1
|
Helkkula P, Hassan S, Saarentaus E, Vartiainen E, Ruotsalainen S, Leinonen JT, Palotie A, Karjalainen J, Kurki M, Ripatti S, Tukiainen T. Genome-wide association study of varicose veins identifies a protective missense variant in GJD3 enriched in the Finnish population. Commun Biol 2023; 6:71. [PMID: 36653477 PMCID: PMC9849365 DOI: 10.1038/s42003-022-04285-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 11/21/2022] [Indexed: 01/19/2023] Open
Abstract
Varicose veins is the most common manifestation of chronic venous disease that displays female-biased incidence. To identify protein-inactivating variants that could guide identification of drug target genes for varicose veins and genetic evidence for the disease prevalence difference between the sexes, we conducted a genome-wide association study of varicose veins in Finns using the FinnGen dataset with 17,027 cases and 190,028 controls. We identified 50 associated genetic loci (P < 5.0 × 10-8) of which 29 were novel including one near ERG with female-specificity (rs2836405-G, OR[95% CI] = 1.09[1.05-1.13], P = 3.1 × 10-8). These also include two X-chromosomal (ARHGAP6 and SRPX) and two autosomal novel loci (TGFB2 and GJD3) with protein-coding lead variants enriched above 56-fold in Finns over non-Finnish non-Estonian Europeans. A low-frequency missense variant in GJD3 (p.Pro59Thr) is exclusively associated with a lower risk for varicose veins (OR = 0.62 [0.55-0.70], P = 1.0 × 10-14) in a phenome-wide scan of the FinnGen data. The absence of observed pleiotropy and its membership of the connexin gene family underlines GJD3 as a potential connexin-modulating therapeutic strategy for varicose veins. Our results provide insights into varicose veins etiopathology and highlight the power of isolated populations, including Finns, to discover genetic variants that inform therapeutic development.
Collapse
Grants
- MC_PC_17228 Medical Research Council
- Academy of Finland (Suomen Akatemia)
- Sydäntutkimussäätiö (Finnish Foundation for Cardiovascular Research)
- Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), Sigrid Juselius Foundation (S.Ri. and T.T.), University of Helsinki HiLIFE Fellow and Grand Challenge grants (S.Ri.), University of Helsinki three-year research project grant (T.T.), FIMM-EMBL PhD program doctoral funding (S.H.), Nylands Nation, University of Helsinki (P.H.) The FinnGen project is funded by two grants from Business Finland (HUS 4685/31/2016 and UH 4386/31/2016) and the following industry partners: AbbVie Inc., AstraZeneca UK Ltd, Biogen MA Inc., Bristol Myers Squibb (and Celgene Corporation & Celgene International II Sàrl), Genentech Inc., Merck Sharp & Dohme Corp, Pfizer Inc., GlaxoSmithKline Intellectual Property Development Ltd., Sanofi US Services Inc., Maze Therapeutics Inc., Janssen Biotech Inc, Novartis AG, and Boehringer Ingelheim. Following biobanks are acknowledged for delivering biobank samples to FinnGen: Auria Biobank (www.auria.fi/biopankki), THL Biobank (www.thl.fi/biobank), Helsinki Biobank (www.helsinginbiopankki.fi), Biobank Borealis of Northern Finland (https://www.ppshp.fi/Tutkimus-ja-opetus/Biopankki/Pages/Biobank-Borealis-briefly-in-English.aspx), Finnish Clinical Biobank Tampere (www.tays.fi/en-US/Research_and_development/Finnish_Clinical_Biobank_Tampere), Biobank of Eastern Finland (www.ita-suomenbiopankki.fi/en), Central Finland Biobank (www.ksshp.fi/fi-FI/Potilaalle/Biopankki), Finnish Red Cross Blood Service Biobank (www.veripalvelu.fi/verenluovutus/biopankkitoiminta) and Terveystalo Biobank (www.terveystalo.com/fi/Yritystietoa/Terveystalo-Biopankki/Biopankki/).
Collapse
Affiliation(s)
- Pyry Helkkula
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Shabbeer Hassan
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Elmo Saarentaus
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Emilia Vartiainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Sanni Ruotsalainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Jaakko T Leinonen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Juha Karjalainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Mitja Kurki
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Department of Public Health, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Taru Tukiainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Zhou M, Zheng M, Zhou X, Tian S, Yang X, Ning Y, Li Y, Zhang S. The roles of connexins and gap junctions in the progression of cancer. Cell Commun Signal 2023; 21:8. [PMID: 36639804 PMCID: PMC9837928 DOI: 10.1186/s12964-022-01009-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/03/2022] [Indexed: 01/15/2023] Open
Abstract
Gap junctions (GJs), which are composed of connexins (Cxs), provide channels for direct information exchange between cells. Cx expression has a strong spatial specificity; however, its influence on cell behavior and information exchange between cells cannot be ignored. A variety of factors in organisms can modulate Cxs and subsequently trigger a series of responses that have important effects on cellular behavior. The expression and function of Cxs and the number and function of GJs are in dynamic change. Cxs have been characterized as tumor suppressors in the past, but recent studies have highlighted the critical roles of Cxs and GJs in cancer pathogenesis. The complex mechanism underlying Cx and GJ involvement in cancer development is a major obstacle to the evolution of therapy targeting Cxs. In this paper, we review the post-translational modifications of Cxs, the interactions of Cxs with several chaperone proteins, and the effects of Cxs and GJs on cancer. Video Abstract.
Collapse
Affiliation(s)
- Mingming Zhou
- grid.265021.20000 0000 9792 1228Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121 People’s Republic of China
| | - Xinyue Zhou
- grid.265021.20000 0000 9792 1228Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Shifeng Tian
- grid.265021.20000 0000 9792 1228Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Xiaohui Yang
- grid.216938.70000 0000 9878 7032Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yidi Ning
- grid.216938.70000 0000 9878 7032Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yuwei Li
- grid.417031.00000 0004 1799 2675Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121 People’s Republic of China
| |
Collapse
|
3
|
Differential Expression of BOC, SPOCK2, and GJD3 Is Associated with Brain Metastasis of ER-Negative Breast Cancers. Cancers (Basel) 2021; 13:cancers13122982. [PMID: 34203581 PMCID: PMC8232218 DOI: 10.3390/cancers13122982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Brain metastasis is diagnosed in 30–50% of metastatic breast cancer patients with currently limited treatment strategies and usually short survival rates. In the present study, we aim to identify genes specifically associated with the development of brain metastasis in breast cancer. Therefore, we compared RNA expression profiles from two groups of patients with metastatic breast cancer, with and without brain involvement. Three genes BOC, SPOCK2, and GJD3 were overexpressed in the group of primary breast cancers which developed brain metastasis. Expression profiles were confirmed in an independent breast cancer cohort for both BOC and SPOCK2. In addition, differential overexpression of SPOCK2 and GJD3 mRNA levels were found to be associated with the development of brain metastasis in an external online database of 204 primary breast cancers. Verification of these genes as biomarkers for brain metastasis development in primary breast cancer is warranted. Abstract Background: Brain metastasis is considered one of the major causes of mortality in breast cancer patients. To invade the brain, tumor cells need to pass the blood-brain barrier by mechanisms that are partially understood. In primary ER-negative breast cancers that developed brain metastases, we found that some of the differentially expressed genes play roles in the T cell response. The present study aimed to identify genes involved in the formation of brain metastasis independently from the T cell response. Method: Previously profiled primary breast cancer samples were reanalyzed. Genes that were found to be differentially expressed were confirmed by RT-PCR and by immunohistochemistry using an independent cohort of samples. Results: BOC, SPOCK2, and GJD3 were overexpressed in the primary breast tumors that developed brain metastasis. BOC expression was successfully validated at the protein level. SPOCK2 was validated at both mRNA and protein levels. SPOCK2 and GJD3 mRNA overexpression were also found to be associated with cerebral metastasis in an external online database consisting of 204 primary breast cancers. Conclusion: The overexpression of BOC, SPOCK2, and GJD3 is associated with the invasion of breast cancer into the brain. Further studies to determine their specific function and potential value as brain metastasis biomarkers are required.
Collapse
|
4
|
Mannino G, Vicario N, Parenti R, Giuffrida R, Lo Furno D. Connexin expression decreases during adipogenic differentiation of human adipose-derived mesenchymal stem cells. Mol Biol Rep 2020; 47:9951-9958. [PMID: 33141287 DOI: 10.1007/s11033-020-05950-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/23/2020] [Indexed: 02/08/2023]
Abstract
Adipose-derived stem cells (ASCs) represent a valuable tool for regenerative medicine being able to differentiate toward several cell lines, such as adipocytes, chondrocytes and osteocytes. During ASC adipogenic differentiation, changes in connexin (Cx) expression were evaluated in the present study. Three different Cxs were investigated: Cx43, Cx32 and Cx31.9. Cx43 is the most abundant in human tissues, Cx32 is prevalently found in nervous tissue and Cx31.9 is found at the myocardial level. Human ASCs undergoing adipogenic differentiation were isolated from raw lipoaspirate and characterized as mesenchymal stem cells. After multiple days of culture (1, 7, 14, 21 and 28 days), adipogenic differentiation was assessed by Oil Red O staining and Acetyl-CoA carboxylase (ACC) levels by western blotting. Cx expression was evaluated by western blotting at the same time points. In treated ASCs, lipidic vacuoles were detected from day 7 of treatment. Their number and size progressively increased over the entire period of observation. A parallel increase of ACC expression was also found. Lower levels of Cx expression were detected during adipogenic differentiation. Such decreases were particularly evident for Cx32, already after the first day of treatment. Cx31.9 and Cx43 also decreased, but starting from day 7. Our results suggest that ASCs may initially be equipped with a variety of Cxs, which is not surprising assuming their multipotential differentiation ability. Although some Cxs may be selectively enhanced depending on specific induction strategies toward different tissues, they seem markedly downregulated during adipogenic differentiation.
Collapse
Affiliation(s)
- Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, via Santa Sofia 97, 95123, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, via Santa Sofia 97, 95123, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, via Santa Sofia 97, 95123, Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, via Santa Sofia 97, 95123, Catania, Italy.
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, via Santa Sofia 97, 95123, Catania, Italy
| |
Collapse
|
5
|
Dai W, Nadadur RD, Brennan JA, Smith HL, Shen KM, Gadek M, Laforest B, Wang M, Gemel J, Li Y, Zhang J, Ziman BD, Yan J, Ai X, Beyer EC, Lakata EG, Kasthuri N, Efimov IR, Broman MT, Moskowitz IP, Shen L, Weber CR. ZO-1 Regulates Intercalated Disc Composition and Atrioventricular Node Conduction. Circ Res 2020; 127:e28-e43. [PMID: 32347164 PMCID: PMC7334106 DOI: 10.1161/circresaha.119.316415] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
RATIONALE ZO-1 (Zona occludens 1), encoded by the tight junction protein 1 (TJP1) gene, is a regulator of paracellular permeability in epithelia and endothelia. ZO-1 interacts with the actin cytoskeleton, gap, and adherens junction proteins and localizes to intercalated discs in cardiomyocytes. However, the contribution of ZO-1 to cardiac physiology remains poorly defined. OBJECTIVE We aim to determine the role of ZO-1 in cardiac function. METHODS AND RESULTS Inducible cardiomyocyte-specific Tjp1 deletion mice (Tjp1fl/fl; Myh6Cre/Esr1*) were generated by crossing the Tjp1 floxed mice and Myh6Cre/Esr1* transgenic mice. Tamoxifen-induced loss of ZO-1 led to atrioventricular (AV) block without changes in heart rate, as measured by ECG and ex vivo optical mapping. Mice with tamoxifen-induced conduction system-specific deletion of Tjp1 (Tjp1fl/fl; Hcn4CreERt2) developed AV block while tamoxifen-induced conduction system deletion of Tjp1 distal to the AV node (Tjp1fl/fl; Kcne1CreERt2) did not demonstrate conduction defects. Western blot and immunostaining analyses of AV nodes showed that ZO-1 loss decreased Cx (connexin) 40 expression and intercalated disc localization. Consistent with the mouse model study, immunohistochemical staining showed that ZO-1 is abundantly expressed in the human AV node and colocalizes with Cx40. Ventricular conduction was not altered despite decreased localization of ZO-1 and Cx43 at the ventricular intercalated disc and modestly decreased left ventricular ejection fraction, suggesting ZO-1 is differentially required for AV node and ventricular conduction. CONCLUSIONS ZO-1 is a key protein responsible for maintaining appropriate AV node conduction through maintaining gap junction protein localization.
