1
|
Yao R, Li R, Huang Y. Zinc homeostasis in Schizosaccharomyces pombe. Arch Microbiol 2023; 205:126. [PMID: 36943461 DOI: 10.1007/s00203-023-03473-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023]
Abstract
Most metal ions such as iron, calcium, zinc, or copper are essential for all eukaryotes. Organisms must maintain homeostasis of these metal ions because excess or deficiency of metal ions could cause damage to organisms. The steady state of many metal ions such as iron and copper has been well studied in detail. However, how to regulate zinc homeostasis in Schizosaccharomyces pombe is still confusing. In this review, we provide an overview of the molecular mechanisms that how S. pombe is able to maintain the balance of zinc levels in the changes of environment. In response to high levels of zinc, the transcription factor Loz1 represses the expression of several genes involved in the acquisition of zinc. Meanwhile, the CDF family proteins transport excess zinc to the secretory pathway. When zinc levels are limited, Loz1 was inactivated and could not inhibit the expression of zinc acquisition genes, and zinc stored in the secretory pathway is released for use by the cells. Besides, other factors that regulate zinc homeostasis are also discussed.
Collapse
Affiliation(s)
- Rui Yao
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, 1 Wen Yuanuan Rd, Nanjing, 210023, China
| | - Rongrong Li
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, 1 Wen Yuanuan Rd, Nanjing, 210023, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, 1 Wen Yuanuan Rd, Nanjing, 210023, China.
| |
Collapse
|
2
|
de Cubas L, Mallor J, Herrera-Fernández V, Ayté J, Vicente R, Hidalgo E. Expression of the H2O2 Biosensor roGFP-Tpx1.C160S in Fission and Budding Yeasts and Jurkat Cells to Compare Intracellular H2O2 Levels, Transmembrane Gradients, and Response to Metals. Antioxidants (Basel) 2023; 12:antiox12030706. [PMID: 36978953 PMCID: PMC10045392 DOI: 10.3390/antiox12030706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Intracellular hydrogen peroxide (H2O2) levels can oscillate from low, physiological concentrations, to intermediate, signaling ones, and can participate in toxic reactions when overcoming certain thresholds. Fluorescent protein-based reporters to measure intracellular H2O2 have been developed in recent decades. In particular, the redox-sensitive green fluorescent protein (roGFP)-based proteins fused to peroxiredoxins are among the most sensitive H2O2 biosensors. Using fission yeast as a model system, we recently demonstrated that the gradient of extracellular-to-intracellular peroxides through the plasma membrane is around 300:1, and that the concentration of physiological H2O2 is in the low nanomolar range. Here, we have expressed the very sensitive probe roGFP2-Tpx1.C169S in two other model systems, budding yeast and human Jurkat cells. As in fission yeast, the biosensor is ~40–50% oxidized in these cell types, suggesting similar peroxide steady-state levels. Furthermore, probe oxidation upon the addition of extracellular peroxides is also quantitatively similar, suggesting comparable plasma membrane H2O2 gradients. Finally, as a proof of concept, we have applied different concentrations of zinc to all three model systems and have detected probe oxidation, demonstrating that an excess of this metal can cause fluctuations of peroxides, which are moderate in yeasts and severe in mammalian cells. We conclude that the principles governing H2O2 fluxes are very similar in different model organisms.
Collapse
Affiliation(s)
- Laura de Cubas
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Jorge Mallor
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Víctor Herrera-Fernández
- Laboratory of Molecular Physiology, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Rubén Vicente
- Laboratory of Molecular Physiology, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-316-0848; Fax: +34-93-316-0901
| |
Collapse
|
3
|
Hu Y, Luo Y, Yin D, Zhao L, Wang Y, Yao R, Zhang P, Wu X, Li M, Hidalgo E, Huang Y. Schizosaccharomyces pombe MAP kinase Sty1 promotes survival of Δppr10 cells with defective mitochondrial protein synthesis. Int J Biochem Cell Biol 2022; 152:106308. [PMID: 36174923 DOI: 10.1016/j.biocel.2022.106308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/09/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
Abstract
Deletion of the Schizosaccharomyces pombe pentatricopeptide repeat gene ppr10 severely impairs mitochondrial translation, resulting in defective oxidative phosphorylation (OXPHOS). ppr10 deletion also induces iron starvation response, resulting in increased reactive oxygen species (ROS) production and reduced viability under fermentative conditions. S. pombe has two principal stress-response pathways, which are mediated by the mitogen-activated protein kinase Sty1 and the basic leucine zipper transcription factor Pap1, respectively. In this study, we examined the roles of Sty1 and Pap1 in the cellular response to the mitochondrial translation defect caused by ppr10 deletion. We found that ppr10 deletion resulted in two waves of stress protein activation. The early response occurred in exponential phase and resulted in the expression of a subset of stress proteins including Gst2 and Obr1. The upregulation of some of these stress proteins in Δppr10 cells in early response is dependent on the basal nuclear levels of Sty1 or Pap1. The late response occurred in early stationary phase and coincided with the stable localization of Sty1 and Pap1 in the nucleus, presumably resulting in persistent activation of a large set of stress proteins. Deletion of sty1 in Δppr10 cells caused severe defects in cell division and growth, and further impaired cell viability. Deletion of the mitochondrial superoxide dismutase gene sod2 whose expression is controlled by Sty1 severely inhibited the growth of Δppr10 cells. Overexpression of sod2 improves the viability of Δppr10 cells. Our results support an important role for Sty1 in counteracting stress induced by ppr10 deletion under fermentative growth conditions.
Collapse
Affiliation(s)
- Yue Hu
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ying Luo
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Dan Yin
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Lan Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yirong Wang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Rui Yao
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Pan Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoyu Wu
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Minjie Li
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Elena Hidalgo
- Departament de Ciènces Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
4
|
Takahata S, Asanuma T, Mori M, Murakami Y. Construction and characterization of a zinc-inducible gene expression vector in fission yeast. Yeast 2020; 38:251-261. [PMID: 33245560 DOI: 10.1002/yea.3539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 11/08/2022] Open
Abstract
Gene expression vectors are useful and important tools that are commonly used in a variety of experiments, including expression of foreign genes, functional analysis of genes of interest and complementation experiments. In this study, a hybrid promoter, combining the adh1+ upstream activating sequence (UAS) of fission yeast and the GAL10 core promoter of budding yeast, was constructed to enable high level expression depending on the presence of zinc in culture medium for fission yeast. When the hybrid promoter was cloned on the multicopy plasmid, it was fully induced and repressed within 10 h in the presence and absence of zinc, respectively. The kinetics of induction and reduction were similar to those of the endogenous adh1+ mRNA. In contrast, native adh1+ promoter lost its tight repression in zinc-depleted condition when it was cloned on the plasmid. Because adh1+ UAS-specific transcription factors have not yet been identified, we identified UAS elements involved in zinc sensing by characterizing this hybrid promoter. We also found that the expression level increased by the TATA box mutation, GATAA, in the presence of zinc.
Collapse
Affiliation(s)
- Shinya Takahata
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Takahiro Asanuma
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Japan
| | - Miyuki Mori
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Japan
| | - Yota Murakami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Eide DJ. Transcription factors and transporters in zinc homeostasis: lessons learned from fungi. Crit Rev Biochem Mol Biol 2020; 55:88-110. [PMID: 32192376 DOI: 10.1080/10409238.2020.1742092] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Zinc is an essential nutrient for all organisms because this metal serves as a critical structural or catalytic cofactor for many proteins. These zinc-dependent proteins are abundant in the cytosol as well as within organelles of eukaryotic cells such as the nucleus, mitochondria, endoplasmic reticulum, Golgi, and storage compartments such as the fungal vacuole. Therefore, cells need zinc transporters so that they can efficiently take up the metal and move it around within cells. In addition, because zinc levels in the environment can vary drastically, the activity of many of these transporters and other components of zinc homeostasis is regulated at the level of transcription by zinc-responsive transcription factors. Mechanisms of post-transcriptional control are also important for zinc homeostasis. In this review, the focus will be on our current knowledge of zinc transporters and their regulation by zinc-responsive transcription factors and other mechanisms in fungi because these organisms have served as useful paradigms of zinc homeostasis in all organisms. With this foundation, extension to other organisms will be made where warranted.
