1
|
Membrane Sphingomyelin in Host Cells Is Essential for Nucleocapsid Penetration into the Cytoplasm after Hemifusion during Rubella Virus Entry. mBio 2022; 13:e0169822. [PMID: 36346228 PMCID: PMC9765692 DOI: 10.1128/mbio.01698-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The lipid composition of the host cell membrane is one of the key determinants of the entry of enveloped viruses into cells. To elucidate the detailed mechanisms behind the cell entry of rubella virus (RuV), one of the enveloped viruses, we searched for host factors involved in such entry by using CRISPR/Cas9 genome-wide knockout screening, and we found sphingomyelin synthase 1 (SMS1), encoded by the SGMS1 gene, as a candidate. RuV growth was strictly suppressed in SGMS1-knockout cells and was completely recovered by the overexpression of enzymatically active SMS1 and partially recovered by that of SMS2, another member of the SMS family, but not by that of enzymatically inactive SMS1. An entry assay using pseudotyped vesicular stomatitis virus possessing RuV envelope proteins revealed that sphingomyelin generated by SMSs is crucial for at least RuV entry. In SGMS1-knockout cells, lipid mixing between the RuV envelope membrane and the membrane of host cells occurred, but entry of the RuV genome from the viral particles into the cytoplasm was strongly inhibited. This indicates that sphingomyelin produced by SMSs is essential for the formation of membrane pores after hemifusion occurs during RuV entry. IMPORTANCE Infection with rubella virus during pregnancy causes congenital rubella syndrome in infants. Despite its importance in public health, the detailed mechanisms of rubella virus cell entry have only recently become somewhat clearer. The E1 protein of rubella virus is classified as a class II fusion protein based on its structural similarity, but it has the unique feature that its activity is dependent on calcium ion binding in the fusion loops. In this study, we found another unique feature, as cellular sphingomyelin plays a critical role in the penetration of the nucleocapsid into the cytoplasm after hemifusion by rubella virus. This provides important insight into the entry mechanism of rubella virus. This study also presents a model of hemifusion arrest during cell entry by an intact virus, providing a useful tool for analyzing membrane fusion, a biologically important phenomenon.
Collapse
|
2
|
Mangala Prasad V, Blijleven JS, Smit JM, Lee KK. Visualization of conformational changes and membrane remodeling leading to genome delivery by viral class-II fusion machinery. Nat Commun 2022; 13:4772. [PMID: 35970990 PMCID: PMC9378758 DOI: 10.1038/s41467-022-32431-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/31/2022] [Indexed: 11/09/2022] Open
Abstract
Chikungunya virus (CHIKV) is a human pathogen that delivers its genome to the host cell cytoplasm through endocytic low pH-activated membrane fusion mediated by class-II fusion proteins. Though structures of prefusion, icosahedral CHIKV are available, structural characterization of virion interaction with membranes has been limited. Here, we have used cryo-electron tomography to visualize CHIKV's complete membrane fusion pathway, identifying key intermediary glycoprotein conformations coupled to membrane remodeling events. Using sub-tomogram averaging, we elucidate features of the low pH-exposed virion, nucleocapsid and full-length E1-glycoprotein's post-fusion structure. Contrary to class-I fusion systems, CHIKV achieves membrane apposition by protrusion of extended E1-glycoprotein homotrimers into the target membrane. The fusion process also features a large hemifusion diaphragm that transitions to a wide pore for intact nucleocapsid delivery. Our analyses provide comprehensive ultrastructural insights into the class-II virus fusion system function and direct mechanistic characterization of the fundamental process of protein-mediated membrane fusion.
Collapse
Affiliation(s)
- Vidya Mangala Prasad
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA.,Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Jelle S Blijleven
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Jolanda M Smit
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA. .,Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, WA, USA. .,Department of Microbiology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Pattnaik GP, Chakraborty H. Cholesterol: A key player in membrane fusion that modulates the efficacy of fusion inhibitor peptides. VITAMINS AND HORMONES 2021; 117:133-155. [PMID: 34420578 DOI: 10.1016/bs.vh.2021.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The interaction of cholesterol with the neighboring lipids modulates several physical properties of the membrane. Mostly, it affects membrane fluidity, membrane permeability, lateral diffusion of lipids, bilayer thickness, and water penetration into the lipid bilayer. Due to the smaller head group to hydrophobic cross-sectional area of the tail, cholesterol induces intrinsic negative curvature to the membrane. The interaction of cholesterol with sphingolipids forms lipid rafts; generates phase separation in the membrane. The cholesterol-dependent modifications of membrane physical properties modulate viral infections by affecting the fusion between viral and host cell membranes. Cholesterol demonstrates a strong impact on the structure, depth of penetration, conformation, and organization of fusion peptides in membrane milieu. Further, cholesterol has been implicated to modify the fusion inhibitory efficiency of peptide-based membrane fusion inhibitors.
