1
|
Bellefeuille SD, Molle CM, Gendron FP. Reviewing the role of P2Y receptors in specific gastrointestinal cancers. Purinergic Signal 2019; 15:451-463. [PMID: 31478181 PMCID: PMC6923304 DOI: 10.1007/s11302-019-09678-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023] Open
Abstract
Extracellular nucleotides are important intercellular signaling molecules that were found enriched in the tumor microenvironment. In fact, interfering with G protein-coupled P2Y receptor signaling has emerged as a promising therapeutic alternative to treat aggressive and difficult-to-manage cancers such as those affecting the gastrointestinal system. In this review, we will discuss the functions of P2Y receptors in gastrointestinal cancers with an emphasis on colorectal, hepatic, and pancreatic cancers. We will show that P2Y2 receptor up-regulation increases cancer cell proliferation, tumor growth, and metastasis in almost all studied gastrointestinal cancers. In contrast, we will present P2Y6 receptor as having opposing roles in colorectal cancer vs. gastric cancer. In colorectal cancer, the P2Y6 receptor induces carcinogenesis by inhibiting apoptosis, whereas P2Y6 suppresses gastric cancer tumor growth by reducing β-catenin transcriptional activity. The contribution of the P2Y11 receptor in the migration of liver and pancreatic cancer cells will be compared to its normal inhibitory function on this cellular process in ciliated cholangiocytes. Hence, we will demonstrate that the selective inhibition of the P2Y12 receptor activity in platelets was associated to a reduction in the risk of developing colorectal cancer and metastasis formation. We will succinctly review the role of P2Y1, P2Y4, P2Y13, and P2Y14 receptors as the knowledge for these receptors in gastrointestinal cancers is sparse. Finally, redundant ligand selectivity, nucleotide high lability, cell context, and antibody reliability will be presented as the main difficulties in defining P2Y receptor functions in gastrointestinal cancers.
Collapse
Affiliation(s)
- Steve Dagenais Bellefeuille
- Département d’anatomie et de biologie cellulaire, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, Québec, J1E 4K8 Canada
| | - Caroline M. Molle
- Département d’anatomie et de biologie cellulaire, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, Québec, J1E 4K8 Canada
| | - Fernand-Pierre Gendron
- Département d’anatomie et de biologie cellulaire, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, Québec, J1E 4K8 Canada
| |
Collapse
|
2
|
Wan HX, Hu JH, Xie R, Yang SM, Dong H. Important roles of P2Y receptors in the inflammation and cancer of digestive system. Oncotarget 2016; 7:28736-47. [PMID: 26908460 PMCID: PMC5053759 DOI: 10.18632/oncotarget.7518] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/05/2016] [Indexed: 02/03/2023] Open
Abstract
Purinergic signaling is important for many biological processes in humans. Purinoceptors P2Y are widely distributed in human digestive system and different subtypes of P2Y receptors mediate different physiological functions from metabolism, proliferation, differentiation to apoptosis etc. The P2Y receptors are essential in many gastrointestinal functions and also involve in the occurrence of some digestive diseases. Since different subtypes of P2Y receptors are present on the same cell of digestive organs, varying subtypes of P2Y receptors may have opposite or synergetic functions on the same cell. Recently, growing lines of evidence strongly suggest the involvement of P2Y receptors in the pathogenesis of several digestive diseases. In this review, we will focus on their important roles in the development of digestive inflammation and cancer. We anticipate that as the special subtypes of P2Y receptors are studied in depth, specific modulators for them will have good potentials to become promising new drugs to treat human digestive diseases in the near future.
Collapse
Affiliation(s)
- Han-Xing Wan
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Jian-Hong Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Rei Xie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, California, USA
| |
Collapse
|
3
|
Espelt MV, de Tezanos Pinto F, Alvarez CL, Alberti GS, Incicco J, Leal Denis MF, Davio C, Schwarzbaum PJ. On the role of ATP release, ectoATPase activity, and extracellular ADP in the regulatory volume decrease of Huh-7 human hepatoma cells. Am J Physiol Cell Physiol 2013; 304:C1013-26. [PMID: 23485713 DOI: 10.1152/ajpcell.00254.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypotonicity triggered in human hepatoma cells (Huh-7) the release of ATP and cell swelling, followed by volume regulatory decrease (RVD). We analyzed how the interaction between those processes modulates cell volume. Cells exposed to hypotonic medium swelled 1.5 times their basal volume. Swelling was followed by 41% RVD(40) (extent of RVD after 40 min of maximum), whereas the concentration of extracellular ATP (ATP(e)) increased 10 times to a maximum value at 15 min. Exogenous apyrase (which removes di- and trinucleotides) did not alter RVD, whereas exogenous Na(+)-K(+)-ATPase (which converts ATP to ADP in the extracellular medium) enhanced RVD(40) by 2.6 times, suggesting that hypotonic treatment alone produced a basal RVD, whereas extracellular ADP activated RVD to achieve complete volume regulation (i.e., RVD(40) ≈100%). Under hypotonicity, addition of 2-(methylthio)adenosine 5'-diphosphate (2MetSADP; ADP analog) increased RVD to the same extent as exposure to Na(+)-K(+)-ATPase and the same analog did not stimulate RVD when coincubated with MRS2211, a blocker of ADP receptor P2Y(13). RT-PCR and Western blot analysis confirmed the presence of P2Y(13). Cells exhibited significant ectoATPase activity, which according to RT-PCR analysis can be assigned to ENTPDase2. Both carbenoxolone, a blocker of conductive ATP release, and brefeldin A, an inhibitor of exocytosis, were able to partially decrease ATP(e) accumulation, pointing to the presence of at least two mechanisms for ATP release. Thus, in Huh-7 cells, hypotonic treatment triggered the release of ATP. Conversion of ATP(e) to ADP(e) by ENTPDase 2 activity facilitates the accumulated ADP(e) to activate P2Y(13) receptors, which mediate complete RVD.
Collapse
Affiliation(s)
- María V Espelt
- Instituto de Química y Fisicoquímica Biológicas (Facultad de Farmacia y Bioquímica), Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Cell volume homeostasis and its fine-tuning to the specific physiological context at any given moment are processes fundamental to normal cell function. The understanding of cell volume regulation owes much to August Krogh, yet has advanced greatly over the last decades. In this review, we outline the historical context of studies of cell volume regulation, focusing on the lineage started by Krogh, Bodil Schmidt-Nielsen, Hans-Henrik Ussing, and their students. The early work was focused on understanding the functional behaviour, kinetics and thermodynamics of the volume-regulatory ion transport mechanisms. Later work addressed the mechanisms through which cellular signalling pathways regulate the volume regulatory effectors or flux pathways. These studies were facilitated by the molecular identification of most of the relevant channels and transporters, and more recently also by the increased understanding of their structures. Finally, much current research in the field focuses on the most up- and downstream components of these paths: how cells sense changes in cell volume, and how cell volume changes in turn regulate cell function under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- E K Hoffmann
- Section of Cell and Developmental Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
5
|
Dolovcak S, Waldrop SL, Fitz JG, Kilic G. Copper inhibits P2Y(2)-dependent Ca(2+) signaling through the effects on thapsigargin-sensitive Ca(2+) stores in HTC hepatoma cells. Biochem Biophys Res Commun 2010; 397:493-8. [PMID: 20515656 DOI: 10.1016/j.bbrc.2010.05.141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 05/27/2010] [Indexed: 01/08/2023]
Abstract
Purinergic P2Y(2) G-protein coupled receptors play a key role in the regulation of hepatic Ca(2+) signaling by extracellular ATP. The concentration of copper in serum is about 20muM. Since copper accumulates in the liver in certain disease states, the purpose of these studies was to assess the effects of copper on P2Y(2) receptors in a model liver cell line. Exposure to a P2Y(2) agonist UTP increased [Ca(2+)](i) by stimulating Ca(2+) release from thapsigargin-sensitive Ca(2+) stores. Pretreatment of HTC cells for several minutes with copper did not affect cell viability, but potently inhibited increases in [Ca(2+)](i) evoked by UTP and thapsigargin. During this pretreatment, copper was not transported into the cytosol, and inhibited P2Y(2) receptors in a concentration-dependent manner with the IC(50) of about 15muM. These results suggest that copper inhibits P2Y(2) receptors through the effects on thapsigargin-sensitive Ca(2+) stores by acting from an extracellular side. Further experiments indicated that these effect of copper may lead to inhibition of regulatory volume decrease (RVD) evoked by hypotonic solution. Thus, copper may contribute to defective regulation of purinergic signaling and liver cell volume in diseases associated with the increased serum copper concentration.