Collapse
Affiliation(s)
- David J Eide
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
6
|
Kumari S, Das S. Expression of metallothionein encoding gene bmtA in biofilm-forming marine bacterium Pseudomonas aeruginosa N6P6 and understanding its involvement in Pb(II) resistance and bioremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28763-28774. [PMID: 31376126 DOI: 10.1007/s11356-019-05916-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
The genetic basis and biochemical aspects of heavy metal endurance abilities have been precisely studied in planktonic bacteria; however, in nature, bacteria mostly grows as surface-attached communities called biofilms. A hallmark trait of biofilm is increased resistance to heavy metals compared with the resistance of planktonic bacteria. A proposed mechanism that contributes to this increased resistance is the enhanced expression of metal-resistant genes. bmtA gene coding for metallothionein protein is one such metal-resistant gene found in many bacterial spp. In the present study, lead (Pb) remediation potential of a biofilm-forming marine bacterium Pseudomonas aeruginosa N6P6 was explored. Biofilm-forming marine bacterium P. aeruginosa N6P6 possess bmtA gene and shows resistance towards many heavy metals, i.e., Pb, Cd, Hg, Cr, and Zn. The expression of metallothionein encoding gene bmtA is significantly high in 48-h-old biofilm culture (11. 4 fold) followed by 24-h-old biofilm culture of P. aeruginosa N6P6 (4.7 fold) (P < 0.05). However, in the case of planktonically grown culture of P. aeruginosa N6P6, the highest expression of bmtA gene was observed in 24-h-old culture. The expression of bmtA also increased significantly with increase in Pb concentration up to 800 ppm. CSLM analysis indicated significant reduction in the raw integrated density of biofilm-associated lipids and polysaccharides (PS) of P. aeruginosa N6P6 biofilm grown in Pb (sub-lethal concentration)-amended medium (P < 0.05), whereas no significant reduction was observed in the raw integrated density of EPS-associated protein. The role of bmtA gene as Pb(II)-resistant determinant was characterized by overexpressing the bmtA gene derived from P. aeruginosa N6P6 in Escherichia coli BL21(DE3). ESI-MS and SDS-PAGE analyses validated the presence of 11.5-kDa MT protein isolated from Pb(II)-induced recombinant E. coli BL21(DE3) harboring bmtA gene.
Collapse
Affiliation(s)
- Supriya Kumari
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769 008, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769 008, India.
| |
Collapse
|
7
|
Kan G, Ju Y, Zhou Y, Shi C, Qiao Y, Yang Y, Wang R, Wang X. Cloning and functional characterization of a novel metallothionein gene in Antarctic sea-ice yeast (Rhodotorula mucilaginosa). J Basic Microbiol 2019; 59:879-889. [DOI: 10.1002/jobm.201900240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/07/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai; Weihai China
| | - Yun Ju
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai; Weihai China
| | - Ying Zhou
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai; Weihai China
| | - Cuijuan Shi
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai; Weihai China
| | - Yongping Qiao
- Department of Traumatology; Wendeng Osteopath Hospital; Wendeng China
| | - Yu Yang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai; Weihai China
| | - Ruiqi Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai; Weihai China
| | - Xiaofei Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai; Weihai China
| |
Collapse
|
8
|
Choi S, Hu YM, Corkins ME, Palmer AE, Bird AJ. Zinc transporters belonging to the Cation Diffusion Facilitator (CDF) family have complementary roles in transporting zinc out of the cytosol. PLoS Genet 2018. [PMID: 29529046 PMCID: PMC5864093 DOI: 10.1371/journal.pgen.1007262] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Zinc is an essential trace element that is required for the function of a large number of proteins. As these zinc-binding proteins are found within the cytosol and organelles, all eukaryotes require mechanisms to ensure that zinc is delivered to organelles, even under conditions of zinc deficiency. Although many zinc transporters belonging to the Cation Diffusion Facilitator (CDF) families have well characterized roles in transporting zinc into the lumens of intracellular compartments, relatively little is known about the mechanisms that maintain organelle zinc homeostasis. The fission yeast Schizosaccharomyces pombe is a useful model system to study organelle zinc homeostasis as it expresses three CDF family members that transport zinc out of the cytosol into intracellular compartments: Zhf1, Cis4, and Zrg17. Zhf1 transports zinc into the endoplasmic reticulum, and Cis4 and Zrg17 form a heterodimeric complex that transports zinc into the cis-Golgi. Here we have used the high and low affinity ZapCY zinc-responsive FRET sensors to examine cytosolic zinc levels in yeast mutants that lack each of these CDF proteins. We find that deletion of cis4 or zrg17 leads to higher levels of zinc accumulating in the cytosol under conditions of zinc deficiency, whereas deletion of zhf1 results in zinc accumulating in the cytosol when zinc is not limiting. We also show that the expression of cis4, zrg17, and zhf1 is independent of cellular zinc status. Taken together our results suggest that the Cis4/Zrg17 complex is necessary for zinc transport out of the cytosol under conditions of zinc-deficiency, while Zhf1 plays the dominant role in removing zinc from the cytosol when labile zinc is present. We propose that the properties and/or activities of individual CDF family members are fine-tuned to enable cells to control the flux of zinc out of the cytosol over a broad range of environmental zinc stress.
Collapse
Affiliation(s)
- Sangyong Choi
- Department of Human Nutrition, The Ohio State University, Columbus, Ohio, United States of America
| | - Ya-Mei Hu
- Department of Human Nutrition, The Ohio State University, Columbus, Ohio, United States of America
| | - Mark E Corkins
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Amy E Palmer
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Amanda J Bird
- Department of Human Nutrition, The Ohio State University, Columbus, Ohio, United States of America.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America.,Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
9
|
Gerwien F, Skrahina V, Kasper L, Hube B, Brunke S. Metals in fungal virulence. FEMS Microbiol Rev 2018; 42:4562650. [PMID: 29069482 PMCID: PMC5812535 DOI: 10.1093/femsre/fux050] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/19/2017] [Indexed: 12/25/2022] Open
Abstract
Metals are essential for life, and they play a central role in the struggle between infecting microbes and their hosts. In fact, an important aspect of microbial pathogenesis is the 'nutritional immunity', in which metals are actively restricted (or, in an extended definition of the term, locally enriched) by the host to hinder microbial growth and virulence. Consequently, fungi have evolved often complex regulatory networks, uptake and detoxification systems for essential metals such as iron, zinc, copper, nickel and manganese. These systems often differ fundamentally from their bacterial counterparts, but even within the fungal pathogens we can find common and unique solutions to maintain metal homeostasis. Thus, we here compare the common and species-specific mechanisms used for different metals among different fungal species-focusing on important human pathogens such as Candida albicans, Aspergillus fumigatus or Cryptococcus neoformans, but also looking at model fungi such as Saccharomyces cerevisiae or A. nidulans as well-studied examples for the underlying principles. These direct comparisons of our current knowledge reveal that we have a good understanding how model fungal pathogens take up iron or zinc, but that much is still to learn about other metals and specific adaptations of individual species-not the least to exploit this knowledge for new antifungal strategies.
Collapse
Affiliation(s)
- Franziska Gerwien
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Volha Skrahina
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Lydia Kasper
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Sascha Brunke
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| |
Collapse
|
10
|
Hložková K, Matěnová M, Žáčková P, Strnad H, Hršelová H, Hroudová M, Kotrba P. Characterization of three distinct metallothionein genes of the Ag-hyperaccumulating ectomycorrhizal fungus Amanita strobiliformis. Fungal Biol 2016; 120:358-69. [DOI: 10.1016/j.funbio.2015.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/19/2015] [Accepted: 11/12/2015] [Indexed: 01/07/2023]
|
11
|
Sácký J, Leonhardt T, Kotrba P. Functional analysis of two genes coding for distinct cation diffusion facilitators of the ectomycorrhizal Zn-accumulating fungus Russula atropurpurea. Biometals 2016; 29:349-63. [PMID: 26906559 DOI: 10.1007/s10534-016-9920-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 12/26/2022]
Abstract
Russula atropurpurea can accumulate remarkably high concentrations of Zn in its sporocarps. We have previously demonstrated that 40 % of the intracellular Zn in this species is sequestered by MT-like RaZBP peptides. To see what other mechanisms for the handling of the accumulated Zn are available to R. atropurpurea, we searched its transcriptome for cDNAs coding for transporters of the cation diffusion facilitator (CDF) family. The transcriptome search enabled us to identify RaCDF1 and RaCDF2, which were further subjected to functional studies in metal sensitive Saccharomyces cerevisiae. The expression of RaCDF1 and its translational fusion with green fluorescent protein (GFP) protected the yeasts against Zn and Co, but not Cd or Mn, toxicity and led to increased Zn accumulation in the cells. The GFP fluorescence, observed in the RaCDF1::GFP-expressing yeasts on tonoplasts, indicated that the RaCDF1-mediated Zn and Co tolerance was a result of vacuolar sequestration of the metals. The expression of RaCDF2 supported Zn, but not Mn, tolerance in the yeasts and reduced the cellular uptake of Zn, which is congruent with the proposed idea of the Zn-efflux function of RaCDF2, supported by the localization of GFP-derived fluorescence on the plasma membrane of the yeasts expressing functional RaCDF2::GFP. Contrarily, RaCDF2 increased the sensitivity to Co and Cd in the yeasts and significantly promoted Cd uptake, which suggested that it can act as a bidirectional metal transporter. The notion that RaCDF1 and RaCDF2 are genuine CDF transporters in R. atropurputrea was further reinforced by the fact that the RaCDF-associated metal tolerance and uptake phenotypes were lost upon the replacement of histidyl (in RaCDF1) and aspartyl (in RaCDF2), which are highly conserved in the second transmembrane domain and known to be essential for the function of CDF proteins.