Collapse
Affiliation(s)
- Wenli Dai
- Pathology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | - Rangarajan D. Nadadur
- Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Jaclyn A. Brennan
- Department of Biomedical Engineering, The George Washington University, 800 22nd St NW, Washington, DC 20052
| | - Heather L. Smith
- Pathology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | - Kaitlyn M. Shen
- Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Margaret Gadek
- Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Brigitte Laforest
- Medicine, Section of Cardiology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, National Institution on Aging-NIH, BRC-9B0127 251 Bayview Blvd, Baltimore, MD 21224
| | - Joanna Gemel
- Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Ye Li
- Pathology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | - Jing Zhang
- Laboratory of Cardiovascular Science, National Institution on Aging-NIH, BRC-9B0127 251 Bayview Blvd, Baltimore, MD 21224
| | - Bruce D. Ziman
- Laboratory of Cardiovascular Science, National Institution on Aging-NIH, BRC-9B0127 251 Bayview Blvd, Baltimore, MD 21224
| | - Jiajie Yan
- Physiology and Biophysics, Rush University, 1750 West Harrison St., Chicago, IL 60612
| | - Xun Ai
- Physiology and Biophysics, Rush University, 1750 West Harrison St., Chicago, IL 60612
| | - Eric C. Beyer
- Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Edward G. Lakata
- Laboratory of Cardiovascular Science, National Institution on Aging-NIH, BRC-9B0127 251 Bayview Blvd, Baltimore, MD 21224
| | - Narayanan Kasthuri
- Neurobiology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | - Igor R. Efimov
- Department of Biomedical Engineering, The George Washington University, 800 22nd St NW, Washington, DC 20052
| | - Michael T. Broman
- Medicine, Section of Cardiology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | - Ivan P. Moskowitz
- Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Le Shen
- Pathology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
- Section of Neurosurgery, Department of Surgery, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | | |
Collapse
|
6
|
Dydowiczová A, Brózman O, Babica P, Sovadinová I. Improved multiparametric scrape loading-dye transfer assay for a simultaneous high-throughput analysis of gap junctional intercellular communication, cell density and viability. Sci Rep 2020; 10:730. [PMID: 31959888 PMCID: PMC6971000 DOI: 10.1038/s41598-020-57536-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/31/2019] [Indexed: 12/28/2022] Open
Abstract
Gap junctional intercellular communication (GJIC) is a vital cellular process required for maintenance of tissue homeostasis. In vitro assessment of GJIC represents valuable phenotypic endpoint that could be effectively utilized as an integral component in modern toxicity testing, drug screening or biomedical in vitro research. However, currently available methods for quantifying GJIC with higher-throughputs typically require specialized equipment, proprietary software and/or genetically engineered cell models. To overcome these limitations, we present here an innovative adaptation of traditional, fluorescence microscopy-based scrape loading-dye transfer (SL-DT) assay, which has been optimized to simultaneously evaluate GJIC, cell density and viability. This multiparametric method was demonstrated to be suitable for various multiwell microplate formats, which facilitates an automatized image acquisition. The assay workflow is further assisted by an open source-based software tools for batch image processing, analysis and evaluation of GJIC, cell density and viability. Our results suggest that this approach provides a simple, fast, versatile and cost effective way for in vitro high-throughput assessment of GJIC and other related phenotypic cellular events, which could be included into in vitro screening and assessment of pharmacologically and toxicologically relevant compounds.
Collapse
Affiliation(s)
- Aneta Dydowiczová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Ondřej Brózman
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Pavel Babica
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Iva Sovadinová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500, Brno, Czech Republic.
| |
Collapse
|
7
|
Sánchez A, Castro C, Flores DL, Gutiérrez E, Baldi P. Gap Junction Channels of Innexins and Connexins: Relations and Computational Perspectives. Int J Mol Sci 2019; 20:E2476. [PMID: 31109150 PMCID: PMC6566657 DOI: 10.3390/ijms20102476] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/04/2019] [Accepted: 05/14/2019] [Indexed: 12/16/2022] Open
Abstract
Gap junction (GJ) channels in invertebrates have been used to understand cell-to-cell communication in vertebrates. GJs are a common form of intercellular communication channels which connect the cytoplasm of adjacent cells. Dysregulation and structural alteration of the gap junction-mediated communication have been proven to be associated with a myriad of symptoms and tissue-specific pathologies. Animal models relying on the invertebrate nervous system have exposed a relationship between GJs and the formation of electrical synapses during embryogenesis and adulthood. The modulation of GJs as a therapeutic and clinical tool may eventually provide an alternative for treating tissue formation-related diseases and cell propagation. This review concerns the similarities between Hirudo medicinalis innexins and human connexins from nucleotide and protein sequence level perspectives. It also sets forth evidence of computational techniques applied to the study of proteins, sequences, and molecular dynamics. Furthermore, we propose machine learning techniques as a method that could be used to study protein structure, gap junction inhibition, metabolism, and drug development.
Collapse
Affiliation(s)
- Alejandro Sánchez
- Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada, Baja California 22860, Mexico.
| | - Carlos Castro
- Facultad of Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Ensenada, Baja California 22860, Mexico.
| | - Dora-Luz Flores
- Facultad of Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Ensenada, Baja California 22860, Mexico.
| | - Everardo Gutiérrez
- Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada, Baja California 22860, Mexico.
| | - Pierre Baldi
- Department of Computer Science, Institute for Genomics and Bioinformatics, and Center for Machine Learning and Intelligent Systems, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
8
|
Leybaert L, Lampe PD, Dhein S, Kwak BR, Ferdinandy P, Beyer EC, Laird DW, Naus CC, Green CR, Schulz R. Connexins in Cardiovascular and Neurovascular Health and Disease: Pharmacological Implications. Pharmacol Rev 2017; 69:396-478. [PMID: 28931622 PMCID: PMC5612248 DOI: 10.1124/pr.115.012062] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Connexins are ubiquitous channel forming proteins that assemble as plasma membrane hemichannels and as intercellular gap junction channels that directly connect cells. In the heart, gap junction channels electrically connect myocytes and specialized conductive tissues to coordinate the atrial and ventricular contraction/relaxation cycles and pump function. In blood vessels, these channels facilitate long-distance endothelial cell communication, synchronize smooth muscle cell contraction, and support endothelial-smooth muscle cell communication. In the central nervous system they form cellular syncytia and coordinate neural function. Gap junction channels are normally open and hemichannels are normally closed, but pathologic conditions may restrict gap junction communication and promote hemichannel opening, thereby disturbing a delicate cellular communication balance. Until recently, most connexin-targeting agents exhibited little specificity and several off-target effects. Recent work with peptide-based approaches has demonstrated improved specificity and opened avenues for a more rational approach toward independently modulating the function of gap junctions and hemichannels. We here review the role of connexins and their channels in cardiovascular and neurovascular health and disease, focusing on crucial regulatory aspects and identification of potential targets to modify their function. We conclude that peptide-based investigations have raised several new opportunities for interfering with connexins and their channels that may soon allow preservation of gap junction communication, inhibition of hemichannel opening, and mitigation of inflammatory signaling.
Collapse
Affiliation(s)
- Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Paul D Lampe
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Stefan Dhein
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Brenda R Kwak
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Peter Ferdinandy
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Eric C Beyer
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Dale W Laird
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Christian C Naus
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Colin R Green
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| |
Collapse
|
9
|
Bai D, Yue B, Aoyama H. Crucial motifs and residues in the extracellular loops influence the formation and specificity of connexin docking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:9-21. [PMID: 28693896 DOI: 10.1016/j.bbamem.2017.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/25/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022]
Abstract
Most of the early studies on gap junction (GJ) channel function and docking compatibility were on rodent connexins, while recent research on GJ channels gradually shifted from rodent to human connexins largely due to the fact that mutations in many human connexin genes are found to associate with inherited human diseases. The studies on human connexins have revealed some key differences from those found in rodents, calling for a comprehensive characterization of human GJ channels. Functional studies revealed that docking and formation of functional GJ channels between two hemichannels are possible only between docking-compatible connexins. Two groups of docking-compatible rodent connexins have been identified. Compatibility is believed to be due to their amino acid residue differences at the extracellular loop domains (E1 and E2). Sequence alignment of the E1 and E2 domains of all connexins known to make GJs revealed that they are highly conserved and show high sequence identity with human Cx26, which is the only connexin with near atomic resolution GJ structure. We hypothesize that different connexins have a similar structure as that of Cx26 at the E1 and E2 domains and use the corresponding residues in their E1 and E2 domains for docking. Based on the Cx26 GJ structure and sequence analysis of well-studied connexins, we propose that the E1-E1 docking interactions are staggered with each E1 interacting with two E1s on the docked connexon. The putative E1 docking residues are conserved in both docking-compatible and -incompatible connexins, indicating that E1 does not likely serve a role in docking compatibility. However, in the case of E2-E2 docking interactions, the putative docking residues are only conserved within the docking-compatible connexins, suggesting the E2 is likely to serve the function of docking compatibility. Docking compatibility studies on human connexins have attracted a lot of attention due to the fact that putative docking residues are mutational hotspots for several connexin-linked human diseases. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Donglin Bai
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.
| | - Benny Yue
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Hiroshi Aoyama
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
10
|
Artesi M, Kroonen J, Bredel M, Nguyen-Khac M, Deprez M, Schoysman L, Poulet C, Chakravarti A, Kim H, Scholtens D, Seute T, Rogister B, Bours V, Robe PA. Connexin 30 expression inhibits growth of human malignant gliomas but protects them against radiation therapy. Neuro Oncol 2014; 17:392-406. [PMID: 25155356 DOI: 10.1093/neuonc/nou215] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 07/28/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Glioblastomas remain ominous tumors that almost invariably escape treatment. Connexins are a family of transmembrane, gap junction-forming proteins, some members of which were reported to act as tumor suppressors and to modulate cellular metabolism in response to cytotoxic stress. METHODS We analyzed the copy number and expression of the connexin (Cx)30 gene gap junction beta-6 (GJB6), as well as of its protein immunoreactivity in several public and proprietary repositories of glioblastomas, and their influence on patient survival. We evaluated the effect of the expression of this gap junction protein on the growth, DNA repair and energy metabolism, and treatment resistance of these tumors. RESULTS The GJB6 gene was deleted in 25.8% of 751 analyzed tumors and mutated in 15.8% of 158 tumors. Cx30 immunoreactivity was absent in 28.9% of 145 tumors. Restoration of Cx30 expression in human glioblastoma cells reduced their growth in vitro and as xenografts in the striatum of immunodeficient mice. Cx30 immunoreactivity was, however, found to adversely affect survival in 2 independent retrospective cohorts of glioblastoma patients. Cx30 was found in clonogenic assays to protect glioblastoma cells against radiation-induced mortality and to decrease radiation-induced DNA damage. This radioprotection correlated with a heat shock protein 90-dependent mitochondrial translocation of Cx30 following radiation and an improved ATP production following this genotoxic stress. CONCLUSION These results underline the complex relationship between potential tumor suppressors and treatment resistance in glioblastomas and single out GJB6/Cx30 as a potential biomarker and target for therapeutic intervention in these tumors.
Collapse
Affiliation(s)
- Maria Artesi
- Department of Human Genetics, CBIG/GIGA Research Center, University of Liège, Liège, Belgium (M.A., J.K., M.N.-K., L.S., C.P., V.B., P.A.R.); Department of Neurology and Neurosurgery and T. and P. Bonhenn Neuro-Oncology Laboratory, University Hospital of Utrecht, Utrecht, Netherlands (J.K., L.S., T.S., P.A.R.); Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, Illinois (D.S.); Center for Population Health Sciences, Institute for Public Health and Medicine, Northwestern University, Chicago (D.S.); Division of Neuropathology, University Hospital of Liège, Liège, Belgium (M.D.); Division of Neurobiology, CBIG/GIGA Research Center, University Hospital of Liège, Liège, Belgium (B.R.); Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio (A.C., P.A.R.); Department of Radiation Oncology, Hazelrig-Salter Radiation Oncology Center and UAB Comprehensive Cancer Center, Birmingham, Alabama (M.B., H.K.)
| | - Jerome Kroonen
- Department of Human Genetics, CBIG/GIGA Research Center, University of Liège, Liège, Belgium (M.A., J.K., M.N.-K., L.S., C.P., V.B., P.A.R.); Department of Neurology and Neurosurgery and T. and P. Bonhenn Neuro-Oncology Laboratory, University Hospital of Utrecht, Utrecht, Netherlands (J.K., L.S., T.S., P.A.R.); Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, Illinois (D.S.); Center for Population Health Sciences, Institute for Public Health and Medicine, Northwestern University, Chicago (D.S.); Division of Neuropathology, University Hospital of Liège, Liège, Belgium (M.D.); Division of Neurobiology, CBIG/GIGA Research Center, University Hospital of Liège, Liège, Belgium (B.R.); Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio (A.C., P.A.R.); Department of Radiation Oncology, Hazelrig-Salter Radiation Oncology Center and UAB Comprehensive Cancer Center, Birmingham, Alabama (M.B., H.K.)
| | - Markus Bredel
- Department of Human Genetics, CBIG/GIGA Research Center, University of Liège, Liège, Belgium (M.A., J.K., M.N.-K., L.S., C.P., V.B., P.A.R.); Department of Neurology and Neurosurgery and T. and P. Bonhenn Neuro-Oncology Laboratory, University Hospital of Utrecht, Utrecht, Netherlands (J.K., L.S., T.S., P.A.R.); Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, Illinois (D.S.); Center for Population Health Sciences, Institute for Public Health and Medicine, Northwestern University, Chicago (D.S.); Division of Neuropathology, University Hospital of Liège, Liège, Belgium (M.D.); Division of Neurobiology, CBIG/GIGA Research Center, University Hospital of Liège, Liège, Belgium (B.R.); Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio (A.C., P.A.R.); Department of Radiation Oncology, Hazelrig-Salter Radiation Oncology Center and UAB Comprehensive Cancer Center, Birmingham, Alabama (M.B., H.K.)
| | - Minh Nguyen-Khac
- Department of Human Genetics, CBIG/GIGA Research Center, University of Liège, Liège, Belgium (M.A., J.K., M.N.-K., L.S., C.P., V.B., P.A.R.); Department of Neurology and Neurosurgery and T. and P. Bonhenn Neuro-Oncology Laboratory, University Hospital of Utrecht, Utrecht, Netherlands (J.K., L.S., T.S., P.A.R.); Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, Illinois (D.S.); Center for Population Health Sciences, Institute for Public Health and Medicine, Northwestern University, Chicago (D.S.); Division of Neuropathology, University Hospital of Liège, Liège, Belgium (M.D.); Division of Neurobiology, CBIG/GIGA Research Center, University Hospital of Liège, Liège, Belgium (B.R.); Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio (A.C., P.A.R.); Department of Radiation Oncology, Hazelrig-Salter Radiation Oncology Center and UAB Comprehensive Cancer Center, Birmingham, Alabama (M.B., H.K.)