Collapse
Affiliation(s)
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Burla, Odisha, India; Centre of Excellence in Natural Products and Therapeutics, Sambalpur University, Burla, Odisha, India.
| |
Collapse
|
4
|
Ripa I, Andreu S, López-Guerrero JA, Bello-Morales R. Membrane Rafts: Portals for Viral Entry. Front Microbiol 2021; 12:631274. [PMID: 33613502 PMCID: PMC7890030 DOI: 10.3389/fmicb.2021.631274] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/14/2021] [Indexed: 02/02/2023] Open
Abstract
Membrane rafts are dynamic, small (10-200 nm) domains enriched with cholesterol and sphingolipids that compartmentalize cellular processes. Rafts participate in roles essential to the lifecycle of different viral families including virus entry, assembly and/or budding events. Rafts seem to participate in virus attachment and recruitment to the cell surface, as well as the endocytic and non-endocytic mechanisms some viruses use to enter host cells. In this review, we will introduce the specific role of rafts in viral entry and define cellular factors implied in the choice of one entry pathway over the others. Finally, we will summarize the most relevant information about raft participation in the entry process of enveloped and non-enveloped viruses.
Collapse
Affiliation(s)
- Inés Ripa
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Sabina Andreu
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| |
Collapse
|
5
|
Current Understanding of the Role of Cholesterol in the Life Cycle of Alphaviruses. Viruses 2020; 13:v13010035. [PMID: 33383613 PMCID: PMC7823518 DOI: 10.3390/v13010035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/28/2022] Open
Abstract
Enveloped viruses rely on different lipid classes present in cell membranes to accomplish several steps of their life cycle in the host. Particularly for alphaviruses, a medically important group of arboviruses, which are part of the Togaviridae family, cholesterol seems to be a critical lipid exploited during infection, although its relevance may vary depending on which stage of the virus life cycle is under consideration and whether infection takes place in vertebrate or invertebrate hosts. In this review, the role of cholesterol in both early and late events of alphavirus infection and how viral replication may affect cholesterol metabolism are summarized, taking into account studies on Old World and New World alphaviruses in different cell lines. Moreover, the importance of cholesterol for the structural stability of alphavirus particles is also discussed, shedding light on the role played by this lipid when they leave the host cell.
Collapse
|
6
|
O'Neal AJ, Butler LR, Rolandelli A, Gilk SD, Pedra JH. Lipid hijacking: a unifying theme in vector-borne diseases. eLife 2020; 9:61675. [PMID: 33118933 PMCID: PMC7595734 DOI: 10.7554/elife.61675] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Vector-borne illnesses comprise a significant portion of human maladies, representing 17% of global infections. Transmission of vector-borne pathogens to mammals primarily occurs by hematophagous arthropods. It is speculated that blood may provide a unique environment that aids in the replication and pathogenesis of these microbes. Lipids and their derivatives are one component enriched in blood and are essential for microbial survival. For instance, the malarial parasite Plasmodium falciparum and the Lyme disease spirochete Borrelia burgdorferi, among others, have been shown to scavenge and manipulate host lipids for structural support, metabolism, replication, immune evasion, and disease severity. In this Review, we will explore the importance of lipid hijacking for the growth and persistence of these microbes in both mammalian hosts and arthropod vectors.