Collapse
Affiliation(s)
- Jan Sácký
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28, Prague, Czech Republic
| | - Tereza Leonhardt
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28, Prague, Czech Republic
| | - Pavel Kotrba
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28, Prague, Czech Republic.
| |
Collapse
|
12
|
Choi S, Bird AJ. Zinc'ing sensibly: controlling zinc homeostasis at the transcriptional level. Metallomics 2014; 6:1198-215. [PMID: 24722954 DOI: 10.1039/c4mt00064a] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Zinc-responsive transcription factors are found in all kingdoms of life and include the transcriptional activators ZntR, SczA, Zap1, bZip19, bZip23, and MTF-1, and transcriptional repressors Zur, AdcR, Loz1, and SmtB. These factors have two defining features; their activity is regulated by zinc and they all play a central role in zinc homeostasis by controlling the expression of genes that directly affect zinc levels or its availability. This review summarizes what is known about the mechanisms by which each of these factors sense changes in intracellular zinc levels and how they control zinc homeostasis through target gene regulation. Other factors that influence zinc ion sensing are also discussed.
Collapse
Affiliation(s)
- Sangyong Choi
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
13
|
Sácký J, Leonhardt T, Borovička J, Gryndler M, Briksí A, Kotrba P. Intracellular sequestration of zinc, cadmium and silver in Hebeloma mesophaeum and characterization of its metallothionein genes. Fungal Genet Biol 2014; 67:3-14. [PMID: 24674773 DOI: 10.1016/j.fgb.2014.03.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 12/19/2022]
Abstract
Sequestration of intracellular heavy metals in eukaryotes involves compartmentalization and binding with cytosolic, cysteine-rich metallothionein (MT) peptides. We examined the roles of these processes in handling of zinc (Zn), cadmium (Cd) and silver (Ag) in sporocarps and a metal-exposed extraradical mycelium of Hebeloma mesophaeum, the Zn-accumulating ectomycorrhizal (EM) species frequently associated with metal disturbed sites. Size exclusion chromatography revealed that the majority of Zn and Cd in the sporocarps and mycelium was contained in a low molecular mass fraction attributable to compartmentalized metal. The staining of hyphal cells with the Zn-specific Zinquin and Cd-specific Leadmium fluorescent tracers labeled Zn and Cd in small, punctuated vesicles and vacuoles, respectively. By contrast, the sporocarp and mycelium Ag was associated with cysteine-rich, 5-kDa peptides. The peptides of the same size were also identified in minor Zn and Cd complexes from the metal-exposed mycelium. We have further isolated and characterized HmMT1, HmMT2 and HmMT3 genes coding for different 5-kDa MTs of H. mesophaeum collected at a lead smelter site. Heterologous complementation assays in metal-sensitive yeast mutants indicated that HmMTs encode functional, metal-specific peptides: only HmMT1 was able to complement sensitivity to Zn; HmMT1 conferred higher tolerance to Cd and Cu than HmMT2 or HmMT3; and both HmMT2 and HmMT3, but not HmMT1, conferred increased tolerance to Ag. The presence of HmMT1 and HmMT3, but not HmMT2, was also confirmed in a H. mesophaeum isolate from an unpolluted site. Gene expression analysis in the extraradical mycelium of this isolate revealed that the transcription of HmMT1 was preferentially induced in the presence of Zn and Cd, while Ag was a stronger inducer of HmMT3. Altogether, these results improve our understanding of the handling of intracellular Zn, Cd and Ag in Hebeloma and represent the first evidence suggesting involvement of MTs in sequestration of Zn in EM fungi.
Collapse
Affiliation(s)
- Jan Sácký
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Tereza Leonhardt
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Jan Borovička
- Nuclear Physics Institute, v.v.i., Academy of Sciences of the Czech Republic, 250 68 Řež 130, Czech Republic
| | - Milan Gryndler
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Aleš Briksí
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Pavel Kotrba
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Technická 3, 166 28 Prague, Czech Republic.
| |
Collapse
|
14
|
Leonhardt T, Sácký J, Šimek P, Šantrůček J, Kotrba P. Metallothionein-like peptides involved in sequestration of Zn in the Zn-accumulating ectomycorrhizal fungus Russula atropurpurea. Metallomics 2014; 6:1693-701. [DOI: 10.1039/c4mt00141a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The first evidence of the existence of gene-encoded Zn-binding peptides that sequester a substantial portion of intracellular Zn in ectomycorrhizal fungi under natural conditions.
Collapse
Affiliation(s)
- Tereza Leonhardt
- Institute of Chemical Technology, Prague
- Department of Biochemistry and Microbiology
- 166 28 Prague, Czech Republic
| | - Jan Sácký
- Institute of Chemical Technology, Prague
- Department of Biochemistry and Microbiology
- 166 28 Prague, Czech Republic
| | - Pavel Šimek
- Institute of Chemical Technology, Prague
- Department of Biochemistry and Microbiology
- 166 28 Prague, Czech Republic
| | - Jiří Šantrůček
- Institute of Chemical Technology, Prague
- Department of Biochemistry and Microbiology
- 166 28 Prague, Czech Republic
| | - Pavel Kotrba
- Institute of Chemical Technology, Prague
- Department of Biochemistry and Microbiology
- 166 28 Prague, Czech Republic
| |
Collapse
|
15
|
Loebus J, Leitenmaier B, Meissner D, Braha B, Krauss GJ, Dobritzsch D, Freisinger E. The major function of a metallothionein from the aquatic fungus Heliscus lugdunensis is cadmium detoxification. J Inorg Biochem 2013; 127:253-60. [DOI: 10.1016/j.jinorgbio.2013.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/31/2013] [Accepted: 06/02/2013] [Indexed: 10/26/2022]
|
16
|
Zinc finger protein Loz1 is required for zinc-responsive regulation of gene expression in fission yeast. Proc Natl Acad Sci U S A 2013; 110:15371-6. [PMID: 24003116 DOI: 10.1073/pnas.1300853110] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In Schizosaccharomyces pombe, alcohol dehydrogenase 1 (Adh1) is an abundant zinc-requiring enzyme that catalyses the conversion of acetaldehyde to ethanol during fermentation. In a zinc-replete cell, adh1 is highly expressed. However, in zinc-limited cells, adh1 gene expression is repressed, and cells induce the expression of an alternative alcohol dehydrogenase encoded by the adh4 gene. In our studies examining this zinc-dependent switch in alcohol dehydrogenase gene expression, we isolated an adh1Δ strain containing a partial loss of function mutation that resulted in higher levels of adh4 transcripts in zinc-replete cells. This mutation also led to the aberrant expression of other genes that are typically regulated by zinc. Using linkage analysis, we have mapped the position of this mutation to a single gene called Loss Of Zinc sensing 1 (loz1). Loz1 is a 55-kDa protein that contains a double C2H2-type zinc finger domain. The mapped mutation that disrupts Loz1 function leads to an arginine to glycine substitution in the second zinc finger domain, suggesting that the double zinc finger domain is important for Loz1 function. We show that loz1Δ cells hyperaccumulate zinc and that Loz1 is required for gene repression in zinc-replete cells. We also have found that Loz1 negatively autoregulates its own expression. We propose that Loz1 is a unique metalloregulatory factor that plays a central role in zinc homeostasis in S. pombe.
Collapse
|
17
|
Srivastava P, Bragança J, Ramanan SR, Kowshik M. Synthesis of silver nanoparticles using haloarchaeal isolate Halococcus salifodinae BK3. Extremophiles 2013; 17:821-31. [PMID: 23884709 DOI: 10.1007/s00792-013-0563-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 07/09/2013] [Indexed: 11/29/2022]
Abstract
Numerous bacteria, fungi, yeasts and viruses have been exploited for biosynthesis of highly structured metal sulfide and metallic nanoparticles. Haloarchaea (salt-loving archaea) of the third domain of life Archaea, on the other hand have not yet been explored for nanoparticle synthesis. In this study, we report the intracellular synthesis of stable, mostly spherical silver nanoparticles (AgNPs) by the haloarchaeal isolate Halococcus salifodinae BK3. The culture on adaptation to silver nitrate exhibited growth kinetics similar to that of the control. NADH-dependent nitrate reductase was involved in silver tolerance, reduction, synthesis of AgNPs, and exhibited metal-dependent increase in enzyme activity. The AgNPs preparation was characterized using UV-visible spectroscopy, XRD, TEM and EDAX. The XRD analysis of the nanoparticles showed the characteristic Bragg peaks of face-centered cubic silver with crystallite domain size of 22 and 12 nm for AgNPs synthesized in NTYE and halophilic nitrate broth (HNB), respectively. The average particle size obtained from TEM analysis was 50.3 and 12 nm for AgNPs synthesized in NTYE and HNB, respectively. This is the first report on the synthesis of silver nanoparticles by haloarchaea.
