1
|
Sporkova A, Nahar T, Cao M, Ghosh S, Sens-Albert C, Friede PAP, Nagel A, Al-Hasani J, Hecker M. Characterisation of Lipoma-Preferred Partner as a Novel Mechanotransducer in Vascular Smooth Muscle Cells. Cells 2023; 12:2315. [PMID: 37759537 PMCID: PMC10529303 DOI: 10.3390/cells12182315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
In arteries and arterioles, a chronic increase in blood pressure raises wall tension. This continuous biomechanical strain causes a change in gene expression in vascular smooth muscle cells (VSMCs) that may lead to pathological changes. Here we have characterised the functional properties of lipoma-preferred partner (LPP), a Lin11-Isl1-Mec3 (LIM)-domain protein, which is most closely related to the mechanotransducer zyxin but selectively expressed by smooth muscle cells, including VSMCs in adult mice. VSMCs isolated from the aorta of LPP knockout (LPP-KO) mice displayed a higher rate of proliferation than their wildtype (WT) counterparts, and when cultured as three-dimensional spheroids, they revealed a higher expression of the proliferation marker Ki 67 and showed greater invasion into a collagen gel. Accordingly, the gelatinase activity was increased in LPP-KO but not WT spheroids. The LPP-KO spheroids adhering to the collagen gel responded with decreased contraction to potassium chloride. The relaxation response to caffeine and norepinephrine was also smaller in the LPP-KO spheroids than in their WT counterparts. The overexpression of zyxin in LPP-KO VSMCs resulted in a reversal to a more quiescent differentiated phenotype. In native VSMCs, i.e., in isolated perfused segments of the mesenteric artery (MA), the contractile responses of LPP-KO segments to potassium chloride, phenylephrine or endothelin-1 did not vary from those in isolated perfused WT segments. In contrast, the myogenic response of LPP-KO MA segments was significantly attenuated while zyxin-deficient MA segments displayed a normal myogenic response. We propose that LPP, which we found to be expressed solely in the medial layer of different arteries from adult mice, may play an important role in controlling the quiescent contractile phenotype of VSMCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany; (A.S.)
| |
Collapse
|
2
|
Tao A, LaCroix AS, Shoyer TC, Venkatraman V, Xu KL, Feiger B, Hoffman BD. Identifying constitutive and context-specific molecular-tension-sensitive protein recruitment within focal adhesions. Dev Cell 2023; 58:522-534.e7. [PMID: 36924770 PMCID: PMC10080727 DOI: 10.1016/j.devcel.2023.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/28/2022] [Accepted: 02/20/2023] [Indexed: 03/17/2023]
Abstract
Mechanosensitive processes often rely on adhesion structures to strengthen, or mature, in response to applied loads. However, a limited understanding of how the molecular tensions that are experienced by a particular protein affect the recruitment of other proteins represents a major obstacle in the way of deciphering molecular mechanisms that underlie mechanosensitive processes. Here, we describe an imaging-based technique, termed fluorescence-tension co-localization (FTC), for studying molecular-tension-sensitive protein recruitment inside cells. Guided by discrete time Markov chain simulations of protein recruitment, we integrate immunofluorescence labeling, molecular tension sensors, and machine learning to determine the sensitivity, specificity, and context dependence of molecular-tension-sensitive protein recruitment. The application of FTC to the mechanical linker protein vinculin in mouse embryonic fibroblasts reveals constitutive and context-specific molecular-tension-sensitive protein recruitment that varies with adhesion maturation. FTC overcomes limitations associated with the alteration of numerous proteins during the manipulation of cell contractility, providing molecularly specific insights into tension-sensitive protein recruitment.
Collapse
Affiliation(s)
- Arnold Tao
- Biomedical Engineering, Duke University, Durham, NC, USA
| | | | | | | | - Karen L Xu
- Biomedical Engineering, Duke University, Durham, NC, USA
| | - Bradley Feiger
- Biomedical Engineering, Duke University, Durham, NC, USA
| | - Brenton D Hoffman
- Biomedical Engineering, Duke University, Durham, NC, USA; Cell Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
3
|
Filhol O, Hesse AM, Bouin AP, Albigès-Rizo C, Jeanneret F, Battail C, Pflieger D, Cochet C. CK2β Is a Gatekeeper of Focal Adhesions Regulating Cell Spreading. Front Mol Biosci 2022; 9:900947. [PMID: 35847979 PMCID: PMC9280835 DOI: 10.3389/fmolb.2022.900947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
CK2 is a hetero-tetrameric serine/threonine protein kinase made up of two CK2α/αʹ catalytic subunits and two CK2β regulatory subunits. The free CK2α subunit and the tetrameric holoenzyme have distinct substrate specificity profiles, suggesting that the spatiotemporal organization of the individual CK2 subunits observed in living cells is crucial in the control of the many cellular processes that are governed by this pleiotropic kinase. Indeed, previous studies reported that the unbalanced expression of CK2 subunits is sufficient to drive epithelial to mesenchymal transition (EMT), a process involved in cancer invasion and metastasis. Moreover, sub-stoichiometric expression of CK2β compared to CK2α in a subset of breast cancer tumors was correlated with the induction of EMT markers and increased epithelial cell plasticity in breast carcinoma progression. Phenotypic changes of epithelial cells are often associated with the activation of phosphotyrosine signaling. Herein, using phosphotyrosine enrichment coupled with affinity capture and proteomic analysis, we show that decreased expression of CK2β in MCF10A mammary epithelial cells triggers the phosphorylation of a number of proteins on tyrosine residues and promotes the striking activation of the FAK1-Src-PAX1 signaling pathway. Moreover, morphometric analyses also reveal that CK2β loss increases the number and the spatial distribution of focal adhesion signaling complexes that coordinate the adhesive and migratory processes. Together, our findings allow positioning CK2β as a gatekeeper for cell spreading by restraining focal adhesion formation and invasion of mammary epithelial cells.
Collapse
Affiliation(s)
- Odile Filhol
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté, U1292, Grenoble, France
| | - Anne-Marie Hesse
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté U1292, CNRS FR 2048, Grenoble, France
| | - Anne-Pascale Bouin
- Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB), Grenoble, France
| | - Corinne Albigès-Rizo
- Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB), Grenoble, France
| | - Florian Jeanneret
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté, U1292, Grenoble, France
| | - Christophe Battail
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté, U1292, Grenoble, France
| | - Delphine Pflieger
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté U1292, CNRS FR 2048, Grenoble, France
- *Correspondence: Claude Cochet, ; Delphine Pflieger,
| | - Claude Cochet
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté, U1292, Grenoble, France
- *Correspondence: Claude Cochet, ; Delphine Pflieger,
| |
Collapse
|
4
|
Byron A, Griffith BGC, Herrero A, Loftus AEP, Koeleman ES, Kogerman L, Dawson JC, McGivern N, Culley J, Grimes GR, Serrels B, von Kriegsheim A, Brunton VG, Frame MC. Characterisation of a nucleo-adhesome. Nat Commun 2022; 13:3053. [PMID: 35650196 PMCID: PMC9160004 DOI: 10.1038/s41467-022-30556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 05/02/2022] [Indexed: 11/09/2022] Open
Abstract
In addition to central functions in cell adhesion signalling, integrin-associated proteins have wider roles at sites distal to adhesion receptors. In experimentally defined adhesomes, we noticed that there is clear enrichment of proteins that localise to the nucleus, and conversely, we now report that nuclear proteomes contain a class of adhesome components that localise to the nucleus. We here define a nucleo-adhesome, providing experimental evidence for a remarkable scale of nuclear localisation of adhesion proteins, establishing a framework for interrogating nuclear adhesion protein functions. Adding to nuclear FAK's known roles in regulating transcription, we now show that nuclear FAK regulates expression of many adhesion-related proteins that localise to the nucleus and that nuclear FAK binds to the adhesome component and nuclear protein Hic-5. FAK and Hic-5 work together in the nucleus, co-regulating a subset of genes transcriptionally. We demonstrate the principle that there are subcomplexes of nuclear adhesion proteins that cooperate to control transcription.
Collapse
Affiliation(s)
- Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK.
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| | - Billie G C Griffith
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Ana Herrero
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, 39011, Santander, Spain
| | - Alexander E P Loftus
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Emma S Koeleman
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, 69120, Heidelberg, Germany
| | - Linda Kogerman
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - John C Dawson
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Niamh McGivern
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- Almac Diagnostic Services, 19 Seagoe Industrial Estate, Craigavon, BT63 5QD, UK
| | - Jayne Culley
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Graeme R Grimes
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Bryan Serrels
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- NanoString Technologies, Inc., Seattle, WA, 98109, USA
| | - Alex von Kriegsheim
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Valerie G Brunton
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| |
Collapse
|
5
|
Structural and functional analysis of LIM domain-dependent recruitment of paxillin to αvβ3 integrin-positive focal adhesions. Commun Biol 2021; 4:380. [PMID: 33782527 PMCID: PMC8007706 DOI: 10.1038/s42003-021-01886-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
The LIM domain-dependent localization of the adapter protein paxillin to β3 integrin-positive focal adhesions (FAs) is not mechanistically understood. Here, by combining molecular biology, photoactivation and FA-isolation experiments, we demonstrate specific contributions of each LIM domain of paxillin and reveal multiple paxillin interactions in adhesion-complexes. Mutation of β3 integrin at a putative paxillin binding site (β3VE/YA) leads to rapidly inward-sliding FAs, correlating with actin retrograde flow and enhanced paxillin dissociation kinetics. Induced mechanical coupling of paxillin to β3VE/YA integrin arrests the FA-sliding, thereby disclosing an essential structural function of paxillin for the maturation of β3 integrin/talin clusters. Moreover, bimolecular fluorescence complementation unveils the spatial orientation of the paxillin LIM-array, juxtaposing the positive LIM4 to the plasma membrane and the β3 integrin-tail, while in vitro binding assays point to LIM1 and/or LIM2 interaction with talin-head domain. These data provide structural insights into the molecular organization of β3 integrin-FAs.
Collapse
|
6
|
Venkatramanan S, Ibar C, Irvine KD. TRIP6 is required for tension at adherens junctions. J Cell Sci 2021; 134:jcs247866. [PMID: 33558314 PMCID: PMC7970510 DOI: 10.1242/jcs.247866] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 01/29/2021] [Indexed: 01/08/2023] Open
Abstract
Hippo signaling mediates influences of cytoskeletal tension on organ growth. TRIP6 and LIMD1 have each been identified as being required for tension-dependent inhibition of the Hippo pathway LATS kinases and their recruitment to adherens junctions, but the relationship between TRIP6 and LIMD1 was unknown. Using siRNA-mediated gene knockdown, we show that TRIP6 is required for LIMD1 localization to adherens junctions, whereas LIMD1 is not required for TRIP6 localization. TRIP6, but not LIMD1, is also required for the recruitment of vinculin and VASP to adherens junctions. Knockdown of TRIP6 or vinculin, but not of LIMD1, also influences the localization of myosin and F-actin. In TRIP6 knockdown cells, actin stress fibers are lost apically but increased basally, and there is a corresponding increase in the recruitment of vinculin and VASP to basal focal adhesions. Our observations identify a role for TRIP6 in organizing F-actin and maintaining tension at adherens junctions that could account for its influence on LIMD1 and LATS. They also suggest that focal adhesions and adherens junctions compete for key proteins needed to maintain attachments to contractile F-actin.