Collapse
Affiliation(s)
- Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - L Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Stacey D Gilk
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, United States
| | - Joao Hf Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| |
Collapse
|
7
|
Kinnun JJ, Bolmatov D, Lavrentovich MO, Katsaras J. Lateral heterogeneity and domain formation in cellular membranes. Chem Phys Lipids 2020; 232:104976. [PMID: 32946808 PMCID: PMC7491465 DOI: 10.1016/j.chemphyslip.2020.104976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022]
Abstract
As early as the development of the fluid mosaic model for cellular membranes, researchers began observing the telltale signs of lateral heterogeneity. Over the decades this has led to the development of the lipid raft hypothesis and the ensuing controversy that has unfolded, as a result. Here, we review the physical concepts behind domain formation in lipid membranes, both of their structural and dynamic origins. This, then leads into a discussion of coarse-grained, phenomenological approaches that describe the wide range of phases associated with lipid lateral heterogeneity. We use these physical concepts to describe the interaction between raft-lipid species, such as long-chain saturated lipids, sphingomyelin, and cholesterol, and non-raft forming lipids, such as those with short acyl chains or unsaturated fatty acids. While debate has persisted on the biological relevance of lipid domains, recent research, described here, continues to identify biological roles for rafts and new experimental approaches have revealed the existence of lipid domains in living systems. Given the recent progress on both the biological and structural aspects of raft formation, the research area of membrane lateral heterogeneity will not only expand, but will continue to produce exciting results.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
| | - Dima Bolmatov
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| | - Maxim O Lavrentovich
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| | - John Katsaras
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States; Sample Environment Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| |
Collapse
|
8
|
Bukrinsky MI, Mukhamedova N, Sviridov D. Lipid rafts and pathogens: the art of deception and exploitation. J Lipid Res 2020; 61:601-610. [PMID: 31615838 PMCID: PMC7193957 DOI: 10.1194/jlr.tr119000391] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/07/2019] [Indexed: 02/06/2023] Open
Abstract
Lipid rafts, solid regions of the plasma membrane enriched in cholesterol and glycosphingolipids, are essential parts of a cell. Functionally, lipid rafts present a platform that facilitates interaction of cells with the outside world. However, the unique properties of lipid rafts required to fulfill this function at the same time make them susceptible to exploitation by pathogens. Many steps of pathogen interaction with host cells, and sometimes all steps within the entire lifecycle of various pathogens, rely on host lipid rafts. Such steps as binding of pathogens to the host cells, invasion of intracellular parasites into the cell, the intracellular dwelling of parasites, microbial assembly and exit from the host cell, and microbe transfer from one cell to another all involve lipid rafts. Interaction also includes modification of lipid rafts in host cells, inflicted by pathogens from both inside and outside the cell, through contact or remotely, to advance pathogen replication, to utilize cellular resources, and/or to mitigate immune response. Here, we provide a systematic overview of how and why pathogens interact with and exploit host lipid rafts, as well as the consequences of this interaction for the host, locally and systemically, and for the microbe. We also raise the possibility of modulation of lipid rafts as a therapeutic approach against a variety of infectious agents.
Collapse
Affiliation(s)
- Michael I Bukrinsky
- Department of Microbiology, Immunology, and Tropical Medicine,George Washington University School of Medicine and Health Science, Washington, DC 20037
| | | | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne 3004, Australia. mailto:
| |
Collapse
|
9
|
Both Sphingomyelin and Cholesterol in the Host Cell Membrane Are Essential for Rubella Virus Entry. J Virol 2017; 92:JVI.01130-17. [PMID: 29070689 DOI: 10.1128/jvi.01130-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/17/2017] [Indexed: 11/20/2022] Open
Abstract
Rubella virus (RuV) causes a systemic infection, and transplacental fetal infection causes congenital rubella syndrome. In this study, we showed that treatment of cells with sphingomyelinase inhibited RuV infection. Assays using inhibitors of serine palmitoyl transferase and ceramide transport protein demonstrated the contribution of sphingomyelin (SM) to RuV infection. Compelling evidence for direct binding of RuV to lipid membranes at neutral pH was obtained using liposome coflotation assays. The absence of either SM or cholesterol (Chol) abrogated the RuV-liposome interaction. SM and Chol (SM/Chol) were also critical for RuV binding to erythrocytes and lymphoid cells. Removal of Ca2+ from the assay buffer or mutation of RuV envelope E1 protein Ca2+-binding sites abrogated RuV binding to liposomes, erythrocytes, and lymphoid cells. However, RuV bound to various nonlymphoid adherent cell lines independently of extracellular Ca2+ or SM/Chol. Even in these adherent cell lines, both the E1 protein Ca2+-binding sites and cellular SM/Chol were essential for the early stage of RuV infection, possibly affecting envelope-membrane fusion in acidic compartments. Myelin oligodendrocyte glycoprotein (MOG) has recently been identified as a cellular receptor for RuV. However, RuV bound to MOG-negative cells in a Ca2+-independent manner. Collectively, our data demonstrate that RuV has two distinct binding mechanisms: one is Ca2+ dependent and the other is Ca2+ independent. Ca2+-dependent binding observed in lymphoid cells occurs by the direct interaction between E1 protein fusion loops and SM/Chol-enriched membranes. Clarification of the mechanism of Ca2+-independent RuV binding is an important next step in understanding the pathology of RuV infection.IMPORTANCE Rubella has a significant impact on public health as infection during early pregnancy can result in babies being born with congenital rubella syndrome. Even though effective rubella vaccines are available, rubella outbreaks still occur in many countries. We studied the entry mechanism of rubella virus (RuV) and found that RuV binds directly to the host plasma membrane in the presence of Ca2+ at neutral pH. This Ca2+-dependent binding is specifically directed to membranes enriched in sphingomyelin and cholesterol and is critical for RuV infection. Importantly, RuV also binds to many cell lines in a Ca2+-independent manner. An unidentified RuV receptor(s) is involved in this Ca2+-independent binding. We believe that the data presented here may aid the development of the first anti-RuV drug.