| | - Manuel Deprez
- Department of Human Genetics, CBIG/GIGA Research Center, University of Liège, Liège, Belgium (M.A., J.K., M.N.-K., L.S., C.P., V.B., P.A.R.); Department of Neurology and Neurosurgery and T. and P. Bonhenn Neuro-Oncology Laboratory, University Hospital of Utrecht, Utrecht, Netherlands (J.K., L.S., T.S., P.A.R.); Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, Illinois (D.S.); Center for Population Health Sciences, Institute for Public Health and Medicine, Northwestern University, Chicago (D.S.); Division of Neuropathology, University Hospital of Liège, Liège, Belgium (M.D.); Division of Neurobiology, CBIG/GIGA Research Center, University Hospital of Liège, Liège, Belgium (B.R.); Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio (A.C., P.A.R.); Department of Radiation Oncology, Hazelrig-Salter Radiation Oncology Center and UAB Comprehensive Cancer Center, Birmingham, Alabama (M.B., H.K.)
| | - Laurent Schoysman
- Department of Human Genetics, CBIG/GIGA Research Center, University of Liège, Liège, Belgium (M.A., J.K., M.N.-K., L.S., C.P., V.B., P.A.R.); Department of Neurology and Neurosurgery and T. and P. Bonhenn Neuro-Oncology Laboratory, University Hospital of Utrecht, Utrecht, Netherlands (J.K., L.S., T.S., P.A.R.); Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, Illinois (D.S.); Center for Population Health Sciences, Institute for Public Health and Medicine, Northwestern University, Chicago (D.S.); Division of Neuropathology, University Hospital of Liège, Liège, Belgium (M.D.); Division of Neurobiology, CBIG/GIGA Research Center, University Hospital of Liège, Liège, Belgium (B.R.); Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio (A.C., P.A.R.); Department of Radiation Oncology, Hazelrig-Salter Radiation Oncology Center and UAB Comprehensive Cancer Center, Birmingham, Alabama (M.B., H.K.)
| | - Christophe Poulet
- Department of Human Genetics, CBIG/GIGA Research Center, University of Liège, Liège, Belgium (M.A., J.K., M.N.-K., L.S., C.P., V.B., P.A.R.); Department of Neurology and Neurosurgery and T. and P. Bonhenn Neuro-Oncology Laboratory, University Hospital of Utrecht, Utrecht, Netherlands (J.K., L.S., T.S., P.A.R.); Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, Illinois (D.S.); Center for Population Health Sciences, Institute for Public Health and Medicine, Northwestern University, Chicago (D.S.); Division of Neuropathology, University Hospital of Liège, Liège, Belgium (M.D.); Division of Neurobiology, CBIG/GIGA Research Center, University Hospital of Liège, Liège, Belgium (B.R.); Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio (A.C., P.A.R.); Department of Radiation Oncology, Hazelrig-Salter Radiation Oncology Center and UAB Comprehensive Cancer Center, Birmingham, Alabama (M.B., H.K.)
| | - Arnab Chakravarti
- Department of Human Genetics, CBIG/GIGA Research Center, University of Liège, Liège, Belgium (M.A., J.K., M.N.-K., L.S., C.P., V.B., P.A.R.); Department of Neurology and Neurosurgery and T. and P. Bonhenn Neuro-Oncology Laboratory, University Hospital of Utrecht, Utrecht, Netherlands (J.K., L.S., T.S., P.A.R.); Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, Illinois (D.S.); Center for Population Health Sciences, Institute for Public Health and Medicine, Northwestern University, Chicago (D.S.); Division of Neuropathology, University Hospital of Liège, Liège, Belgium (M.D.); Division of Neurobiology, CBIG/GIGA Research Center, University Hospital of Liège, Liège, Belgium (B.R.); Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio (A.C., P.A.R.); Department of Radiation Oncology, Hazelrig-Salter Radiation Oncology Center and UAB Comprehensive Cancer Center, Birmingham, Alabama (M.B., H.K.)
| | - Hyunsoo Kim
- Department of Human Genetics, CBIG/GIGA Research Center, University of Liège, Liège, Belgium (M.A., J.K., M.N.-K., L.S., C.P., V.B., P.A.R.); Department of Neurology and Neurosurgery and T. and P. Bonhenn Neuro-Oncology Laboratory, University Hospital of Utrecht, Utrecht, Netherlands (J.K., L.S., T.S., P.A.R.); Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, Illinois (D.S.); Center for Population Health Sciences, Institute for Public Health and Medicine, Northwestern University, Chicago (D.S.); Division of Neuropathology, University Hospital of Liège, Liège, Belgium (M.D.); Division of Neurobiology, CBIG/GIGA Research Center, University Hospital of Liège, Liège, Belgium (B.R.); Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio (A.C., P.A.R.); Department of Radiation Oncology, Hazelrig-Salter Radiation Oncology Center and UAB Comprehensive Cancer Center, Birmingham, Alabama (M.B., H.K.)
| | - Denise Scholtens
- Department of Human Genetics, CBIG/GIGA Research Center, University of Liège, Liège, Belgium (M.A., J.K., M.N.-K., L.S., C.P., V.B., P.A.R.); Department of Neurology and Neurosurgery and T. and P. Bonhenn Neuro-Oncology Laboratory, University Hospital of Utrecht, Utrecht, Netherlands (J.K., L.S., T.S., P.A.R.); Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, Illinois (D.S.); Center for Population Health Sciences, Institute for Public Health and Medicine, Northwestern University, Chicago (D.S.); Division of Neuropathology, University Hospital of Liège, Liège, Belgium (M.D.); Division of Neurobiology, CBIG/GIGA Research Center, University Hospital of Liège, Liège, Belgium (B.R.); Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio (A.C., P.A.R.); Department of Radiation Oncology, Hazelrig-Salter Radiation Oncology Center and UAB Comprehensive Cancer Center, Birmingham, Alabama (M.B., H.K.)
| | - Tatjana Seute
- Department of Human Genetics, CBIG/GIGA Research Center, University of Liège, Liège, Belgium (M.A., J.K., M.N.-K., L.S., C.P., V.B., P.A.R.); Department of Neurology and Neurosurgery and T. and P. Bonhenn Neuro-Oncology Laboratory, University Hospital of Utrecht, Utrecht, Netherlands (J.K., L.S., T.S., P.A.R.); Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, Illinois (D.S.); Center for Population Health Sciences, Institute for Public Health and Medicine, Northwestern University, Chicago (D.S.); Division of Neuropathology, University Hospital of Liège, Liège, Belgium (M.D.); Division of Neurobiology, CBIG/GIGA Research Center, University Hospital of Liège, Liège, Belgium (B.R.); Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio (A.C., P.A.R.); Department of Radiation Oncology, Hazelrig-Salter Radiation Oncology Center and UAB Comprehensive Cancer Center, Birmingham, Alabama (M.B., H.K.)
| | - Bernard Rogister
- Department of Human Genetics, CBIG/GIGA Research Center, University of Liège, Liège, Belgium (M.A., J.K., M.N.-K., L.S., C.P., V.B., P.A.R.); Department of Neurology and Neurosurgery and T. and P. Bonhenn Neuro-Oncology Laboratory, University Hospital of Utrecht, Utrecht, Netherlands (J.K., L.S., T.S., P.A.R.); Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, Illinois (D.S.); Center for Population Health Sciences, Institute for Public Health and Medicine, Northwestern University, Chicago (D.S.); Division of Neuropathology, University Hospital of Liège, Liège, Belgium (M.D.); Division of Neurobiology, CBIG/GIGA Research Center, University Hospital of Liège, Liège, Belgium (B.R.); Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio (A.C., P.A.R.); Department of Radiation Oncology, Hazelrig-Salter Radiation Oncology Center and UAB Comprehensive Cancer Center, Birmingham, Alabama (M.B., H.K.)
| | - Vincent Bours
- Department of Human Genetics, CBIG/GIGA Research Center, University of Liège, Liège, Belgium (M.A., J.K., M.N.-K., L.S., C.P., V.B., P.A.R.); Department of Neurology and Neurosurgery and T. and P. Bonhenn Neuro-Oncology Laboratory, University Hospital of Utrecht, Utrecht, Netherlands (J.K., L.S., T.S., P.A.R.); Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, Illinois (D.S.); Center for Population Health Sciences, Institute for Public Health and Medicine, Northwestern University, Chicago (D.S.); Division of Neuropathology, University Hospital of Liège, Liège, Belgium (M.D.); Division of Neurobiology, CBIG/GIGA Research Center, University Hospital of Liège, Liège, Belgium (B.R.); Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio (A.C., P.A.R.); Department of Radiation Oncology, Hazelrig-Salter Radiation Oncology Center and UAB Comprehensive Cancer Center, Birmingham, Alabama (M.B., H.K.)
| | - Pierre A Robe
- Department of Human Genetics, CBIG/GIGA Research Center, University of Liège, Liège, Belgium (M.A., J.K., M.N.-K., L.S., C.P., V.B., P.A.R.); Department of Neurology and Neurosurgery and T. and P. Bonhenn Neuro-Oncology Laboratory, University Hospital of Utrecht, Utrecht, Netherlands (J.K., L.S., T.S., P.A.R.); Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, Illinois (D.S.); Center for Population Health Sciences, Institute for Public Health and Medicine, Northwestern University, Chicago (D.S.); Division of Neuropathology, University Hospital of Liège, Liège, Belgium (M.D.); Division of Neurobiology, CBIG/GIGA Research Center, University Hospital of Liège, Liège, Belgium (B.R.); Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio (A.C., P.A.R.); Department of Radiation Oncology, Hazelrig-Salter Radiation Oncology Center and UAB Comprehensive Cancer Center, Birmingham, Alabama (M.B., H.K.)
| |
Collapse
|
11
|
Hervé JC, Derangeon M, Sarrouilhe D, Bourmeyster N. Influence of the scaffolding protein Zonula Occludens (ZOs) on membrane channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:595-604. [DOI: 10.1016/j.bbamem.2013.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 01/20/2023]
|
12
|
Thévenin AF, Kowal TJ, Fong JT, Kells RM, Fisher CG, Falk MM. Proteins and mechanisms regulating gap-junction assembly, internalization, and degradation. Physiology (Bethesda) 2014; 28:93-116. [PMID: 23455769 DOI: 10.1152/physiol.00038.2012] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gap junctions (GJs) are the only known cellular structures that allow a direct cell-to-cell transfer of signaling molecules by forming densely packed arrays or "plaques" of hydrophilic channels that bridge the apposing membranes of neighboring cells. The crucial role of GJ-mediated intercellular communication (GJIC) for all aspects of multicellular life, including coordination of development, tissue function, and cell homeostasis, has been well documented. Assembly and degradation of these membrane channels is a complex process that includes biosynthesis of the connexin (Cx) subunit proteins (innexins in invertebrates) on endoplasmic reticulum (ER) membranes, oligomerization of compatible subunits into hexameric hemichannels (connexons), delivery of the connexons to the plasma membrane (PM), head-on docking of compatible connexons in the extracellular space at distinct locations, arrangement of channels into dynamic spatially and temporally organized GJ channel plaques, as well as internalization of GJs into the cytoplasm followed by their degradation. Clearly, precise modulation of GJIC, biosynthesis, and degradation are crucial for accurate function, and much research currently addresses how these fundamental processes are regulated. Here, we review posttranslational protein modifications (e.g., phosphorylation and ubiquitination) and the binding of protein partners (e.g., the scaffolding protein ZO-1) known to regulate GJ biosynthesis, internalization, and degradation. We also look closely at the atomic resolution structure of a GJ channel, since the structure harbors vital cues relevant to GJ biosynthesis and turnover.
Collapse
Affiliation(s)
- Anastasia F Thévenin
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
13
|
Bazzoun D, Lelièvre S, Talhouk R. Polarity proteins as regulators of cell junction complexes: implications for breast cancer. Pharmacol Ther 2013; 138:418-27. [PMID: 23458609 PMCID: PMC3648792 DOI: 10.1016/j.pharmthera.2013.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Abstract
The epithelium of multicellular organisms possesses a well-defined architecture, referred to as polarity that coordinates the regulation of essential cell features. Polarity proteins are intimately linked to the protein complexes that make the tight, adherens and gap junctions; they contribute to the proper localization and assembly of these cell-cell junctions within cells and consequently to functional tissue organization. The establishment of cell-cell junctions and polarity are both implicated in the regulation of epithelial modifications in normal and cancer situations. Uncovering the mechanisms through which cell-cell junctions and epithelial polarization are established and how their interaction with the microenvironment directs cell and tissue organization has opened new venues for the development of cancer therapies. In this review, we focus on the breast epithelium to highlight how polarity and cell-cell junction proteins interact together in normal and cancerous contexts to regulate major cellular mechanisms such as migration. The impact of these proteins on epigenetic mechanisms responsible for resetting cells toward oncogenesis is discussed in light of increasing evidence that tissue polarity modulates chromatin function. Finally, we give an overview of recent breast cancer therapies that target proteins involved in cell-cell junctions.