Collapse
Affiliation(s)
- Srividya Venkatramanan
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA
| | - Consuelo Ibar
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA
| |
Collapse
|
7
|
Liu Y, Wang Y, Qi R, Mao X, Jin F. Expression of lipoma preferred partner in mammary and extramammary Paget disease. Medicine (Baltimore) 2020; 99:e23443. [PMID: 33371071 PMCID: PMC7748372 DOI: 10.1097/md.0000000000023443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/23/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGOUND This study aims to identify the expression of lipoma preferred partner (LPP) in Paget disease (PD) and to further understand the pathogenesis of PD. METHODS Tissue microarray was used to evaluate the expression of LPP by immunohistochemistry in 40 PD patients. The results of LPP expression were combined with clinical and histopathological characteristics. Patient files were analyzed retrospectively. RESULTS Twenty-one cases were mammary Paget disease (MPD) and 19 extramammary Paget disease (EMPD) involving the vulva, scrotum, and penis. LPP was expressed in PD and this expression was significantly greater in MPD versus EMPD (P = .031). The expression of LPP in MPD was significantly related with age (P = .009) and expression of Ki-67 (P = .011). No statistically significant differences were observed in LPP expression as related to sex, body location, and time of PD diagnosis. CONCLUSIONS While LPP is expressed in both MPD and EMPD, the intensity of this expression is greater in MPD. LPP expression is positively correlated with Ki-67 and is more prevalent in middle-aged versus senior MPD patients. Further research is needed to determine its potential role in tumorigenesis and distribution.
Collapse
Affiliation(s)
- Ye Liu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University
| | - Yangbin Wang
- Department of Dermatology, The First Hospital of China Medical University, Heping District, Shenyang, Liaoning Province, P.R. China
| | - Ruiqun Qi
- Department of Dermatology, The First Hospital of China Medical University, Heping District, Shenyang, Liaoning Province, P.R. China
| | - Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University
| |
Collapse
|
8
|
de Brun V, Loor JJ, Naya H, Graña-Baumgartner A, Vailati-Riboni M, Bulgari O, Shahzad K, Abecia JA, Sosa C, Meikle A. The presence of an embryo affects day 14 uterine transcriptome depending on the nutritional status in sheep. b. Immune system and uterine remodeling. Theriogenology 2020; 161:210-218. [PMID: 33340754 DOI: 10.1016/j.theriogenology.2020.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Transcriptomics and bioinformatics were used to investigate the potential interactions of undernutrition and the presence of the conceptus at the time of maternal recognition of pregnancy on uterine immune system and remodeling. Adult Rasa Aragonesa ewes were allocated to one of two planes of nutrition for 28 days: maintenance energy intake (control; 5 cyclic, 6 pregnant ewes) providing 7.8 MJ of metabolisable energy and 0.5 maintenance intake (undernourished; 6 cyclic, 7 pregnant ewes) providing 3.9 MJ of metabolisable energy per ewe. Uterine gene expression was measured using Agilent 15 K Sheep Microarray chip on day 14 of estrus or pregnancy. Functional bioinformatics analyses were performed using PANTHER (Protein ANalysis THrough Evolutionary Relationships) Classification System. Pregnancy affected the expression of 18 genes in both control and undernourished ewes, underscoring the relevance for embryo-maternal interactions. Immune system evidenced by classical interferon stimulated genes were activated in control and -in a lesser extent-in undernourished pregnant vs cyclic ewes. Genes involved in uterine remodeling such as protein metabolism were also upregulated with the presence of an embryo in control and undernourished ewes. However, relevant genes for the adaptation of the uterus to the embryo were differentially expressed between pregnant vs cyclic ewes both in control and undernourished groups. Undernutrition alone led to an overall weak activation of immune system pathways both in cyclic and pregnant ewes. Data revealed that cellular and immune adaptations of the uterus to pregnancy are dependent on the nutritional status.
Collapse
Affiliation(s)
- Victoria de Brun
- Laboratorio de Endocrinología y Metabolismo Animal, Universidad de la República, Montevideo, Uruguay.
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Hugo Naya
- Departamento de Bioinformática, Institut Pasteur de Montevideo, Uruguay
| | - Andrea Graña-Baumgartner
- Laboratorio de Endocrinología y Metabolismo Animal, Universidad de la República, Montevideo, Uruguay
| | - Mario Vailati-Riboni
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Omar Bulgari
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Khuram Shahzad
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - José Alfonso Abecia
- Instituto de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Spain
| | - Cecilia Sosa
- Departamento de Anatomía Patológica, Medicina Legal, Forense y Toxicología, Universidad de Zaragoza, Spain
| | - Ana Meikle
- Laboratorio de Endocrinología y Metabolismo Animal, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
9
|
Alam T, Alazmi M, Naser R, Huser F, Momin AA, Astro V, Hong S, Walkiewicz KW, Canlas CG, Huser R, Ali AJ, Merzaban J, Adamo A, Jaremko M, Jaremko Ł, Bajic VB, Gao X, Arold ST. Proteome-level assessment of origin, prevalence and function of leucine-aspartic acid (LD) motifs. Bioinformatics 2020; 36:1121-1128. [PMID: 31584626 PMCID: PMC7703752 DOI: 10.1093/bioinformatics/btz703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/03/2019] [Accepted: 09/28/2019] [Indexed: 01/08/2023] Open
Abstract
Motivation Leucine-aspartic acid (LD) motifs are short linear interaction motifs (SLiMs) that link paxillin family proteins to factors controlling cell adhesion, motility and survival. The existence and importance of LD motifs beyond the paxillin family is poorly understood. Results To enable a proteome-wide assessment of LD motifs, we developed an active learning based framework (LD motif finder; LDMF) that iteratively integrates computational predictions with experimental validation. Our analysis of the human proteome revealed a dozen new proteins containing LD motifs. We found that LD motif signalling evolved in unicellular eukaryotes more than 800 Myr ago, with paxillin and vinculin as core constituents, and nuclear export signal as a likely source of de novo LD motifs. We show that LD motif proteins form a functionally homogenous group, all being involved in cell morphogenesis and adhesion. This functional focus is recapitulated in cells by GFP-fused LD motifs, suggesting that it is intrinsic to the LD motif sequence, possibly through their effect on binding partners. Our approach elucidated the origin and dynamic adaptations of an ancestral SLiM, and can serve as a guide for the identification of other SLiMs for which only few representatives are known. Availability and implementation LDMF is freely available online at www.cbrc.kaust.edu.sa/ldmf; Source code is available at https://github.com/tanviralambd/LD/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tanvir Alam
- Computational Bioscience Research Center (CBRC), Division of Computer, Electrical and Mathematical Sciences & Engineering (CEMSE), Saudi Arabia
| | - Meshari Alazmi
- Computational Bioscience Research Center (CBRC), Division of Computer, Electrical and Mathematical Sciences & Engineering (CEMSE), Saudi Arabia
| | - Rayan Naser
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Franceline Huser
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Afaque A Momin
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Veronica Astro
- Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - SeungBeom Hong
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Katarzyna W Walkiewicz
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | | | - Raphaël Huser
- Division of Computer, Electrical and Mathematical Sciences & Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Amal J Ali
- Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Jasmeen Merzaban
- Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Antonio Adamo
- Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Łukasz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Vladimir B Bajic
- Computational Bioscience Research Center (CBRC), Division of Computer, Electrical and Mathematical Sciences & Engineering (CEMSE), Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), Division of Computer, Electrical and Mathematical Sciences & Engineering (CEMSE), Saudi Arabia
| | - Stefan T Arold
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| |
Collapse
|
10
|
Candesartan Neuroprotection in Rat Primary Neurons Negatively Correlates with Aging and Senescence: a Transcriptomic Analysis. Mol Neurobiol 2019; 57:1656-1673. [PMID: 31811565 DOI: 10.1007/s12035-019-01800-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/22/2019] [Indexed: 12/11/2022]
Abstract
Preclinical experiments and clinical trials demonstrated that angiotensin II AT1 receptor overactivity associates with aging and cellular senescence and that AT1 receptor blockers (ARBs) protect from age-related brain disorders. In a primary neuronal culture submitted to glutamate excitotoxicity, gene set enrichment analysis (GSEA) revealed expression of several hundred genes altered by glutamate and normalized by candesartan correlated with changes in expression in Alzheimer's patient's hippocampus. To further establish whether our data correlated with gene expression alterations associated with aging and senescence, we compared our global transcriptional data with additional published datasets, including alterations in gene expression in the neocortex and cerebellum of old mice, human frontal cortex after age of 40, gene alterations in the Werner syndrome, rodent caloric restriction, Ras and oncogene-induced senescence in fibroblasts, and to tissues besides the brain such as the muscle and kidney. The most significant and enriched pathways associated with aging and senescence were positively correlated with alterations in gene expression in glutamate-injured neurons and, conversely, negatively correlated when the injured neurons were treated with candesartan. Our results involve multiple genes and pathways, including CAV1, CCND1, CDKN1A, CHEK1, ICAM1, IL-1B, IL-6, MAPK14, PTGS2, SERPINE1, and TP53, encoding proteins associated with aging and senescence hallmarks, such as inflammation, oxidative stress, cell cycle and mitochondrial function alterations, insulin resistance, genomic instability including telomere shortening and DNA damage, and the senescent-associated secretory phenotype. Our results demonstrate that AT1 receptor blockade ameliorates central mechanisms of aging and senescence. Using ARBs for prevention and treatment of age-related disorders has important translational value.
Collapse
|
11
|
LPP and RYR2 Gene Polymorphisms Correlate with the Risk and the Prognosis of Astrocytoma. J Mol Neurosci 2019; 69:628-635. [DOI: 10.1007/s12031-019-01391-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 07/29/2019] [Indexed: 12/16/2022]
|
12
|
Feng Y, Ma C, Zhang Y, Yang X, Zhang D, Xie M, Li W, Wei J. 3'UTR SNPs in the LPP gene associated with Immunoglobulin A nephropathy risk in the Chinese Han population. Int Immunopharmacol 2019; 74:105668. [PMID: 31295688 DOI: 10.1016/j.intimp.2019.05.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 01/31/2023]
Abstract
The purpose of this study was to investigate the relationship between Lipoma preferred partner (LPP) gene polymorphisms and the risk of Immunoglobulin A nephropathy (IgAN) in the Chinese Han population. In this case-control study, we genotyped three single nucleotide polymorphisms (SNPs) of the LPP gene in 357 IgAN cases and 384 controls, using Agena Bioscience MassARRAY technology and assessed their association with IgAN using the χ2 test and genetic model analysis. The odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess risk and were adjusted for age and gender by logistic regression. In the allele model, there were significant associations between LPP rs1064607 (OR = 1.24; 95% CI = 1.01-1.53; p = 0.041), rs3796283 (OR = 1.32; 95% CI = 1.08-1.63; p = 0.008), and rs2378456 (OR = 1.29; 95% CI = 1.05-1.59; p = 0.016), as well as an increased risk of IgAN. In the dominant model, the "G/C-C/C" genotypes of rs1064607 (p = 0.023), the "G/A-G/G" genotypes of rs3796283 (p = 0.0013) and the "G/C-C/C" genotypes of rs2378456 (p = 0.00052) were risk factors for IgAN. The results of the stratified analysis showed that rs3796283 and rs2378456 were connected with susceptibility to IgAN in different subgroups. Our data may provide new evidence to research the etiology of IgAN.