Collapse
|
10
|
Sousa IP, Carvalho CAM, Mendes YS, Weissmuller G, Oliveira AC, Gomes AMO. Fusion of a New World Alphavirus with Membrane Microdomains Involving Partially Reversible Conformational Changes in the Viral Spike Proteins. Biochemistry 2017; 56:5823-5830. [PMID: 28956592 DOI: 10.1021/acs.biochem.7b00650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alphaviruses are enveloped arboviruses mainly proposed to infect host cells by receptor-mediated endocytosis followed by fusion between the viral envelope and the endosomal membrane. The fusion reaction is triggered by low pH and requires the presence of both cholesterol and sphingolipids in the target membrane, suggesting the involvement of lipid rafts in the cell entry mechanism. In this study, we show for the first time the interaction of an enveloped virus with membrane microdomains isolated from living cells. Using Mayaro virus (MAYV), a New World alphavirus, we verified that virus fusion to these domains occurred to a significant extent upon acidification, although its kinetics was quite slow when compared to that of fusion with artificial liposomes demonstrated in a previous work. Surprisingly, when virus was previously exposed to acidic pH, a condition previously shown to inhibit alphavirus binding and fusion to target membranes as well as infectivity, and then reneutralized, its ability to fuse with membrane microdomains at low pH was retained. Interestingly, this observation correlated with a partial reversion of low pH-induced conformational changes in viral proteins and retention of virus infectivity upon reneutralization. Our results suggest that MAYV entry into host cells could alternatively involve internalization via lipid rafts and that the conformational changes triggered by low pH in the viral spike proteins during the entry process are partially reversible.
Collapse
Affiliation(s)
- Ivanildo P Sousa
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde and ‡Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Carlos A M Carvalho
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde and ‡Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ygara S Mendes
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde and ‡Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gilberto Weissmuller
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde and ‡Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Andréa C Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde and ‡Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Andre M O Gomes
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde and ‡Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
11
|
Dynamics of Chikungunya Virus Cell Entry Unraveled by Single-Virus Tracking in Living Cells. J Virol 2016; 90:4745-4756. [PMID: 26912616 DOI: 10.1128/jvi.03184-15] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/19/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne human pathogen causing major outbreaks in Africa, Asia, and the Americas. The cell entry pathway hijacked by CHIKV to infect a cell has been studied previously using inhibitory compounds. There has been some debate on the mechanism by which CHIKV enters the cell: several studies suggest that CHIKV enters via clathrin-mediated endocytosis, while others show that it enters independently of clathrin. Here we applied live-cell microscopy and monitored the cell entry behavior of single CHIKV particles in living cells transfected with fluorescent marker proteins. This approach allowed us to obtain detailed insight into the dynamic events that occur during CHIKV entry. We observed that almost all particles fused within 20 min after addition to the cells. Of the particles that fused, the vast majority first colocalized with clathrin. The average time from initial colocalization with clathrin to the moment of membrane fusion was 1.7 min, highlighting the rapidity of the cell entry process of CHIKV. Furthermore, these results show that the virus spends a relatively long time searching for a receptor. Membrane fusion was observed predominantly from within Rab5-positive endosomes and often occurred within 40 s after delivery to endosomes. Furthermore, we confirmed that a valine at position 226 of the E1 protein enhances the cholesterol-dependent membrane fusion properties of CHIKV. To conclude, our work confirms that CHIKV enters cells via clathrin-mediated endocytosis and shows that fusion occurs from within acidic early endosomes. IMPORTANCE Since its reemergence in 2004, chikungunya virus (CHIKV) has spread rapidly around the world, leading to millions of infections. CHIKV often causes chikungunya fever, a self-limiting febrile illness with severe arthralgia. Currently, no vaccine or specific antiviral treatment against CHIKV is available. A potential antiviral strategy is to interfere with the cell entry process of the virus. However, conflicting results with regard to the cell entry pathway used by CHIKV have been published. Here we applied a novel technology to visualize the entry behavior of single CHIKV particles in living cells. Our results show that CHIKV cell entry is extremely rapid and occurs via clathrin-mediated endocytosis. Membrane fusion from within acidic early endosomes is observed. Furthermore, the membrane fusion capacity of CHIKV is strongly promoted by cholesterol in the target membrane. Taking these findings together, this study provides detailed insight into the cell entry process of CHIKV.