Collapse
Affiliation(s)
- Svjetlana Dolovcak
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9151, USA
| | | | | | | |
Collapse
|
6
|
Varela D, Penna A, Simon F, Eguiguren AL, Leiva-Salcedo E, Cerda O, Sala F, Stutzin A. P2X4 activation modulates volume-sensitive outwardly rectifying chloride channels in rat hepatoma cells. J Biol Chem 2010; 285:7566-74. [PMID: 20056605 PMCID: PMC2844204 DOI: 10.1074/jbc.m109.063693] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 12/30/2009] [Indexed: 11/06/2022] Open
Abstract
Volume-sensitive outwardly rectifying (VSOR) Cl(-) channels are critical for the regulatory volume decrease (RVD) response triggered upon cell swelling. Recent evidence indicates that H(2)O(2) plays an essential role in the activation of these channels and that H(2)O(2) per se activates the channels under isotonic isovolumic conditions. However, a significant difference in the time course for current onset between H(2)O(2)-induced and hypotonicity-mediated VSOR Cl(-) activation is observed. In several cell types, cell swelling induced by hypotonic challenges triggers the release of ATP to the extracellular medium, which in turn, activates purinergic receptors and modulates cell volume regulation. In this study, we have addressed the effect of purinergic receptor activation on H(2)O(2)-induced and hypotonicity-mediated VSOR Cl(-) current activation. Here we show that rat hepatoma cells (HTC) exposed to a 33% hypotonic solution responded by rapidly activating VSOR Cl(-) current and releasing ATP to the extracellular medium. In contrast, cells exposed to 200 microm H(2)O(2) VSOR Cl(-) current onset was significantly slower, and ATP release was not detected. In cells exposed to either 11% hypotonicity or 200 microm H(2)O(2), exogenous addition of ATP in the presence of extracellular Ca(2+) resulted in a decrease in the half-time for VSOR Cl(-) current onset. Conversely, in cells that overexpress a dominant-negative mutant of the ionotropic receptor P2X4 challenged with a 33% hypotonic solution, the half-time for VSOR Cl(-) current onset was significantly slowed down. Our results indicate that, at high hypotonic imbalances, swelling-induced ATP release activates the purinergic receptor P2X4, which in turn modulates the time course of VSOR Cl(-) current onset in a extracellular Ca(2+)-dependent manner.
Collapse
Affiliation(s)
- Diego Varela
- Centro de Estudios Moleculares de la Célula & Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Barritt GJ, Litjens TL, Castro J, Aromataris E, Rychkov GY. Store-operated Ca2+ channels and microdomains of Ca2+ in liver cells. Clin Exp Pharmacol Physiol 2009; 36:77-83. [PMID: 19196257 DOI: 10.1111/j.1440-1681.2008.05095.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Oscillatory increases in the cytoplasmic Ca(2+) concentration ([Ca(2+)](cyt)) play essential roles in the hormonal regulation of liver cells. Increases in [Ca(2+)](cyt) require Ca(2+) release from the endoplasmic reticulum (ER) and Ca(2+) entry across the plasma membrane. 2. Store-operated Ca(2+) channels (SOCs), activated by a decrease in Ca(2+) in the ER lumen, are responsible for maintaining adequate ER Ca(2+). Experiments using patch-clamp recording and the fluorescent Ca(2+) reporter fura-2 indicate there is only one type of SOC in rat liver cells. These SOCs have a high selectivity for Ca(2+) and properties essentially indistinguishable from those of Ca(2+) release-activated Ca(2+) (CRAC) channels. 3. Although Orai1, a CRAC channel pore protein, and stromal interaction molecule 1 (STIM1), a CRAC channel Ca(2+) sensor, are components of liver cell SOCs, the mechanism of activation of SOCs, and in particular the role of subregions of the ER, are not well understood. 4. Recent experiments have used the transient receptor potential vanilloid 1 (TRPV1) non-selective cation channel, ectopically expressed in liver cells, and a choleretic bile acid to deplete Ca(2+) from different ER subregions. The results of these studies have provided evidence that only a small component of the ER is required for STIM1 redistribution and the activation of SOCs. 5. It is concluded that different Ca(2+) microdomains in the ER and cytoplasmic space are important in both the activation of SOCs and in the signalling actions of Ca(2+) in liver cells. Future experiments will investigate the nature of these microdomains further.
Collapse
Affiliation(s)
- Greg J Barritt
- Department of Medical Biochemistry, School of Medicine, Flinders University, Adelaide, South Australia, Australia.
| | | | | | | | | |
Collapse
|
8
|
Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev 2009; 89:193-277. [PMID: 19126758 DOI: 10.1152/physrev.00037.2007] [Citation(s) in RCA: 1030] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ability to control cell volume is pivotal for cell function. Cell volume perturbation elicits a wide array of signaling events, leading to protective (e.g., cytoskeletal rearrangement) and adaptive (e.g., altered expression of osmolyte transporters and heat shock proteins) measures and, in most cases, activation of volume regulatory osmolyte transport. After acute swelling, cell volume is regulated by the process of regulatory volume decrease (RVD), which involves the activation of KCl cotransport and of channels mediating K(+), Cl(-), and taurine efflux. Conversely, after acute shrinkage, cell volume is regulated by the process of regulatory volume increase (RVI), which is mediated primarily by Na(+)/H(+) exchange, Na(+)-K(+)-2Cl(-) cotransport, and Na(+) channels. Here, we review in detail the current knowledge regarding the molecular identity of these transport pathways and their regulation by, e.g., membrane deformation, ionic strength, Ca(2+), protein kinases and phosphatases, cytoskeletal elements, GTP binding proteins, lipid mediators, and reactive oxygen species, upon changes in cell volume. We also discuss the nature of the upstream elements in volume sensing in vertebrate organisms. Importantly, cell volume impacts on a wide array of physiological processes, including transepithelial transport; cell migration, proliferation, and death; and changes in cell volume function as specific signals regulating these processes. A discussion of this issue concludes the review.
Collapse
Affiliation(s)
- Else K Hoffmann
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
9
|
Li G, Olson JE. Purinergic activation of anion conductance and osmolyte efflux in cultured rat hippocampal neurons. Am J Physiol Cell Physiol 2008; 295:C1550-60. [PMID: 18923056 DOI: 10.1152/ajpcell.90605.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The majority of mammalian cells demonstrate regulatory volume decrease (RVD) following swelling caused by hyposmotic exposure. A critical signal initiating RVD is activation of nucleotide receptors by ATP. Elevated extracellular ATP in response to cytotoxic cell swelling during pathological conditions also may initiate loss of taurine and other intracellular osmolytes via anion channels. This study characterizes neuronal ATP-activated anion current and explores its role in net loss of amino acid osmolytes. To isolate anion currents, we used CsCl as the major electrolyte in patch electrode and bath solutions and blocked residual cation currents with NiCl(2) and tetraethylammonium. Anion currents were activated by extracellular ATP with a K(m) of 70 microM and increased over fourfold during several minutes of ATP exposure, reaching a maximum after 9.0 min (SD 4.2). The currents were blocked by inhibitors of nucleotide receptors and volume-regulated anion channels (VRAC). Currents showed outward rectification and inactivation at highly depolarizing membrane potentials, characteristics of swelling-activated anion currents. P2X agonists failed to activate the anion current, and an inhibitor of P2X receptors did not block the effect of ATP. Furthermore, current activation was observed with extracellular ADP and 2-(methylthio)adenosine 5'-diphosphate, a P2Y(1) receptor-specific agonist. Much less current activation was observed with extracellular UTP, suggesting the response is mediated predominantly by P2Y(1) receptors. ATP caused a dose-dependent loss of taurine and alanine that could be blocked by inhibitors of VRAC. ATP did not inhibit the taurine uptake transporter. Thus extracellular ATP triggers a loss of intracellular organic osmolytes via activation of anion channels. This mechanism may facilitate neuronal volume homeostasis during cytotoxic edema.