Collapse
Affiliation(s)
- Yuan Feng
- Department of Immunology, Affiliated Children's hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shanxi 710068, China
| | - Chunyang Ma
- Department of Neurosurgery, First affiliated hospital of Hainan medical college, Haikou, Hainan 570311, China.
| | - Ying Zhang
- Department of Nephrology, Hainan General Hospital, Hainan, Haikou, Hainan 570311, China
| | - Xiaohong Yang
- Department of Nephrology, Hainan General Hospital, Hainan, Haikou, Hainan 570311, China
| | - Daofa Zhang
- Department of Nephrology, Hainan General Hospital, Hainan, Haikou, Hainan 570311, China
| | - Maowei Xie
- Department of Nephrology, Hainan General Hospital, Hainan, Haikou, Hainan 570311, China
| | - Wenning Li
- Department of Nephrology, Hainan General Hospital, Hainan, Haikou, Hainan 570311, China
| | - Jiali Wei
- Department of Nephrology, Hainan General Hospital, Hainan, Haikou, Hainan 570311, China.
| |
Collapse
|
13
|
Xia S, Yim EKF, Kanchanawong P. Molecular Organization of Integrin-Based Adhesion Complexes in Mouse Embryonic Stem Cells. ACS Biomater Sci Eng 2019; 5:3828-3842. [PMID: 33438423 DOI: 10.1021/acsbiomaterials.8b01124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mechanical microenvironment serves as an important factor influencing stem cell differentiation. Mechanobiological responses depend strongly on actomyosin contractility and integrin-based cell-extracellular matrix (ECM) interactions mediated by adhesive structures such as focal adhesions (FAs). While the roles of FAs in mechanobiology have been intensively studied in many mesenchymal and migratory cell types, recently it has been recognized that certain pluripotent stem cells (PSCs) exhibited significantly attenuated FA-mediated mechanobiological responses. FAs in such PSCs are sparsely distributed and much less prominent in comparison to "classical" FAs of typical adherent cells. Despite these differences, insights into how FAs in PSCs are structurally organized to perform their functions are still elusive. Using mouse embryonic stem cells (mESCs) to study PSC-ECM interactions, here we surveyed the molecular composition and nanostructural organization of FAs. We found that, despite being small in size, mESC FAs appeared to be compositionally mature, containing markers such as vinculin, zyxin, and α-actinin, and dependent on myosin II contractility. Using super-resolution microscopy, we revealed that mESC FAs were organized into a conserved multilayer nanoscale architecture. However, the nanodomain organization was compressed in mESCs, with the force transduction layer spanning ∼10 nm, significantly more compact than in FAs of other cell types. Furthermore, we found that the position and orientation of vinculin, a key mechanotransduction protein, were modulated in an ECM-dependent manner. Our analysis also revealed that while most core FA genes were expressed, the expression of LIM domain proteins was comparatively lower in PSCs. Altogether our results suggest that while core structural and mechanosensitive elements are operational in mESC FAs, their structural organization and regulatory aspects may diverge significantly from "classical" FAs, which may account for the attenuated mechanobiological responses of these cell types.
Collapse
Affiliation(s)
- Shumin Xia
- Mechanobiology Institute, Singapore, Republic of Singapore, 117411
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Pakorn Kanchanawong
- Mechanobiology Institute, Singapore, Republic of Singapore, 117411.,Department of Biomedical Engineering, National University of Singapore, Singapore, Republic of Singapore, 117411
| |
Collapse
|
14
|
Chen YJ, Chang WA, Wu LY, Huang CF, Chen CH, Kuo PL. Identification of Novel Genes in Osteoarthritic Fibroblast-Like Synoviocytes Using Next-Generation Sequencing and Bioinformatics Approaches. Int J Med Sci 2019; 16:1057-1071. [PMID: 31523167 PMCID: PMC6743272 DOI: 10.7150/ijms.35611] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/05/2019] [Indexed: 01/15/2023] Open
Abstract
Synovitis in osteoarthritis (OA) the consequence of low grade inflammatory process caused by cartilage breakdown products that stimulated the production of pro-inflammatory mediators by fibroblast-like synoviocytes (FLS). FLS participate in joint homeostasis and low grade inflammation in the joint microenvironment triggers FLS transformation. In the current study, we aimed to identify differentially expressed genes and potential miRNA regulations in human OA FLS through deep sequencing and bioinformatics approaches. The 245 differentially expressed genes in OA FLS were identified, and pathway analysis using various bioinformatics databases indicated their enrichment in functions related to altered extracellular matrix organization, cell adhesion and cellular movement. Moreover, among the 14 dysregulated genes with potential miRNA regulations identified, src kinase associated phosphoprotein 2 (SKAP2), adaptor related protein complex 1 sigma 2 subunit (AP1S2), PHD finger protein 21A (PHF21A), lipoma preferred partner (LPP), and transcription factor AP-2 alpha (TFAP2A) showed similar expression patterns in OA FLS and OA synovial tissue datasets in Gene Expression Omnibus database. Ingenuity Pathway Analysis identified the dysregulated LPP participated in cell migration and cell spreading of OA FLS, which was potentially regulated by miR-141-3p. The current findings suggested new perspectives into understanding the novel molecular signatures of FLS involved in the pathogenesis of OA, which may be potential therapeutic targets.
Collapse
Affiliation(s)
- Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ling-Yu Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ching-Fen Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chia-Hsin Chen
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.,Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Center for Cancer Research, Kaohsiung Medical University
| |
Collapse
|
15
|
Jaslove JM, Nelson CM. Smooth muscle: a stiff sculptor of epithelial shapes. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170318. [PMID: 30249770 PMCID: PMC6158200 DOI: 10.1098/rstb.2017.0318] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2018] [Indexed: 12/11/2022] Open
Abstract
Smooth muscle is increasingly recognized as a key mechanical sculptor of epithelia during embryonic development. Smooth muscle is a mesenchymal tissue that surrounds the epithelia of organs including the gut, blood vessels, lungs, bladder, ureter, uterus, oviduct and epididymis. Smooth muscle is stiffer than its adjacent epithelium and often serves its morphogenetic function by physically constraining the growth of a proliferating epithelial layer. This constraint leads to mechanical instabilities and epithelial morphogenesis through buckling. Smooth muscle stiffness alone, without smooth muscle cell shortening, seems to be sufficient to drive epithelial morphogenesis. Fully understanding the development of organs that use smooth muscle stiffness as a driver of morphogenesis requires investigating how smooth muscle develops, a key aspect of which is distinguishing smooth muscle-like tissues from one another in vivo and in culture. This necessitates a comprehensive appreciation of the genetic, anatomical and functional markers that are used to distinguish the different subtypes of smooth muscle (for example, vascular versus visceral) from similar cell types (including myofibroblasts and myoepithelial cells). Here, we review how smooth muscle acts as a mechanical driver of morphogenesis and discuss ways of identifying smooth muscle, which is critical for understanding these morphogenetic events.This article is part of the Theo Murphy meeting issue 'Mechanics of Development'.
Collapse
Affiliation(s)
- Jacob M Jaslove
- Department of Molecular Biology, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA
- Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Celeste M Nelson
- Department of Molecular Biology, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA
| |
Collapse
|
16
|
Gene expression profiling of hematologic malignant cell lines resistant to oncolytic virus treatment. Oncotarget 2018; 8:1213-1225. [PMID: 27901484 PMCID: PMC5352049 DOI: 10.18632/oncotarget.13598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/04/2016] [Indexed: 12/28/2022] Open
Abstract
Pexa-Vec (pexastimogene devacirpvec; JX-594) has emerged as an attractive tool in oncolytic virotherapy. Pexa-Vec demonstrates oncolytic and immunotherapeutic mechanisms of action. But the determinants of resistance to Pexa-Vec are mostly unknown. We treated hemoatologic malignant cells with Pexa-Vec and examined the gene-expression pattern of sensitive and resistant cells. Human myeloid malignant cell lines (RPMI-8226, IM-9, K562, THP-1) and lymphoid cancer cell lines (MOLT4, CCRF-CEM, Ramos, U937) were treated with Pexa-Vec. Pexa-Vec was cytotoxic on myeloid cell lines in a dose-dependent manner, and fluorescent imaging and qPCR revealed that Pexa-Vec expression was low in RAMOS than IM-9 after 24 hrs and 48 hrs of infection. Gene expression profiles between two groups were analyzed by microarray. Genes with at least 2-fold increase or decrease in their expression were identified. A total of 660 genes were up-regulated and 776 genes were down-regulated in lymphoid cancer cell lines. The up- and down-regulated genes were categorized into 319 functional gene clusters. We identified the top 10 up-regulated genes in lymphoid cells. Among them three human genes (LEF1, STAMBPL1, and SLFN11) strongly correlated with viral replication. Up-regulation of PVRIG, LPP, CECR1, Arhgef6, IRX3, IGFBP2, CD1d were related to resistant to Pexa-Vec. In conclusion, lymphoid malignant cells are resistant to Pexa-Vec and displayed up-regulated genes associated with resistance to oncolytic viral therapy. These data provide potential targets to overcome resistance, and suggest that molecular assays may be useful in selecting patients for further clinical trials with Pexa-Vec.
Collapse
|
17
|
Ngan E, Kiepas A, Brown CM, Siegel PM. Emerging roles for LPP in metastatic cancer progression. J Cell Commun Signal 2017; 12:143-156. [PMID: 29027626 DOI: 10.1007/s12079-017-0415-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/03/2017] [Indexed: 01/21/2023] Open
Abstract
LIM domain containing proteins are important regulators of diverse cellular processes, and play pivotal roles in regulating the actin cytoskeleton. Lipoma Preferred Partner (LPP) is a member of the zyxin family of LIM proteins that has long been characterized as a promoter of mesenchymal/fibroblast cell migration. More recently, LPP has emerged as a critical inducer of tumor cell migration, invasion and metastasis. LPP is thought to contribute to these malignant phenotypes by virtue of its ability to shuttle into the nucleus, localize to adhesions and, most recently, to promote invadopodia formation. In this review, we will examine the mechanisms through which LPP regulates the functions of adhesions and invadopodia, and discuss potential roles of LPP in mediating cellular responses to mechanical cues within these mechanosensory structures.
Collapse
Affiliation(s)
- Elaine Ngan
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 508, Montréal, Québec, H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Alex Kiepas
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Claire M Brown
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 508, Montréal, Québec, H3A 1A3, Canada. .,Department of Medicine, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
18
|
Huang SQ, Zhang N, Zhou ZX, Huang CC, Zeng CL, Xiao D, Guo CC, Han YJ, Ye XH, Ye XG, Ou ML, Zhang BH, Liu Y, Zeng EY, Yang G, Jing CX. Association of LPP and TAGAP Polymorphisms with Celiac Disease Risk: A Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14020171. [PMID: 28208589 PMCID: PMC5334725 DOI: 10.3390/ijerph14020171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/31/2017] [Indexed: 01/09/2023]
Abstract
Background: Lipoma preferred partner (LPP) and T-cell activation Rho GTPase activating protein (TAGAP) polymorphisms might influence the susceptibility to celiac disease. Therefore, we performed a meta-analysis by identifying relevant studies to estimate the risks of these polymorphisms on celiac disease. Methods: The PubMed, Web of Science and Embase databases were searched (up to October 2016) for LPP rs1464510 and TAGAP rs1738074 polymorphisms. Results: This meta-analysis included the same 7 studies for LPP rs1464510 and TAGAP rs1738074. The minor risk A allele at both rs1464510 and rs1738074 carried risks (odds ratios) of 1.26 (95% CI: 1.22-1.30) and 1.17 (95% CI: 1.14-1.21), respectively, which contributed to increased risks in all celiac disease patients by 10.72% and 6.59%, respectively. The estimated lambdas were 0.512 and 0.496, respectively, suggesting that a co-dominant model would be suitable for both gene effects. Conclusions: This meta-analysis provides robust estimates that polymorphisms in LPP and TAGAP genes are potential risk factors for celiac disease in European and American. Prospective studies and more genome-wide association studies (GWAS) are needed to confirm these findings, and some corresponding molecular biology experiments should be carried out to clarify the pathogenic mechanisms of celiac disease.
Collapse
Affiliation(s)
- Shi-Qi Huang
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Na Zhang
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
- Department of Preventive Medicine, Zunyi Medical College, Zhuhai Campus, Zhuhai 519041, Guangdong, China.
| | - Zi-Xing Zhou
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Chui-Can Huang
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Cheng-Li Zeng
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Di Xiao
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Cong-Cong Guo
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Ya-Jing Han
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Xiao-Hong Ye
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Xing-Guang Ye
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Mei-Ling Ou
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Bao-Huan Zhang
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Yang Liu
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Eddy Y Zeng
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China.
| | - Guang Yang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China.