Collapse
|
12
|
van Duijl-Richter MKS, Blijleven JS, van Oijen AM, Smit JM. Chikungunya virus fusion properties elucidated by single-particle and bulk approaches. J Gen Virol 2015; 96:2122-2132. [DOI: 10.1099/vir.0.000144] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mareike K. S. van Duijl-Richter
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Jelle S. Blijleven
- Centre for Synthetic Biology, Zernike Institute of Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Antoine M. van Oijen
- Centre for Synthetic Biology, Zernike Institute of Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
- School of Chemistry, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jolanda M. Smit
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| |
Collapse
|
13
|
Cis and trans unsaturated phosphatidylcholine bilayers: A molecular dynamics simulation study. Chem Phys Lipids 2015; 195:12-20. [PMID: 26187855 DOI: 10.1016/j.chemphyslip.2015.07.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 12/14/2022]
Abstract
Trans unsaturated lipids are uncommon in nature. In the human diet, they occur as natural products of ruminal bacteria or from industrial food processing like hydrogenation of vegetable oils. Consumption of trans unsaturated lipids has been shown to have a negative influence on human health; in particular, the risk of cardiovascular disease is higher when the amount of trans unsaturated lipids in the diet is elevated. In this study, we first performed quantum mechanical calculations to specifically and accurately parameterize cis and trans mono-unsaturated lipids and subsequently validated the newly derived parameter set. Then, we carried out molecular dynamics (MD) simulations of lipid bilayers composed of cis or trans unsaturated lipids with and without cholesterol. Our results show that trans mono-unsaturated chains are more flexible than cis mono-unsaturated chains due to lower barriers for rotation around the single bonds next to the trans double bond than those next to the cis double bond. In effect, interactions between cholesterol and trans unsaturated chains are stronger than cis unsaturated chains, which results in a higher ordering effect of cholesterol in trans unsaturated bilayers.
Collapse
|
14
|
Chao LH, Klein DE, Schmidt AG, Peña JM, Harrison SC. Sequential conformational rearrangements in flavivirus membrane fusion. eLife 2014; 3:e04389. [PMID: 25479384 PMCID: PMC4293572 DOI: 10.7554/elife.04389] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/04/2014] [Indexed: 01/08/2023] Open
Abstract
The West Nile Virus (WNV) envelope protein, E, promotes membrane fusion during viral cell entry by undergoing a low-pH triggered conformational reorganization. We have examined the mechanism of WNV fusion and sought evidence for potential intermediates during the conformational transition by following hemifusion of WNV virus-like particles (VLPs) in a single particle format. We have introduced specific mutations into E, to relate their influence on fusion kinetics to structural features of the protein. At the level of individual E subunits, trimer formation and membrane engagement of the threefold clustered fusion loops are rate-limiting. Hemifusion requires at least two adjacent trimers. Simulation of the kinetics indicates that availability of competent monomers within the contact zone between virus and target membrane makes trimerization a bottleneck in hemifusion. We discuss the implications of the model we have derived for mechanisms of membrane fusion in other contexts. DOI:http://dx.doi.org/10.7554/eLife.04389.001 Flaviviruses are a group of viruses that cause serious diseases in humans, including yellow fever, West Nile fever and dengue fever. Like all viruses, flaviviruses protect their genetic material with a protein shell and, like many other viruses, that shell also has a lipid membrane. Flaviruses use one of their surface membrane proteins, known as ‘envelope protein’ or simply ‘E’, to bind to the surface of host cells. Once the virus has attached to the host cell membrane, it becomes engulfed within a bubble-like structure called an endosome, which also has a surrounding membrane. The interior of an endosome is acidic. Under these conditions the E protein undergoes a series of changes that bring the two membranes into close contact, so that the membrane of the virus can fuse with the membrane of the endosome. This membrane fusion allows the genome of the virus to escape the endosome and hijack the cell to make new copies of the virus. The E proteins on a mature flavivirus particle are found in pairs, but previous work showed that these proteins must work together in groups of three (called ‘trimers’) for the viral and endosomal membranes to fuse. Chao et al. have now asked: what are the rate-limiting steps that lead to the formation of trimers? And how many trimers are necessary to cause the membranes to fuse? Chao et al. have investigated these questions using virus-like particles containing the E protein of West Nile Virus. They used techniques that can track individual particles, which their laboratory had previously used to investigate the influenza virus, to model changes in the E protein before, during and after membrane fusion. Chao et al. then made mutant versions of the envelope protein and used virus-like particles containing them to test the model. The data that Chao et al. obtained and computer simulations they carried out suggest that exposure to acidic conditions encourages the pairs of E proteins to separate and extend towards the endosome membrane. Individual E proteins then group together into trimers, and at least two trimers are needed to exert enough force to allow the membranes to fuse. The experimental design used by Chao et al. will now allow them to study the action of molecules that inhibit membrane fusion by West Nile Virus and other viruses. DOI:http://dx.doi.org/10.7554/eLife.04389.002
Collapse
Affiliation(s)
- Luke H Chao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Daryl E Klein
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Aaron G Schmidt
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Jennifer M Peña
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Pathogens of different taxa, from prions to protozoa, target cellular cholesterol metabolism to advance their own development and to impair host immune responses, but also causing metabolic complications, for example, atherosclerosis. This review describes recent findings of how pathogens do it. RECENT FINDINGS A common theme in interaction between pathogens and host cholesterol metabolism is pathogens targeting lipid rafts of the host plasma membrane. Many intracellular pathogens use rafts as an entry gate, taking advantage of the endocytic machinery and high abundance of outward-looking molecules that can be used as receptors. At the same time, disruption of the rafts' functional capacity, achieved by the pathogens through a number of various means, impairs the ability of the host to generate immune response, thus helping pathogen to thrive. Pathogens cannot synthesize cholesterol, and salvaging host cholesterol helps pathogens build advanced cholesterol-containing membranes and assembly platforms. Impact on cholesterol metabolism is not limited to the infected cells; proteins and microRNAs secreted by infected cells affect lipid metabolism systemically. SUMMARY Given an essential role that host cholesterol metabolism plays in pathogen development, targeting this interaction may be a viable strategy to fight infections, as well as metabolic complications of the infections.
