evidence supports the involvement of oxidative stress as a common component of glaucomatous neurodegeneration in different subcellular compartments of retinal ganglion cells (RGCs). Besides the evidence of direct cytotoxic consequences leading to RGC death, it also seems highly possible that ROS are involved in signaling RGC death by acting as a second messenger and/or modulating protein function by redox modifications of downstream effectors through enzymatic oxidation of specific amino acid residues. Different studies provide cumulating evidence, which supports the association of ROS with different aspects of the neurodegenerative process. Oxidative protein modifications during glaucomatous neurodegeneration increase neuronal susceptibility to damage and also lead to glial dysfunction. Oxidative stress-induced dysfunction of glial cells may contribute to spreading neuronal damage by secondary degeneration. Oxidative stress also promotes the accumulation of advanced glycation end products in glaucomatous tissues. In addition, oxidative stress takes part in the activation of immune response during glaucomatous neurodegeneration, as ROS stimulate the antigen presenting ability of glial cells and also function as co-stimulatory molecules during antigen presentation. By discussing current evidence, this review provides a broad perspective on cellular mechanisms and potential consequences of oxidative stress in glaucoma.
Collapse
Affiliation(s)
- Gülgün Tezel
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Kentucky Lions Eye Center, 301 E. Muhammad Ali Boulevard, Louisville, KY 40202, USA.
| |
Collapse
|
47
|
Abstract
Although reactive oxidants have long been stigmatized as unwanted metabolic byproducts, the expression of oxidases specifically functioning to produce these same molecules in a regulated fashion is surprisingly pervasive throughout metazoan and plant evolution. Although the involvement of oxidants in many signaling pathways is well documented, the cellular strategies for conferring pathway specificity to such reactive molecules have remained more recondite. Recent studies now suggest that cells may spatially restrict oxidant production to allow microdomain-specific signaling.
Collapse
Affiliation(s)
- Lance S Terada
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
48
|
Camilleri-Broët S, Cremer I, Marmey B, Comperat E, Viguié F, Audouin J, Rio MC, Fridman WH, Sautès-Fridman C, Régnier CH. TRAF4 overexpression is a common characteristic of human carcinomas. Oncogene 2006; 26:142-7. [PMID: 16799635 DOI: 10.1038/sj.onc.1209762] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tumor necrosis factor receptor (TNFR) associated factor 4 (TRAF4) was initially identified as a gene amplified and overexpressed in breast carcinomas. Our aim was to evaluate whether TRAF4 protein overexpression exists in other cancer types. Immunohistochemistry analysis of tumor samples from 623 patients with 20 different tumor types showed that TRAF4 was overexpressed in 268 tumors (43%), including 82 of 137 lung adenocarcinomas (60%). Interestingly, 32 primary tumors and their matching metastases exhibited mostly similar TRAF4 expression pattern. TRAF4 protein overexpression was limited to cancer cells and the subcellular localization was consistently cytoplasmic in a large majority of cases. To investigate changes in TRAF4 gene copy number, 125 cases from six different types of carcinomas were also analysed by fluorescence in situ hybridization. Out of the 28 cases (22%) showing an increased TRAF4 gene copy number, 23 (82%) were overexpressing the protein. Thus, TRAF4 gene amplification is one of the mechanisms responsible for TRAF4 protein overexpression in human cancers. Considering that TRAF4 is located at 17q11.2 in a region of amplification devoid of known oncogenes and is commonly overexpressed in cancer, our data support an oncogenic role for TRAF4.
Collapse
Affiliation(s)
- S Camilleri-Broët
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 255 d'Immunologie Cellulaire et Clinique, Université Pierre et Marie Curie Paris VI, Faculté de Médecine, Centre de Recherches Biomédicales des Cordeliers, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Cave AC, Brewer AC, Narayanapanicker A, Ray R, Grieve DJ, Walker S, Shah AM. NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal 2006; 8:691-728. [PMID: 16771662 DOI: 10.1089/ars.2006.8.691] [Citation(s) in RCA: 467] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Increased oxidative stress plays an important role in the pathophysiology of cardiovascular diseases such as hypertension, atherosclerosis, diabetes, cardiac hypertrophy, heart failure, and ischemia-reperfusion. Although several sources of reactive oxygen species (ROS) may be involved, a family of NADPH oxidases appears to be especially important for redox signaling and may be amenable to specific therapeutic targeting. These include the prototypic Nox2 isoform-based NADPH oxidase, which was first characterized in neutrophils, as well as other NADPH oxidases such as Nox1 and Nox4. These Nox isoforms are expressed in a cell- and tissue-specific fashion, are subject to independent activation and regulation, and may subserve distinct functions. This article reviews the potential roles of NADPH oxidases in both cardiovascular physiological processes (such as the regulation of vascular tone and oxygen sensing) and pathophysiological processes such as endothelial dysfunction, inflammation, hypertrophy, apoptosis, migration, angiogenesis, and vascular and cardiac remodeling. The complexity of regulation of NADPH oxidases in these conditions may provide the possibility of targeted therapeutic manipulation in a cell-, tissue- and/or pathway-specific manner at appropriate points in the disease process.
Collapse
Affiliation(s)
- Alison C Cave
- King's College London, Department of Cardiology, Cardiovascular Division, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
50
|
Slevin M, Elasbali AB, Miguel Turu M, Krupinski J, Badimon L, Gaffney J. Identification of differential protein expression associated with development of unstable human carotid plaques. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1004-21. [PMID: 16507914 PMCID: PMC1606543 DOI: 10.2353/ajpath.2006.050471] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rupture-prone unstable arterial plaques develop concomitantly with the appearance of intraplaque hemorrhage and tissue ulceration, in association with deregulation of smooth muscle cell mitogenesis and leakage of newly formed blood vessels. Using microarray technology, we have identified novel protein deregulation associated with unstable carotid plaque regions. Overexpression of proapoptotic proteins caspase-9 and TRAF4 was seen in endothelial cells and smooth muscle cells from unstable hemorrhagic and ulcerated plaque regions. Topoisomerase-II-alpha (TOPO-II-alpha), which is associated with DNA repair mechanisms, was also overexpressed by these cells. Cell signaling molecules c-src, G-protein-coupled receptor kinase-interacting protein (GIT1), and c-jun N-terminal kinase (JNK) were up-regulated in endothelial cells from the same areas, whereas an increase in expression of junctional adhesion molecule-1 (JAM-1) in blood vessels and infiltrating macrophages from inflammatory regions might form part of a leukocyte rolling response, increasing the plaque volume. Grb2-like adaptor protein (Gads), responsible for differentiation of monocytes into macrophages, was expressed by macrophages from unstable plaques, suggesting a potential mechanism through which increased scavenging could occur in rupture-prone areas. We conclude that modulation of novel cell signaling intermediates, such as those described here, could be useful in the therapy of angiogenesis and apoptosis, designed to reduce unstable plaque formation.
Collapse
Affiliation(s)
- Mark Slevin
- Department of Biological Sciences, Manchester Metropolitan University, Manchester, United Kingdom.
| | | | | | | | | | | |
Collapse
|