Collapse
Affiliation(s)
- Dana Bazzoun
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut (AUB), Beirut, Lebanon
| | - Sophie Lelièvre
- Department of Basic Medical Sciences and Center for Cancer Research, Purdue University, IN, U.S.A
| | - Rabih Talhouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut (AUB), Beirut, Lebanon
| |
Collapse
|
14
|
Xu J, Lim SBH, Ng MY, Ali SM, Kausalya JP, Limviphuvadh V, Maurer-Stroh S, Hunziker W. ZO-1 regulates Erk, Smad1/5/8, Smad2, and RhoA activities to modulate self-renewal and differentiation of mouse embryonic stem cells. Stem Cells 2013; 30:1885-900. [PMID: 22782886 DOI: 10.1002/stem.1172] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
ZO-1/Tjp1 is a cytosolic adaptor that links tight junction (TJ) transmembrane proteins to the actin cytoskeleton and has also been implicated in regulating cell proliferation and differentiation by interacting with transcriptional regulators and signaling proteins. To explore possible roles for ZO-1 in mouse embryonic stem cells (mESCs), we inactivated the ZO-1 locus by homologous recombination. The lack of ZO-1 was found to affect mESC self-renewal and differentiation in the presence of leukemia-inhibiting factor (LIF) and Bmp4 or following removal of the growth factors. Our data suggest that ZO-1 suppresses Stat3 and Smad1/5/8 activities and sustains extracellular-signal-regulated kinase (Erk) activity to promote mESC differentiation. Interestingly, Smad2, critical for human but not mESC self-renewal, was hyperactivated in ZO-1(-/-) mESCs and RhoA protein levels were concomitantly enhanced, suggesting attenuation of the noncanonical transforming growth factor β (Tgfβ)/Activin/Nodal pathway that mediates ubiquitination and degradation of RhoA via the TJ proteins Occludin, Par6, and Smurf1 and activation of the canonical Smad2-dependent pathway. Furthermore, Bmp4-induced differentiation of mESCs in the absence of LIF was suppressed in ZO-1(-/-) mESCs, but differentiation down the neural or cardiac lineages was not disturbed. These findings reveal novel roles for ZO-1 in mESC self-renewal, pluripotency, and differentiation by influencing several signaling networks that regulate these processes. Possible implications for the differing relevance of Smad2 in mESC and human ESC self-renewal and how ZO-1 may connect to the different pathways are discussed.
Collapse
Affiliation(s)
- Jianliang Xu
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Yan J, Akutsu H, Satoh Y. The morphological and functional observation of the gap junction proteins in the oviduct epithelia in young and adult hamsters. Okajimas Folia Anat Jpn 2012; 88:57-64. [PMID: 22184867 DOI: 10.2535/ofaj.88.57] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The histological morphology of oviduct epithelia have been described well, however, the expression pattern of the gap junction proteins in the cells, and the function related with the proteins, such as [Ca2+]i dynamics pattern of living oviduct epithelia at different ages have not been clarified. We used immunohistochemistry to compare the expression pattern of gap junction proteins in the cells of the young and adult groups. Moreover, we used real-time confocal microscopy to observe the spontaneous Ca2+ oscillation (spontaneous fluctuation) in freshly isolated epithelia (ciliated cells) in ampulla potion of oviduct from the two groups. The results show as demonstrated by immunohistochemistry the gap junction proteins (Cx26, Cx32 and Cx43) formed a well-regulated expression in the young animals, but not in the adult animals. In addition, the [Ca2+]i dynamics of ciliated cells in freshly oviduct epithelia have a spontaneous fluctuation pattern that occurs without any stimulation in the young animals, but this pattern was not observed in the adult animals. In conclusions, our findings suggest that gap junctions regulate the spontaneous fluctuation of [Ca2+]i dynamics in ciliated cells of oviduct epithelia in young animals.
Collapse
Affiliation(s)
- Jun Yan
- Department of Anatomy, School of medicine, Iwate Medical University, 2-1-1, Nishi-Tokuta, Yahaba-cho, Shiwa-Gun, Iwate, 028-3694, Japan.
| | | | | |
Collapse
|
16
|
Hervé JC, Derangeon M, Sarrouilhe D, Giepmans BNG, Bourmeyster N. Gap junctional channels are parts of multiprotein complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1844-65. [PMID: 22197781 DOI: 10.1016/j.bbamem.2011.12.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 11/28/2011] [Accepted: 12/06/2011] [Indexed: 12/16/2022]
Abstract
Gap junctional channels are a class of membrane channels composed of transmembrane channel-forming integral membrane proteins termed connexins, innexins or pannexins that mediate direct cell-to-cell or cell-to extracellular medium communication in almost all animal tissues. The activity of these channels is tightly regulated, particularly by intramolecular modifications as phosphorylations of proteins and via the formation of multiprotein complexes where pore-forming subunits bind to auxiliary channel subunits and associate with scaffolding proteins that play essential roles in channel localization and activity. Scaffolding proteins link signaling enzymes, substrates, and potential effectors (such as channels) into multiprotein signaling complexes that may be anchored to the cytoskeleton. Protein-protein interactions play essential roles in channel localization and activity and, besides their cell-to-cell channel-forming functions, gap junctional proteins now appear involved in different cellular functions (e.g. transcriptional and cytoskeletal regulations). The present review summarizes the recent progress regarding the proteins capable of interacting with junctional proteins and highlights the function of these protein-protein interactions in cell physiology and aberrant function in diseases. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and functions.
Collapse
Affiliation(s)
- Jean-Claude Hervé
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS, Poitiers, France.
| | | | | | | | | |
Collapse
|
17
|
Chai Z, Goodenough DA, Paul DL. Cx50 requires an intact PDZ-binding motif and ZO-1 for the formation of functional intercellular channels. Mol Biol Cell 2011; 22:4503-12. [PMID: 21965293 PMCID: PMC3226470 DOI: 10.1091/mbc.e11-05-0438] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 09/09/2011] [Accepted: 09/21/2011] [Indexed: 11/20/2022] Open
Abstract
The three connexins expressed in the ocular lens each contain PDZ domain-binding motifs directing a physical association with the scaffolding protein ZO-1, but the significance of the interaction is unknown. We found that Cx50 with PDZ-binding motif mutations did not form gap junction plaques or induce cell-cell communication in HeLa cells, whereas the addition of a seven-amino acid PDZ-binding motif restored normal function to Cx50 lacking its entire C-terminal cytoplasmic domain. C-Terminal deletion had a similar although weaker effect on Cx46 but little if any effect on targeting and function of Cx43. Furthermore, small interfering RNA knockdown of ZO-1 completely inhibited the formation of gap junctions by wild-type Cx50 in HeLa cells. Thus both a PDZ-binding motif and ZO-1 are necessary for Cx50 intercellular channel formation in HeLa cells. Knock-in mice expressing Cx50 with a PDZ-binding motif mutation phenocopied Cx50 knockouts. Furthermore, differentiating lens fibers in the knock-in displayed extensive intracellular Cx50, whereas plaques in mature fibers contained only Cx46. Thus normal Cx50 function in vivo also requires an intact PDZ domain-binding motif. This is the first demonstration of a connexin-specific requirement for a connexin-interacting protein in gap junction assembly.
Collapse
Affiliation(s)
- Zhifang Chai
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | | | - David L. Paul
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
18
|
González-Mariscal L, Quirós M, Díaz-Coránguez M. ZO proteins and redox-dependent processes. Antioxid Redox Signal 2011; 15:1235-53. [PMID: 21294657 DOI: 10.1089/ars.2011.3913] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SIGNIFICANCE ZO-1, ZO-2, and ZO-3 are scaffold proteins of the tight junction (TJ) that belong to the MAGUK protein family characterized for exhibiting PDZ, SH3, and GuK domains. ZO proteins are present only in multicellular organisms, being the placozoa the first to have them. ZO proteins associate among themselves and with other integral and adaptor proteins of the TJ, of the ZA and of gap junctions, as with numerous signaling proteins and the actin cytoskeleton. ZO proteins are also present at the nucleus of proliferating cells. RECENT ADVANCES Oxidative stress disassembles the TJs of endothelial and epithelial cells. CRITICAL ISSUES Oxidative stress alters ZO proteins expression and localization, in conditions like hypoxia, bacterial and viral infections, vitamin deficiencies, age-related diseases, diabetes and inflammation, alcohol and tobacco consumption. FUTURE DIRECTIONS Molecules present in the signaling pathways triggered by oxidative stress can be targets for therapeutic intervention.
Collapse
Affiliation(s)
- Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico DF, México.
| | | | | |
Collapse
|
19
|
Palatinus JA, Rhett JM, Gourdie RG. The connexin43 carboxyl terminus and cardiac gap junction organization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1831-43. [PMID: 21856279 DOI: 10.1016/j.bbamem.2011.08.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 07/25/2011] [Accepted: 08/03/2011] [Indexed: 12/09/2022]
Abstract
The precise spatial order of gap junctions at intercalated disks in adult ventricular myocardium is thought vital for maintaining cardiac synchrony. Breakdown or remodeling of this order is a hallmark of arrhythmic disease of the heart. The principal component of gap junction channels between ventricular cardiomyocytes is connexin43 (Cx43). Protein-protein interactions and modifications of the carboxyl-terminus of Cx43 are key determinants of gap junction function, size, distribution and organization during normal development and in disease processes. Here, we review data on the role of proteins interacting with the Cx43 carboxyl-terminus in the regulation of cardiac gap junction organization, with particular emphasis on Zonula Occludens-1. The rapid progress in this area suggests that in coming years we are likely to develop a fuller understanding of the molecular mechanisms causing pathologic remodeling of gap junctions. With these advances come the promise of novel approach to the treatment of arrhythmia and the prevention of sudden cardiac death. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Joseph A Palatinus
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | | | | |
Collapse
|
20
|
Colomer C, Martin AO, Desarménien MG, Guérineau NC. Gap junction-mediated intercellular communication in the adrenal medulla: an additional ingredient of stimulus-secretion coupling regulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1937-51. [PMID: 21839720 DOI: 10.1016/j.bbamem.2011.07.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/20/2011] [Accepted: 07/25/2011] [Indexed: 01/28/2023]
Abstract
The traditional understanding of stimulus-secretion coupling in adrenal neuroendocrine chromaffin cells states that catecholamines are released upon trans-synaptic sympathetic stimulation mediated by acetylcholine released from the splanchnic nerve terminals. Although this statement remains largely true, it deserves to be tempered. In addition to its neurogenic control, catecholamine secretion also depends on a local gap junction-mediated communication between chromaffin cells. We review here the insights gained since the first description of gap junctions in the adrenal medullary tissue. Adrenal stimulus-secretion coupling now appears far more intricate than was previously envisioned and its deciphering represents a challenge for neurobiologists engaged in the study of the regulation of neuroendocrine secretion. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Claude Colomer
- Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
| | | | | | | |
Collapse
|
21
|
Gilleron J, Carette D, Fiorini C, Benkdane M, Segretain D, Pointis G. Connexin 43 gap junction plaque endocytosis implies molecular remodelling of ZO-1 and c-Src partners. Commun Integr Biol 2011; 2:104-6. [PMID: 19704902 DOI: 10.4161/cib.7626] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 12/11/2008] [Indexed: 11/19/2022] Open
Abstract
Gap junctions, through their constitutive proteins, connexins (Cx), are involved in several processes including regulation of cellular proliferation, tissue differentiation, homeostasis and neoplasic transformation. Internalization of the gap junction plaque to form annular gap junction is a dynamic process, which present similarities with endocytosis, and participates in the control of gap junction coupling. Cx43 exhibits dynamic trafficking that needs sequential implication of a large number of protein partners. We have recently shown that ZO-1 localized in both sides of the gap junction plaque was restricted to one side during internalization. The dissociation between ZO-1 and Cx43 particularly occurred on the face where c-Src specifically associated with Cx43 and was abnormally accelerated in response to a carcinogen. In this addendum we summarize and further discuss these results.
Collapse
|
22
|
Pointis G, Gilleron J, Carette D, Segretain D. Physiological and physiopathological aspects of connexins and communicating gap junctions in spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1607-20. [PMID: 20403873 DOI: 10.1098/rstb.2009.0114] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spermatogenesis is a highly regulated process of germ cell proliferation and differentiation, starting from spermatogonia to spermatocytes and giving rise to spermatids, the future spermatozoa. In addition to endocrine regulation, testicular cell-cell interactions are essential for spermatogenesis. This precise control is mediated through paracrine/autocrine pathways, direct intercellular contacts and through intercellular communication channels, consisting of gap junctions and their constitutive proteins, the connexins. Gap junctions are localized between adjacent Leydig cells, between Sertoli cells and between Sertoli cells and specific germ cells. This review focuses on the distribution of connexins within the seminiferous epithelium, their participation in gap junction channel formation, the control of their expression and the physiological relevance of these junctions in both the Sertoli-Sertoli cell functional synchronization and the Sertoli-germ cell dialogue. In this review, we also discuss the potential implication of disrupted connexin in testis cancer, since impaired expression of connexin has been described as a typical feature of tumoral proliferation.
Collapse
Affiliation(s)
- Georges Pointis
- INSERM U 895, Team 5 Physiopathology of Germ Cell Control: Genomic and Non-genomic Mechanisms, Bâtiment Universitaire ARCHIMED, C3M, 151 route Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | | | | | | |
Collapse
|
23
|
Franke WW. Discovering the molecular components of intercellular junctions--a historical view. Cold Spring Harb Perspect Biol 2009; 1:a003061. [PMID: 20066111 PMCID: PMC2773636 DOI: 10.1101/cshperspect.a003061] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The organization of metazoa is based on the formation of tissues and on tissue-typical functions and these in turn are based on cell-cell connecting structures. In vertebrates, four major forms of cell junctions have been classified and the molecular composition of which has been elucidated in the past three decades: Desmosomes, which connect epithelial and some other cell types, and the almost ubiquitous adherens junctions are based on closely cis-packed glycoproteins, cadherins, which are associated head-to-head with those of the hemi-junction domain of an adjacent cell, whereas their cytoplasmic regions assemble sizable plaques of special proteins anchoring cytoskeletal filaments. In contrast, the tight junctions (TJs) and gap junctions (GJs) are formed by tetraspan proteins (claudins and occludins, or connexins) arranged head-to-head as TJ seal bands or as paracrystalline connexin channels, allowing intercellular exchange of small molecules. The by and large parallel discoveries of the junction protein families are reported.