Collapse
Affiliation(s)
- Guangze Li
- Dept. of Emergency Medicine, Wright State Univ., Boonshoft School of Medicine, Kettering, OH 45429, USA
| | | |
Collapse
|
10
|
Schicker K, Hussl S, Chandaka GK, Kosenburger K, Yang JW, Waldhoer M, Sitte HH, Boehm S. A membrane network of receptors and enzymes for adenine nucleotides and nucleosides. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:325-34. [PMID: 18973777 DOI: 10.1016/j.bbamcr.2008.09.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 09/14/2008] [Accepted: 09/17/2008] [Indexed: 01/19/2023]
Abstract
Most cells express more than one receptor plus degrading enzymes for adenine nucleotides or nucleosides, and cellular responses to purines are rarely compatible with the actions of single receptors. Therefore, these receptors are viewed as components of a combinatorial receptor web rather than self-dependent entities, but it remained unclear to what extent they can associate with each other to form signalling units. P2Y(1), P2Y(2), P2Y(12), P2Y(13), P2X(2), A(1), A(2A) receptors and NTPDase1 and -2 were expressed as fluorescent fusion proteins which were targeted to membranes and signalled like the unlabelled counterparts. When tested by FRET microscopy, all the G protein-coupled receptors proved able to form heterooligomers with each other, and P2Y(1), P2Y(12), P2Y(13), A(1), A(2A), and P2X(2) receptors also formed homooligomers. P2Y receptors did not associate with P2X, but G protein-coupled receptors formed heterooligomers with NTPDase1, but not NTPDase2. The specificity of prototypic interactions (P2Y(1)/P2Y(1), A(2A)/P2Y(1), A(2A)/P2Y(12)) was corroborated by FRET competition or co-immunoprecipitation. These results demonstrate that G protein-coupled purine receptors associate with each other and with NTPDase1 in a highly promiscuous manner. Thus, purinergic signalling is not only determined by the expression of receptors and enzymes but also by their direct interaction within a previously unrecognized multifarious membrane network.
Collapse
Affiliation(s)
- Klaus Schicker
- Institute of Pharmacology, Medical University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Franco R, Panayiotidis MI, de la Paz LDO. Autocrine signaling involved in cell volume regulation: the role of released transmitters and plasma membrane receptors. J Cell Physiol 2008; 216:14-28. [PMID: 18300263 DOI: 10.1002/jcp.21406] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cell volume regulation is a basic homeostatic mechanism transcendental for the normal physiology and function of cells. It is mediated principally by the activation of osmolyte transport pathways that result in net changes in solute concentration that counteract cell volume challenges in its constancy. This process has been described to be regulated by a complex assortment of intracellular signal transduction cascades. Recently, several studies have demonstrated that alterations in cell volume induce the release of a wide variety of transmitters including hormones, ATP and neurotransmitters, which have been proposed to act as extracellular signals that regulate the activation of cell volume regulatory mechanisms. In addition, changes in cell volume have also been reported to activate plasma membrane receptors (including tyrosine kinase receptors, G-protein coupled receptors and integrins) that have been demonstrated to participate in the regulatory process of cell volume. In this review, we summarize recent studies about the role of changes in cell volume in the regulation of transmitter release as well as in the activation of plasma membrane receptors and their further implications in the regulation of the signaling machinery that regulates the activation of osmolyte flux pathways. We propose that the autocrine regulation of Ca2+-dependent and tyrosine phosphorylation-dependent signaling pathways by the activation of plasma membrane receptors and swelling-induced transmitter release is necessary for the activation/regulation of osmolyte efflux pathways and cell volume recovery. Furthermore, we emphasize the importance of studying these extrinsic signals because of their significance in the understanding of the physiology of cell volume regulation and its role in cell biology in vivo, where the constraint of the extracellular space might enhance the autocrine or even paracrine signaling induced by these released transmitters.
Collapse
Affiliation(s)
- Rodrigo Franco
- Laboratory of Cell Biology and Signal Transduction, Biomedical Research Unit, FES-Iztacala, UNAM, Mexico.
| | | | | |
Collapse
|
12
|
Fisher SK, Cheema TA, Foster DJ, Heacock AM. Volume-dependent osmolyte efflux from neural tissues: regulation by G-protein-coupled receptors. J Neurochem 2008; 106:1998-2014. [PMID: 18518929 DOI: 10.1111/j.1471-4159.2008.05510.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The CNS is particularly vulnerable to reductions in plasma osmolarity, such as occur during hyponatremia, the most commonly encountered electrolyte disorder in clinical practice. In response to a lowered plasma osmolarity, neural cells initially swell but then are able to restore their original volume through the release of osmolytes, both inorganic and organic, and the exit of osmotically obligated water. Given the importance of the maintenance of cell volume within the CNS, mechanisms underlying the release of osmolytes assume major significance. In this context, we review recent evidence obtained from our laboratory and others that indicates that the activation of specific G-protein-coupled receptors can markedly enhance the volume-dependent release of osmolytes from neural cells. Of particular significance is the observation that receptor activation significantly lowers the osmotic threshold at which osmolyte release occurs, thereby facilitating the ability of the cells to respond to small, more physiologically relevant, reductions in osmolarity. The mechanisms underlying G-protein-coupled receptor-mediated osmolyte release and the possibility that this efflux can result in both physiologically beneficial and potentially harmful pathophysiological consequences are discussed.
Collapse
Affiliation(s)
- Stephen K Fisher
- Molecular and Behavioral Neuroscience Institute; and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA.
| | | | | | | |
Collapse
|
13
|
Ca(2+) -permeable channels in the hepatocyte plasma membrane and their roles in hepatocyte physiology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:651-72. [PMID: 18291110 DOI: 10.1016/j.bbamcr.2008.01.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 01/16/2008] [Accepted: 01/17/2008] [Indexed: 01/24/2023]
Abstract
Hepatocytes are highly differentiated and spatially polarised cells which conduct a wide range of functions, including intermediary metabolism, protein synthesis and secretion, and the synthesis, transport and secretion of bile acids. Changes in the concentrations of Ca(2+) in the cytoplasmic space, endoplasmic reticulum (ER), mitochondria, and other intracellular organelles make an essential contribution to the regulation of these hepatocyte functions. While not yet fully understood, the spatial and temporal parameters of the cytoplasmic Ca(2+) signals and the entry of Ca(2+) through Ca(2+)-permeable channels in the plasma membrane are critical to the regulation by Ca(2+) of hepatocyte function. Ca(2+) entry across the hepatocyte plasma membrane has been studied in hepatocytes in situ, in isolated hepatocytes and in liver cell lines. The types of Ca(2+)-permeable channels identified are store-operated, ligand-gated, receptor-activated and stretch-activated channels, and these may vary depending on the animal species studied. Rat liver cell store-operated Ca(2+) channels (SOCs) have a high selectivity for Ca(2+) and characteristics similar to those of the Ca(2+) release activated Ca(2+) channels in lymphocytes and mast cells. Liver cell SOCs are activated by a decrease in Ca(2+) in a sub-region of the ER enriched in type1 IP(3) receptors. Activation requires stromal interaction molecule type 1 (STIM1), and G(i2alpha,) F-actin and PLCgamma1 as facilitatory proteins. P(2x) purinergic channels are the only ligand-gated Ca(2+)-permeable channels in the liver cell membrane identified so far. Several types of receptor-activated Ca(2+) channels have been identified, and some partially characterised. It is likely that TRP (transient receptor potential) polypeptides, which can form Ca(2+)- and Na(+)-permeable channels, comprise many hepatocyte receptor-activated Ca(2+)-permeable channels. A number of TRP proteins have been detected in hepatocytes and in liver cell lines. Further experiments are required to characterise the receptor-activated Ca(2+) permeable channels more fully, and to determine the molecular nature, mechanisms of activation, and precise physiological functions of each of the different hepatocyte plasma membrane Ca(2+) permeable channels.