Collapse
Affiliation(s)
- Pallavee Srivastava
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K K Birla Goa Campus, NH-17B, Zuarinagar, 403 726, Goa, India
| | | | | | | |
Collapse
|
18
|
Nevitt T, Ohrvik H, Thiele DJ. Charting the travels of copper in eukaryotes from yeast to mammals. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1580-93. [PMID: 22387373 DOI: 10.1016/j.bbamcr.2012.02.011] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/08/2012] [Accepted: 02/16/2012] [Indexed: 12/13/2022]
Abstract
Throughout evolution, all organisms have harnessed the redox properties of copper (Cu) and iron (Fe) as a cofactor or structural determinant of proteins that perform critical functions in biology. At its most sobering stance to Earth's biome, Cu biochemistry allows photosynthetic organisms to harness solar energy and convert it into the organic energy that sustains the existence of all nonphotosynthetic life forms. The conversion of organic energy, in the form of nutrients that include carbohydrates, amino acids and fatty acids, is subsequently released during cellular respiration, itself a Cu-dependent process, and stored as ATP that is used to drive a myriad of critical biological processes such as enzyme-catalyzed biosynthetic processes, transport of cargo around cells and across membranes, and protein degradation. The life-supporting properties of Cu incur a significant challenge to cells that must not only exquisitely balance intracellular Cu concentrations, but also chaperone this redox-active metal from its point of cellular entry to its ultimate destination so as to avert the potential for inappropriate biochemical interactions or generation of damaging reactive oxidative species (ROS). In this review we chart the travels of Cu from the extracellular milieu of fungal and mammalian cells, its path within the cytosol as inferred by the proteins and ligands that escort and deliver Cu to intracellular organelles and protein targets, and its journey throughout the body of mammals. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Tracy Nevitt
- Department of Pharmacology, Duke University Medical School, Durham, NC 27710, USA
| | | | | |
Collapse
|
19
|
Xu H, Song P, Gu W, Yang Z. Effects of heavy metals on production of thiol compounds and antioxidant enzymes in Agaricus bisporus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:1685-92. [PMID: 21529942 DOI: 10.1016/j.ecoenv.2011.04.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 12/12/2010] [Accepted: 04/03/2011] [Indexed: 05/13/2023]
Abstract
In a pre-experiment, Agaricus bisporus mycelia grown in PDL medium were found to have a substantial ability to tolerate and accumulate heavy metals. In the study, we investigated changes in the contents of soluble protein and thiol compounds as well as the activities of antioxidant enzymes caused by copper, zinc, lead, and cadmium (nitrate salts) in mycelia of A. bisporus during short-and long-term exposure. Results showed that high-level metal concentrations significantly decrease the contents of soluble protein after long-term exposure, Cu and Zn concentrations significantly increase the thiol compounds levels after long-term exposure, while high-level Cd significantly decrease thiol compounds after long-term exposure. Additionally, SOD activities were significantly increased after long-term exposure to metals, especially to Cd. The CAT activities were enhanced after long-term exposure to low-level Cu and high-level Zn, and enhanced after short-and long-term exposure to high-level Pb. The POD activities were significantly increased after long-term exposure to metals, and increased after short-term exposure to Cd and high-level Pb.
Collapse
Affiliation(s)
- Heng Xu
- Key Laboratory for Bio-resources and Eco-environment of Education Ministry, College of Life Science, Sichuan University, Chengdu 610064, China
| | | | | | | |
Collapse
|
20
|
Metallothionein protein evolution: a miniassay. J Biol Inorg Chem 2011; 16:977-89. [PMID: 21633816 DOI: 10.1007/s00775-011-0798-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/10/2011] [Indexed: 12/23/2022]
Abstract
Metallothionein (MT) evolution is one of the most obscure yet fascinating aspects of the study of these atypical metal-binding peptides. The different members of the extremely heterogeneous MT protein superfamily probably evolved through a web of duplication, functional differentiation, and/or convergence events leading to the current scenario, which is particularly hard to interpret in terms of molecular evolution. Difficulties in drawing straight evolutionary relationships are reflected in the lack of definite MT classification criteria. Presently, MTs are categorized either according to a pure taxonomic clustering or depending on their metal binding preferences and specificities. Extremely well documented MT revisions were recently published. But beyond classic approaches, this review of MT protein evolution will bring together new aspects that have seldom been discussed before. Hence, the emergence of life on our planet, since metal ion utilization is accepted to be at the root of the emergence of living organisms, and global trends that underlie structural and functional MT diversification, will be presented. Major efforts are currently being devoted to identifying rules for function-constrained MT evolution that may be applied to different groups of organisms.
Collapse
|
21
|
Wysocki R, Tamás MJ. How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol Rev 2011; 34:925-51. [PMID: 20374295 DOI: 10.1111/j.1574-6976.2010.00217.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Toxic metals and metalloids are widespread in nature and can locally reach fairly high concentrations. To ensure cellular protection and survival in such environments, all organisms possess systems to evade toxicity and acquire tolerance. This review provides an overview of the molecular mechanisms that contribute to metal toxicity, detoxification and tolerance acquisition in budding yeast Saccharomyces cerevisiae. We mainly focus on the metals/metalloids arsenic, cadmium, antimony, mercury, chromium and selenium, and emphasize recent findings on sensing and signalling mechanisms and on the regulation of tolerance and detoxification systems that safeguard cellular and genetic integrity.
Collapse
Affiliation(s)
- Robert Wysocki
- Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | | |
Collapse
|
22
|
Blindauer CA, Leszczyszyn OI. Metallothioneins: unparalleled diversity in structures and functions for metal ion homeostasis and more. Nat Prod Rep 2010; 27:720-41. [PMID: 20442962 DOI: 10.1039/b906685n] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Metallothioneins have been the subject of intense study for five decades, and have greatly inspired the development of bio-analytical methodologies including multi-dimensional and multi-nuclear NMR.With further advancements in molecular biology, protein science, and instrumental techniques, recent years have seen a renaissance of research into metallothioneins. The current report focuses on in vitro studies of so-called class II metallothioneins from a variety of phyla, highlighting the diversity of metallothioneins in terms of structure, biological functions, and molecular functions such as metal ion specificity, thermodynamic stabilities, and kinetic reactivity. We are still far from being able to predict any of these properties, and further efforts will be required to generate the knowledge that will enable a better understanding of what governs the biological and chemical properties of these unusual and intriguing small proteins.
Collapse
|
23
|
Pancaldi V, Schubert F, Bähler J. Meta-analysis of genome regulation and expression variability across hundreds of environmental and genetic perturbations in fission yeast. ACTA ACUST UNITED AC 2010; 6:543-52. [DOI: 10.1039/b913876p] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Comments to metallothionein as an anti-inflammatory mediator. Mediators Inflamm 2009; 2009:426214. [PMID: 19829743 PMCID: PMC2760952 DOI: 10.1155/2009/426214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 09/07/2009] [Indexed: 11/21/2022] Open
|
25
|
Dolderer B, Hartmann HJ, Weser U. Metallothioneins in Yeast and Fungi. METALLOTHIONEINS AND RELATED CHELATORS 2009. [DOI: 10.1039/9781847559531-00083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Small cysteine-rich proteins sharing most if not all of the general features used to define the metallothionein (MT) superfamily are found in yeast and fungi. Unlike MTs from mammalian sources, most of the known yeast and fungal MTs are Cu(I) rather than Zn(II) or Cd(II) binding proteins. The sequences of fungal MTs reported so far are quite diverse, in such a way that fungal MTs are assigned to six different families. Family 8 contains the MTs with the highest similarity to the N-terminal domains of mammalian MTs. The best characterized member of this family is isolated from the ascomycete Neurospora crassa. It represents a copper-induced polypeptide of only about 25 amino acid residues and harbors a single cluster made up of six Cu(I) that are bound to its seven cysteine residues. The MTs assigned to families 9 and 10 are MT-1 and MT-2 found in the human pathogenic yeast Candida glabrata. The regulation of these proteins employing a copper sensitive transcription factor shares the same principle as were described for the MTs found in Saccharomyces cerevisiae, Cu-MT and Crs5, that are assigned to families 12 and 13. S. cerevisiae Cu-MT is the only MT, of which the structure including its Cu(I)8-thiolate core has been revealed. It should be emphasized that this is the largest known Cu cluster in biological systems. Besides the presentation of these well studied aspects, the open questions of Cd(II) and Zn(II) binding in yeasts and fungi are addressed and future directions of the MT research are discussed.