Collapse
Affiliation(s)
- Werner W Franke
- Helmholtz Group for Cell Biology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| |
Collapse
|
24
|
Abstract
Gap junctions, composed of connexin protein subunits, allow direct communication through conduits between neighboring cells. Twenty and twenty-one members of the connexin gene family are likely to be expressed in the mouse and human genome, respectively, 19 of which can be grouped into sequence-orthologous pairs. Their gene structure appears to be relatively simple. In most cases, an untranslated exon1 is separated by an intron of different lengh from exon2 that includes the uninterrupted coding region and the 3'-untranslated region. However, there are several exceptions to this scheme, since some mouse connexin genes contain different 5'-untranslated regions spliced either in an alternative and/or consecutive manner. Additionally, in at least 3 mouse and human connexin genes (mCx36, mCx39, mCx57 and hCx31.3, hCx36, as well as hCx40.1) the reading frame is spliced together from 2 different exons. So far, there are two nomenclatures to classify the known connexin genes: The "Gja/Gjb" nomenclature, as it is currently adopted by the NCBI data base, contains some inconsistencies compared to the "Cx" nomenclature. Here we suggest some minor corrections to co-ordinate the "Gja/Gjb" nomenclature with the "Cx" nomenclature. Furthermore, this short review contains an update on phenotypic correlations between connexin deficient mice and patients bearing mutations in their orthologous connexin genes.
Collapse
Affiliation(s)
- Goran Söhl
- Institut für Genetik, Universität Bonn, Germany.
| | | |
Collapse
|
25
|
Human connexin31.9, unlike its orthologous protein connexin30.2 in the mouse, is not detectable in the human cardiac conduction system. J Mol Cell Cardiol 2009; 46:553-9. [DOI: 10.1016/j.yjmcc.2008.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/04/2008] [Accepted: 12/09/2008] [Indexed: 12/11/2022]
|
26
|
Serre-Beinier V, Bosco D, Zulianello L, Charollais A, Caille D, Charpantier E, Gauthier BR, Diaferia GR, Giepmans BN, Lupi R, Marchetti P, Deng S, Buhler L, Berney T, Cirulli V, Meda P. Cx36 makes channels coupling human pancreatic beta-cells, and correlates with insulin expression. Hum Mol Genet 2009; 18:428-39. [PMID: 19000992 PMCID: PMC2638800 DOI: 10.1093/hmg/ddn370] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Previous studies have documented that the insulin-producing beta-cells of laboratory rodents are coupled by gap junction channels made solely of the connexin36 (Cx36) protein, and have shown that loss of this protein desynchronizes beta-cells, leading to secretory defects reminiscent of those observed in type 2 diabetes. Since human islets differ in several respects from those of laboratory rodents, we have now screened human pancreas, and islets isolated thereof, for expression of a variety of connexin genes, tested whether the cognate proteins form functional channels for islet cell exchanges, and assessed whether this expression changes with beta-cell function in islets of control and type 2 diabetics. Here, we show that (i) different connexin isoforms are differentially distributed in the exocrine and endocrine parts of the human pancreas; (ii) human islets express at the transcript level different connexin isoforms; (iii) the membrane of beta-cells harbors detectable levels of gap junctions made of Cx36; (iv) this protein is concentrated in lipid raft domains of the beta-cell membrane where it forms gap junctions; (v) Cx36 channels allow for the preferential exchange of cationic molecules between human beta-cells; (vi) the levels of Cx36 mRNA correlated with the expression of the insulin gene in the islets of both control and type 2 diabetics. The data show that Cx36 is a native protein of human pancreatic islets, which mediates the coupling of the insulin-producing beta-cells, and contributes to control beta-cell function by modulating gene expression.
Collapse
Affiliation(s)
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Laurence Zulianello
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| | - Anne Charollais
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| | - Dorothée Caille
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| | - Eric Charpantier
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| | - Benoit R. Gauthier
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| | - Giuseppe R. Diaferia
- Islet Research Laboratory, The Whittier Institute for Diabetes, University of California San Diego, La Jolla, CA, USA
| | - Ben N. Giepmans
- Department of Cell Biology, University of Groningen, Groningen, The Netherlands
| | - Roberto Lupi
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Shaoping Deng
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Léo Buhler
- Surgical Research Unit, Department of Surgery
| | - Thierry Berney
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Vincenzo Cirulli
- Islet Research Laboratory, The Whittier Institute for Diabetes, University of California San Diego, La Jolla, CA, USA
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| |
Collapse
|
27
|
|
28
|
Derangeon M, Spray DC, Bourmeyster N, Sarrouilhe D, Hervé JC. Reciprocal influence of connexins and apical junction proteins on their expressions and functions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:768-78. [PMID: 19046940 DOI: 10.1016/j.bbamem.2008.10.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 10/29/2008] [Accepted: 10/30/2008] [Indexed: 01/17/2023]
Abstract
Membranes of adjacent cells form intercellular junctional complexes to mechanically anchor neighbour cells (anchoring junctions), to seal the paracellular space and to prevent diffusion of integral proteins within the plasma membrane (tight junctions) and to allow cell-to-cell diffusion of small ions and molecules (gap junctions). These different types of specialised plasma membrane microdomains, sharing common adaptor molecules, particularly zonula occludens proteins, frequently present intermingled relationships where the different proteins co-assemble into macromolecular complexes and their expressions are co-ordinately regulated. Proteins forming gap junction channels (connexins, particularly) and proteins fulfilling cell attachment or forming tight junction strands mutually influence expression and functions of one another.
Collapse
Affiliation(s)
- Mickaël Derangeon
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, Poitiers, F-86022, France
| | | | | | | | | |
Collapse
|
29
|
The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 2008; 456:116-20. [PMID: 18820677 PMCID: PMC2597643 DOI: 10.1038/nature07338] [Citation(s) in RCA: 294] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 08/15/2008] [Indexed: 12/17/2022]
Abstract
Ca2+ release-activated Ca2+ (CRAC) channels underlie sustained Ca2+ signaling in lymphocytes and numerous other cells following Ca2+ liberation from the endoplasmic reticulum (ER). RNAi screening approaches identified two proteins, Stim1, 2 and Orai3-5, that together form the molecular basis for CRAC channel activity6, 7. Stim senses depletion of the ER Ca2+ store and physically relays this information by translocating from the ER to junctions adjacent to the plasma membrane (PM)1, 8, 9, and Orai embodies the pore of the PM calcium channel10-12. A close interaction between Stim and Orai, identified by co-immunoprecipitation12 and by Förster resonance energy transfer13, is involved in opening the Ca2+ channel formed by Orai subunits. Most ion channels are multimers of poreforming subunits surrounding a central channel, which are preassembled in the ER and transported in their final stoichiometry to the PM. Here we show by biochemical analysis after cross-linking in cell lysates and in intact cells, and by non-denaturing gel electrophoresis without cross-linking that Orai is predominantly a dimer in the PM under resting conditions. Moreover, single-molecule imaging of GFP-tagged Orai expressed in Xenopus oocytes revealed predominantly two-step photo-bleaching, consistent again with a dimeric basal state. In contrast, co-expression of GFP-tagged Orai with the C-terminus of Stim as a cytosolic protein to activate the Orai channel without inducing Ca2+ store depletion or clustering of Orai into punctae yielded predominantly four-step photobleaching, consistent with a tetrameric stoichiometry of the active Orai channel. Interaction with the C-terminus of Stim thus induces Orai dimers to dimerize, forming a tetramer that constitutes the Ca2+-selective pore. This represents a novel mechanism in which assembly and activation of the functional ion channel are mediated by the same triggering molecule.
Collapse
|
30
|
Li X, Kamasawa N, Ciolofan C, Olson CO, Lu S, Davidson KGV, Yasumura T, Shigemoto R, Rash JE, Nagy JI. Connexin45-containing neuronal gap junctions in rodent retina also contain connexin36 in both apposing hemiplaques, forming bihomotypic gap junctions, with scaffolding contributed by zonula occludens-1. J Neurosci 2008; 28:9769-89. [PMID: 18815262 PMCID: PMC2638127 DOI: 10.1523/jneurosci.2137-08.2008] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/17/2008] [Accepted: 08/13/2008] [Indexed: 11/21/2022] Open
Abstract
Mammalian retinas contain abundant neuronal gap junctions, particularly in the inner plexiform layer (IPL), where the two principal neuronal connexin proteins are Cx36 and Cx45. Currently undetermined are coupling relationships between these connexins and whether both are expressed together or separately in a neuronal subtype-specific manner. Although Cx45-expressing neurons strongly couple with Cx36-expressing neurons, possibly via heterotypic gap junctions, Cx45 and Cx36 failed to form functional heterotypic channels in vitro. We now show that Cx36 and Cx45 coexpressed in HeLa cells were colocalized in immunofluorescent puncta between contacting cells, demonstrating targeting/scaffolding competence for both connexins in vitro. However, Cx36 and Cx45 expressed separately did not form immunofluorescent puncta containing both connexins, supporting lack of heterotypic coupling competence. In IPL, 87% of Cx45-immunofluorescent puncta were colocalized with Cx36, supporting either widespread heterotypic coupling or bihomotypic coupling. Ultrastructurally, Cx45 was detected in 9% of IPL gap junction hemiplaques, 90-100% of which also contained Cx36, demonstrating connexin coexpression and cotargeting in virtually all IPL neurons that express Cx45. Moreover, double replicas revealed both connexins in separate domains mirrored on both sides of matched hemiplaques. With previous evidence that Cx36 interacts with PDZ1 domain of zonula occludens-1 (ZO-1), we show that Cx45 interacts with PDZ2 domain of ZO-1, and that Cx36, Cx45, and ZO-1 coimmunoprecipitate, suggesting that ZO-1 provides for coscaffolding of Cx45 with Cx36. These data document that in Cx45-expressing neurons of IPL, Cx45 is almost always accompanied by Cx36, forming "bihomotypic" gap junctions, with Cx45 structurally coupling to Cx45 and Cx36 coupling to Cx36.
Collapse
Affiliation(s)
- Xinbo Li
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3J7
| | - Naomi Kamasawa
- Division of Cerebral Structure, National Institute for Physiological Sciences, Okazaki 444-8787, Japan, and
- Department of Biomedical Sciences and
| | - Cristina Ciolofan
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3J7
| | - Carl O. Olson
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3J7
| | - Shijun Lu
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3J7
| | | | | | - Ryuichi Shigemoto
- Division of Cerebral Structure, National Institute for Physiological Sciences, Okazaki 444-8787, Japan, and
| | - John E. Rash
- Department of Biomedical Sciences and
- Program in Molecular, Cellular, and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado 80523
| | - James I. Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3J7
| |
Collapse
|
31
|
Gemel J, Lin X, Collins R, Veenstra RD, Beyer EC. Cx30.2 can form heteromeric gap junction channels with other cardiac connexins. Biochem Biophys Res Commun 2008; 369:388-94. [PMID: 18291099 PMCID: PMC2323682 DOI: 10.1016/j.bbrc.2008.02.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 02/07/2008] [Indexed: 12/22/2022]
Abstract
Since most cells in the heart co-express multiple connexins, we studied the possible heteromeric interactions between connexin30.2 and connexin40, connexin43 or connexin45 in transfected cells. Double-label immunofluorescence microscopy showed that connexin30.2 extensively co-localized with each co-expressed connexin at appositional membranes. When Triton X-100 solubilized connexons were affinity purified from co-expressing cells, connexin30.2 was isolated together with connexin40, connexin43, or connexin45. Co-expression of connexin30.2 with connexin40, connexin43, or connexin45 did not significantly reduce total junctional conductance. Gap junction channels in cells co-expressing connexin30.2 with connexin43 or connexin45 exhibited voltage-dependent gating intermediate between that of either connexin alone. In contrast, connexin30.2 dominated the voltage-dependence when co-expressed with connexin40. Our data suggest that connexin30.2 can form heteromers with the other cardiac connexins and that mixed channel formation will influence the gating properties of gap junctions in cardiac regions that co-express these connexins.