Collapse
|
14
|
Vázquez-Juárez E, Ramos-Mandujano G, Hernández-Benítez R, Pasantes-Morales H. On the role of G-protein coupled receptors in cell volume regulation. Cell Physiol Biochem 2008; 21:1-14. [PMID: 18209467 DOI: 10.1159/000113742] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2008] [Indexed: 01/14/2023] Open
Abstract
Cell volume is determined genetically for each cell lineage, but it is not a static feature of the cell. Intracellular volume is continuously challenged by metabolic reactions, uptake of nutrients, intracellular displacement of molecules and organelles and generation of ionic gradients. Moreover, recent evidence raises the intriguing possibility that changes in cell volume act as signals for basic cell functions such as proliferation, migration, secretion and apoptosis. Cells adapt to volume increase by a complex, dynamic process resulting from the concerted action of volume sensing mechanisms and intricate signaling chains, directed to initiate the multiple adaptations demanded by a change in cell volume, among others adhesion reactions, membrane and cytoskeleton remodeling, and activation of the osmolyte pathways leading to reestablish the water balance between extracellular/intracellular or intracellular/intracellular compartments. In multicellular organisms, a continuous interaction with the external milieu is fundamental for the dynamics of the cell. It is in this sense that the recent surge of interest about the influence on cell volume control by the most extended family of signaling elements, the G proteins, acquires particular importance. As here reviewed, a large variety of G-protein coupled receptors (GPCRs) are involved in this interplay with cell volume regulatory mechanisms, which amplifies and diversifies the volume-elicited signaling chains, providing a variety of routes towards the multiple effectors related to cell volume changes.
Collapse
Affiliation(s)
- Erika Vázquez-Juárez
- Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF, Mexico
| | | | | | | |
Collapse
|
15
|
Autoregulation in PC12 cells via P2Y receptors: Evidence for non-exocytotic nucleotide release from neuroendocrine cells. Purinergic Signal 2007; 3:367-75. [PMID: 18404450 PMCID: PMC2072914 DOI: 10.1007/s11302-007-9062-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 07/11/2007] [Indexed: 11/01/2022] Open
Abstract
Nucleotides are released not only from neurons, but also from various other types of cells including fibroblasts, epithelial, endothelial and glial cells. While ATP release from non-neural cells is frequently Ca(2+) independent and mostly non-vesicular, neuronal ATP release is generally believed to occur via exocytosis. To evaluate whether nucleotide release from neuroendocrine cells might involve a non-vesicular component, the autocrine/paracrine activation of P2Y(12) receptors was used as a biosensor for nucleotide release from PC12 cells. Expression of a plasmid coding for the botulinum toxin C1 light chain led to a decrease in syntaxin 1 detected in immunoblots of PC12 membranes. In parallel, spontaneous as well as depolarization-evoked release of previously incorporated [(3)H]noradrenaline from transfected cells was significantly reduced in comparison with the release from untransfected cells, thus indicating that exocytosis was impaired. In PC12 cells expressing the botulinum toxin C1 light chain, ADP reduced cyclic AMP synthesis to the same extent as in non-transfected cells. Likewise, the enhancement of cyclic AMP synthesis either due to the blockade of P2Y(12) receptors or due to the degradation of extracellular neucleotides by apyrase was not different between non-transfected and botulinum toxin C1 light chain expressing cells. However, the inhibition of cyclic AMP synthesis caused by depolarization-evoked release of endogenous nucleotides was either abolished or greatly reduced in cells expressing the botulinum toxin C1 light chain. Together, these results show that spontaneous nucleotide release from neuroendocrine cells may occur independently of vesicle exocytosis, whereas depolarization-evoked nucleotide release relies predominantly on exocytotic mechanisms.
Collapse
|
16
|
Anderson CD, Pierce J, Nicoud IB, Belous AE, Jones CM, Chari RS. Purinergic receptor antagonism prevents cold preservation-induced cell death independent of cellular ATP levels. J Surg Res 2007; 141:234-40. [PMID: 17574598 PMCID: PMC2692998 DOI: 10.1016/j.jss.2006.12.554] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 11/15/2006] [Accepted: 12/21/2006] [Indexed: 01/13/2023]
Abstract
BACKGROUND Purinergic (P2Y) receptors play an important role in intracellular Ca(2+) regulation in hepatocytes. Prevention of mitochondrial Ca(2+) (mCa(2+)) overload during ischemic conditions prevents cellular cell death during the early reperfusion period. P2Y antagonists are cytoprotective in other settings. We studied the effect of P2Y receptor antagonism on mitochondrial associated cell death during the period of cold storage. METHODS HepG2 cells were stored in UW with or without 300 muM reactive blue 2 (RB2) or 10 muM ruthenium red (RR) under either normoxic-hypothermic or hypoxic-hypothermic conditions. Cytoplasmic cytochrome c levels were studied by transfection of cytochrome c-GFP. Immunofluorescence determined the intracellular, spatio-temporal distribution of Bax, and terminal deoxynucleotidyl transferase mediated dUTP nick end labeling staining was used to evaluate cell death. Intracellular compartmental ATP levels were assayed by transfecting with luciferase vectors specific for cytoplasm (PcDNA3-luciferase-LL/V) and mitochondria (PcDNA3-COX8-luciferase). RESULTS Bax translocation to the mitochondria occurred immediately following cold storage and was followed by cytochrome c-GFP redistribution to the cytosol during rewarming. RB2 treatment significantly attenuated Bax translocation, cytochrome c-GFP redistribution, and cell death following both storage conditions. Both RR and RB2 provided cytoprotection despite ongoing cytoplasmic ATP consumption during cold ischemia. CONCLUSION These data indicate that the cytoprotective effects of mCa(2+) uptake inhibition and P2Y receptor antagonism are independent of cytoplasmic ATP levels during cold ischemia.
Collapse
Affiliation(s)
- Christopher D. Anderson
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232-4753
| | - Janene Pierce
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232-4753
| | - Ian B. Nicoud
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232-4753
| | - Andrey E. Belous
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232-4753
| | - Christopher M. Jones
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232-4753
| | - Ravi S. Chari
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232-4753
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232-4753
- Address correspondence to: Department of Surgery, Division of Hepatobiliary Surgery and Liver Transplantation, Suite 801 Oxford House, 1313 21 Avenue South, Vanderbilt University Medical Center, Nashville, TN 37232-4753, , Phone: 615-936-2573, Fax: 615-936-0453
| |
Collapse
|
17
|
Carini R, Alchera E, Baldanzi G, Piranda D, Splendore R, Grazia De Cesaris M, Caraceni P, Graziani A, Albano E. Role of p38 map kinase in glycine-induced hepatocyte resistance to hypoxic injury. J Hepatol 2007; 46:692-9. [PMID: 17188389 DOI: 10.1016/j.jhep.2006.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 10/06/2006] [Accepted: 10/31/2006] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Glycine hepatoprotection is well known. However, the mechanisms involved are still poorly characterized. METHODS Glycine protection was investigated in isolated rat hepatocytes pretreated with 2 mmol/L glycine 15 min before incubation under hypoxic conditions. RESULTS Glycine significantly reduced Na+ overload and hepatocyte death caused by hypoxia. Glycine protection required the activation of a signal pathway involving Src, Pyk2 and p38 MAP kinases. Glycine treatment also induced a 11% increase of hepatocyte volume and transient ATP release. The prevention of cell swelling by hepatocyte incubation in a hypertonic medium as well as the degradation of extracellular ATP with apyrase or the block P2 purinergic receptors with suramin reverted glycine-induced cytoprotection and inhibited Src, Pyk2 and p38 MAPK activation. Glycine down-modulated Na+/H+ exchanger (NHE) activity, without affecting the development of intracellular acidosis during hypoxia. Such an effect was reverted by inhibiting p38 MAPK that also abolished glycine protection against Na+ overload caused by hypoxia. CONCLUSIONS Glycine-induced ATP release in response to a moderate hepatocyte swelling led to the autocrine stimulation of P2 receptors and to the activation of Src, Pyk2 and p38 MAPK that increased hepatocyte resistance to hypoxia by preventing Na+ influx through NHE.