Collapse
Affiliation(s)
- Benedikt Dolderer
- Anorganische-Biochemie, Interfakultäres Institut für Biochemie, University of Tübingen Hoppe-Seyler-Str. 4 D-72076 Tübingen Germany
| | - Hans-Jürgen Hartmann
- Anorganische-Biochemie, Interfakultäres Institut für Biochemie, University of Tübingen Hoppe-Seyler-Str. 4 D-72076 Tübingen Germany
| | - Ulrich Weser
- Anorganische-Biochemie, Interfakultäres Institut für Biochemie, University of Tübingen Hoppe-Seyler-Str. 4 D-72076 Tübingen Germany
- Centro di Risonanze Magnetiche, University of Florence Via Luigi Sacconi 6 I-50019 Sesto Fiorentino (Firenze) Italy
| |
Collapse
|
26
|
Guo WJ, Meetam M, Goldsbrough PB. Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. PLANT PHYSIOLOGY 2008; 146:1697-706. [PMID: 18287486 PMCID: PMC2287344 DOI: 10.1104/pp.108.115782] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 02/11/2008] [Indexed: 05/20/2023]
Abstract
Metallothioneins (MTs) are small cysteine-rich proteins found in various eukaryotes. Plant MTs are classified into four types based on the arrangement of cysteine residues. To determine whether all four types of plant MTs function as metal chelators, six Arabidopsis (Arabidopsis thaliana) MTs (MT1a, MT2a, MT2b, MT3, MT4a, and MT4b) were expressed in the copper (Cu)- and zinc (Zn)-sensitive yeast mutants, Deltacup1 and Deltazrc1 Deltacot1, respectively. All four types of Arabidopsis MTs provided similar levels of Cu tolerance and accumulation to the Deltacup1 mutant. The type-4 MTs (MT4a and MT4b) conferred greater Zn tolerance and higher accumulation of Zn than other MTs to the Deltazrc1 Deltacot1 mutant. To examine the functions of MTs in plants, we studied Arabidopsis plants that lack MT1a and MT2b, two MTs that are expressed in phloem. The lack of MT1a, but not MT2b, led to a 30% decrease in Cu accumulation in roots of plants exposed to 30 mum CuSO(4). Ectopic expression of MT1a RNA in the mt1a-2 mt2b-1 mutant restored Cu accumulation in roots. The mt1a-2 mt2b-1 mutant had normal metal tolerance. However, when MT deficiency was combined with phytochelatin deficiency, growth of the mt1a-2 mt2b-1 cad1-3 triple mutant was more sensitive to Cu and cadmium compared to the cad1-3 mutant. Together these results provide direct evidence for functional contributions of MTs to plant metal homeostasis. MT1a, in particular, plays a role in Cu homeostasis in the roots under elevated Cu. Moreover, MTs and phytochelatins function cooperatively to protect plants from Cu and cadmium toxicity.
Collapse
Affiliation(s)
- Woei-Jiun Guo
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
27
|
Abstract
A component of the cellular response to zinc deficiency operates via control of transcript abundance. Therefore, microarray analysis was employed to identify Schizosaccharomyces pombe genes whose mRNA levels are regulated by intracellular zinc status. A set of 57 genes whose mRNA levels were substantially reduced in response to zinc deficiency was identified, while the mRNA levels of 63 genes were increased by this condition. In order to investigate the mechanisms that control these responses, a genetic screen was employed to identify mutants with defective zinc-responsive gene expression. Two strains (II-1 and V7) that were identified by this screen harbor mutations that are linked to zrt1+, which encodes a putative Zrt/IRT-like protein (ZIP) zinc uptake transporter. Importantly, zrt1+ mRNA levels are increased in response to zinc deprivation, and cells lacking functional Zrt1 are highly impaired in their ability to proliferate at limiting zinc concentrations. Furthermore, zrt1 null cells were found to have severely reduced zinc contents, indicating that Zrt1 functions as a key regulator of intracellular zinc levels in fission yeast. The deletion of fet4+, another zinc-responsive gene encoding a putative metal ion transporter, exacerbated the phenotypes associated with the loss of Zrt1, suggesting that Fet4 also plays a role in zinc uptake under limiting conditions.
Collapse
|
28
|
Fang Y, Sugiura R, Ma Y, Yada-Matsushima T, Umeno H, Kuno T. Cation diffusion facilitator Cis4 is implicated in Golgi membrane trafficking via regulating zinc homeostasis in fission yeast. Mol Biol Cell 2008; 19:1295-303. [PMID: 18199682 DOI: 10.1091/mbc.e07-08-0805] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We screened for mutations that confer sensitivities to the calcineurin inhibitor FK506 and to a high concentration of MgCl(2) and isolated the cis4-1 mutant, an allele of the gene encoding a cation diffusion facilitator (CDF) protein that is structurally related to zinc transporters. Consistently, the addition of extracellular Zn(2+) suppressed the phenotypes of the cis4 mutant cells. The cis4 mutants and the mutant cells of another CDF-encoding gene SPBC16E9.14c (we named zrg17(+)) shared common and nonadditive zinc-suppressible phenotypes, and Cis4 and Zrg17 physically interacted. Cis4 localized at the cis-Golgi, suggesting that Cis4 is responsible for Zn(2+) uptake to the cis-Golgi. The cis4 mutant cells showed phenotypes such as weak cell wall and decreased acid phosphatase secretion that are thought to be resulting from impaired membrane trafficking. In addition, the cis4 deletion cells showed synthetic growth defects with all the four membrane-trafficking mutants tested, namely ypt3-i5, ryh1-i6, gdi1-i11, and apm1-1. Interestingly, the addition of extracellular Zn(2+) significantly suppressed the phenotypes of the ypt3-i5 and apm1-1 mutant cells. These results suggest that Cis4 forms a heteromeric functional complex with Zrg17 and that Cis4 is implicated in Golgi membrane trafficking through the regulation of zinc homeostasis in fission yeast.
Collapse
Affiliation(s)
- Yue Fang
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
In fungal cells, transcriptional regulatory mechanisms play a central role in both the homeostatic regulation of the essential metals iron, copper and zinc and in the detoxification of heavy metal ions such as cadmium. Fungi detect changes in metal ion levels using unique metallo-regulatory factors whose activity is responsive to the cellular metal ion status. New studies have revealed that these factors not only regulate the expression of genes required for metal ion acquisition, storage or detoxification but also globally remodel metabolism to conserve metal ions or protect against metal toxicity. This review focuses on the mechanisms metallo-regulators use to up- and down-regulate gene expression.
Collapse
Affiliation(s)
- Amanda J Bird
- Division of Hematology, Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| |
Collapse
|
30
|
Tarhan C, Pekmez M, Karaer S, Arda N, Sarikaya AT. The effect of superoxide dismutase deficiency on zinc toxicity inSchizosaccharomyces pombe. J Basic Microbiol 2007; 47:506-12. [DOI: 10.1002/jobm.200700220] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Blindauer CA. Metallothioneins with unusual residues: histidines as modulators of zinc affinity and reactivity. J Inorg Biochem 2007; 102:507-21. [PMID: 18171588 DOI: 10.1016/j.jinorgbio.2007.10.032] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 10/19/2007] [Accepted: 10/29/2007] [Indexed: 02/09/2023]
Abstract
For many years, paradigms regarding metallothioneins comprised the exclusive metal coordination by thiolates from cysteine residues and the absence of aromatic residues. As more sequence and in vitro data on metallothioneins, in particular from non-vertebrate organisms, has become available, both the occurrence of and metal coordination by histidine residues in metallothioneins is emerging as a more frequent feature than expected. We discuss the general implications of histidines versus cysteines in zinc binding sites, and review some recent results from literature and our own lab. We conclude that histidines can stabilise metallothionein clusters by reducing the overall charge, offering the ability to help with structural organisation by supplying H-bond donor and acceptor properties, reducing the likelihood for disulfide bond formation, whilst maintaining a high affinity towards metal ions, in particular the borderline zinc ion.