- Department of Parasitology, School of Basic Medical Sciences, Jinan University, Guangzhou 510632, Guangdong, China.
| | - Chun-Xia Jing
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
19
|
Shiina Y, Muto T, Zhang Z, Baihaqie A, Yoshizawa T, Lee HIJ, Park E, Tsukiji S, Takimoto K. Fly DPP10 acts as a channel ancillary subunit and possesses peptidase activity. Sci Rep 2016; 6:26290. [PMID: 27198182 PMCID: PMC4873792 DOI: 10.1038/srep26290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/28/2016] [Indexed: 01/04/2023] Open
Abstract
Mammalian DPP6 (DPPX) and DPP10 (DPPY) belong to a family of dipeptidyl peptidases, but lack enzyme activity. Instead, these proteins form complexes with voltage-gated K(+) channels in Kv4 family to control their gating and other properties. Here, we find that the fly DPP10 ortholog acts as an ancillary subunit of Kv4 channels and digests peptides. Similarly to mammalian DPP10, the fly ortholog tightly binds to rat Kv4.3 protein. The association causes negative shifts in voltage dependence of channel activation and steady state inactivation. It also results in faster inactivation and recovery from inactivation. In addition to its channel regulatory role, fly DPP10 exhibits significant dipeptidyl peptidase activity with Gly-Pro-MCA (glycyl-L-proline 4-methylcoumaryl-7-amide) as a substrate. Heterologously expressed Flag-tagged fly DPP10 and human DPP4 show similar Km values towards this substrate. However, fly DPP10 exhibits approximately a 6-times-lower relative kcat value normalized with anti-Flag immunoreactivity than human DPP4. These results demonstrate that fly DPP10 is a dual functional protein, controlling Kv4 channel gating and removing bioactive peptides.
Collapse
Affiliation(s)
- Yohei Shiina
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Tomohiro Muto
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Zhili Zhang
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Ahmad Baihaqie
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Takamasa Yoshizawa
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Hye-In J Lee
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Eulsoon Park
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Shinya Tsukiji
- Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-855, Japan.,Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-855, Japan
| | - Koichi Takimoto
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
20
|
Janssens V, Zwaenepoel K, Rossé C, Petit MMR, Goris J, Parker PJ. PP2A binds to the LIM domains of lipoma-preferred partner through its PR130/B″ subunit to regulate cell adhesion and migration. J Cell Sci 2016; 129:1605-18. [PMID: 26945059 PMCID: PMC5333791 DOI: 10.1242/jcs.175778] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 02/18/2016] [Indexed: 01/23/2023] Open
Abstract
Here, we identify the LIM protein lipoma-preferred partner (LPP) as a binding partner of a specific protein phosphatase 2A (PP2A) heterotrimer that is characterised by the regulatory PR130/B″α1 subunit (encoded by PPP2R3A). The PR130 subunit interacts with the LIM domains of LPP through a conserved Zn²⁺-finger-like motif in the differentially spliced N-terminus of PR130. Isolated LPP-associated PP2A complexes are catalytically active. PR130 colocalises with LPP at multiple locations within cells, including focal contacts, but is specifically excluded from mature focal adhesions, where LPP is still present. An LPP-PR130 fusion protein only localises to focal adhesions upon deletion of the domain of PR130 that binds to the PP2A catalytic subunit (PP2A/C), suggesting that PR130-LPP complex formation is dynamic and that permanent recruitment of PP2A activity might be unfavourable for focal adhesion maturation. Accordingly, siRNA-mediated knockdown of PR130 increases adhesion of HT1080 fibrosarcoma cells onto collagen I and decreases their migration in scratch wound and Transwell assays. Complex formation with LPP is mandatory for these PR130-PP2A functions, as neither phenotype can be rescued by re-expression of a PR130 mutant that no longer binds to LPP. Our data highlight the importance of specific, locally recruited PP2A complexes in cell adhesion and migration dynamics.
Collapse
Affiliation(s)
- Veerle Janssens
- Francis Crick Institute, Protein Phosphorylation Laboratory, 44 Lincoln's Inn Fields, London WC2A 3PX, UK Laboratory of Protein Phosphorylation and Proteomics, Dept. of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 PO-box 901, Leuven B-3000, Belgium
| | - Karen Zwaenepoel
- Laboratory of Protein Phosphorylation and Proteomics, Dept. of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 PO-box 901, Leuven B-3000, Belgium
| | - Carine Rossé
- Francis Crick Institute, Protein Phosphorylation Laboratory, 44 Lincoln's Inn Fields, London WC2A 3PX, UK Research Centre, Institut Curie, Paris 75005, France
| | - Marleen M R Petit
- Molecular Oncology Laboratory, Dept. of Human Genetics, KU Leuven, Herestraat 49 PO-box 602, Leuven B-3000, Belgium
| | - Jozef Goris
- Laboratory of Protein Phosphorylation and Proteomics, Dept. of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 PO-box 901, Leuven B-3000, Belgium
| | - Peter J Parker
- Francis Crick Institute, Protein Phosphorylation Laboratory, 44 Lincoln's Inn Fields, London WC2A 3PX, UK Division of Cancer Studies King's College London, Guy's Hospital Campus, Thomas Street, London SE1 9RT, UK
| |
Collapse
|
21
|
Zhao Y, Wei C, Wu Y, Ma P, Ding S, Yuan J, Shen D, Yang X. Formaldehyde-induced paxillin-tyrosine phosphorylation and paxillin and P53 downexpression in Hela cells. Toxicol Mech Methods 2015; 26:75-81. [PMID: 26400731 DOI: 10.3109/15376516.2015.1082001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Formaldehyde (FA) is an environmental pollutant and an endogenous product believed to be involved in tumorigenesis. However, the underlying mechanism of observed FA effects has not been clearly defined. Paxillin is a focal adhesion protein that may play an important role in several signaling pathways. Many paxillin-interacting proteins are involved in the regulation of actin cytoskeleton organization, which is necessary for cell motility events associated with diverse biological responses, such as embryonic development, wound repair and tumor metastasis. P53 is important in multicellular organisms, where it regulates the cell cycle and thus functions as a tumor suppressor that is involved in preventing cancer. In this study, we investigated the effects of FA on paxillin-tyrosine phosphorylation and P53 expression in Hela cells by Western blot and immunofluorescence. Western blot analysis revealed that nonlethal concentrations of FA (0.5, 1.0 and 2.0 mM, with the exposure time for 0.5, 1.0 and 2.0 h, respectively) had downregulated paxillin and wild-type p53 genes expression while upregulated paxillin-tyrosine phosphorylation significantly. At the same time, phosphotyrosine at the focal adhesion sites detected by immunofluorescence assay obviously increased in Hela cells incubated with 2.0 mM FA for 2 h. The results suggested that paxillin and p53 genes expression may be involved in FA-related adverse effects and the mechanism may be involved in paxillin-tyrosine phosphorylation.
Collapse
Affiliation(s)
- Yun Zhao
- a Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University , Wuhan , China
| | - Chenxi Wei
- b Key Laboratory of Ecological Safety Monitoring and Evaluation, College of Life Sciences, Hunan Normal University , Changsha , China , and
| | - Yang Wu
- c College of Basic Medical Sciences, Hubei University of Science and Technology , Xianning , China
| | - Ping Ma
- c College of Basic Medical Sciences, Hubei University of Science and Technology , Xianning , China
| | - Shumao Ding
- a Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University , Wuhan , China
| | - Junlin Yuan
- a Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University , Wuhan , China
| | - Dingwen Shen
- c College of Basic Medical Sciences, Hubei University of Science and Technology , Xianning , China
| | - Xu Yang
- a Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University , Wuhan , China
| |
Collapse
|
22
|
Kuriyama S, Yoshida M, Yano S, Aiba N, Kohno T, Minamiya Y, Goto A, Tanaka M. LPP inhibits collective cell migration during lung cancer dissemination. Oncogene 2015; 35:952-64. [DOI: 10.1038/onc.2015.155] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 03/13/2015] [Accepted: 03/20/2015] [Indexed: 12/13/2022]
|
23
|
Luo S, Schaefer AM, Dour S, Nonet ML. The conserved LIM domain-containing focal adhesion protein ZYX-1 regulates synapse maintenance in Caenorhabditis elegans. Development 2014; 141:3922-33. [PMID: 25252943 DOI: 10.1242/dev.108217] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We describe the identification of zyxin as a regulator of synapse maintenance in mechanosensory neurons in C. elegans. zyx-1 mutants lacked PLM mechanosensory synapses as adult animals. However, most PLM synapses initially formed during development but were subsequently lost as the animals developed. Vertebrate zyxin regulates cytoskeletal responses to mechanical stress in culture. Our work provides in vivo evidence in support of such a role for zyxin. In particular, zyx-1 mutant synaptogenesis phenotypes were suppressed by disrupting locomotion of the mutant animals, suggesting that zyx-1 protects mechanosensory synapses from locomotion-induced forces. In cultured cells, zyxin is recruited to focal adhesions and stress fibers via C-terminal LIM domains and modulates cytoskeletal organization via the N-terminal domain. The synapse-stabilizing activity was mediated by a short isoform of ZYX-1 containing only the LIM domains. Consistent with this notion, PLM synaptogenesis was independent of α-actinin and ENA-VASP, both of which bind to the N-terminal domain of zyxin. Our results demonstrate that the LIM domain moiety of zyxin functions autonomously to mediate responses to mechanical stress and provide in vivo evidence for a role of zyxin in neuronal development.
Collapse
Affiliation(s)
- Shuo Luo
- Department of Anatomy and Neurobiology, Washington University Medical School, 660 S Euclid Ave, St Louis, MO 63110, USA
| | - Anneliese M Schaefer
- Department of Anatomy and Neurobiology, Washington University Medical School, 660 S Euclid Ave, St Louis, MO 63110, USA Department of Neurology, Washington University Medical School, 660 S Euclid Ave, St Louis, MO 63110, USA
| | - Scott Dour
- Department of Anatomy and Neurobiology, Washington University Medical School, 660 S Euclid Ave, St Louis, MO 63110, USA
| | - Michael L Nonet
- Department of Anatomy and Neurobiology, Washington University Medical School, 660 S Euclid Ave, St Louis, MO 63110, USA
| |
Collapse
|
24
|
Extensive nonmuscle expression and epithelial apicobasal localization of the Drosophila ALP/Enigma family protein, Zasp52. Gene Expr Patterns 2014; 15:67-79. [DOI: 10.1016/j.gep.2014.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/05/2014] [Accepted: 05/08/2014] [Indexed: 01/31/2023]
|
25
|
Almeida R, Ricaño-Ponce I, Kumar V, Deelen P, Szperl A, Trynka G, Gutierrez-Achury J, Kanterakis A, Westra HJ, Franke L, Swertz MA, Platteel M, Bilbao JR, Barisani D, Greco L, Mearin L, Wolters VM, Mulder C, Mazzilli MC, Sood A, Cukrowska B, Núñez C, Pratesi R, Withoff S, Wijmenga C. Fine mapping of the celiac disease-associated LPP locus reveals a potential functional variant. Hum Mol Genet 2014; 23:2481-9. [PMID: 24334606 PMCID: PMC3976328 DOI: 10.1093/hmg/ddt619] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/24/2013] [Accepted: 12/06/2013] [Indexed: 12/15/2022] Open
Abstract
Using the Immunochip for genotyping, we identified 39 non-human leukocyte antigen (non-HLA) loci associated to celiac disease (CeD), an immune-mediated disease with a worldwide frequency of ∼1%. The most significant non-HLA signal mapped to the intronic region of 70 kb in the LPP gene. Our aim was to fine map and identify possible functional variants in the LPP locus. We performed a meta-analysis in a cohort of 25 169 individuals from six different populations previously genotyped using Immunochip. Imputation using data from the Genome of the Netherlands and 1000 Genomes projects, followed by meta-analysis, confirmed the strong association signal on the LPP locus (rs2030519, P = 1.79 × 10(-49)), without any novel associations. The conditional analysis on this top SNP-indicated association to a single common haplotype. By performing haplotype analyses in each population separately, as well as in a combined group of the four populations that reach the significant threshold after correction (P < 0.008), we narrowed down the CeD-associated region from 70 to 2.8 kb (P = 1.35 × 10(-44)). By intersecting regulatory data from the ENCODE project, we found a functional SNP, rs4686484 (P = 3.12 × 10(-49)), that maps to several B-cell enhancer elements and a highly conserved region. This SNP was also predicted to change the binding motif of the transcription factors IRF4, IRF11, Nkx2.7 and Nkx2.9, suggesting its role in transcriptional regulation. We later found significantly low levels of LPP mRNA in CeD biopsies compared with controls, thus our results suggest that rs4686484 is the functional variant in this locus, while LPP expression is decreased in CeD.