Collapse
Affiliation(s)
- Rita Carini
- Department of Medical Sciences, University A. Avogadro, Novara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Barfod ET, Moore AL, Roe MW, Lidofsky SD. Ca2+-activated IK1 channels associate with lipid rafts upon cell swelling and mediate volume recovery. J Biol Chem 2007; 282:8984-93. [PMID: 17264085 DOI: 10.1074/jbc.m607730200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Restoration of cell volume in the continued presence of osmotic stimuli is essential, particularly in hepatocytes, which swell upon nutrient uptake. Responses to swelling involve the Ca2+-dependent activation of K+ channels, which promote fluid efflux to drive volume recovery; however, the channels involved in hepatocellular volume regulation have not been identified. We found that hypotonic exposure of HTC hepatoma cells evoked the opening of 50 pS K+-permeable channels, consistent with intermediate conductance (IK) channels. We isolated from rat liver and HTC cells a cDNA with sequence identity to the coding region of IK1. Swelling-activated currents were inhibited by transfection with a dominant interfering IK1 mutant. The IK channel blockers clotrimazole and TRAM-34 inhibited whole cell swelling-activated K+ currents and volume recovery. To determine whether IK1 underwent volume-sensitive localization, we expressed a green fluorescent protein fusion of IK1 in HTC cells. The localization of IK1 was suggestive of distribution in lipid rafts. Consistent with this, there was a time-dependent increase in colocalization between IK1 and the lipid raft ganglioside GM1 on the plasma membrane, which subsequently decreased with volume recovery. Pharmacological disruption of lipid rafts altered the plasma membrane distribution of IK1 and inhibited volume recovery after hypotonic exposure. Collectively, these findings support the hypothesis that IK1 regulates compensatory responses to hepatocellular swelling and suggest that regulation of cell volume involves coordination of signaling from lipid rafts with IK1 function.
Collapse
Affiliation(s)
- Elisabeth T Barfod
- Department of Pharmacology, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
19
|
Cheema TA, Pettigrew VA, Fisher SK. Receptor regulation of the volume-sensitive efflux of taurine and iodide from human SH-SY5Y neuroblastoma cells: differential requirements for Ca(2+) and protein kinase C. J Pharmacol Exp Ther 2006; 320:1068-77. [PMID: 17148779 DOI: 10.1124/jpet.106.115741] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The basal (swelling-induced) and receptor-stimulated effluxes of (125)I(-) and taurine have been monitored to determine whether these two osmolytes are released from human SH-SY5Y cells under hypotonic conditions via common or distinct mechanisms. Under basal conditions, both (125)I(-) (used as a tracer for Cl(-)) and taurine were released from the cells in a volume-dependent manner. The addition of thrombin, mediated via the proteinase-activated receptor-1 (PAR-1) subtype, significantly enhanced the release of both (125)I(-) and taurine (3-6-fold) and also increased the threshold osmolarity for efflux of these osmolytes ("set-point") from 200 to 290 mOsM. Inclusion of a variety of broad-spectrum anion channel blockers and of 4-[(2-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]butanoic acid attenuated the release of both (125)I(-) and taurine under basal and receptor-stimulated conditions. Basal release of (125)I(-) and taurine was independent of Ca(2+) or the activity of protein kinase C (PKC). However, although PAR-1-stimulated taurine efflux was attenuated by either a depletion of intracellular Ca(2+) or inhibition of PKC by chelerythrine, the enhanced release of (125)I(-) was independent of both parameters. Stimulated efflux of (125)I(-) after activation of muscarinic cholinergic receptors was also markedly less dependent on Ca(2+) availability and PKC activity than that observed for taurine release. These results indicate that, although the osmosensitive release of these two osmolytes from SH-SY5Y cells may occur via pharmacologically similar membrane channels, the receptor-mediated release of (125)I(-) and taurine is differentially regulated by PKC activity and Ca(2+) availability.
Collapse
Affiliation(s)
- Tooba A Cheema
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-0220, USA
| | | | | |
Collapse
|
20
|
Hafting T, Haug TM, Ellefsen S, Sand O. Hypotonic stress activates BK channels in clonal kidney cells via purinergic receptors, presumably of the P2Y subtype. Acta Physiol (Oxf) 2006; 188:21-31. [PMID: 16911250 DOI: 10.1111/j.1748-1716.2006.01601.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM Membrane stretch due to cell swelling may cause a minute leakage of adenosine triphosphate (ATP) that stimulates endogenous purinergic receptors. The following elevation of the cytosolic-free Ca(2+) concentration ([Ca(2+)](i)) may then participate in cell volume regulation. The aim of the present study was to test if purinergic receptors and large conductance Ca(2+) activated K(+) (BK) channels are activated in response to hypotonic stress in clonal kidney cells (Vero cells). METHODS The methods used are fura-2 microfluorometry, cell-attached patch clamp and reverse-transcriptase polymerase chain reaction (RT-PCR). METHODS Subjecting cells to hypotonic stress for 10 s by exposure to a solution with 45% reduced osmolality induced a transient rise in [Ca(2+)](i). This response persisted in virtually Ca(2+)-free extracellular solution, demonstrating that Ca(2+) was mainly released from intracellular stores. The hypotonically induced elevation of [Ca(2+)](i) was completely inhibited by the P2 receptor antagonists suramine (100 microM) and pyridoxalphosphate-6-azophenyl-2'4'-disulphonate (PPADS; 20 microM), indicating that extracellular ATP is crucial for the [Ca(2+)](i) increase. RT-PCR revealed the expression of mRNA for P2Y(1) receptors in Vero cells. The putatively selective P2Y(1) antagonist PPADS did completely block Ca(2+) responses to both ATP and hypotonic stress, suggesting that P2Y(1) receptors are mediating the response. Furthermore, patch clamp recordings in cell-attached configuration revealed that BK channels are activated in response to hypotonic stress. conclusion: Vero cells express functional purinergic receptors, presumably of the P2Y(1) subtype. These receptors are responsible for the elevation of [Ca(2+)](i) evoked by hypotonic stress. The concurrent activation of BK channels permits K(+) efflux that may contribute to regulatory volume decrease.
Collapse
Affiliation(s)
- T Hafting
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | | | | | | |
Collapse
|
21
|
Ollivier H, Pichavant-Rafini K, Puill-Stephan E, Calvès P, Nonnotte L, Nonnotte G. Effects of hypo-osmotic stress on ATP release in isolated turbot (Scophthalmus maximus) hepatocytes. Biol Cell 2006; 98:427-37. [PMID: 16519627 DOI: 10.1042/bc20050077] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION ATP is released from many cell types exposed to hypo-osmotic shock and is involved in RVD (regulatory volume decrease). Purinergic signalling events have been extensively investigated in mammals, but not in marine teleosteans. RESULTS The effect of hypo-osmotic shock on ATP release was examined in isolated hepatocytes from turbot (Scophthalmus maximus), a marine flatfish. Hypo-osmotic stress (240 mOsm x kg(-1)) induced a significant increase in ATP efflux, and was inhibited by a potential CFTR (cystic fibrosis transmembrane conductance regulator) inhibitor, glibenclamide, but not by the MDR1 (multidrug resistance 1) P-glycoprotein inhibitor, verapamil. ATP efflux could be a cAMP-dependent process, as IBMX (isobutylmethylxanthine) and forskolin triggered the process under iso-osmotic conditions. Protein kinases, including protein kinase C, could also be involved, as staurosporine and chelerythrine inhibited the mechanism. Calcium could contribute to ATP efflux as ionomycin, a calcium ionophore, elicited a rapid release under iso-osmotic conditions, and chelation using EGTA abolished ATP release under hypo-osmotic conditions. RVD was partially abolished by apyrase, an ATP scavenger, and suramin, a purinoceptor antagonist. Moreover, hypo-osmotic shock induced a rise in intracellular calcium which could be involved in RVD. Since extracellular ATP triggered an increase in cellular free-calcium content under iso-osmotic conditions, our results could indicate that hypo-osmotic-induced ATP efflux contributes to RVD in turbot hepatocytes by stimulating purinergic receptors, which may lead to activation of a calcium signalling pathway. CONCLUSIONS These data provide the first evidence of volume-sensitive ATP signalling for volume maintenance in a marine teleost fish cell type.