Collapse
Affiliation(s)
- Dmitri Sviridov
- Baker IDI Heart and Diabetes Institute, Melbourne, 3004, Australia
- Address correspondence to: Dmitri Sviridov, Baker IDI Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia; Phone: +61385321363,
| | - Michael Bukrinsky
- George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| |
Collapse
|
16
|
Hantavirus Gn and Gc envelope glycoproteins: key structural units for virus cell entry and virus assembly. Viruses 2014; 6:1801-22. [PMID: 24755564 PMCID: PMC4014721 DOI: 10.3390/v6041801] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/20/2014] [Accepted: 03/31/2014] [Indexed: 01/24/2023] Open
Abstract
In recent years, ultrastructural studies of viral surface spikes from three different genera within the Bunyaviridae family have revealed a remarkable diversity in their spike organization. Despite this structural heterogeneity, in every case the spikes seem to be composed of heterodimers formed by Gn and Gc envelope glycoproteins. In this review, current knowledge of the Gn and Gc structures and their functions in virus cell entry and exit is summarized. During virus cell entry, the role of Gn and Gc in receptor binding has not yet been determined. Nevertheless, biochemical studies suggest that the subsequent virus-membrane fusion activity is accomplished by Gc. Further, a class II fusion protein conformation has been predicted for Gc of hantaviruses, and novel crystallographic data confirmed such a fold for the Rift Valley fever virus (RVFV) Gc protein. During virus cell exit, the assembly of different viral components seems to be established by interaction of Gn and Gc cytoplasmic tails (CT) with internal viral ribonucleocapsids. Moreover, recent findings show that hantavirus glycoproteins accomplish important roles during virus budding since they self-assemble into virus-like particles. Collectively, these novel insights provide essential information for gaining a more detailed understanding of Gn and Gc functions in the early and late steps of the hantavirus infection cycle.
Collapse
|
17
|
Keeney JTR, Swomley AM, Förster S, Harris JL, Sultana R, Butterfield DA. Apolipoprotein A-I: insights from redox proteomics for its role in neurodegeneration. Proteomics Clin Appl 2013; 7:109-22. [PMID: 23027708 PMCID: PMC3760000 DOI: 10.1002/prca.201200087] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/03/2012] [Indexed: 01/03/2023]
Abstract
Proteomics has a wide range of applications, including determination of differences in the proteome in terms of expression and post-translational protein modifications. Redox proteomics allows the identification of specific targets of protein oxidation in a biological sample. Using proteomic techniques, apolipoprotein A-I (ApoA-I) has been found at decreased levels in subjects with a variety of neurodegenerative disorders including in the serum and cerebrospinal fluid (CSF) of Alzheimer disease (AD), Parkinson disease (PD), and Down syndrome (DS) with gout subjects. ApoA-I plays roles in cholesterol transport and regulation of inflammation. Redox proteomics further showed ApoA-I to be highly oxidatively modified and particularly susceptible to modification by 4-hydroxy-2-trans-nonenal (HNE), a lipid peroxidation product. In the current review, we discuss the consequences of oxidation of ApoA-I in terms of neurodegeneration. ROS-associated chemotherapy related ApoA-I oxidation leads to elevation of peripheral levels of tumor necrosis factor-α (TNF-α) that can cross the blood-brain barrier (BBB) causing a signaling cascade that can contribute to neuronal death, likely a contributor to what patients refer to as "chemobrain." Current evidence suggests ApoA-I to be a promising diagnostic marker as well as a potential target for therapeutic strategies in these neurodegenerative disorders.