Collapse
|
32
|
Chadjichristos CE, Morel S, Derouette JP, Sutter E, Roth I, Brisset AC, Bochaton-Piallat ML, Kwak BR. Targeting connexin 43 prevents platelet-derived growth factor-BB-induced phenotypic change in porcine coronary artery smooth muscle cells. Circ Res 2008; 102:653-60. [PMID: 18239136 DOI: 10.1161/circresaha.107.170472] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously reported that reducing the expression of the gap junction protein connexin (Cx)43 in mice restricts intimal thickening formation after acute vascular injury by limiting the inflammatory response and the proliferation and migration of smooth muscle cells (SMCs) toward the damaged site. SMC populations isolated from porcine coronary artery exhibit distinct phenotypes: spindle-shaped (S) and rhomboid (R). S-SMCs are predominant in the normal media, whereas R-SMCs are recovered in higher proportion from stent-induced intimal thickening, suggesting that they participate in the restenotic process. Here, we further investigate the relationship between connexin expression and SMC phenotypes using porcine coronary artery SMCs. Cx40 was highly expressed in normal media of porcine coronary artery in vivo, whereas Cx43 was barely detectable. In contrast, Cx40 was downregulated and Cx43 was markedly upregulated in stent-induced intimal thickening. In vitro, S-SMCs expressed Cx40 and Cx43. In R-SMCs, Cx43 expression was increased and Cx40 was absent. We confirmed that S-SMCs treated with platelet-derived growth factor-BB acquire an R phenotype. This was accompanied by an upregulation of Cx43 and a loss of Cx40. Importantly, platelet-derived growth factor-BB-induced S-to-R phenotypic change was prevented by a reduction of Cx43 expression with antisense, ie, S-SMCs retained their typical elongated appearance and the expression of alpha-smooth muscle actin, a well-known SMC differentiation marker, whereas the expression of S100A4, a typical marker of R-SMCs, was prevented. In conclusion, limiting Cx43 expression in S-SMCs prevents platelet-derived growth factor-BB-induced S-to-R modulation. This suggests that Cx43 may be an additional target for local delivery strategies aimed at reducing restenosis.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Becaplermin
- Cell Differentiation
- Cell Movement
- Cell Shape
- Cells, Cultured
- Connexin 43/antagonists & inhibitors
- Connexin 43/genetics
- Connexin 43/metabolism
- Connexins/metabolism
- Coronary Stenosis/etiology
- Coronary Stenosis/metabolism
- Coronary Stenosis/pathology
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Disease Models, Animal
- Female
- Gap Junctions/drug effects
- Gap Junctions/metabolism
- Glycyrrhetinic Acid/analogs & derivatives
- Glycyrrhetinic Acid/pharmacology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Peptides/pharmacology
- Phenotype
- Platelet-Derived Growth Factor/metabolism
- Proto-Oncogene Proteins c-sis
- RNA Interference
- RNA, Small Interfering/metabolism
- Recombinant Proteins/metabolism
- S100 Proteins/metabolism
- Signal Transduction/drug effects
- Stents/adverse effects
- Sus scrofa
- Time Factors
- Tunica Intima/metabolism
- Tunica Intima/pathology
- Gap Junction alpha-5 Protein
Collapse
Affiliation(s)
- Christos E Chadjichristos
- Division of Cardiology, Geneva University Hospitals, Faculty of Medicine, University of Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Zebrafish early cardiac connexin, Cx36.7/Ecx, regulates myofibril orientation and heart morphogenesis by establishing Nkx2.5 expression. Proc Natl Acad Sci U S A 2008; 105:4763-8. [PMID: 18337497 DOI: 10.1073/pnas.0708451105] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heart development is a precisely coordinated process of cellular proliferation, migration, differentiation, and integrated morphogenetic interactions, and therefore it is highly susceptible to developmental anomalies such as the congenital heart disease (CHD). One of the major causes of CHD has been shown to be the mutations in key cardiac transcription factors, including nkx2.5. Here, we report the analysis of zebrafish mutant ftk that showed a progressive heart malformation in the later stages of heart morphogenesis. Our analyses revealed that the cardiac muscle maturation and heart morphogenesis in ftk mutants were impaired because of the disorganization of myofibrils. Notably, we found that the expression of nkx2.5 was down-regulated in the ftk heart despite the normal expression of gata4 and tbx5, suggesting a common mechanism for the occurrence of ftk phenotype and CHD. We identified ftk to be a loss-of-function mutation in a connexin gene, cx36.7/early cardiac connexin (ecx), expressed during early heart development. We further showed by a rescue experiment that Nkx2.5 is the downstream mediator of Ecx-mediated signaling. From these results, we propose that the cardiac connexin Ecx and its downstream signaling are crucial for establishing nkx2.5 expression, which in turn promotes unidirectional, parallel alignment of myofibrils and the subsequent proper heart morphogenesis.
Collapse
|
34
|
Laing JG, Koval M, Steinberg TH. Association with ZO-1 correlates with plasma membrane partitioning in truncated connexin45 mutants. J Membr Biol 2007; 207:45-53. [PMID: 16463142 DOI: 10.1007/s00232-005-0803-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Accepted: 10/13/2005] [Indexed: 10/25/2022]
Abstract
Zonula occludens-1 (ZO-1), the most abundant known connexin-interacting protein in osteoblastic cells, associates with the carboxyl termini of both Cx43 and Cx45. To learn more about the role of the cormexin-ZO-1 interaction, we analyzed connexin trafficking and function in ROS 17/2.8 cells that were stably transfected either with full length Cx45 or with Cx45 lacking 34 or 37 amino acids on the carboxyl terminus (Cx45t34 or Cx45t37). All three proteins were transported to appositional membranes in the transfected cells: Cx45 and Cx45t34 displayed a punctate appositional membrane-staining pattern, while Cx45t37 staining at appositional membranes was more linear. Expression of Cx45 decreased gap junction communication as assayed by dye transfer, while expression of Cx45t34 or Cx45t37 increased the amount of dye transfer seen in these cells. We found that Cx43, Cx45 and Cx45t34 co-precipitated with ZO-1 in these cells, while Cx45t37 did not. We also found that Cx45t37 was much more soluble in 1% Triton X-100 than the other connexins examined. In addition, Cx45t37 migrated to a fraction of lighter buoyant density on sucrose flotation gradients than Cx43, Cx45, ZO-1 and Cx45t34. As ZO-1 is an actin-binding protein, this suggested that the differences in Cx45t37 solubility might be due to a difference between the interaction of gap junctions and the actin cytoskeleton in the ROS/Cx45t37 and in the other transfected ROS cells. To examine this possibility, the transfected ROS cells were stained with fluorescently labeled phalloidin and demonstrated that there was a notable loss of actin stress fibers in the ROS/Cx45t37 cells. These findings suggest that association with ZO-1 alters the plasma membrane localization of Cx45 by removing it from a lipid raft compartment and rendering it Triton-insoluble, presumably by promoting an interaction with the actin cytoskeleton; they also suggest that Cx45 has a complex binding interaction with ZO-1 that involves either an extended carboxyl terminal domain or two distinct binding sites.
Collapse
Affiliation(s)
- J G Laing
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
35
|
Rackauskas M, Verselis VK, Bukauskas FF. Permeability of homotypic and heterotypic gap junction channels formed of cardiac connexins mCx30.2, Cx40, Cx43, and Cx45. Am J Physiol Heart Circ Physiol 2007; 293:H1729-36. [PMID: 17557922 PMCID: PMC2836796 DOI: 10.1152/ajpheart.00234.2007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the permeabilities of homotypic and heterotypic gap junction (GJ) channels formed of rodent connexins (Cx) 30.2, 40, 43, and 45, which are expressed in the heart and other tissues, using fluorescent dyes differing in net charge and molecular mass. Combining fluorescent imaging and electrophysiological recordings in the same cell pairs, we evaluated the single-channel permeability (P(gamma)). All homotypic channels were permeable to the anionic monovalent dye Alexa Fluor-350 (AF(350)), but mCx30.2 channels exhibited a significantly lower P(gamma) than the others. The anionic divalent dye Lucifer yellow (LY) remained permeant in Cx40, Cx43, and Cx45 channels, but transfer through mCx30.2 channels was not detected. Heterotypic channels generally exhibited P(gamma) values that were intermediate to the corresponding homotypic channels. P(gamma) values of mCx30.2/Cx40, mCx30.2/Cx43, or mCx30.2/Cx45 heterotypic channels for AF(350) were similar and approximately twofold higher than P(gamma) values of mCx30.2 homotypic channels. Permeabilities for cationic dyes were assessed only qualitatively because of their binding to nucleic acids. All homotypic and heterotypic channel configurations were permeable to ethidium bromide and 4,6-diamidino-2-phenylindole. Permeability for propidium iodide was limited only for GJ channels that contain at least one mCx30.2 hemichannel. In summary, we have demonstrated that Cx40, Cx43, and Cx45 are permeant to all examined cationic and anionic dyes, whereas mCx30.2 demonstrates permeation restrictions for molecules with molecular mass over approximately 400 Da. The ratio of single-channel conductance to permeability for AF(350) was approximately 40- to 170-fold higher for mCx30.2 than for Cx40, Cx43, and Cx45, suggesting that mCx30.2 GJs are notably more adapted to perform electrical rather than metabolic cell-cell communication.
Collapse
Affiliation(s)
- Mindaugas Rackauskas
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
36
|
Hervé JC, Bourmeyster N, Sarrouilhe D, Duffy HS. Gap junctional complexes: From partners to functions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 94:29-65. [PMID: 17507078 DOI: 10.1016/j.pbiomolbio.2007.03.010] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gap junctions (GJ), specialised membrane structures that mediate cell-to-cell communication in almost all animal tissues, are composed of intercellular channel-forming integral membrane proteins termed connexins (Cxs), innexins or pannexins. The activity of these channels is closely regulated, particularly by intramolecular modifications as phosphorylation of proteins, via the formation of multiprotein complexes where pore-forming subunits bind to auxiliary channel subunits and associate with scaffolding proteins that play essential roles in channel localization and activity. Scaffolding proteins link signalling enzymes, substrates, and potential effectors (such as channels) into multiprotein signalling complexes that may be anchored to the cytoskeleton. Protein-protein interactions play essential roles in channel localization and activity and, besides their cell-to-cell channel-forming functions, gap junctional proteins now appear involved in different cellular functions (e.g. transcriptional and cytoskeletal regulation). The present review summarizes the recent progress regarding the proteins capable of interacting with junctional proteins and their functional importance.
Collapse
Affiliation(s)
- Jean-Claude Hervé
- Interactions et Communications Cellulaires, Université de Poitiers, Poitiers, France.
| | | | | | | |
Collapse
|
37
|
Gourdie RG, Ghatnekar GS, O'Quinn M, Rhett MJ, Barker RJ, Zhu C, Jourdan J, Hunter AW. The unstoppable connexin43 carboxyl-terminus: new roles in gap junction organization and wound healing. Ann N Y Acad Sci 2007; 1080:49-62. [PMID: 17132774 DOI: 10.1196/annals.1380.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Intercellular connectivity mediated by gap junctions (GJs) composed of connexin43 (Cx43) is critical to the function of excitable tissues such as the heart and brain. Disruptions to Cx43 GJ organization are thought to be a factor in cardiac arrhythmias and are also implicated in epilepsy. This article is based on a presentation to the 4th Larry and Horti Fairberg Workshop on Interactive and Integrative Cardiology and summarizes the work of Gourdie and his lab on Cx43 GJs in the heart. Background and perspective of recently published studies on the function of Cx43-interacting protein zonula occludens-(ZO)-1 in determining the organization of GJ plaques are provided. In addition how a peptide containing a PDZ-binding sequence of Cx43, developed as part of the work on cardiac GJ organization is also described, which has led to evidence for novel and unexpected roles for Cx43 in modulating healing following tissue injury.
Collapse
Affiliation(s)
- Robert G Gourdie
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kreuzberg MM, Willecke K, Bukauskas FF. Connexin-mediated cardiac impulse propagation: connexin 30.2 slows atrioventricular conduction in mouse heart. Trends Cardiovasc Med 2007; 16:266-72. [PMID: 17055382 PMCID: PMC3615414 DOI: 10.1016/j.tcm.2006.05.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 05/26/2006] [Accepted: 05/30/2006] [Indexed: 10/24/2022]
Abstract
In mouse heart, four connexins (Cxs), Cx30.2, Cx40, Cx43, and Cx45, form gap junction (GJ) channels for electric and metabolic cell-to-cell signaling. Extent and pattern of Cx isoform expression together with cytoarchitecture and excitability of cells determine the velocity of excitation spread in different regions of the heart. In the SA node, cell-cell coupling is mediated by Cx30.2 and Cx45, which form low-conductance (approximately 9 and 32 pS, respectively) GJ channels. In contrast, the working cardiomyocytes of atria and ventricles express mainly Cx40 and Cx43, which form GJ channels of high conductance (approximately 180 and 115 pS, respectively) that facilitate the fast conduction necessary for efficient mechanical contraction. In the AV node, cell-cell coupling is mediated by abundantly expressed Cx30.2 and Cx45 and Cx40, which is expressed to a lesser extent. Cx30.2 and Cx45 may determine higher intercellular resistance and slower conduction in the SA- and AV-nodal regions than in the ventricular conduction system or the atrial and ventricular working myocardium. Cx30.2 and its putative human ortholog, Cx31.9, under physiologic conditions form unapposed hemichannels in nonjunctional plasma membrane; these hemichannels have a conductance of approximately 20 pS and are permeable to cationic dyes up to approximately 400 Da in molecular mass. Genetic ablation of Cxs confirmed that Cx40 and Cx43 are important in determining the high conduction velocities in atria and ventricles, whereas the deletion of the Cx30.2 complementary DNA led to accelerated conduction in the AV node and reduced the Wenckebach period. We suggest that these effects are caused by (1) a dominant-negative effect of Cx30.2 on junctional conductance via formation of low-conductance homotypic and heterotypic GJ channels, and (2) open Cx30.2 hemichannels in non-junctional membranes, which shorten the space constant and depolarize the excitable membrane.