Collapse
Affiliation(s)
- Hélène Ollivier
- Unité de Physiologie Comparée et Intégrative, U.F.R. Sciences et Techniques, 6 Avenue Le Gorgeu CS 93837, 29238 Brest, Cedex 3, France.
| | | | | | | | | | | |
Collapse
|
22
|
Carini R, Alchera E, De Cesaris MG, Splendore R, Piranda D, Baldanzi G, Albano E. Purinergic P2Y2 receptors promote hepatocyte resistance to hypoxia. J Hepatol 2006; 45:236-45. [PMID: 16644060 DOI: 10.1016/j.jhep.2006.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 02/10/2006] [Accepted: 02/21/2006] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS ATP stimulation of purinergic P2 receptors (P2YR and P2XR) regulates several hepatic functions. Here we report the involvement of ATP-mediated signals in enhancing hepatocyte tolerance to lethal stress. METHODS The protection given by purinergic agonists was investigated in rat hepatocytes exposed to hypoxia. RESULTS ATP released after hypotonic stress (200 mOsm/L) as well as P2YR agonists prevented hepatocyte killing by hypoxia with efficiency ranking UTP > ATPgammaS > ADPbetaS, whereas the P2XR agonist, methylene-adenosine-5'-triphosphate, was ineffective. Adenosine-5'-O-3-thiotriphosphate (ATPgammaS; 100 micromol/L) also prevented Na+ -overload in hypoxic cells by inhibiting the Na+/H+ exchanger, without interfering with hypoxic acidosis. ATPgammaS activated Src and promoted a Src-dependent stimulation of both ERK1/2 and p38MAPK. Blocking p38MAPK with SB203580 reverted the protection given by ATPgammaS on both cell viability and Na+ accumulation, whereas ERK1/2 inhibition with PD98058 was ineffective. An increased phosphorylation of ERK1/2 was also evident in untreated hypoxic hepatocytes. PD98058 ameliorated Na+ accumulation and cell death caused by hypoxia. Hepatocyte pre-treatment with ATPgammaS reverted ERK1/2 activation in hypoxic cells. SB203580 blocked the effects of ATPgammaS on both ERK1/2 and Na+/H+ exchanger. CONCLUSIONS The activation of p38MAPK by P2Y2R increases hepatocyte resistance to hypoxia by down-modulating ERK1/2-mediated signals that promote Na+ influx through the Na+/H+ exchanger.
Collapse
Affiliation(s)
- Rita Carini
- Department of Medical Sciences, University A. Avogadro of East Piedmont, Novara, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Saliba KJ, Kirk K. CJ-15,801, a fungal natural product, inhibits the intraerythrocytic stage of Plasmodium falciparum in vitro via an effect on pantothenic acid utilisation. Mol Biochem Parasitol 2005; 141:129-31. [PMID: 15811536 DOI: 10.1016/j.molbiopara.2005.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 01/18/2005] [Accepted: 02/02/2005] [Indexed: 10/25/2022]
Affiliation(s)
- Kevin J Saliba
- School of Biochemistry and Molecular Biology, The Australian National University, Canberra, ACT 0200, Australia.
| | | |
Collapse
|
24
|
Gow IF, Thomson J, Davidson J, Shennan DB. The effect of a hyposmotic shock and purinergic agonists on K+(Rb+) efflux from cultured human breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1712:52-61. [PMID: 15890311 DOI: 10.1016/j.bbamem.2005.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Revised: 02/18/2005] [Accepted: 04/06/2005] [Indexed: 11/22/2022]
Abstract
The effect of a hyposmotic shock and extracellular ATP on the efflux of K(+)(Rb(+)) from human breast cancer cell lines (MDA-MB-231 and MCF-7) has been examined. A hyposmotic shock increased the fractional efflux of K(+)(Rb(+)) from MDA-MB-231 cells via a pathway which was unaffected by Cl(-) replacement. Apamin, charybdotoxin or removing extracellular Ca(2+) had no effect on volume-activated K(+)(Rb(+)) efflux MDA-MB-231 cells. An osmotic shock also stimulated K(+)(Rb(+)) efflux from MCF-7 cells but to a much lesser extent than found with MDA-MB-231 cells. ATP-stimulated K(+)(Rb(+)) efflux from MDA-MB-231 cells in a dose-dependent fashion but had little effect on K(+)(Rb(+)) release from MCF-7 cells. ATP-stimulated K(+)(Rb(+)) efflux was only inhibited slightly by replacing Cl(-) with NO(3)(-). Removal of external Ca(2+) during treatment with ATP reduced the fractional efflux of K(+)(Rb(+)) in a manner suggesting a role for cellular Ca(2+) stores. Charybdotoxin, but neither apamin nor iberiotoxin, inhibited ATP-stimulated K(+)(Rb(+)) release from MDA-MB-231 cells. Suramin inhibited the ATP-activated efflux of K(+)(Rb(+)). UTP also stimulated K(+)(Rb(+)) efflux from MDA-MB-231 cells whereas ADP, AMP and adenosine were without effect. A combination of an osmotic shock and ATP increased the fractional efflux of K(+)(Rb(+)) to a level greater than the sum of the individual treatments. It appears that the hyposmotically-activated and ATP-stimulated K(+) efflux pathways are separate entities. However, there may be a degree of 'crosstalk' between the two pathways.
Collapse
Affiliation(s)
- I F Gow
- Hannah Research Institute, Ayr, Scotland, UK.
| | | | | | | |
Collapse
|
25
|
Saitow F, Murakoshi T, Suzuki H, Konishi S. Metabotropic P2Y purinoceptor-mediated presynaptic and postsynaptic enhancement of cerebellar GABAergic transmission. J Neurosci 2005; 25:2108-16. [PMID: 15728851 PMCID: PMC6726053 DOI: 10.1523/jneurosci.4254-04.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 01/18/2005] [Accepted: 01/18/2005] [Indexed: 11/21/2022] Open
Abstract
Cerebellar GABAergic inhibitory transmission is under heterosynaptic control mediated by diverse chemical messengers. Here, we investigated roles of metabotropic P2Y purinoceptors (P2YRs) on GABAergic synapses between cerebellar interneurons and Purkinje cells (PCs). Activation of P2Y purinoceptors by two selective agonists, ADP and 2-methylthio-ADP (2MeSADP), elicited two distinct forms of synaptic plasticity of GABAergic transmission in the cerebellar cortex. First, the two agonists induced long-lasting enhancement of stimulation-evoked GABAergic IPSCs as well as GABA(A) receptor currents in PCs. This effect was completely abolished by intracellular infusion of the Ca2+-chelating agent BAPTA. Measurements of intracellular Ca2+ ([Ca2+]i) dynamics showed that puff application of 2MeSADP produced an increase in [Ca2+]i of PCs and that this increase persisted in an external Ca2+-deficient medium. These results suggest that P2Y activation postsynaptically elicits long-term enhancement of GABA(A) receptor sensitivity of PCs through a Gq-mediated increase in [Ca2+]i. The other action of P2YR agonists on cerebellar GABAergic synapses was that they produced a short-term increase in the frequency and the amplitude of spontaneous GABAA receptor-mediated IPSCs in PCs in a manner sensitive to a P2Y1R antagonist, N6-methyl 2'-deoxyadenosine 3',5'-bisphosphate. This action appeared to be attributable to an excitability increase in presynaptic GABAergic interneurons, because ADP excited all Lugaro cells examined and some of interneurons in the molecular layer. These results suggest that activation of cerebellar P2Y purinoceptors leads to modulation of GABAergic transmission in different spatial and temporal domains, namely short-term and long-term plasticity through presynaptic and postsynaptic mechanisms at interneuron-->PC inhibitory synapses in the rat cerebellar cortex.
Collapse
Affiliation(s)
- Fumihito Saitow
- Department of Pharmacology, Nippon Medical School, Tokyo 113-8602, Japan
| | | | | | | |
Collapse
|
26
|
Haskew-Layton RE, Mongin AA, Kimelberg HK. Hydrogen peroxide potentiates volume-sensitive excitatory amino acid release via a mechanism involving Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 2004; 280:3548-54. [PMID: 15569671 DOI: 10.1074/jbc.m409803200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Excessive excitatory amino acid (EAA) release in cerebral ischemia is a major mechanism responsible for neuronal damage and death. A substantial fraction of ischemic EAA release occurs via volume-regulated anion channels (VRACs). Hydrogen peroxide (H2O2), which is abundantly produced during ischemia and reperfusion, activates a number of protein kinases critical for VRAC functioning and has recently been reported to activate VRACs. In the present study, we explored the effects of H2O2 on volume-dependent EAA release in cultured astrocytes, measured as the release of preloaded D-[3H]aspartate. 100-1,000 microm H2O2 enhanced swelling-induced EAA release by approximately 2.5-3-fold (EC50 approximately 10 microM). The VRAC blockers ATP, phloretin, and 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) potently inhibited both control swelling-induced and the H2O2-potentiated release, suggesting a role for VRACs. The H2O2-induced component of EAA release was attenuated by the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM) and completely eliminated by the calmodulin antagonists trifluoperazine and W-7 and the Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-93. Inhibitors of tyrosine kinases, protein kinase C, and the myosin light chain kinase were ineffective in blocking the H2O2 response. H2O2 treatment of swollen astrocytes, but not swelling alone, resulted in CaMKII activation that was inhibited by KN-93, as determined by a phospho-Thr286 CaMKII antibody. These data demonstrate that H2O2 strongly up-regulates astrocytic volume-sensitive EAA release via a CaMKII-dependent mechanism and in this way may potently promote pathological EAA release and brain damage in ischemia.