Collapse
Affiliation(s)
- Jeriel T. R. Keeney
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Aaron M. Swomley
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Sarah Förster
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
- Institute of Animal Sciences, Department of Biochemistry, University of Bonn, 53115 Bonn, Germany
| | - Jessica L. Harris
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Rukhsana Sultana
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - D. Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
18
|
Herath TK, Ferguson HW, Thompson KD, Adams A, Richards RH. Ultrastructural morphogenesis of salmonid alphavirus 1. JOURNAL OF FISH DISEASES 2012; 35:799-808. [PMID: 22913764 DOI: 10.1111/j.1365-2761.2012.01420.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 08/15/2011] [Accepted: 11/22/2011] [Indexed: 06/01/2023]
Abstract
Studies on the ultrastructural morphogenesis of viruses give an insight into how the host cell mechanisms are utilized for new virion synthesis. A time course examining salmonid alphavirus 1 (SAV 1) assembly was performed by culturing the virus on Chinook salmon embryo cells (CHSE-214). Different stages of viral replication were observed under electron microscopy. Virus-like particles were observed inside membrane-bound vesicles as early as 1 h following contact of the virus with the cells. Membrane-dependent replication complexes were observed in the cytoplasm of the cells, with spherules found at the periphery of late endosome-like vacuoles. The use of intracellular membranes for RNA replication is similar to other positive-sense single-stranded RNA (+ssRNA) viruses. The number of Golgi apparatus and associated vacuoles characterized by 'fuzzy'-coated membranes was greater in virus-infected cells. The mature enveloped virions started to bud out from the cells at approximately 24 h post-infection. These observations suggest that the pathway used by SAV 1 for the generation of new virus particles in vitro is comparable to viral replication observed with mammalian alphaviruses but with some interesting differences.
Collapse
Affiliation(s)
- T K Herath
- School of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, UK.
| | | | | | | | | |
Collapse
|
19
|
Function of membrane rafts in viral lifecycles and host cellular response. Biochem Res Int 2011; 2011:245090. [PMID: 22191032 PMCID: PMC3235436 DOI: 10.1155/2011/245090] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 08/31/2011] [Accepted: 09/27/2011] [Indexed: 12/31/2022] Open
Abstract
Membrane rafts are small (10–200 nm) sterol- and sphingolipid-enriched domains that compartmentalize cellular processes. Membrane rafts play an important role in viral infection cycles and viral virulence. Viruses are divided into four main classes, enveloped DNA virus, enveloped RNA virus, nonenveloped DNA virus, and nonenveloped RNA virus. General virus infection cycle is also classified into two sections, the early stage (entry process) and the late stage (assembly, budding, and release processes of virus particles). In the viral cycle, membrane rafts act as a scaffold of many cellular signal transductions, which are associated with symptoms caused by viral infections. In this paper, we describe the functions of membrane rafts in viral lifecycles and host cellular response according to each virus classification, each stage of the virus lifecycle, and each virus-induced signal transduction.
Collapse
|
20
|
Zaitseva E, Yang ST, Melikov K, Pourmal S, Chernomordik LV. Dengue virus ensures its fusion in late endosomes using compartment-specific lipids. PLoS Pathog 2010; 6:e1001131. [PMID: 20949067 PMCID: PMC2951369 DOI: 10.1371/journal.ppat.1001131] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 09/03/2010] [Indexed: 12/31/2022] Open
Abstract
Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma- and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DEN-bis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design. Dengue virus infection is a growing public health problem with up to 100 million cases annually, and neither vaccines nor effective therapies are available. To search for the ways of preventing and treating dengue infections we need to better understand their molecular mechanisms. As with many other viruses, dengue virus enters cells by fusion between the viral membrane and the membrane of intracellular vesicles (endosomes). In this work we explored the fusion stage of dengue virus entry in different experimental systems ranging from virus fusion to artificial lipid membranes to fusion inside the cells. While earlier work on dengue virus entry has focused on viral protein that mediates fusion, we found that effective action of this protein requires specific lipid composition of the membrane the virus fuses to. In effect, this lipid dependence allows virus to control intracellular location of the fusion event and, thus, the place of its RNA release by exploiting cell-controlled differences between lipid compositions of different organelles the virus travels through. The essential role of the interactions between dengue virus and its lipid cofactors during viral entry suggests that these interactions may be targeted in drug design.