Collapse
|
32
|
Rustici G, van Bakel H, Lackner DH, Holstege FC, Wijmenga C, Bähler J, Brazma A. Global transcriptional responses of fission and budding yeast to changes in copper and iron levels: a comparative study. Genome Biol 2007; 8:R73. [PMID: 17477863 PMCID: PMC1929147 DOI: 10.1186/gb-2007-8-5-r73] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 01/31/2007] [Accepted: 05/03/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent studies in comparative genomics demonstrate that interspecies comparison represents a powerful tool for identifying both conserved and specialized biologic processes across large evolutionary distances. All cells must adjust to environmental fluctuations in metal levels, because levels that are too low or too high can be detrimental. Here we explore the conservation of metal homoeostasis in two distantly related yeasts. RESULTS We examined genome-wide gene expression responses to changing copper and iron levels in budding and fission yeast using DNA microarrays. The comparison reveals conservation of only a small core set of genes, defining the copper and iron regulons, with a larger number of additional genes being specific for each species. Novel regulatory targets were identified in Schizosaccharomyces pombe for Cuf1p (pex7 and SPAC3G6.05) and Fep1p (srx1, sib1, sib2, rds1, isu1, SPBC27B12.03c, SPAC1F8.02c, and SPBC947.05c). We also present evidence refuting a direct role of Cuf1p in the repression of genes involved in iron uptake. Remarkable differences were detected in responses of the two yeasts to excess copper, probably reflecting evolutionary adaptation to different environments. CONCLUSION The considerable evolutionary distance between budding and fission yeast resulted in substantial diversion in the regulation of copper and iron homeostasis. Despite these differences, the conserved regulation of a core set of genes involved in the uptake of these metals provides valuable clues to key features of metal metabolism.
Collapse
Affiliation(s)
- Gabriella Rustici
- EMBL Outstation-Hinxton, European Bioinformatics Institute, Cambridge CB10 1SD, UK
- Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Harm van Bakel
- Complex Genetics Group, UMC Utrecht, Department of Biomedical Genetics, 3584 CG Utrecht, The Netherlands
- Genomics Laboratory, UMC Utrecht, Department for Physiological Chemistry, 3584 CG Utrecht, The Netherlands
| | - Daniel H Lackner
- Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Frank C Holstege
- Genomics Laboratory, UMC Utrecht, Department for Physiological Chemistry, 3584 CG Utrecht, The Netherlands
| | - Cisca Wijmenga
- Complex Genetics Group, UMC Utrecht, Department of Biomedical Genetics, 3584 CG Utrecht, The Netherlands
- Genetics Department, University Medical Center Groningen, Groningen, The Netherlands
| | - Jürg Bähler
- Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Alvis Brazma
- EMBL Outstation-Hinxton, European Bioinformatics Institute, Cambridge CB10 1SD, UK
| |
Collapse
|
33
|
Bergero R, Lanfranco L, Ghignone S, Bonfante P. Enhanced activity of the GmarMT1 promoter from the mycorrhizal fungus Gigaspora margarita at limited carbon supply. Fungal Genet Biol 2007; 44:877-85. [PMID: 17482490 DOI: 10.1016/j.fgb.2007.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 01/18/2007] [Accepted: 01/22/2007] [Indexed: 10/23/2022]
Abstract
Metallothioneins are low molecular weight polypeptides, present in most eukaryotic phyla, with role in metal homeostasis and detoxification. We previously reported the identification and the characterization of a metallothionein gene (GmarMT1) from the arbuscular mycorrhizal fungus Gigaspora margarita. Here, we have used real-time quantitative RT-PCR to show that GmarMT1 expression was turned off during the symbiotic fungal growth in the hexose-rich mycorrhizal apoplast, whereas transcripts were abundant during all other fungal growth stages, when products of lipid breakdown and the glyoxylate cycle feed carbohydrate-consuming pathways. In support of a nutritional regulation of GmarMT1 expression, we show that transcriptional activity of GmarMT1 promoter in yeast was strongly induced by glucose starvation (up to 20 times the basal level). We speculate that GmarMT1-encoded protein, with its proved metal binding ability, could regulate the homeostasis of zinc, a fundamental cofactor involved in C metabolism regulation and glucose repression.
Collapse
Affiliation(s)
- Roberta Bergero
- Crop and Soil Research Group, Scottish Agricultural College, King's Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| | | | | | | |
Collapse
|
34
|
Pagani MA, Casamayor A, Serrano R, Atrian S, Ariño J. Disruption of iron homeostasis in Saccharomyces cerevisiae by high zinc levels: a genome-wide study. Mol Microbiol 2007; 65:521-37. [PMID: 17630978 DOI: 10.1111/j.1365-2958.2007.05807.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Zinc is an essential metal that, when in excess, can be deleterious to the cell. Therefore, homeostatic mechanisms for this cation must be finely tuned. To better understand the response of yeast in front of an excess of zinc, we screened a systematic deletion mutant library for altered growth in the presence of 6 mM zinc. Eighty-nine mutants exhibited increased zinc sensitivity, including many genes involved in vacuolar assembling and biogenesis. Interestingly, a mutant lacking the Aft1 transcription factor, required for the transcriptional response to iron starvation, was found to be highly sensitive to zinc. Genome-wide transcriptional profiling revealed that exposure to 5 mM ZnCl(2) results in rapid increase in the expression of numerous chaperones required for proper protein folding or targeting to vacuole and mitochondria, as well as genes involved in stress response (mainly oxidative), sulphur metabolism and some components of the iron regulon. The effect of the lack of Aft1 both in the absence and in the presence of zinc overload was also investigated. Exposure to high zinc generated reactive oxygen species and markedly decreased glutathione content. Interestingly, zinc excess results in decreased intracellular iron content and aconitase and cytochrome c activities in stationary-phase cultures. These findings suggest that high zinc levels may alter the assembly and/or function of iron-sulphur-containing proteins, as well as the biosynthesis of haem groups, thus establishing a link between zinc, iron and sulphur metabolism.
Collapse
Affiliation(s)
- M Ayelen Pagani
- Departament de Genètica, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
35
|
Guimarães-Soares L, Pascoal C, Cássio F. Effects of heavy metals on the production of thiol compounds by the aquatic fungi Fontanospora fusiramosa and Flagellospora curta. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2007; 66:36-43. [PMID: 16321439 DOI: 10.1016/j.ecoenv.2005.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 08/26/2005] [Accepted: 10/11/2005] [Indexed: 05/05/2023]
Abstract
The aquatic hyphomycetes Fontanospora fusiramosa and Flagellospora curta isolated from a clean and a metal-contaminated site, respectively, were tested for the production of thiol compounds when exposed to Cd, Zn, and Cu for short- and long-term periods. After 8 days, control cultures of F. curta had a total thiol (T-SH) concentration in mycelia of 3.46 +/- 0.37 micromol g(-1) dry mass, which was 2.4 times greater than that of F. fusiramosa. In both species, nonprotein (NP-SH) and protein-bound (PB-SH) thiols accounted for 30% and 70% of T-SH, respectively. F. curta increased the production of thiol compounds, namely NP-SH, more rapidly than F. fusiramosa when exposed to Cd or Zn. The greater increases in either NP-SH or PB-SH occurred in F. fusiramosa after long-term exposure to all metals; in this case, the increases of PB-SH overwhelmed those of NP-SH. Long-term exposure to metals also increased the mycelial protein concentration.
Collapse
Affiliation(s)
- Luís Guimarães-Soares
- Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | |
Collapse
|
36
|
Guimarães-Soares L, Felícia H, João Bebianno M, Cássio F. Metal-binding proteins and peptides in the aquatic fungi Fontanospora fusiramosa and Flagellospora curta exposed to severe metal stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2006; 372:148-56. [PMID: 17083969 DOI: 10.1016/j.scitotenv.2006.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 08/06/2006] [Accepted: 09/15/2006] [Indexed: 05/12/2023]
Abstract
The production of thiol-containing proteins/peptides and its role in metal-binding was examined in the aquatic hyphomycetes Fontanospora fusiramosa and Flagellospora curta exposed to Cu, Cd, or Zn at concentrations inhibiting the biomass production in 80%. Heat-treated cell-free extracts were separated by size-exclusion chromatography and the thiol and metal content in the fractions was determined. F. curta, the species tolerant to metals, showed higher absolute levels of thiol compounds, which bound higher amounts of Cu and Cd than F. fusiramosa. Peptides with very low molecular weight (<9 kDa), most likely glutathione and phytochelatins, were the major Cu- and Zn-binding components in both species of aquatic hyphomycetes. In most cases, proteins with high molecular weight (>26 kDa) were induced by metal ions and they were the major Cd-binding component in both species. Proteins with characteristics of metallothioneins were also induced by exposure to metals in both species, but they showed a minor role in metal-binding, suggesting they might have other functions in fungal cells.