Collapse
Affiliation(s)
- Renée E Haskew-Layton
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York 12208, USA
| | | | | |
Collapse
|
27
|
ATP regulates anion channel-mediated organic osmolyte release from cultured rat astrocytes via multiple Ca2+-sensitive mechanisms. Am J Physiol Cell Physiol 2004; 288:C204-13. [PMID: 15371260 DOI: 10.1152/ajpcell.00330.2004] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ubiquitously expressed volume-regulated anion channels (VRACs) are activated in response to cell swelling but may also show limited activity in nonswollen cells. VRACs are permeable to inorganic anions and small organic osmolytes, including the amino acids aspartate, glutamate, and taurine. Several recent reports have demonstrated that neurotransmitters or hormones, such as ATP and vasopressin, induce or strongly potentiate astrocytic whole cell Cl(-) currents and amino acid release, which are inhibited by VRAC blockers. In the present study, we explored the intracellular signaling mechanisms mediating the effects of ATP on d-[(3)H]aspartate release via the putative VRAC pathway in rat primary astrocyte cultures. Cells were exposed to moderate (5%) or substantial (30%) reductions in medium osmolarity. ATP strongly potentiated d-[(3)H]aspartate release in both moderately swollen and substantially swollen cells. These ATP effects were blocked (>or=80% inhibition) by intracellular Ca(2+) chelation with BAPTA-AM, calmodulin inhibitors, or a combination of the inhibitors of protein kinase C (PKC) and calmodulin-dependent kinase II (CaMK II). In contrast, control d-[(3)H]aspartate release activated by the substantial hyposmotic swelling showed little (<or=25% inhibition) sensitivity to the same pharmacological agents. These data indicate that ATP regulates VRAC activity via two separate Ca(2+)-sensitive signaling cascades involving PKC and CaMK II and that cell swelling per se activates VRACs via a separate Ca(2+)/calmodulin-independent signaling mechanism. Ca(2+)-dependent organic osmolyte release via VRACs may contribute to the physiological functions of these channels in the brain, including astrocyte-to-neuron intercellular communication.
Collapse
|
28
|
Falktoft B, Lambert IH. Ca2+-mediated Potentiation of the Swelling-induced Taurine Efflux from HeLa Cells: On the Role of Calmodulin and Novel Protein Kinase C Isoforms. J Membr Biol 2004; 201:59-75. [PMID: 15630544 DOI: 10.1007/s00232-004-0705-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 07/19/2004] [Indexed: 11/27/2022]
Abstract
The present work sets out to investigate how Ca(2+) regulates the volume-sensitive taurine-release pathway in HeLa cells. Addition of Ca(2+)-mobilizing agonists at the time of exposure to hypotonic NaCl medium augments the swelling-induced taurine release and subsequently accelerates the inactivation of the release pathway. The accelerated inactivation is not observed in hypotonic Ca(2+)-free or high-K(+) media. Addition of Ca(2+)-mobilizing agonists also accelerates the regulatory volume decrease, which probably reflects activation of Ca(2+)-activated K(+) channels. The taurine release from control cells and cells exposed to Ca(2+) agonists is equally affected by changes in cell volume, application of DIDS and arachidonic acid, indicating that the volume-sensitive taurine leak pathway mediates the Ca(2+)-augmented taurine release. Exposure to Ca(2+)-mobilizing agonists prior to a hypotonic challenge also augments a subsequent swelling-induced taurine release even though the intracellular Ca(2+)-concentration has returned to the unstimulated level. The Ca(2+)-induced augmentation of the swelling-induced taurine release is abolished by inhibition of calmodulin, but unaffected by inhibition of calmodulin-dependent kinase II, myosin light chain kinase and calcineurin. The effect of Ca(2+)-mobilizing agonists is mimicked by protein kinase C (PKC) activation and abolished in the presence of the PKC inhibitor Gö6850 and following downregulation of phorbol ester-sensitive PKC isoforms. It is suggested that Ca(2+) regulates the volume-sensitive taurine-release pathway through activation of calmodulin and PKC isoforms belonging to the novel subclass (nPKC).
Collapse
Affiliation(s)
- B Falktoft
- Biochemical Department, August Krogh Institute, Universitetsparken 13, Copenhagen, DK-2100 Denmark
| | | |
Collapse
|
29
|
Franco R, Rodríguez R, Pasantes-Morales H. Mechanisms of the ATP potentiation of hyposmotic taurine release in Swiss 3T3 fibroblasts. Pflugers Arch 2004; 449:159-69. [PMID: 15322850 DOI: 10.1007/s00424-004-1322-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 07/12/2004] [Accepted: 07/13/2004] [Indexed: 10/26/2022]
Abstract
Reducing osmolarity by 35% increased (3)H-taurine efflux from Swiss 3T3 fibroblasts from 0.5% to a peak of 5.7%. The presence of ATP (10-100 microM; EC(50) 1.5 microM) increased taurine efflux up to 10%, and decreased the set point for hyposmotically stimulated taurine release (HTR). ATP potentiation was mimicked by UTP, reduced by addition of suramin and pyridoxal phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) and unaffected by ADP, beta,gamma-methylene-ATP (beta,gamma-ATP) or 2-methylthio-ATP (Me-ATP), suggesting its mediation by purinergic P2Y(2) and P2Y(4) metabotropic receptors. Under isosmotic conditions ATP increased the cytosolic [Ca(2+)] ([Ca(2+)](i)) markedly, but did not increase taurine release. HTR was independent of external Ca(2+) but was reduced (by 56-59%) by BAPTA-AM, thapsigargin-induced depletion of intracellular Ca(2+) stores, or phospholipase C (PLC) inhibition. Blockade of calmodulin (CaM) or calmodulin kinase II (CaMKII) reduced HTR by 54% and 76%, respectively. The ATP-mediated potentiation was prevented fully by all these treatments. HTR was reduced by 30-50% by blockers of protein tyrosine kinases (AG18), phosphoinositide 3-kinase (PI3K) (wortmannin), p21rho (toxin B), p21rho-kinase (Y27632) and the stress-activated kinase p38 (PD169316). ATP-mediated potentiation was reduced similarly by these blockers. Simultaneous inhibition of PI3K and CaMKII abolished HTR. Altogether, these results suggest a modulatory effect of ATP, probably exerted by a potentiation of the Ca(2+)-dependent fraction of HTR. This fraction has as signalling elements a PLC-dependent [Ca(2+)](i) increase, resulting from Ca(2+) released from thapsigargin-sensitive internal stores, followed by activation of CaM/CaMKII reactions. The Ca(2+)/ATP effect operates only when the Ca(2+)-independent, tyrosine kinase-mediated pathway is already activated. Suggested elements of cross-talk between the two pathways are PLC, PI3K and CaMKII.
Collapse
Affiliation(s)
- Rodrigo Franco
- Department of Biophysics, Institute of Cell Physiology, National University of Mexico, Apartado Postal 70-253, 04510 Mexico City, Mexico
| | | | | |
Collapse
|
30
|
Abstract
Change in the intracellular concentration of osmolytes or the extracellular tonicity results in a rapid transmembrane water flow in mammalian cells until intracellular and extracellular tonicities are equilibrated. Most cells respond to the osmotic cell swelling by activation of volume-sensitive flux pathways for ions and organic osmolytes to restore their original cell volume. Taurine is an important organic osmolyte in mammalian cells, and taurine release via a volume-sensitive taurine efflux pathway is increased and the active taurine uptake via the taurine specific taurine transporter TauT decreased following osmotic cell swelling. The cellular signaling cascades, the second messengers profile, the activation of specific transporters, and the subsequent time course for the readjustment of the cellular content of osmolytes and volume vary from cell type to cell type. Using Ehrlich ascites tumor cells, NIH3T3 mouse fibroblasts and HeLa cells as biological systems, it is revealed that phospholipase A2-mediated mobilization of arachidonic acid from phospholipids and subsequent oxidation of the fatty acid via lipoxygenase systems to potent eicosanoids are essential elements in the signaling cascade that is activated by cell swelling and leads to release of osmolytes. The cellular signaling cascade and the activity of the volume-sensitive taurine efflux pathway are modulated by elements of the cytoskeleton, protein tyrosine kinases/phosphatases, GTP-binding proteins, Ca2+/calmodulin, and reactive oxygen species and nucleotides. Serine/threonine phosphorylation of the active taurine uptake system TauT or a putative regulator, as well as change in the membrane potential, are important elements in the regulation of TauT activity. A model describing the cellular sequence, which is activated by cell swelling and leads to activation of the volume-sensitive efflux pathway, is presented at the end of the review.