Collapse
Affiliation(s)
- Maria M. Kreuzberg
- Institut für Genetik, Abteilung Molekulargenetik, Universität Bonn, 53117 Bonn, Germany
| | - Klaus Willecke
- Institut für Genetik, Abteilung Molekulargenetik, Universität Bonn, 53117 Bonn, Germany
| | - Feliksas F. Bukauskas
- Address correspondence to: Dr. Feliksas Bukauskas, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, 10461, USA. Tel.: (+1) 718-430-4130; fax: (+1) 718-430-8944; ,
| |
Collapse
|
39
|
Ciolofan C, Li XB, Olson C, Kamasawa N, Gebhardt BR, Yasumura T, Morita M, Rash JE, Nagy JI. Association of connexin36 and zonula occludens-1 with zonula occludens-2 and the transcription factor zonula occludens-1-associated nucleic acid-binding protein at neuronal gap junctions in rodent retina. Neuroscience 2006; 140:433-51. [PMID: 16650609 PMCID: PMC1819557 DOI: 10.1016/j.neuroscience.2006.02.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 01/21/2006] [Accepted: 02/08/2006] [Indexed: 11/16/2022]
Abstract
Most gap junctions between neurons in mammalian retina contain abundant connexin36, often in association with the scaffolding protein zonula occludens-1. We now investigate co-association of connexin36, zonula occludens-1, zonula occludens-2 and Y-box transcription factor 3 (zonula occludens-1-associated nucleic acid-binding protein) in mouse and rat retina. By immunoblotting, zonula occludens-1-associated nucleic acid-binding protein and zonula occludens-2 were both detected in retina, and zonula occludens-2 in retina was found to co-immunoprecipitate with connexin36. By immunofluorescence, the four proteins appeared as puncta distributed in the plexiform layers. In the inner plexiform layer, most connexin36-puncta were co-localized with zonula occludens-1, and many were co-localized with zonula occludens-1-associated nucleic acid-binding protein. Moreover, zonula occludens-1-associated nucleic acid-binding protein was often co-localized with zonula occludens-1. Nearly all zonula occludens-2-puncta were positive for connexin36, zonula occludens-1 and zonula occludens-1-associated nucleic acid-binding protein. In the outer plexiform layer, connexin36 was also often co-localized with zonula occludens-1-associated nucleic acid-binding protein. In connexin36 knockout mice, labeling of zonula occludens-1 was slightly reduced in the inner plexiform layer, zonula occludens-1-associated nucleic acid-binding protein was decreased in the outer plexiform layer, and both zonula occludens-1-associated nucleic acid-binding protein and zonula occludens-2 were markedly decreased in the inner sublamina of the inner plexiform layer, whereas zonula occludens-1, zonula occludens-2 and zonula occludens-1-associated nucleic acid-binding protein puncta persisted and remained co-localized in the outer sublamina of the inner plexiform layer. By freeze-fracture replica immunogold labeling, connexin36 was found to be co-localized with zonula occludens-2 within individual neuronal gap junctions. In addition, zonula occludens-1-associated nucleic acid-binding protein was abundant in a portion of ultrastructurally-defined gap junctions throughout the inner plexiform layer, and some of these junctions contained both connexin36 and zonula occludens-1-associated nucleic acid-binding protein. These distinct patterns of connexin36 association with zonula occludens-1, zonula occludens-2 and zonula occludens-1-associated nucleic acid-binding protein in different sublaminae of retina, and differential responses of these proteins to connexin36 gene deletion suggest differential regulatory and scaffolding roles of these gap junction accessory proteins. Further, the persistence of a subpopulation of zonula occludens-1/zonula occludens-2/zonula occludens-1-associated nucleic acid-binding protein co-localized puncta in the outer part of the inner plexiform layer of connexin36 knockout mice suggests close association of these proteins with other structures in retina, possibly including gap junctions composed of an as-yet-unidentified connexin.
Collapse
Affiliation(s)
- C Ciolofan
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba, Canada R3E 3J7
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bukauskas FF, Kreuzberg MM, Rackauskas M, Bukauskiene A, Bennett MVL, Verselis VK, Willecke K. Properties of mouse connexin 30.2 and human connexin 31.9 hemichannels: implications for atrioventricular conduction in the heart. Proc Natl Acad Sci U S A 2006; 103:9726-31. [PMID: 16772377 PMCID: PMC1480474 DOI: 10.1073/pnas.0603372103] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four connexins (Cxs), mouse (m)Cx30.2, Cx40, Cx43, and Cx45, determine cell-cell electrical signaling in mouse heart, and Cx43 and Cx45 are known to form unapposed hemichannels. Here we show that mCx30.2, which is most abundantly expressed in sinoatrial and atrioventricular nodal regions of the heart, and its putative human ortholog, human (h)Cx31.9, also form functional hemichannels, which, like mCx30.2 cell-cell channels, are permeable to cationic dyes up to approximately 400 Da in size. DAPI uptake by HeLa cells expressing mCx30.2 was >10-fold faster than that by HeLa parental cells. In Ca(2+)-free medium, uptake of DAPI by HeLaCx30.2-EGFP cells was increased approximately 2-fold, but uptake by parental cells was not affected. Conversely, acidification by application of CO(2) reduced DAPI uptake by HeLaCx30.2-EGFP cells but had little effect on uptake by parental cells. Cells expressing mCx30.2 exhibited higher rates of DAPI uptake than did cells expressing any of the other cardiac Cxs. Cardiomyocytes of 2-day-old rats transfected with hCx31.9-EGFP took up DAPI and ethidium bromide 5-10 times faster than wild-type cardiomyocytes. Mefloquine, a close derivative of quinine and quinidine that exhibits antimalarial and antiarrhythmic properties, reduced conductance of cell-cell junctions and dye uptake through mCx30.2 hemichannels with approximately the same affinity (IC(50) = approximately 10 microM) and increased dependence of junctional conductance on transjunctional voltage. Unitary conductance of mCx30.2 hemichannels was approximately 20 pS, about twice the cell-cell channel conductance. Hemichannels formed of mCx30.2 and hCx31.9 may slow propagation of excitation in the sinoatrial and atrioventricular nodes by shortening the space constant and depolarizing the excitable membrane.
Collapse
Affiliation(s)
- Feliksas F. Bukauskas
- *Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461; and
- To whom correspondence may be addressed. E-mail:
or
| | - Maria M. Kreuzberg
- Institut für Genetik, Abteilung Molekulargenetik, Universität Bonn, Römerstrasse 164, 53117 Bonn, Germany
| | - Mindaugas Rackauskas
- *Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461; and
| | - Angele Bukauskiene
- *Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461; and
| | - Michael V. L. Bennett
- *Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461; and
- To whom correspondence may be addressed. E-mail:
or
| | - Vytas K. Verselis
- *Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461; and
| | - Klaus Willecke
- Institut für Genetik, Abteilung Molekulargenetik, Universität Bonn, Römerstrasse 164, 53117 Bonn, Germany
| |
Collapse
|
41
|
Kreuzberg MM, Schrickel JW, Ghanem A, Kim JS, Degen J, Janssen-Bienhold U, Lewalter T, Tiemann K, Willecke K. Connexin30.2 containing gap junction channels decelerate impulse propagation through the atrioventricular node. Proc Natl Acad Sci U S A 2006; 103:5959-64. [PMID: 16571663 PMCID: PMC1458680 DOI: 10.1073/pnas.0508512103] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In the mammalian heart, gap junction channels between electrically coupled cardiomyocytes are necessary for impulse propagation and coordinated contraction of atria and ventricles. Recently, mouse connexin30.2 (Cx30.2) was shown to be expressed in the cardiac conduction system, predominantly in sinoatrial and atrioventricular (AV) nodes. The corresponding gap junctional channels expressed in HeLa cells exhibit the lowest unitary conductance (9 pS) of all connexin channels. Here we report that Cx30.2 slows down the propagation of excitation through the AV node. Mice expressing a LacZ reporter gene instead of the Cx30.2 coding region (Cx30.2(LacZ/LacZ)) exhibit a PQ interval that is approximately 25% shorter than in WT littermates. By recording atrial, His, and ventricular signals with intracardiac electrodes, we show that this decrease is attributed to significantly accelerated conduction above the His bundle (atrial-His interval: 27.9 +/- 5.1 ms in Cx30.2(LacZ/LacZ) versus 37.1 +/- 4.1 ms in Cx30.2(+/+) mice), whereas HV conduction is unaltered. Atrial stimulation revealed an elevated AV-nodal conduction capacity and faster ventricular response rates during induced episodes of atrial fibrillation in Cx30.2(LacZ/LacZ) mice. Our results show that Cx30.2 contributes to the slowdown of impulse propagation in the AV node and additionally limits the maximum number of beats conducted from atria to ventricles. Thus, it is likely to be involved in coordination of atrial and ventricular contraction and to fulfill a protective role toward pathophysiological states such as atrial tachyarrhythmias (e.g., atrial fibrillation) by preventing rapid conduction to the ventricles potentially associated with hemodynamic deterioration.
Collapse
Affiliation(s)
- Maria M. Kreuzberg
- *Institut für Genetik, Abteilung Molekulargenetik, Universität Bonn, Römerstrasse 164, 53117 Bonn, Germany
| | - Jan W. Schrickel
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Sigmund-Freud Strasse 25, 53105 Bonn, Germany
| | - Alexander Ghanem
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Sigmund-Freud Strasse 25, 53105 Bonn, Germany
| | - Jung-Sun Kim
- Department of Pathology, Asan Medical Center, University of Ulsan, Pungnap-dong, Songpa-gu, Seoul 388-1, Korea; and
| | - Joachim Degen
- *Institut für Genetik, Abteilung Molekulargenetik, Universität Bonn, Römerstrasse 164, 53117 Bonn, Germany
| | - Ulrike Janssen-Bienhold
- Neurobiologie, Institut für Biologie und Umweltwissenschaften, Fakultät V, Universität Oldenburg, 26111 Oldenburg, Germany
| | - Thorsten Lewalter
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Sigmund-Freud Strasse 25, 53105 Bonn, Germany
| | - Klaus Tiemann
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Sigmund-Freud Strasse 25, 53105 Bonn, Germany
| | - Klaus Willecke
- *Institut für Genetik, Abteilung Molekulargenetik, Universität Bonn, Römerstrasse 164, 53117 Bonn, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Eastman SD, Chen THP, Falk MM, Mendelson TC, Iovine MK. Phylogenetic analysis of three complete gap junction gene families reveals lineage-specific duplications and highly supported gene classes. Genomics 2006; 87:265-74. [PMID: 16337772 DOI: 10.1016/j.ygeno.2005.10.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 10/14/2005] [Accepted: 10/17/2005] [Indexed: 11/17/2022]
Abstract
Gap junctions, composed of connexin proteins in chordates, are the most ubiquitous form of intercellular communication. Complete connexin gene families have been identified from human (20) and mouse (19), revealing significant diversity in gap junction channels. We searched current databases and identified 37 putative zebrafish connexin genes, almost twice the number found in mammals. Phylogenetic comparison of entire connexin gene families from human, mouse, and zebrafish revealed 23 zebrafish relatives of 16 mammalian connexins, and 14 connexins apparently unique to zebrafish. We found evidence for duplication events in all genomes, as well as evidence for recent tandem duplication events in the zebrafish, indicating that the complexity of the connexin family is growing. The identification of a third complete connexin gene family provides novel insight into the evolution of connexins, and sheds light into the phenotypic evolution of intercellular communication via gap junctions.
Collapse
Affiliation(s)
- Stephen D Eastman
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Iacocca B-217, Bethlehem, PA 18015, USA
| | | | | | | | | |
Collapse
|
43
|
Cruciani V, Heintz KM, Husøy T, Hovig E, Warren DJ, Mikalsen SO. The detection of hamster connexins: a comparison of expression profiles with wild-type mouse and the cancer-prone Min mouse. ACTA ACUST UNITED AC 2005; 11:155-71. [PMID: 16194882 DOI: 10.1080/15419060500242877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The open reading frames of 17 connexins from Syrian hamster (using tissues) and 16 connexins from the Chinese hamster cell line V79, were fully (Cx30, Cx31, Cx37, Cx43 and Cx45) or partially sequenced. We have also detected, and partially sequenced, seven rat connexins that previously were unavailable. The expression of connexin genes was examined in some hamster organs and cultured hamster cells, and compared with wild-type mouse and the cancer-prone Min mouse. Although the expression patterns were similar for most organs and connexins in hamster and mouse, there were also some prominent differences (Cx29 and 30.3 in testis; Cx31.1 and 32 in eye; Cx46 in brain, kidney and testis; Cx47 in kidney). This suggests that some connexins have species-specific expression profiles. In contrast, there were minimal differences in expression profiles between wild type and Min mice. Species-specific expression profiles should be considered in attempts to make animal models of human connexin-associated diseases.
Collapse
Affiliation(s)
- Véronique Cruciani
- Department of Environmental and Occupational Cancer, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
44
|
Jin C, Martyn KD, Kurata WE, Warn-Cramer BJ, Lau AF. Connexin43 PDZ2 binding domain mutants create functional gap junctions and exhibit altered phosphorylation. ACTA ACUST UNITED AC 2005; 11:67-87. [PMID: 16247852 PMCID: PMC2880920 DOI: 10.1080/15419060490951781] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Connexin43 (Cx43) is the most abundantly expressed gap junction protein. The C-terminal tail of Cx43 is important for regulation of gap junctions via phosphorylation of specific tyrosine and serine residues and through interactions with cellular proteins. The C-terminus of Cx43 has been shown to interact with the PDZ2 domain of the tight and adherens junction associated zona occludens 1 (ZO-1) protein. Analysis of the PDZ2 binding domain of Cx43 indicated that positions -3 and -2, and the final hydrophobic amino acid at the C-terminus, are critical for ZO-1 binding. In addition, the C-termini of connexins 40 and 45, but not Cx32, interacted with ZO-1. To evaluate the functional significance of the Cx43-ZO-1 interaction, Cx43 wild type (Cx43wt) and mutants lacking either the C-terminal hydrophobic isoleucine (Cx43deltaI382) or the last five amino acids (Cx43delta378-382), required for ZO-1 binding in vitro, were introduced into a Cx43-deficient MDCK cell line. In vitro binding studies and coimmunoprecipitation assays indicated that these Cx43 mutants failed to interact with ZO-1. Confocal and deconvolution microscopy revealed that a fraction of Cx43wt colocalized with ZO-1 at the plasma membrane. A similar colocalization pattern was observed for the Cx43deltaI382 and Cx43 delta378-382 mutants, which were translocated to the plasma membrane and formed functional gap junction channels. The wt and mutant Cx43 appeared to have similar turnover rates. However, the P2 and P3 phosphoisoforms of the Cx43 mutants were significantly reduced compared to Cx43wt. These studies indicated that the interaction of Cx43 with ZO-1 may contribute to the regulation of Cx43 phosphorylation.