Collapse
Affiliation(s)
- Rodrigo Almeida
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
- Graduate Program in Health Sciences, University of Brasilia School of Health Sciences, Brasilia, Brazil
| | - Isis Ricaño-Ponce
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Vinod Kumar
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Patrick Deelen
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Agata Szperl
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Gosia Trynka
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Javier Gutierrez-Achury
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Alexandros Kanterakis
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Harm-Jan Westra
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Morris A. Swertz
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Mathieu Platteel
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Jose Ramon Bilbao
- Immunogenetics Research Laboratory, Hospital Universitario de Cruces, Barakaldo, Bizkaia 48903, Spain
| | - Donatella Barisani
- Department of Experimental Medicine, Faculty of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Luigi Greco
- European Laboratory for Food Induced Disease, University of Naples Federico II, Naples, Italy
| | - Luisa Mearin
- Department of Pediatric Gastroenterology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Victorien M. Wolters
- Department of Pediatric Gastroenterology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Chris Mulder
- Department of Gastroenterology, VU Medical Center, Amsterdam, The Netherlands
| | | | - Ajit Sood
- Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Bozena Cukrowska
- Department of Pathology, Children's Memorial Health Institute, Warsaw, Poland
| | - Concepción Núñez
- Depatment of Immunology, H. Clínico S. Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Riccardo Pratesi
- Graduate Program in Health Sciences, University of Brasilia School of Health Sciences, Brasilia, Brazil
| | - Sebo Withoff
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| |
Collapse
|
26
|
Nanayakkara M, Kosova R, Lania G, Sarno M, Gaito A, Galatola M, Greco L, Cuomo M, Troncone R, Auricchio S, Auricchio R, Barone MV. A celiac cellular phenotype, with altered LPP sub-cellular distribution, is inducible in controls by the toxic gliadin peptide P31-43. PLoS One 2013; 8:e79763. [PMID: 24278174 PMCID: PMC3838353 DOI: 10.1371/journal.pone.0079763] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/27/2013] [Indexed: 12/22/2022] Open
Abstract
Celiac disease (CD) is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Undigested gliadin peptides P31-43 and P57-68 induce innate and adaptive T cell-mediated immune responses, respectively. Alterations in the cell shape and actin cytoskeleton are present in celiac enterocytes, and gliadin peptides induce actin rearrangements in both the CD mucosa and cell lines. Cell shape is maintained by the actin cytoskeleton and focal adhesions, sites of membrane attachment to the extracellular matrix. The locus of the human Lipoma Preferred Partner (LPP) gene was identified as strongly associated with CD using genome-wide association studies (GWAS). The LPP protein plays an important role in focal adhesion architecture and acts as a transcription factor in the nucleus. In this study, we examined the hypothesis that a constitutive alteration of the cell shape and the cytoskeleton, involving LPP, occurs in a cell compartment far from the main inflammation site in CD fibroblasts from skin explants. We analyzed the cell shape, actin organization, focal adhesion number, focal adhesion proteins, LPP sub-cellular distribution and adhesion to fibronectin of fibroblasts obtained from CD patients on a Gluten-Free Diet (GFD) and controls, without and with treatment with A-gliadin peptide P31-43. We observed a “CD cellular phenotype” in these fibroblasts, characterized by an altered cell shape and actin organization, increased number of focal adhesions, and altered intracellular LPP protein distribution. The treatment of controls fibroblasts with gliadin peptide P31-43 mimics the CD cellular phenotype regarding the cell shape, adhesion capacity, focal adhesion number and LPP sub-cellular distribution, suggesting a close association between these alterations and CD pathogenesis.
Collapse
Affiliation(s)
- Merlin Nanayakkara
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Roberta Kosova
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Giuliana Lania
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Marco Sarno
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Alessandra Gaito
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Martina Galatola
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Luigi Greco
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Marialaura Cuomo
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Riccardo Troncone
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Salvatore Auricchio
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Renata Auricchio
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Maria Vittoria Barone
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
- * E-mail:
| |
Collapse
|
27
|
Schiller HB, Fässler R. Mechanosensitivity and compositional dynamics of cell-matrix adhesions. EMBO Rep 2013; 14:509-19. [PMID: 23681438 DOI: 10.1038/embor.2013.49] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/21/2013] [Indexed: 12/27/2022] Open
Abstract
Cells perceive information about the biochemical and biophysical properties of their tissue microenvironment through integrin-mediated cell-matrix adhesions, which connect the cytoskeleton with the extracellular matrix and thereby allow cohesion and long-range mechanical connections within tissues. The formation of cell-matrix adhesions and integrin signalling involves the dynamic recruitment and assembly of an inventory of proteins, collectively termed the 'adhesome', at the adhesive site. The recruitment of some adhesome proteins, most notably the Lin11-, Isl1- and Mec3-domain-containing proteins, depends on mechanical tension generated by myosin II-mediated contractile forces exerted on cell-matrix adhesions. When exposed to force, mechanosensitive adhesome proteins can change their conformation or expose cryptic-binding sites leading to the recruitment of proteins, rearrangement of the cytoskeleton, reinforcement of the adhesive site and signal transduction. Biophysical methods and proteomics revealed force ranges within the adhesome and cytoskeleton, and also force-dependent changes in adhesome composition. In this review, we provide an overview of the compositional dynamics of cell-matrix adhesions, discuss the most prevalent functional domains in adhesome proteins and review literature and concepts about mechanosensing mechanisms that operate at the adhesion site.
Collapse
Affiliation(s)
- Herbert B Schiller
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | |
Collapse
|
28
|
Hooper CL, Paudyal A, Dash PR, Boateng SY. Modulation of stretch-induced myocyte remodeling and gene expression by nitric oxide: a novel role for lipoma preferred partner in myofibrillogenesis. Am J Physiol Heart Circ Physiol 2013; 304:H1302-13. [PMID: 23504181 DOI: 10.1152/ajpheart.00004.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prolonged hemodynamic load as a result of hypertension eventually leads to maladaptive cardiac adaptation and heart failure. The signaling pathways that underlie these changes are still poorly understood. The adaptive response to mechanical load is mediated by mechanosensors that convert the mechanical stimuli into a biological response. We examined the effect of cyclic mechanical stretch on myocyte adaptation using neonatal rat ventricular myocytes with 10% (adaptive) or 20% (maladaptive) maximum strain at 1 Hz for 48 h to mimic in vivo mechanical stress. Cells were also treated with and without nitro-L-arginine methyl ester (L-NAME), a general nitric oxide synthase (NOS) inhibitor to suppress NO production. Maladaptive 20% mechanical stretch led to a significant loss of intact sarcomeres that were rescued by L-NAME (P < 0.05; n ≥ 5 cultures). We hypothesized that the mechanism was through NO-induced alteration of myocyte gene expression. L-NAME upregulated the mechanosensing proteins muscle LIM protein (MLP; by 100%; P < 0.05; n = 5 cultures) and lipoma preferred partner (LPP), a novel cardiac protein (by 80%; P < 0.05; n = 4 cultures). L-NAME also significantly altered the subcellular localization of LPP and MLP in a manner that favored growth and adaptation. These findings suggest that NO participates in stretch-mediated adaptation. The use of isoform selective NOS inhibitors indicated a complex interaction between inducible NOS and neuronal NOS isoforms regulate gene expression. LPP knockdown by small intefering RNA led to formation of α-actinin aggregates and Z bodies showing that myofibrillogenesis was impaired. There was an upregulation of E3 ubiquitin ligase (MUL1) by 75% (P < 0.05; n = 5 cultures). This indicates that NO contributes to stretch-mediated adaptation via the upregulation of proteins associated with mechansensing and myofibrillogenesis, thereby presenting potential therapeutic targets during the progression of heart failure.
Collapse
Affiliation(s)
- Charlotte L Hooper
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| | | | | | | |
Collapse
|
29
|
Ngan E, Northey JJ, Brown CM, Ursini-Siegel J, Siegel PM. A complex containing LPP and α-actinin mediates TGFβ-induced migration and invasion of ErbB2-expressing breast cancer cells. J Cell Sci 2013; 126:1981-91. [PMID: 23447672 DOI: 10.1242/jcs.118315] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Transforming growth factor β (TGFβ) is a potent modifier of the malignant phenotype in ErbB2-expressing breast cancers. We demonstrate that epithelial-derived breast cancer cells, which undergo a TGFβ-induced epithelial-to-mesenchymal transition (EMT), engage signaling molecules that normally facilitate cellular migration and invasion of mesenchymal cells. We identify lipoma preferred partner (LPP) as an indispensable regulator of TGFβ-induced migration and invasion of ErbB2-expressing breast cancer cells. We show that LPP re-localizes to focal adhesion complexes upon TGFβ stimulation and is a critical determinant in TGFβ-mediated focal adhesion turnover. Finally, we have determined that the interaction between LPP and α-actinin, an actin cross-linking protein, is necessary for TGFβ-induced migration and invasion of ErbB2-expressing breast cancer cells. Thus, our data reveal that LPP, which is normally operative in cells of mesenchymal origin, can be co-opted by breast cancer cells during an EMT to promote their migration and invasion.
Collapse
Affiliation(s)
- Elaine Ngan
- Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada
| | | | | | | | | |
Collapse
|
30
|
Chou SJ, O'Leary DDM. Role for Lhx2 in corticogenesis through regulation of progenitor differentiation. Mol Cell Neurosci 2013; 56:1-9. [PMID: 23454273 DOI: 10.1016/j.mcn.2013.02.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 02/19/2013] [Indexed: 01/04/2023] Open
Abstract
The neocortex represents the brain region that has undergone a major increase in its relative size during the course of mammalian evolution. The larger cortex results from a corresponding increase in progenitor cell number. The progenitors giving rise to neocortex are located in the ventricular zone of the dorsal telencephalon and highly express Lhx2, a LIM-homeodomain transcription factor. The neocortex fails to form in the Lhx2 constitutive knockout, indicating a role for Lhx2 in corticogenesis, but mid-embryonic lethality of the Lhx2 knockout requires the use of conditional strategies for further studies. Therefore, to explore Lhx2 function in neocortical progenitors, we generated mice with Lhx2 conditionally deleted from cortical progenitors at the onset of neurogenesis. We find that Lhx2 is critical for maintaining the proliferative state of neocortical progenitors during corticogenesis. In the conditional knockouts, the neocortex is formed but is significantly smaller than wild type. We find that deletion of Lhx2 leads to significantly decreased numbers of cortical progenitors and premature neuronal differentiation. A likely mechanism is indicated by our findings that Lhx2 is required for the expression of Hes1 in cortical progenitors, a key effector in the Notch signaling pathway that maintains the proliferative progenitor state. We conclude that Lhx2 regulates the balance between proliferation and differentiation in cortical progenitors and through this mechanism Lhx2 controls cortical size.