Collapse
Affiliation(s)
- Luís Guimarães-Soares
- Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | | | |
Collapse
|
37
|
Pagani A, Villarreal L, Capdevila M, Atrian S. The Saccharomyces cerevisiae Crs5 Metallothionein metal-binding abilities and its role in the response to zinc overload. Mol Microbiol 2006; 63:256-69. [PMID: 17163970 DOI: 10.1111/j.1365-2958.2006.05510.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Crs5 is a Saccharomyces cerevisiae Metallothionein (MT), non-homologous to the paradigmatic Cu-thionein Cup1. Although considered a secondary copper-resistance agent, we show here that it determines survival under zinc overload in a CUP1-null background. Its overexpression prevents the deleterious effects exhibited by CUP1-CRS5-null cells when exposed to combined Zn/Cu, as it does the mouse MT1 Zn-thionein, but not Cup1. The detailed characterization of Crs5 in vivo and in vitro Zn(II)-, Cd(II)- and Cu(I)-binding abilities fully supports its resemblance to mammalian MTs. Hence, Crs5 exhibits a good divalent metal-binding ability, yielding homometallic, highly chiral and stable Zn and Cd complexes when expressed in media enriched with these metal ions. In Cu-supplemented cultures, heterometallic Zn,Cu complexes are recovered, unless aeration is kept to a minimum. These features define a Crs5 dual metal-binding behaviour that is significantly closer to Zn-thioneins than to Cu-thioneins. Protein sequence similarities fully support these findings. Overall, a Crs5 function in global metal cell homeostasis, based on its Zn-binding features, is glimpsed. The comparative evaluation of Crs5 in the framework of MT functional differentiation and evolution allows its consideration as a representative of the primeval eukaryotic forms that progressively evolved to give rise to the Zn-thionein lineage.
Collapse
Affiliation(s)
- Ayelen Pagani
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
38
|
Tuszynska S, Davies D, Turnau K, Ashford AE. Changes in vacuolar and mitochondrial motility and tubularity in response to zinc in a Paxillus involutus isolate from a zinc-rich soil. Fungal Genet Biol 2006; 43:155-63. [PMID: 16504552 DOI: 10.1016/j.fgb.2005.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 11/04/2005] [Accepted: 11/10/2005] [Indexed: 11/26/2022]
Abstract
Short-term effects of zinc on organelles were investigated in Paxillus involutus from a zinc-rich soil. Vacuoles were labelled with Oregon Green 488 carboxylic acid and mitochondria with DiOC(6)(3). Hyphae were treated with ZnSO(4) in the range 1-100 mM and examined by fluorescence microscopy. ZnSO(4) caused loss of tubularity and motility in both organelles depending on concentration and exposure time. Tubular vacuoles thickened after 15 min in 5 mM ZnSO(4) and became spherical at higher concentrations. Mitochondria fragmented after 30 min in 25 mM ZnSO(4). Vacuoles recovered their tubularity after transfer to reverse osmosis water depending on ZnSO(4) concentration and exposure time during treatment. Mitochondria recovered their tubularity with time, both with and without removal of the ZnSO(4) solution. K(2)SO(4) (as control) had no effect on vacuoles but disrupted mitochondria, the effect also depending on concentration and duration of exposure.
Collapse
Affiliation(s)
- Sandra Tuszynska
- School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, Australia.
| | | | | | | |
Collapse
|
39
|
Hanikenne M, Krämer U, Demoulin V, Baurain D. A comparative inventory of metal transporters in the green alga Chlamydomonas reinhardtii and the red alga Cyanidioschizon merolae. PLANT PHYSIOLOGY 2005; 137:428-46. [PMID: 15710683 PMCID: PMC1065346 DOI: 10.1104/pp.104.054189] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 11/16/2004] [Accepted: 11/18/2004] [Indexed: 05/20/2023]
Affiliation(s)
- Marc Hanikenne
- Metal Homeostasis Group, Max Planck Institute for Plant Molecular Physiology, 14476 Golm, Germany.
| | | | | | | |
Collapse
|
40
|
|
41
|
Borrelly GPM, Rondet SAM, Tottey S, Robinson NJ. Chimeras of P-type ATPases and their transcriptional regulators: contributions of a cytosolic amino-terminal domain to metal specificity. Mol Microbiol 2004; 53:217-27. [PMID: 15225316 DOI: 10.1111/j.1365-2958.2004.04106.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Zn(2+)-responsive repressor ZiaR and Co(2+)-responsive activator CoaR modulate production of P(1)-type Zn(2+)- (ZiaA) and Co(2+)- (CoaT) ATPases respectively. What dictates metal selectivity? We show that Delta ziaDeltacoa double mutants had similar Zn(2+) resistance to Deltazia single mutants and similar Co(2+) resistance to Deltacoa single mutants. Controlling either ziaA or coaT with opposing regulators restored no resistance to metals sensed by the regulators, but coincident replacement of the deduced cytosolic amino-terminal domain CoaT(N) with ZiaA(N) (in ziaR-(p) ziaA-ziaA(N)coaT) conferred Zn(2+) resistance to DeltaziaDeltacoa, Zn(2+) content was lowered and residual Co(2+) resistance lost. Metal-dependent molar absorptivity under anaerobic conditions revealed that purified ZiaA(N) binds Co(2+) in a pseudotetrahedral two-thiol site, and Co(2+) was displaced by Zn(2+). Thus, the amino-terminal domain of ZiaA inverts the metals exported by zinc-regulated CoaT from Co(2+) to Zn(2+), and this correlates simplistically with metal-binding preferences; K(ZiaAN) Zn(2+) tighter than Co(2+). However, Zn(2+) did not bleach Cu(+)-ZiaA(N), and only Cu(+) co-migrated with ZiaA(N) after competitive binding versus Zn(2+). Bacterial two-hybrid assays that detected interaction between the Cu(+)-metallochaperone Atx1 and the amino-terminal domain of Cu(+)-transporter PacS(N) detected no interaction with the analogous, deduced, ferredoxin-fold subdomain of ZiaA(N). Provided that there is no freely exchangeable cytosolic Cu(+), restricted contact with the Cu(+)-metallochaperone can impose a barrier impairing the formation of otherwise favoured Cu(+)-ZiaA(N) complexes.
Collapse
Affiliation(s)
- Gilles P M Borrelly
- Cell and Molecular Biosciences, Medical School, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | |
Collapse
|
42
|
Rutherford JC, Bird AJ. Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. EUKARYOTIC CELL 2004; 3:1-13. [PMID: 14871932 PMCID: PMC329510 DOI: 10.1128/ec.3.1.1-13.2004] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Julian C Rutherford
- Division of Hematology, Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA
| | | |
Collapse
|
43
|
Dräger DB, Desbrosses-Fonrouge AG, Krach C, Chardonnens AN, Meyer RC, Saumitou-Laprade P, Krämer U. Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:425-39. [PMID: 15255871 DOI: 10.1111/j.1365-313x.2004.02143.x] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The zinc hyperaccumulator plant Arabidopsis halleri is able to naturally accumulate 100-fold higher leaf zinc concentrations when compared with non-accumulator species such as the closely related A. lyrata and A. thaliana, without showing toxicity symptoms. A novel member of the cation diffusion facilitator (CDF) protein family, an A. halleri metal tolerance protein 1 (MTP1), and the homologous A. thaliana Zn transporter (ZAT)/AtMTP1 metal-specifically complement the zinc hypersensitivity of a Saccharomyces cerevisiae zrc1 cot1 mutant strain. A fusion of the AhMTP1 protein to green fluorescent protein (GFP) localizes to the vacuolar membrane of A. thaliana protoplasts. When compared with A. lyrata and A. thaliana, the total MTP1 transcript levels are substantially higher in the leaves and upregulated upon exposure to high zinc concentrations in the roots of A. halleri. The high MTP1 transcript levels in A. halleri can be primarily attributed to two genetically unlinked genomic AhMTP1 gene copies. The two corresponding loci co-segregate with zinc tolerance in the back-cross 1 generation of a cross between the zinc-tolerant species A. halleri and the zinc-sensitive species A. lyrata. In contrast, a third MTP1 gene in the genome of A. halleri generates only minor amounts of MTP1 transcripts and does not co-segregate with zinc tolerance. Our data suggests that zinc tolerance in A. halleri involves an expanded copy number of an ancestral MTP1 gene, encoding functional proteins that mediate the detoxification of zinc in the cell vacuole. At the transcript level, MTP1 gene copies of A. halleri are regulated differentially and in response to changes in zinc supply.