Collapse
Affiliation(s)
- Chengshi Jin
- Molecular Carcinogenesis Section, University of Hawaii, Honolulu, Hawaii, USA
- Department of Cell and Molecular Biology, John Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Kendra D. Martyn
- Molecular Carcinogenesis Section, University of Hawaii, Honolulu, Hawaii, USA
- Natural Products and Cancer Biology Program, Cancer Research Center, University of Hawaii, Honolulu, Hawaii, USA
| | - Wendy E. Kurata
- Molecular Carcinogenesis Section, University of Hawaii, Honolulu, Hawaii, USA
| | - Bonnie J. Warn-Cramer
- Natural Products and Cancer Biology Program, Cancer Research Center, University of Hawaii, Honolulu, Hawaii, USA
| | - Alan F. Lau
- Molecular Carcinogenesis Section, University of Hawaii, Honolulu, Hawaii, USA
- Department of Cell and Molecular Biology, John Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
45
|
Hunter AW, Barker RJ, Zhu C, Gourdie RG. Zonula occludens-1 alters connexin43 gap junction size and organization by influencing channel accretion. Mol Biol Cell 2005; 16:5686-98. [PMID: 16195341 PMCID: PMC1289413 DOI: 10.1091/mbc.e05-08-0737] [Citation(s) in RCA: 290] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Regulation of gap junction (GJ) organization is critical for proper function of excitable tissues such as heart and brain, yet mechanisms that govern the dynamic patterning of GJs remain poorly defined. Here, we show that zonula occludens (ZO)-1 localizes preferentially to the periphery of connexin43 (Cx43) GJ plaques. Blockade of the PDS95/dlg/ZO-1 (PDZ)-mediated interaction between ZO-1 and Cx43, by genetic tagging of Cx43 or by a membrane-permeable peptide inhibitor that contains the Cx43 PDZ-binding domain, led to a reduction of peripherally associated ZO-1 accompanied by a significant increase in plaque size. Biochemical data indicate that the size increase was due to unregulated accumulation of gap junctional channels from nonjunctional pools, rather than to increased protein expression or decreased turnover. Coexpression of native Cx43 fully rescued the aberrant tagged-connexin phenotype, but only if channels were composed predominately of untagged connexin. Confocal image analysis revealed that, subsequent to GJ nucleation, ZO-1 association with Cx43 GJs is independent of plaque size. We propose that ZO-1 controls the rate of Cx43 channel accretion at GJ peripheries, which, in conjunction with the rate of GJ turnover, regulates GJ size and distribution.
Collapse
Affiliation(s)
- Andrew W Hunter
- Department of Cell Biology and Anatomy, Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|
46
|
Penes MC, Li X, Nagy JI. Expression of zonula occludens-1 (ZO-1) and the transcription factor ZO-1-associated nucleic acid-binding protein (ZONAB)-MsY3 in glial cells and colocalization at oligodendrocyte and astrocyte gap junctions in mouse brain. Eur J Neurosci 2005; 22:404-18. [PMID: 16045494 DOI: 10.1111/j.1460-9568.2005.04225.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The PDZ domain-containing protein zonula occludens-1 (ZO-1) interacts with several members of the connexin (Cx) family of gap junction-forming proteins and has been localized to gap junctions, including those containing Cx47 in oligodendrocytes. We now provide evidence for ZO-1 expression in astrocytes in vivo and association with astrocytic connexins by confocal immunofluorescence demonstration of ZO-1 colocalization with astrocytic Cx30 and Cx43, and by ZO-1 coimmunoprecipitation with Cx30 and Cx43. Evidence for direct interaction of Cx30 with ZO-1 was obtained by pull-down assays that indicated binding of Cx30 to the second of the three PDZ domains in ZO-1. Further, we investigated mouse Y-box transcription factor MsY3, the canine ortholog of which has been termed ZO-1-associated nucleic acid-binding protein (ZONAB) and previously reported to interact with ZO-1. By immunofluorescence using specific antimouse ZONAB antibody, ZONAB was found to be associated with oligodendrocytes throughout mouse brain and spinal cord, and to be colocalized with oligodendrocytic Cx47 and Cx32 as well as with astrocytic Cx43. Our results extend the CNS cell types that express the multifunctional protein ZO-1, demonstrate an additional connexin (Cx30) that directly interacts with ZO-1, and show for the first time the association of a transcription factor (ZONAB) with ZO-1 localized to oligodendrocyte and astrocyte gap junctions. Given previous observations that ZONAB and ZO-1 in combination regulate gene expression, our results suggest roles of glial gap junction-mediated anchoring of signalling molecules in a wide variety of glial homeostatic processes.
Collapse
Affiliation(s)
- Mihai C Penes
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Ave, Winnipeg, Manitoba R3E 3J7, Canada
| | | | | |
Collapse
|
47
|
Pointis G, Segretain D. Role of connexin-based gap junction channels in testis. Trends Endocrinol Metab 2005; 16:300-6. [PMID: 16054834 DOI: 10.1016/j.tem.2005.07.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 05/05/2005] [Accepted: 07/20/2005] [Indexed: 11/23/2022]
Abstract
Spermatogenesis is a highly controlled process that allows proliferation and differentiation of male germ cells. This is under classical endocrine and paracrine controls. There is also evidence that gap junctions between Leydig cells, between Sertoli cells and between Sertoli and germ cells participate in the local regulation of spermatogenesis. Recent studies reveal that connexin 43 (Cx43), the predominant gap junction protein in the testis, is essential for the initiation and maintenance of spermatogenesis. In this review, we focus on the identification, distribution and control of connexins in the mammalian testis. The implication of connexin-based gap junctions in testicular physiology and in pathological disorders of spermatogenesis (spermatogenic arrest and testis cancer) is also discussed.
Collapse
Affiliation(s)
- Georges Pointis
- INSERM U 670, Faculté de Médecine, IFR 50, Avenue de Valombrose, 06107 Nice cedex 02, France.
| | | |
Collapse
|
48
|
Ouyang X, Winbow VM, Patel LS, Burr GS, Mitchell CK, O’Brien J. Protein kinase A mediates regulation of gap junctions containing connexin35 through a complex pathway. ACTA ACUST UNITED AC 2005; 135:1-11. [PMID: 15857663 PMCID: PMC2212611 DOI: 10.1016/j.molbrainres.2004.10.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 10/14/2004] [Accepted: 10/18/2004] [Indexed: 10/25/2022]
Abstract
Connexin 35 (Cx35) is a major component of electrical synapses in the central nervous system. Many gap junctions containing Cx35 are regulated by dopamine receptor pathways that involve protein kinase A (PKA). To study the mechanism of PKA regulation, we analyzed direct phosphorylation of Cx35 by PKA in vitro and studied the regulation of neurobiotin tracer coupling in HeLa cells expressing Cx35 or Cx35 mutants that lack phosphorylation sites. In Cx35-transfected cells, application of the PKA activator Sp-8-cpt-cAMPS caused a significant decline in coupling, while a PKA inhibitor, Rp-8-cpt-cAMPS, significantly increased tracer coupling. In vitro phosphorylation and mutagenic analysis showed that PKA phosphorylates Cx35 directly at two major sites, Ser110 in the intracellular loop and Ser276 in the carboxyl terminus. In addition, a minor phosphorylation site in the C-terminus was identified by truncation of the last 7 amino acids at Ser298. The mutations Ser110Ala or Ser276Ala significantly reduced regulation of coupling by the PKA activator while a combination of the two eliminated regulation. Truncation at Ser298 reversed the regulation such that the PKA activator significantly increased and the PKA inhibitor significantly decreased coupling. The activation was eliminated in the S110A, S276A, S298ter triple mutant. We conclude that PKA regulates Cx35 coupling in a complex manner that requires both major phosphorylation sites. Furthermore, the tip of the C-terminus acts as a "switch" that determines whether phosphorylation will inhibit or enhance coupling. Reliance on the combined states of three sites provides fine control over the degree of coupling through Cx35 gap junctions.
Collapse
Affiliation(s)
- Xiaosen Ouyang
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center, Houston
| | - Virginia M. Winbow
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center, Houston
- University of Houston, College of Optometry
| | - Leena S. Patel
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center, Houston
| | - Gary S. Burr
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center, Houston
| | - Cheryl K. Mitchell
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center, Houston
| | - John O’Brien
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center, Houston
- The Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston
- *Corresponding author: John O’Brien, Department of Ophthalmology and Visual Science, University of Texas, Houston Health Science Center, 6431 Fannin St., MSB 7.024, Houston, Texas 77030, Phone: (713) 500-5983, FAX: (713) 500-0682, e-mail:
| |
Collapse
|
49
|
Singh D, Solan JL, Taffet SM, Javier R, Lampe PD. Connexin 43 interacts with zona occludens-1 and -2 proteins in a cell cycle stage-specific manner. J Biol Chem 2005; 280:30416-21. [PMID: 15980428 PMCID: PMC3501655 DOI: 10.1074/jbc.m506799200] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gap junction channels play an important role in cell growth control, secretion and embryonic development. Gap junctional communication and channel assembly can be regulated by protein-protein interaction with kinases and phosphatases. We have utilized tandem mass spectrometry (MS/MS) sequence analysis as a screen to identify proteins from cell lysates that interact with the C-terminal cytoplasmic region of connexin 43 (Cx43). MS/MS analysis of tryptic fragments yielded several proteins including zona occludens-1 (ZO-1), a structural protein previously identified to interact with Cx43, and ZO-2, a potential novel interacting partner. We confirmed the interaction of ZO-2 with Cx43 by using a combination of fusion protein "pull down," co-immunoprecipitation, and co-localization experiments. We show that the C-terminal region of Cx43 is necessary for interaction with the PDZ2 domain of ZO-2. Far Western analysis revealed that ZO-2 can directly bind to Cx43 independent of other interacting partners. Immunofluorescence studies indicate that both ZO-1 and ZO-2 can co-localize with Cx43 within the plasma membrane at apparent gap junctional structures. We examined Cx43 interaction with ZO-1 and ZO-2 at different stages of the cell cycle and found that Cx43 had a strong preference for interaction with ZO-1 during G0, whereas ZO-2 interaction occurred approximately equally during G0 and S phases. Since essentially all of the Cx43 in G0 cells is assembled into Triton X-100-resistant junctions, Cx43-ZO-1 interaction may contribute to their stability.
Collapse
Affiliation(s)
- Deepika Singh
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
- Department of Pathobiology, University of Washington, Seattle, Washington 98195
| | - Joell L. Solan
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
- Department of Pathobiology, University of Washington, Seattle, Washington 98195
| | - Steven M. Taffet
- Department of Microbiology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Ronald Javier
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | - Paul D. Lampe
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
- Department of Pathobiology, University of Washington, Seattle, Washington 98195
- To whom correspondence should be addressed: Fred Hutchinson Cancer Research Center, PO Box, 19024, Mailstop M5C800, 1100 Fair-view Ave. N., Seattle, WA 98109. Tel.: 206-667-4123;
| |
Collapse
|
50
|
Kreuzberg MM, Söhl G, Kim JS, Verselis VK, Willecke K, Bukauskas FF. Functional properties of mouse connexin30.2 expressed in the conduction system of the heart. Circ Res 2005; 96:1169-77. [PMID: 15879306 PMCID: PMC3657762 DOI: 10.1161/01.res.0000169271.33675.05] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gap junction channels composed of connexin (Cx) 40, Cx43, and Cx45 proteins are known to be necessary for impulse propagation through the heart. Here, we report mouse connexin30.2 (mCx30.2) to be a new cardiac connexin that is expressed mainly in the conduction system of the heart. Antibodies raised to the cytoplasmic loop or the C-terminal regions of mCx30.2 recognized this protein in mouse heart as well as in HeLa cells transfected with wild-type mCx30.2 or mCx30.2 fused with enhanced green fluorescent protein (mCx30.2-EGFP). Immunofluorescence analyses of adult hearts yielded positive signals within the sinoatrial node, atrioventricular node, and A-V bundle of the cardiac conduction system. Dye transfer studies demonstrated that mCx30.2 and mCx30.2-EGFP channels discriminate poorly on the basis of charge, but do not allow permeation of tracers >400 Da. Both mCx30.2 and mCx30.2-EGFP gap junctional channels exhibited weak sensitivity to transjunctional voltage (Vj) and a single channel conductance of approximately 9 pS, which is the lowest among all members of the connexin family measured in HeLa cell transfectants. HeLa mCx30.2-EGFP transfectants when paired with cells expressing Cx40, Cx43, or Cx45 formed functional heterotypic gap junction channels that exhibited low unitary conductances (15 to 18 pS), rectifying open channel I-V relations and asymmetric Vj dependence. The electrical properties of homo- and hetero-typic junctions involving mCx30.2 may contribute to slow propagation velocity in nodal tissues and directional asymmetry of excitation spread in the AV nodal region.
Collapse
Affiliation(s)
- Maria M Kreuzberg
- Institut für Genetik, Abteilung Molekulargenetik, Universität Bonn, Germany
| | | | | | | | | | | |
Collapse
|