Collapse
Affiliation(s)
- Shen-Ju Chou
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| | | |
Collapse
|
31
|
Colas E, Muinelo-Romay L, Alonso-Alconada L, Llaurado M, Monge M, Barbazan J, Gonzalez M, Schoumacher M, Pedrola N, Ertekin T, Devis L, Ruiz A, Castellvi J, Doll A, Gil-Moreno A, Vazquez-Levin M, Lapyckyj L, Lopez-Lopez R, Robine S, Friederich E, Castro M, Reventos J, Vignjevic D, Abal M. ETV5 cooperates with LPP as a sensor of extracellular signals and promotes EMT in endometrial carcinomas. Oncogene 2012; 31:4778-88. [PMID: 22266854 DOI: 10.1038/onc.2011.632] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Endometrial carcinoma (EC) is the most frequent among infiltrating tumors of the female genital tract, with myometrial invasion representing an increase in the rate of recurrences and a decrease in survival. We have previously described ETV5 transcription factor associated with myometrial infiltration in human ECs. In this work, we further investigated ETV5 orchestrating downstream effects to confer the tumor the invasive capabilities needed to disseminate in the early stages of EC dissemination. Molecular profiling evidenced ETV5 having a direct role on epithelial-to-mesenchymal transition (EMT). In particular, ETV5 modulated Zeb1 expression and E-Cadherin repression leading to a complete reorganization of cell-cell and cell-substrate contacts. ETV5-promoted EMT resulted in the acquisition of migratory and invasive capabilities in endometrial cell lines. Furthermore, we identified the lipoma-preferred partner protein as a regulatory partner of ETV5, acting as a sensor for extracellular signals promoting tumor invasion. All together, we propose ETV5-transcriptional regulation of the EMT process through a crosstalk with the tumor surrounding microenvironment, as a principal event initiating EC invasion.
Collapse
Affiliation(s)
- E Colas
- Biomedical Research Unit, Research Institute Vall d'Hebron University Hospital, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cheerathodi M, Ballif BA. Identification of CrkL-SH3 binding proteins from embryonic murine brain: implications for Reelin signaling during brain development. J Proteome Res 2011; 10:4453-62. [PMID: 21879738 DOI: 10.1021/pr200229a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Crk and Crk-like (CrkL) adaptor proteins play important roles in numerous signaling pathways, bridging tyrosine kinase substrates to downstream signaling effectors by virtue of their phosphotyrosine-binding SH2 domains and their effector-binding SH3 domains. Critical to understanding the diverse roles of Crk/CrkL is the identification of tissue- and signal-specific tyrosine phosphorylated substrates to which they are recruited and the tissue-specific effector proteins they chaperone into signaling complexes. Crk and CrkL are known biochemically and genetically to be essential mediators of Reelin/Disabled-1 (Dab1) signaling, which governs proper mammalian brain development. Multimeric Reelin clusters its receptors as well as the receptor-bound intracellular scaffolding protein Dab1. Clustering induces Fyn/Src-dependent Dab1 tyrosine phosphorylation, which recruits Crk/CrkL and SH3-bound effectors. Previously, 21 Crk/CrkL-SH3 binding proteins were identified from diverse cell types. We present here the proteomic identification of 101 CrkL-SH3 binding proteins from embryonic murine brain. The identified proteins are enriched in the Crk/CrkL-SH3 binding motif and signaling activities regulating cell adhesion and motility. These results suggest Reelin-induced Dab1 tyrosine phosphorylation may generate a multifaceted signaling scaffold containing a rich array of Crk/CrkL-SH3 binding effectors and may explain a growing diversity of cellular activities suggested to be influenced by Reelin/Dab1 signaling.
Collapse
Affiliation(s)
- Mujeeburahim Cheerathodi
- Department of Biology, University of Vermont , 120A Marsh Life Science Building, 109 Carrigan Drive, Burlington, Vermont 05405, United States
| | | |
Collapse
|
33
|
Abou-Zeid N, Pandjaitan R, Sengmanivong L, David V, Le Pavec G, Salamero J, Zahraoui A. MICAL-like1 mediates epidermal growth factor receptor endocytosis. Mol Biol Cell 2011; 22:3431-41. [PMID: 21795389 PMCID: PMC3172267 DOI: 10.1091/mbc.e11-01-0030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 07/08/2011] [Accepted: 07/18/2011] [Indexed: 12/20/2022] Open
Abstract
Small GTPase Rabs are required for membrane protein sorting/delivery to precise membrane domains. Rab13 regulates epithelial tight junction assembly and polarized membrane transport. Here we report that Molecule Interacting with CasL (MICAL)-like1 (MICAL-L1) interacts with GTP-Rab13 and shares a similar domain organization with MICAL. MICAL-L1 has a calponin homology (CH), LIM, proline rich and coiled-coil domains. It is associated with late endosomes. Time-lapse video microscopy shows that green fluorescent protein-Rab7 and mcherry-MICAL-L1 are present within vesicles that move rapidly in the cytoplasm. Depletion of MICAL-L1 by short hairpin RNA does not alter the distribution of a late endosome/lysosome-associated protein but affects the trafficking of epidermal growth factor receptor (EGFR). Overexpression of MICAL-L1 leads to the accumulation of EGFR in the late endosomal compartment. In contrast, knocking down MICAL-L1 results in the distribution of internalized EGFR in vesicles spread throughout the cytoplasm and promotes its degradation. Our data suggest that the N-terminal CH domain associates with the C-terminal Rab13 binding domain (RBD) of MICAL-L1. The binding of Rab13 to RBD disrupts the CH/RBD interaction, and may induce a conformational change in MICAL-L1, promoting its activation. Our results provide novel insights into the MICAL-L1/Rab protein complex that can regulate EGFR trafficking at late endocytic pathways.
Collapse
Affiliation(s)
- Nancy Abou-Zeid
- Laboratory of Membrane Trafficking, DSV/iBiTec-S-URA2096 CNRS, CEA Saclay, 91191 Gif/Yvette, France
| | - Rudy Pandjaitan
- Laboratory of Morphogenesis and Cell Signalling, UMR144 CNRS-Institut Curie Section de Recherche, 75005 Paris, France
| | - Lucie Sengmanivong
- Nikon Imaging Centre, UMR144 CNRS-Institut Curie Section de Recherche, 75005 Paris, France
- Cell and Tissue Imaging Facility (IBiSA), UMR144 CNRS-Institut Curie Section de Recherche, 75005 Paris, France
| | - Violaine David
- Laboratory of Membrane Trafficking, DSV/iBiTec-S-URA2096 CNRS, CEA Saclay, 91191 Gif/Yvette, France
| | - Gwenaelle Le Pavec
- Laboratory of Membrane Trafficking, DSV/iBiTec-S-URA2096 CNRS, CEA Saclay, 91191 Gif/Yvette, France
| | - Jean Salamero
- Nikon Imaging Centre, UMR144 CNRS-Institut Curie Section de Recherche, 75005 Paris, France
- Cell and Tissue Imaging Facility (IBiSA), UMR144 CNRS-Institut Curie Section de Recherche, 75005 Paris, France
| | - Ahmed Zahraoui
- Laboratory of Membrane Trafficking, DSV/iBiTec-S-URA2096 CNRS, CEA Saclay, 91191 Gif/Yvette, France
- Laboratory of Morphogenesis and Cell Signalling, UMR144 CNRS-Institut Curie Section de Recherche, 75005 Paris, France
| |
Collapse
|
34
|
Cell Adhesion and Transcriptional Activity - Defining the Role of the Novel Protooncogene LPP. Transl Oncol 2011; 2:107-16. [PMID: 19701494 DOI: 10.1593/tlo.09112] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 02/20/2009] [Accepted: 02/25/2009] [Indexed: 12/13/2022] Open
Abstract
Integrating signals from the extracellular matrix through the cell surface into the nucleus is an essential feature of metazoan life. To date, many signal transducers known as shuttle proteins have been identified to act as both a cytoskeletal and a signaling protein. Among them, the most prominent representatives are zyxin and lipoma preferred (translocation) partner (LPP). These proteins belong to the LIM domain protein family and are associated with cell migration, proliferation, and transcription. LPP was first identified in benign human lipomas and was subsequently found to be overexpressed in human malignancies such as lung carcinoma, soft tissue sarcoma, and leukemia. This review portrays LPP in the context of human neoplasia based on a study of the literature to define its important role as a novel protooncogene in carcinogenesis.
Collapse
|
35
|
Quantitative proteomics of the integrin adhesome show a myosin II-dependent recruitment of LIM domain proteins. EMBO Rep 2011; 12:259-66. [PMID: 21311561 DOI: 10.1038/embor.2011.5] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 12/20/2010] [Accepted: 01/12/2011] [Indexed: 12/21/2022] Open
Abstract
A characteristic of integrins is their ability to transfer chemical and mechanical signals across the plasma membrane. Force generated by myosin II makes cells able to sense substrate stiffness and induce maturation of nascent adhesions into focal adhesions. In this paper, we present a comprehensive proteomic analysis of nascent and mature adhesions. The purification of integrin adhesion complexes combined with quantitative mass spectrometry enabled the identification and quantification of known and new adhesion-associated proteins. Furthermore, blocking adhesion maturation with the myosin II inhibitor blebbistatin markedly impaired the recruitment of LIM domain proteins to integrin adhesion sites. This suggests a common recruitment mechanism for a whole class of adhesion-associated proteins, involving myosin II and the zinc-finger-type LIM domain.
Collapse
|
36
|
Nuclear localisation of LASP-1 correlates with poor long-term survival in female breast cancer. Br J Cancer 2010; 102:1645-53. [PMID: 20461080 PMCID: PMC2883150 DOI: 10.1038/sj.bjc.6605685] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND LIM and SH3 protein 1 (LASP-1) is a nucleo-cytoplasmatic signalling protein involved in cell proliferation and migration and is upregulated in breast cancer in vitro studies have shown that LASP-1 might be regulated by prostate-derived ETS factor (PDEF), p53 and/or LASP1 gene amplification. This current study analysed the prognostic significance of LASP-1 on overall survival (OS) in 177 breast cancer patients and addressed the suggested mechanisms of LASP-1-regulation. METHODS Nucleo-cytoplasmatic LASP-1-positivity of breast carcinoma samples was correlated with long-term survival, clinicopathological parameters, Ki67-positivity and PDEF expression. Rate of LASP1 amplification was determined in micro-dissected primary breast cancer cells using quantitative RT-PCR. Cell-phase dependency of nuclear LASP-1-localisation was studied in synchronised cells. In addition, LASP-1, PDEF and p53 expression was compared in cell lines of different tumour entities to define principles for LASP-1-regulation. RESULTS We showed that LASP-1 overexpression is not due to LASP1 gene amplification. Moreover, no correlation between p53-mutations or PDEF-expression and LASP-1-status was observed. However, nuclear LASP-1-localisation in breast carcinomas is increased during proliferation with peak in G2/M-phase and correlated significantly with Ki67-positivity and poor OS. CONCLUSION Our results provide evidence that nuclear LASP-1-positivity may serve as a negative prognostic indicator for long-term survival of breast cancer patients.