Collapse
Affiliation(s)
- Ian Henry Lambert
- The August Krogh Institute, Biochemical Department, Universitetsparken 13, DK-2100, Copenhagen O, Denmark.
| |
Collapse
|
31
|
Li G, Olson JE. Extracellular ATP activates chloride and taurine conductances in cultured hippocampal neurons. Neurochem Res 2004; 29:239-46. [PMID: 14992283 DOI: 10.1023/b:nere.0000010452.26022.a7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigated regulation by extracellular ATP of channels important for volume regulation of rat hippocampal neurons. Cultures made from fetuses at the eighteenth gestational day were predominantly neuronal after 10-20 days in vitro, as indicated by immunostaining for neuron specific enolase. Neurons recorded with whole-cell patch clamp showed inward currents when membrane voltages were driven to values greater than -50 mV. Chloride conductance increased with 10 microM-100 microM extracellular ATP in a dose-dependent fashion. Similarly, an increase in taurine conductance was observed with 50 microM ATP. These currents were inhibited by the anion channel and purinergic receptor antagonists niflumic acid and suramin, respectively. The chloride conductance response to 10 microM ATP was increased over eight-fold in hypoosmotic medium (250 mOsm); however, chloride conductance in 0 mM ATP was not altered by this osmolality. Thus anion and osmolyte conducting channels activated via purinergic receptors may mediate volume regulation of hippocampal neurons.
Collapse
Affiliation(s)
- Guangze Li
- Department of Emergency Medicine, Wright State University School of Medicine, Dayton, Ohio, USA.
| | | |
Collapse
|
32
|
Olson JE, Li GZ, Wang L, Lu L. Volume-regulated anion conductance in cultured rat cerebral astrocytes requires calmodulin activity. Glia 2004; 46:391-401. [PMID: 15095369 DOI: 10.1002/glia.20014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We examined the calmodulin dependence of anion channel activation during hypo-osmotic swelling in rat cerebral astrocytes. Control cells bathed in iso-osmotic (290 mOsm) phosphate-buffered saline (PBS) and recorded using a patch electrode containing 140 mM KCl increased membrane conductance threefold over basal levels after 12 min in hypo-osmotic (200 mOsm) PBS. Cells injected with monoclonal anticalmodulin antibody demonstrated no increase in membrane conductance during a subsequent exposure to hypo-osmotic PBS. In contrast, cells iontophoretically injected with monoclonal antiglial fibrillary acidic protein antibody or with anticalmodulin antibody absorbed with an excess of free calmodulin demonstrated an increase in conductance during hypo-osmotic exposure similar to that of control cells. Conductance in iso-osmotic conditions was unchanged by antibody injection. Similar results were obtained when using patch electrode and bath solutions containing chloride as the only cell permeant ion, indicating a calmodulin-dependent anion current is activated with this degree of hypo-osmotic treatment. Western blots confirmed the specificity of the anticalmodulin and antiglial fibrillary acidic protein antibodies used in this study for proteins of 17 and 51 kD, respectively. In addition, in vitro studies demonstrated inhibition of the calmodulin-dependent activation of phosphodiesterase by the anticalmodulin antibody. Thus, binding of this antibody to calmodulin causes functional inhibition of calmodulin activity. No change in the intensity or cellular distribution of calmodulin immunostaining was observed during 30 min of hypo-osmotic exposure. However, increased immunostaining for activated calmodulin kinase IIalpha was observed after 10 min of hypo-osmotic exposure, suggesting initiation of calmodulin-dependent processes by cell swelling. The data indicate calmodulin activity is critical for activation of volume-regulated anion channels in rat cerebral astrocytes.
Collapse
Affiliation(s)
- James E Olson
- Department of Emergency Medicine, Wright State University School of Medicine, Cox Institute, Kettering, Ohio 45429, USA.
| | | | | | | |
Collapse
|
33
|
Mongin AA, Kimelberg HK. Is autocrine ATP release required for activation of volume-sensitive chloride channels? J Neurophysiol 2004; 90:2791-2; author reply 2792-3. [PMID: 14534282 DOI: 10.1152/jn.00615.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
34
|
Abstract
Activation of P2Y receptors by released nucleotides subserves important autocrine-paracrine functions in various non-neural tissues. To investigate how P2Y receptors are activated in a neuronal environment, we used PC12 cells in which nucleotides were found to elicit increases in inositol phosphates via P2Y2 and decreases in cAMP via P2Y12 receptors. Depolarization of PC12 cells raised inositol phosphates, and blockade of voltage-gated Ca2+ channels by Cd2+ or degradation of extracellular nucleotides by apyrase prevented this effect. In nondepolarized cells, apyrase did not affect inositol phosphates. Depolarization of PC12 cells also reduced the A2A receptor-mediated synthesis of cAMP. This effect was again prevented by Cd2+ or apyrase, but apyrase enhanced the synthesis of cAMP even in nondepolarized cells. Overexpression of rat P2Y2 receptors increased the nucleotide-dependent inositol phosphate accumulation and enhanced the effect of K+ depolarization. Nevertheless, apyrase still failed to alter spontaneous inositol phosphate accumulation. Expression of rat P2Y1 receptors, in contrast, led to huge increases in spontaneous inositol phosphate accumulation, which was reduced by a receptor antagonist or by apyrase. This increased synthesis of inositol phosphates could not be further enhanced by depolarization or receptor agonists, but when endogenous nucleotides were removed by superfusion, recombinant P2Y1 receptors could be activated to mediate an inhibition of M-type K+ channels. These results indicate that nucleoside diphosphate-sensitive (P2Y12 and P2Y1) receptors are activated by spontaneous nucleotide release, whereas triphosphate-sensitive (P2Y2) receptors require an excess of depolarization-evoked release to become activated.
Collapse
|
35
|
Chen J, Barritt GJ. Evidence that TRPC1 (transient receptor potential canonical 1) forms a Ca(2+)-permeable channel linked to the regulation of cell volume in liver cells obtained using small interfering RNA targeted against TRPC1. Biochem J 2003; 373:327-36. [PMID: 12720547 PMCID: PMC1223516 DOI: 10.1042/bj20021904] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2002] [Revised: 04/07/2003] [Accepted: 04/29/2003] [Indexed: 11/17/2022]
Abstract
The TRPC1 (transient receptor potential canonical 1) protein, which is thought to encode a non-selective cation channel activated by store depletion and/or an intracellular messenger, is expressed in a number of non-excitable cells. However, the physiological functions of TRPC1 are not well understood. The aim of these studies was to investigate the function of TRPC1 in liver cells using small interfering RNA (siRNA) to ablate the TRPC1 protein. Treatment of H4-IIE liver cells with siRNA targeted against TRPC1 caused an approx. 50% decrease in expression of the human TRPC1 protein in cells transfected with cDNA encoding human TRPC1, and a 50% decrease in expression of the endogenous TRPC1 protein (assessed by Western blot and immunofluorescence). The decrease in endogenous TRPC1 protein in cells transfected with TRPC1 siRNA was associated with a greater increase in cell volume (compared with the increase observed in control cells) immediately after cells were placed in a hypotonic medium, and an enhanced regulatory cell volume decrease after exposure to hypotonic medium. Treatment with siRNA targeted against TRPC1 also led to a 25% inhibition of thapsigargin-stimulated Ca(2+) inflow, a 40% inhibition of ATP and maitotoxin-stimulated Ca(2+) inflow, and a 50% inhibition of maitotoxin-stimulated Mn(2+) inflow. The idea that, in liver cells, TRPC1 encodes a non-selective cation channel involved directly or indirectly in the regulation of cell volume is consistent with the results obtained.
Collapse
Affiliation(s)
- Jinglong Chen
- Department of Medical Biochemistry, School of Medicine, Faculty of Health Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | | |
Collapse
|