Collapse
Affiliation(s)
- Dörthe B Dräger
- Max Planck Institute of Molecular Plant Physiology, D-14424 Potsdam, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Ellis CD, Wang F, MacDiarmid CW, Clark S, Lyons T, Eide DJ. Zinc and the Msc2 zinc transporter protein are required for endoplasmic reticulum function. ACTA ACUST UNITED AC 2004; 166:325-35. [PMID: 15277543 PMCID: PMC2172251 DOI: 10.1083/jcb.200401157] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this report, we show that zinc is required for endoplasmic reticulum function in Saccharomyces cerevisiae. Zinc deficiency in this yeast induces the unfolded protein response (UPR), a system normally activated by unfolded ER proteins. Msc2, a member of the cation diffusion facilitator (CDF) family of metal ion transporters, was previously implicated in zinc homeostasis. Our results indicate that Msc2 is one route of zinc entry into the ER. Msc2 localizes to the ER when expressed at normal levels. UPR induction in low zinc is exacerbated in an msc2 mutant. Genetic and biochemical evidence indicates that this UPR induction is due to genuine ER dysfunction. Notably, we found that ER-associated protein degradation is defective in zinc-limited msc2 mutants. We also show that the vacuolar CDF proteins Zrc1 and Cot1 are other pathways of ER zinc acquisition. Finally, zinc deficiency up-regulates the mammalian ER stress response indicating a conserved requirement for zinc in ER function among eukaryotes.
Collapse
Affiliation(s)
- Charissa D Ellis
- Department of Biochemistry, University of Missouri, Columbia 65211, USA
| | | | | | | | | | | |
Collapse
|
45
|
Laliberté J, Whitson LJ, Beaudoin J, Holloway SP, Hart PJ, Labbé S. The Schizosaccharomyces pombe Pccs protein functions in both copper trafficking and metal detoxification pathways. J Biol Chem 2004; 279:28744-55. [PMID: 15107426 DOI: 10.1074/jbc.m403426200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Because copper is both an essential cofactor and a toxic metal, different strategies have evolved to appropriately regulate its homeostasis as a function of changing environmental copper levels. In this report, we describe a metallochaperone-like protein from Schizosaccharomyces pombe that maintains the delicate balance between essentiality and toxicity. This protein, designated Pccs, has four distinct domains. SOD activity assays reveal that the first three domains of Pccs are necessary and sufficient to deliver copper to its target, copper-zinc superoxide dismutase (SOD1). Pccs domain IV, which is absent in Saccharomyces cerevisiae CCS1, contains seventeen cysteine residues, eight pairs of which are in a potential metal coordination arrangement, Cys-Cys. We show that S. cerevisiae ace1Delta mutant cells expressing the full-length Pccs molecule are resistant to copper toxicity. Furthermore, we demonstrate that the Pccs domain IV enhances copper resistance of the ace1Delta cells by an order of magnitude compared with that observed in the same strain expressing a pccs+ I-II-III allele encoding Pccs domains I-III. We consistently found that S. pombe cells disrupted in the pccs+ gene exhibit an increased sensitivity to copper and cadmium. Furthermore, we demonstrate that overexpression of pccs+ is associated with increased copper resistance in fission yeast cells. Taken together, our findings suggest that Pccs activates apo-SOD1 under copper-limiting conditions through the use of its first three domains and protects cells against metal ion toxicity via its fourth domain.
Collapse
Affiliation(s)
- Julie Laliberté
- Département de Biochimie, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Solovyov A, Gilbert HF. Zinc-dependent dimerization of the folding catalyst, protein disulfide isomerase. Protein Sci 2004; 13:1902-7. [PMID: 15169950 PMCID: PMC2279941 DOI: 10.1110/ps.04716104] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Protein disulfide isomerase (PDI), an essential folding catalyst and chaperone of the endoplasmic reticulum (ER), has four structural domains (a-b-b'-a'-) of approximately equal size. Each domain has sequence or structural homology with thioredoxin. Sedimentation equilibrium and velocity experiments show that PDI is an elongated monomer (axial ratio 5.7), suggesting that the four thioredoxin domains are extended. In the presence of physiological levels (<1 mM) of Zn(2+) and other thiophilic divalent cations such as Cd(2+) and Hg(2+), PDI forms a stable dimer that aggregates into much larger oligomeric forms with time. The dimer is also elongated (axial ratio 7.1). Oligomerization involves the interaction of Zn(2+) with the cysteines of PDI. PDI has active sites in the N-terminal (a) and C-terminal (a')thioredoxin domains, each with two cysteines (CGHC). Two other cysteines are found in one of the internal domains (b'). Cysteine to serine mutations show that Zn(2+)-dependent dimerization occurs predominantly by bridging an active site cysteine from either one of the active sites with one of the cysteines in the internal domain (b'). The dimer incorporates two atoms of Zn(2+) and exhibits 50% of the isomerase activity of PDI. At longer times and higher PDI concentrations, the dimer forms oligomers and aggregates of high molecular weight (>600 kDa). Because of a very high concentration of PDI in the ER, its interaction with divalent ions could play a role in regulating the effective concentration of these metal ions, protecting against metal toxicity, or affecting the activity of other (ER) proteins that use Zn(2+) as a cofactor.
Collapse
Affiliation(s)
- Anton Solovyov
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
47
|
Iwaki T, Goa T, Tanaka N, Takegawa K. Characterization of Schizosaccharomyces pombe mutants defective in vacuolar acidification and protein sorting. Mol Genet Genomics 2004; 271:197-207. [PMID: 14735354 DOI: 10.1007/s00438-003-0971-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Accepted: 12/12/2003] [Indexed: 10/26/2022]
Abstract
The vacuolar H+-ATPases (V-ATPases) are ATP-dependent proton pumps responsible for acidification of intracellular compartments in eukaryotic cells. To investigate the functional roles of the V-ATPase in Schizosaccharomyces pombe, the gene vma1 encoding subunit A or vma3 encoding subunit c was disrupted. Both deletion mutants lost the capacity for vacuolar acidification in vivo, and showed sensitivity to neutral pH or high concentrations of divalent cations including Ca2+. The delivery of FM4-64 to the vacuolar membrane and accumulation of Lucifer Yellow CH were strongly inhibited in the vma1 and vma3 mutants. Moreover, deletion of the S. pombe vma1+ or vma3+ gene resulted in pleiotropic phenotypes consistent with lack of vacuolar acidification, including the missorting of vacuolar carboxypeptidase Y, abnormal vacuole morphology, and mating defects. These findings suggest that V-ATPase is essential for endocytosis, ion and pH homeostasis, and for intracellular targeting of vacuolar proteins and vacuolar biogenesis in S. pombe.
Collapse
Affiliation(s)
- T Iwaki
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, 761-0795 Miki-cho, Kagawa, Japan
| | | | | | | |
Collapse
|
48
|
Clemens S, Simm C. Schizosaccharomyces pombe as a model for metal homeostasis in plant cells: the phytochelatin-dependent pathway is the main cadmium detoxification mechanism. THE NEW PHYTOLOGIST 2003; 159:323-330. [PMID: 33873355 DOI: 10.1046/j.1469-8137.2003.00811.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sequestration of metal ions by phytochelatins is an important metal tolerance mechanism in a wide range of organisms including plants and certain fungi. Substantial progress in understanding phytochelatin formation at the molecular level has been made in Schizosaccharomyces pombe. The genome of S. pombe has been completely sequenced and all the necessary tools of functional genomics are available. Since most other proteins implicated in plant metal tolerance and homeostasis are also present in this yeast, it represents a very powerful system to elucidate basic mechanisms of metal buffering, sequestration, and toxicity in cells that form phytochelatins. Here, we summarize the work on phytochelatin formation and metal homeostasis in S. pombe. We describe examples of molecular insights obtained from experiments with S. pombe that will be useful in guiding studies with plants. We also provide evidence for the dominance of the phytochelatin pathway in Cd detoxification in S. pombe.
Collapse
Affiliation(s)
- Stephan Clemens
- Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, D-06120 Halle/Saale, Germany
| | - Claudia Simm
- Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, D-06120 Halle/Saale, Germany
| |
Collapse
|
49
|
Liu T, Nakashima S, Hirose K, Uemura Y, Shibasaka M, Katsuhara M, Kasamo K. A metallothionein and CPx-ATPase handle heavy-metal tolerance in the filamentous cyanobacterium Oscillatoria brevis. FEBS Lett 2003; 542:159-63. [PMID: 12729917 DOI: 10.1016/s0014-5793(03)00370-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A metallothionein (BmtA) and a CPx-ATPase (Bxa1) have been identified and characterized from the cyanobacterium Oscillatoria brevis. Both bmtA and bxa1 expression can be markedly induced in vivo by Zn(2+) or Cd(2+). Over-expression of bmtA or bxa1 in Escherichia coli enhances Zn(2+) and Cd(2+) tolerance in the transformant. Dynamic studies on the expression of two genes showed that the maximum expression of bxa1 induced by Zn(2+) and Cd(2+) was much quicker than that of bmtA, suggesting distinct physiological roles of metallothionein and CPx-ATPase in the handling of surplus metal.
Collapse
Affiliation(s)
- Tong Liu
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan.
| | | | | | | | | | | | | |
Collapse
|
50
|
Current Awareness on Yeast. Yeast 2003. [DOI: 10.1002/yea.940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|