Collapse
|
37
|
Coenen MJH, Trynka G, Heskamp S, Franke B, van Diemen CC, Smolonska J, van Leeuwen M, Brouwer E, Boezen MH, Postma DS, Platteel M, Zanen P, Lammers JWWJ, Groen HJM, Mali WPTM, Mulder CJ, Tack GJ, Verbeek WHM, Wolters VM, Houwen RHJ, Mearin ML, van Heel DA, Radstake TRDJ, van Riel PLCM, Wijmenga C, Barrera P, Zhernakova A. Common and different genetic background for rheumatoid arthritis and coeliac disease. Hum Mol Genet 2009; 18:4195-203. [PMID: 19648290 DOI: 10.1093/hmg/ddp365] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent genome-wide association studies (GWAS) have revealed genetic risk factors in autoimmune and inflammatory disorders. Several of the associated genes and underlying pathways are shared by various autoimmune diseases. Rheumatoid arthritis (RA) and coeliac disease (CD) are two autoimmune disorders which have commonalities in their pathogenesis. We aimed to replicate known RA loci in a Dutch RA population, and to investigate whether the effect of known RA and CD risk factors generalize across the two diseases. We selected all loci associated to either RA or CD in a GWAS and confirmed in an independent cohort, with a combined P-value cut-off P < 5 x 10(-6). We genotyped 11 RA and 11 CD loci in 1368 RA patients, 795 CD patients and 1683 Dutch controls. We combined our results in a meta-analysis with UK GWAS on RA (1860 cases; 2938 controls) and CD (767 cases; 1422 controls). In the Dutch RA cohort, the PTPN22 and IL2/IL21 variants showed convincing association (P = 3.4 x 10(-12) and P = 2.8 x 10(-4), respectively). Association of RA with the known CD risk variant in the SH2B3 was also observed, predominantly in the subgroup of rheumatoid factor-positive RA patients (P = 0.0055). In a meta-analysis of Dutch and UK data sets, shared association with six loci (TNFAIP3, IL2/IL21, SH2B3, LPP, MMEL1/TNFRSF14 and PFKFB3/PRKCQ) was observed in both RA and CD cohorts. We confirmed two known loci and identified four novel ones for shared CD-RA genetic risk. Most of the shared loci further emphasize a role for adaptive and innate immunity in these diseases.
Collapse
Affiliation(s)
- Marieke J H Coenen
- Department of Human Genetics, Institute for Genetic and Metabolic Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang H, Chen X, Bollag WB, Bollag RJ, Sheehan DJ, Chew CS. Lasp1 gene disruption is linked to enhanced cell migration and tumor formation. Physiol Genomics 2009; 38:372-85. [PMID: 19531578 DOI: 10.1152/physiolgenomics.00048.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lasp1 is an actin-binding, signaling pathway-regulated phosphoprotein that is overexpressed in several cancers. siRNA knockdown in cell lines retards cell migration, suggesting the possibility that Lasp1 upregulation influences cancer metastasis. Herein, we utilized a recently developed gene knockout model to assess the role of Lasp1 in modulating nontransformed cell functions. Wound healing and tumor initiation progressed more rapidly in Lasp1(-/-) mice compared with Lasp1(+/+) controls. Embryonic fibroblasts (MEFs) derived from Lasp1(-/-) mice also migrated more rapidly in vitro. These MEFs characteristically possessed increased focal adhesion numbers and displayed more rapid attachment compared with wild-type MEFs. Differential microarray analyses revealed alterations in message expression for proteins implicated in cell migration, adhesion, and cytoskeletal organization. Notably, the focal adhesion protein, lipoma preferred partner (LPP), a zyxin family member and putative Lasp1 binding protein, was increased about twofold. Because LPP gene disruption reduces cell migration, we hypothesize that LPP plays a role in enhancing the migratory capacity of Lasp1(-/-) MEFs, perhaps by modifying the subcellular localization of other motility-associated proteins. The striking contrast in the functional effects of loss of Lasp1 in innate cells compared with cell lines reveals distinct differences in mechanisms of motility and attachment in these models.
Collapse
Affiliation(s)
- Han Zhang
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
39
|
Targeted disruption of the mouse Lipoma Preferred Partner gene. Biochem Biophys Res Commun 2008; 379:368-73. [PMID: 19111675 DOI: 10.1016/j.bbrc.2008.12.074] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 12/11/2008] [Indexed: 01/13/2023]
Abstract
LPP (Lipoma Preferred Partner) is a zyxin-related cell adhesion protein that is involved in the regulation of cell migration. We generated mice with a targeted disruption of the Lpp gene and analysed the importance of Lpp for embryonic development and adult functions. Aberrant Mendelian inheritance in heterozygous crosses suggested partial embryonic lethality of Lpp(-/-) females. Fertility of Lpp(-/-) males was proven to be normal, however, females from Lpp(-/-) x Lpp(-/-) crosses produced a strongly reduced number of offspring, probably due to a combination of female embryonic lethality and aberrant pregnancies. Apart from these developmental and reproductive abnormalities, Lpp(-/-) mice that were born reached adulthood without displaying any additional macroscopic defects. On the other hand, Lpp(-/-) mouse embryonic fibroblasts exhibited reduced migration capacity, reduced viability, and reduced expression of some Lpp interaction partners. Finally, we discovered a short nuclear form of Lpp, expressed mainly in testis via an alternative promoter.
Collapse
|
40
|
Petit MM, Lindskog H, Larsson E, Wasteson P, Athley E, Breuer S, Angstenberger M, Hertfelder D, Mattsson E, Nordheim A, Nelander S, Lindahl P. Smooth Muscle Expression of Lipoma Preferred Partner Is Mediated by an Alternative Intronic Promoter That Is Regulated by Serum Response Factor/Myocardin. Circ Res 2008; 103:61-9. [DOI: 10.1161/circresaha.108.177436] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lipoma preferred partner (LPP) was recently recognized as a smooth muscle marker that plays a role in smooth muscle cell migration. In this report, we focus on the transcriptional regulation of the LPP gene. In particular, we investigate whether LPP is directly regulated by serum response factor (SRF). We show that the LPP gene contains 3 evolutionarily conserved CArG boxes and that 1 of these is part of an alternative promoter in intron 2. Quantitative RT-PCR shows that this alternative promoter directs transcription specifically to smooth muscle containing tissues in vivo. By using chromatin immunoprecipitation, we demonstrate that 2 of the CArG boxes, including the promoter-associated CArG box, bind to endogenous SRF in cultured aortic smooth muscle cells. Electrophoretic mobility-shift assays show that the conserved CArG boxes bind SRF in vitro. In reporter experiments, we show that the alternative promoter has transcriptional capacity that is dependent on SRF/myocardin and that the promoter associated CArG box is required for that activity. Finally, we show by quantitative RT-PCR that the alternative promoter is strongly downregulated in SRF-deficient embryonic stem cells and in smooth muscle tissues derived from conditional SRF knockout mice. Collectively, our data demonstrate that expression of LPP in smooth muscle is mediated by an alternative promoter that is regulated by SRF/myocardin.
Collapse
Affiliation(s)
- Marleen M.R. Petit
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Henrik Lindskog
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Erik Larsson
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Per Wasteson
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Elisabeth Athley
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Silke Breuer
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Meike Angstenberger
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - David Hertfelder
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Erney Mattsson
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Alfred Nordheim
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Sven Nelander
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Per Lindahl
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| |
Collapse
|
41
|
Mertins P, Eberl HC, Renkawitz J, Olsen JV, Tremblay ML, Mann M, Ullrich A, Daub H. Investigation of protein-tyrosine phosphatase 1B function by quantitative proteomics. Mol Cell Proteomics 2008; 7:1763-77. [PMID: 18515860 DOI: 10.1074/mcp.m800196-mcp200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Because of their antagonistic catalytic functions, protein-tyrosine phosphatases (PTPs) and protein-tyrosine kinases act together to control phosphotyrosine-mediated signaling processes in mammalian cells. However, unlike for protein-tyrosine kinases, little is known about the cellular substrate specificity of many PTPs because of the lack of appropriate methods for the systematic and detailed analysis of cellular PTP function. Even for the most intensely studied, prototypic family member PTP1B many of its physiological functions cannot be explained by its known substrates. To gain better insights into cellular PTP1B function, we used quantitative MS to monitor alterations in the global tyrosine phosphorylation of PTP1B-deficient mouse embryonic fibroblasts in comparison with their wild-type counterparts. In total, we quantified 124 proteins containing 301 phosphotyrosine sites under basal, epidermal growth factor-, or platelet-derived growth factor-stimulated conditions. A subset of 18 proteins was found to harbor hyperphosphorylated phosphotyrosine sites in knock-out cells and was functionally linked to PTP1B. Among these proteins, regulators of cell motility and adhesion are overrepresented, such as cortactin, lipoma-preferred partner, ZO-1, or p120ctn. In addition, regulators of proliferation like p62DOK or p120RasGAP also showed increased cellular tyrosine phosphorylation. Physical interactions of these proteins with PTP1B were further demonstrated by using phosphatase-inactive substrate-trapping mutants in a parallel MS-based analysis. Our results correlate well with the described phenotype of PTP1B-deficient fibroblasts that is characterized by an increase in motility and reduced cell proliferation. The presented study provides a broad overview about phosphotyrosine signaling processes in mouse fibroblasts and, supported by the identification of various new potential substrate proteins, indicates a central role of PTP1B within cellular signaling networks. Importantly the MS-based strategies described here are entirely generic and can be used to address the poorly understood aspects of cellular PTP function.
Collapse
Affiliation(s)
- Philipp Mertins
- Department of Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Vervenne HBVK, Crombez KRMO, Lambaerts K, Carvalho L, Köppen M, Heisenberg CP, Van de Ven WJM, Petit MMR. Lpp is involved in Wnt/PCP signaling and acts together with Scrib to mediate convergence and extension movements during zebrafish gastrulation. Dev Biol 2008; 320:267-77. [PMID: 18582857 DOI: 10.1016/j.ydbio.2008.05.529] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 05/09/2008] [Accepted: 05/09/2008] [Indexed: 01/03/2023]
Abstract
The zyxin-related LPP protein is localized at focal adhesions and cell-cell contacts and is involved in the regulation of smooth muscle cell migration. A known interaction partner of LPP in human is the tumor suppressor protein SCRIB. Knocking down scrib expression during zebrafish embryonic development results in defects of convergence and extension (C&E) movements, which occur during gastrulation and mediate elongation of the anterior-posterior body axis. Mediolateral cell polarization underlying C&E is regulated by a noncanonical Wnt signaling pathway constituting the vertebrate planar cell polarity (PCP) pathway. Here, we investigated the role of Lpp during early zebrafish development. We show that morpholino knockdown of lpp results in defects of C&E, phenocopying noncanonical Wnt signaling mutants. Time-lapse analysis associates the defective dorsal convergence movements with a reduced ability to migrate along straight paths. In addition, expression of Lpp is significantly reduced in Wnt11 morphants and in embryos overexpressing Wnt11 or a dominant-negative form of Rho kinase 2, which is a downstream effector of Wnt11, suggesting that Lpp expression is dependent on noncanonical Wnt signaling. Finally, we demonstrate that Lpp interacts with the PCP protein Scrib in zebrafish, and that Lpp and Scrib cooperate for the mediation of C&E.
Collapse
Affiliation(s)
- Hilke B V K Vervenne
- Laboratory for Molecular Oncology, Department of Human Genetics, K.U. Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Grunewald TGP, Butt E. The LIM and SH3 domain protein family: structural proteins or signal transducers or both? Mol Cancer 2008; 7:31. [PMID: 18419822 PMCID: PMC2359764 DOI: 10.1186/1476-4598-7-31] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 04/17/2008] [Indexed: 12/24/2022] Open
Abstract
LIM and SH3 Protein 1 (LASP-1) was initially identified from a cDNA library of metastatic axillary lymph nodes (MLN) more than a decade ago. It was found to be overexpressed in human breast and ovarian cancer and became the first member of a newly defined LIM-protein subfamily of the nebulin group characterized by the combined presence of LIM and SH3 domains. LASP2, a novel LASP1-related gene was first identified and characterized in silico. Subsequently it proved to be a splice variant of the Nebulin gene and therefore was also termed LIM/nebulette. LASP-1 and -2 are highly conserved in their LIM, nebulin-like and SH3 domains but differ significantly at their linker regions. Both proteins are ubiquitously expressed and involved in cytoskeletal architecture, especially in the organization of focal adhesions. Here we present the first systematic review to summarize all relevant data concerning their domain organization, expression profiles, regulating factors and function. We compile evidence that both, LASP-1 and LASP-2, are important during early embryo- and fetogenesis and are highly expressed in the central nervous system of the adult. However, only LASP-1 seems to participate significantly in neuronal differentiation and plays an important functional role in migration and proliferation of certain cancer cells while the role of LASP-2 is more structural. The increased expression of LASP-1 in breast tumours correlates with high rates of nodal-metastasis and refers to a possible relevance as a prognostic marker.
Collapse
Affiliation(s)
- Thomas GP Grunewald
- Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Pediatric Oncology Center, Kölner Platz 1, D-80804 Munich, Germany
| | - Elke Butt
- Institute for Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Grombuehlstr. 12, D-97080 Wuerzburg, Germany
| |
Collapse
|
44
|
Genome-wide B1 retrotransposon binds the transcription factors dioxin receptor and Slug and regulates gene expression in vivo. Proc Natl Acad Sci U S A 2008; 105:1632-7. [PMID: 18223155 DOI: 10.1073/pnas.0708366105] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alterations in tissue-specific gene expression greatly affect cell function. Transcription factors (TFs) interact with cis-acting binding sites in noncoding enhancer promoter regions. Transposable elements (TEs) are abundant and similarly represented among mammalian genomes. TEs are important in gene regulation, but their function is not well understood. We have characterized a TE containing functional TF-binding sites for the carcinogen-activated dioxin receptor xenobiotic responsive element (XRE) and the epithelial-mesenchymal transition regulator Slug (Slug site). A Mus promoter database was scanned for XREs to predict coregulation with other TFs. We identified an overrepresented (1,398 genes) B1 retrotransposon containing XRE and Slug sites within 35 bp of each other (designated as B1-X35S). This B1-X35S retrotransposon differed from classic B1s by the presence of the Slug site and by its differential nucleotide conservation outside the X35S region. Phylogenetically, B1-X35S appeared recently in evolution, close to the B1-B subfamily. Comparative gene expression in 61 mouse tissues revealed that B1-X35S-containing genes had lower median expression levels than those with canonical B1 TEs, suggesting a repressive role for X35S. Indeed, X35S was functional and able to bind aryl hydrocarbon (dioxin) receptor (AhR) and Slug and, importantly, to repress cis-reporter genes. Moreover, AhR and Slug were recruited to X35S in vivo and repressed the endogenous expression of X35S-containing genes. Our results demonstrate the existence of a widely present B1 subfamily in the mouse. Because AhR and Slug are relevant in tumor development and differentiation, X35S may represent a genome-wide regulatory mechanism and a tool to modulate gene expression.
Collapse
|
45
|
Huggins CJ, Gill M, Andrulis IL. Identification of rare variants in the hLIMD1 gene in breast cancer. ACTA ACUST UNITED AC 2007; 178:36-41. [PMID: 17889706 DOI: 10.1016/j.cancergencyto.2007.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 06/14/2007] [Indexed: 02/01/2023]
Abstract
The hLIMD1 gene is located at chromosome 3p21 and was identified as a putative tumor suppressor gene using an elimination test assay. Chromosome 3p21 loci are frequently deleted in a number of cancers, including breast. The 3p21.3 locus harbors a number of tumor suppressor candidates, including LIMD1, a member of the ZYXIN family of genes. LIMD1 directly interacts with RB and is thought to play a role in suppressing tumor growth. To investigate whether mutations in the LIMD1 gene could potentially be involved in breast cancer, we used single-stranded conformation polymorphism analysis on DNA from 235 breast cancers and 95 controls. We identified four novel coding region alterations, including two amino acid substitutions at positions 255 and 302. The two remaining novel variants were found at amino acid positions 246 and 647 and encoded silent alterations. The rare Ser255Arg variant was identified in only sporadic breast tumors (2/165 tumors). Some ZYXIN proteins are phosphorylated by serine/threonine kinases, and the Ser255Arg change is located in a region phosphorylated on serine residues. Together, the data suggest that this variant may warrant further characterization.
Collapse
|
46
|
Bai CY, Ohsugi M, Abe Y, Yamamoto T. ZRP-1 controls Rho GTPase-mediated actin reorganization by localizing at cell-matrix and cell-cell adhesions. J Cell Sci 2007; 120:2828-37. [PMID: 17652164 DOI: 10.1242/jcs.03477] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Focal adhesion protein ZRP-1/TRIP6 has been implicated in actin reorganization and cell motility. The role of ZRP-1, however, remained obscure because previously reported data are often conflicting one another. In the present study, we examined roles of ZRP-1 in HeLa cells. ZRP-1 is localized to the cell-cell contact sites as well as to cell-matrix contact sites in HeLa cells. RNA-interference-mediated depletion of ZRP-1 from HeLa cells revealed that ZRP-1 is essential not only for the formation of stress fibers and assembly of mature focal adhesions, but also for the actin reorganization at cell-cell contact sites and for correct cell-cell adhesion and, thus, for collective cell migration. Impairment of focal adhesions and stress fibers caused by ZRP-1 depletion has been associated with reduced tyrosine phosphorylation of FAK. However, maturation of focal adhesions could not be recovered by expression of active FAK. Interestingly, stress fibers in ZRP-1-depleted cells were ameliorated by exogenous expression of RhoA. We also found that total Rac1 activity is elevated in ZRP-1-depleted cells, resulting in abnormal burst of actin polymerization and dynamic membrane protrusions. Taken together, we conclude that that ZRP-1 plays a crucial role in coupling the cell-matrix/cell-cell-contact signals with Rho GTPase-mediated actin remodeling by localizing at cell-matrix and cell-cell contact sites.
Collapse
Affiliation(s)
- Chen-Yu Bai
- Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
47
|
Takizawa N, Smith TC, Nebl T, Crowley JL, Palmieri SJ, Lifshitz LM, Ehrhardt AG, Hoffman LM, Beckerle MC, Luna EJ. Supervillin modulation of focal adhesions involving TRIP6/ZRP-1. J Cell Biol 2006; 174:447-58. [PMID: 16880273 PMCID: PMC2064240 DOI: 10.1083/jcb.200512051] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 06/25/2006] [Indexed: 01/05/2023] Open
Abstract
Cell-substrate contacts, called focal adhesions (FAs), are dynamic in rapidly moving cells. We show that supervillin (SV)--a peripheral membrane protein that binds myosin II and F-actin in such cells--negatively regulates stress fibers, FAs, and cell-substrate adhesion. The major FA regulatory sequence within SV (SV342-571) binds to the LIM domains of two proteins in the zyxin family, thyroid receptor-interacting protein 6 (TRIP6) and lipoma-preferred partner (LPP), but not to zyxin itself. SV and TRIP6 colocalize within large FAs, where TRIP6 may help recruit SV. RNAi-mediated decreases in either protein increase cell adhesion to fibronectin. TRIP6 partially rescues SV effects on stress fibers and FAs, apparently by mislocating SV away from FAs. Thus, SV interactions with TRIP6 at FAs promote loss of FA structure and function. SV and TRIP6 binding partners suggest several specific mechanisms through which the SV-TRIP6 interaction may regulate FA maturation and/or disassembly.
Collapse
Affiliation(s)
- Norio Takizawa
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Guo B, Sallis RE, Greenall A, Petit MMR, Jansen E, Young L, Van de Ven WJM, Sharrocks AD. The LIM domain protein LPP is a coactivator for the ETS domain transcription factor PEA3. Mol Cell Biol 2006; 26:4529-38. [PMID: 16738319 PMCID: PMC1489114 DOI: 10.1128/mcb.01667-05] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
PEA3 is a member of a subfamily of ETS domain transcription factors which is regulated by a number of signaling cascades, including the mitogen-activated protein (MAP) kinase pathways. PEA3 activates gene expression and is thought to play an important role in promoting tumor metastasis and also in neuronal development. Here, we have identified the LIM domain protein LPP as a novel coregulatory binding partner for PEA3. LPP has intrinsic transactivation capacity, forms a complex with PEA3, and is found associated with PEA3-regulated promoters. By manipulating LPP levels, we show that it acts to upregulate the transactivation capacity of PEA3. LPP can also functionally interact in a similar manner with the related family member ER81. Thus, we have uncovered a novel nuclear function for the LIM domain protein LPP as a transcriptional coactivator. As LPP continually shuttles between the cell periphery and the nucleus, it represents a potential novel link between cell surface events and changes in gene expression.
Collapse
Affiliation(s)
- Baoqiang Guo
- Faculty of Life Sciences, University of Manchester, Michael Smith Bldg., Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Matsui Y, Hasegawa T, Kubo T, Goto T, Yukata K, Endo K, Bando Y, Yasui N. Intrapatellar tendon lipoma with chondro-osseous differentiation: detection of HMGA2-LPP fusion gene transcript. J Clin Pathol 2006; 59:434-6. [PMID: 16567472 PMCID: PMC1860369 DOI: 10.1136/jcp.2005.026393] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A 54 year old man developed an unusual lipoma in the patellar tendon, consisting of a fibro-adipose component and a chondro-osseous component. The fibro-adipose component contained mature adipocytes, lipoblasts, and fibroblasts; the chondro-osseous component showed typical endochondral bone formation. Molecular analysis showed that the identical HMGA2-LPP fusion transcript-characteristic of lipoma, parosteal lipoma, and pulmonary chondroid hamartoma-was detectable in the both components.
Collapse
Affiliation(s)
- Y Matsui
- Department of Orthopaedics, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Heitzer MD, DeFranco DB. Mechanism of Action of Hic-5/Androgen Receptor Activator 55, a LIM Domain-Containing Nuclear Receptor Coactivator. Mol Endocrinol 2006; 20:56-64. [PMID: 16141357 DOI: 10.1210/me.2005-0065] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hic-5/androgen receptor (AR) coactivator 55 (ARA55) is a group III LIM domain protein that functions as a nuclear receptor coactivator. In the present study, we examined the mechanism by which Hic-5/ARA55 potentiates glucocorticoid receptor (GR) transactivation in the A1-2 derivative of T47D breast cancer cells. Hic-5/ARA55 is an important component of GR-coactivator complexes in A1-2 cells because ablation of Hic-5/ARA55 expression by RNA interference-mediated silencing reduced GR transactivation. As shown by chromatin immunoprecipitation (ChIP) assays, Hic-5/ARA55 is recruited to glucocorticoid-responsive promoters of the mouse mammary tumor virus, c-fos, and p21 genes in response to glucocorticoid treatment. Results from sequential ChIPs established that Hic-5/ARA55 associates with GR-containing complexes at these promoters. We also used sequential ChIPs to examine Hic-5/ARA55 interactions with other well-characterized nuclear receptor coactivators and detected transcriptional intermediary factor 2, receptor-associated coactivator 3, cAMP response element binding protein-binding protein, and p300 within Hic-5/ARA55 complexes on the mouse mammary tumor virus promoter in hormone-treated cells. Ablation of Hic-5/ARA55 expression resulted in reduction of both transcriptional intermediary factor 2 and p300 recruitment to glucocorticoid-responsive promoters. Hic-5/ARA55 is also associated with the corepressor, nuclear receptor corepressor, on glucocorticoid-responsive promoters in cells not exposed to glucocorticoids. These results suggest that Hic-5/ARA55 is required for optimal GR-mediated gene expression possibly by providing a scaffold that organizes or stabilizes coactivator complexes at some hormone-responsive promoters.
Collapse
Affiliation(s)
- M D Heitzer
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|