Collapse
Affiliation(s)
- Elena Zaitseva
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | | | | | | |
Collapse
|
21
|
Development of a lentiviral vector system to study the role of the Andes virus glycoproteins. Virus Res 2010; 153:29-35. [PMID: 20619306 DOI: 10.1016/j.virusres.2010.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/24/2010] [Accepted: 07/01/2010] [Indexed: 01/29/2023]
Abstract
To infect target cells, enveloped viruses use their virion surface proteins to direct cell attachment and subsequent entry via virus-cell membrane fusion. How hantaviruses enter cells has been largely unexplored. To study early steps of Andes virus (ANDV) cell infection, a lentiviral vector system was developed based on a Simian immunodeficiency virus (SIV) vector pseudotyped with the ANDV-Gn/Gc envelope glycoproteins. The incorporation of Gn and Gc onto SIV-derived vector particles was assessed using newly generated monoclonal antibodies against ANDV glycoproteins. In addition, sera of ANDV infected humans were able to block cell entry of the SIV vector pseudotyped with ANDV glycoproteins, suggesting that their antigenic conformation is similar to that in the native virus. The use of such SIV vector pseudotyped with ANDV-Gn/Gc glycoproteins should facilitate studies on ANDV cell entry. Along this line, it was found that depletion of cholesterol from target cells strongly diminished cell infection, indicating a possible role of lipid rafts in ANDV cell entry. The Gn/Gc pseudotyped SIV vector has several advantages, notably high titer vector production and easy quantification of cell infection by monitoring GFP reporter gene expression by flow cytometry. Such pseudotyped SIV vectors can be used to identify functional domains in the Gn/Gc glycoproteins and to screen for potential hantavirus cell entry inhibitors.
Collapse
|
22
|
Abstract
The study of enveloped animal viruses has greatly advanced our understanding of the general properties of membrane fusion and of the specific pathways that viruses use to infect the host cell. The membrane fusion proteins of the alphaviruses and flaviviruses have many similarities in structure and function. As reviewed here, alphaviruses use receptor-mediated endocytic uptake and low pH-triggered membrane fusion to deliver their RNA genomes into the cytoplasm. Recent advances in understanding the biochemistry and structure of the alphavirus membrane fusion protein provide a clearer picture of this fusion reaction, including the protein’s conformational changes during fusion and the identification of key domains. These insights into the alphavirus fusion mechanism suggest new areas for experimental investigation and potential inhibitor strategies for anti-viral therapy.
Collapse
Affiliation(s)
- Margaret Kielian
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-718-430-3638; Fax: +1-718-430-8574
| | | | | |
Collapse
|
23
|
Holzer M, Momm J, Schubert R. Lipid transfer mediated by a recombinant pro-sterol carrier protein 2 for the accurate preparation of asymmetrical membrane vesicles requires a narrow vesicle size distribution: a free-flow electrophoresis study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:4142-4151. [PMID: 20095535 DOI: 10.1021/la903386d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We applied protein-mediated lipid transfer using recombinant His-tagged pro-sterol carrier protein 2 (pro-SCP2) to prepare asymmetrical membrane vesicles (AMV) featuring an unequal transmembrane distribution of the negative phospholipid egg-phosphatidylglycerol (EPG). Pure egg-phosphatidylcholine (EPC) vesicles were used as the acceptor and EPC:EPG 90:10 mol % vesicles as the donor populations. The changes in surface charge during EPG transfer were used to quantify the degree of asymmetry by free-flow electrophoresis (FFE). The relative deflection in FFE correlated with EPG content in the outer monolayer (x(EPG)). The initial transfer rates and first order rate constants for the transfer process were determined. The addition of pro-SCP2 at a molar protein-to-lipid ratio R(P/L) of (15-20) x 10(-5) accelerated the EPG transfer to half-times of between 2 and 3 h. Thus, the transmembrane redistribution of EPG by flip-flop, which reduces the degree of asymmetry and occurs at half-times of tens of hours, was minimized during the transfer process. We investigated the influence of membrane curvature on the transfer rate using 50 and 100 nm vesicles with very low size distribution widths (RSD of 13-17%). Transfer occurred with a 55.7% higher initial rate between the smaller vesicles. The use of equally sized acceptor and donor populations of such narrow size distributions was shown to be important for the preparation of AMV with a uniform degree of asymmetry. Under these conditions, AMV were obtained after less than 3 h by preparative FFE separation. In the case of the acceptor vesicles, EPG transfer increased x(EPG) to 3 mol %, whereas it was reduced to 6 mol % in the donor vesicles.
Collapse
Affiliation(s)
- Martin Holzer
- Department of Pharmaceutical Technology and Biopharmacy, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany.
| | | | | |
Collapse
|
24
|
Abstract
Up to now less than a handful of viral cholesterol-binding proteins have been characterized, in HIV, influenza virus and Semliki Forest virus. These are proteins with roles in virus entry or morphogenesis. In the case of the HIV fusion protein gp41 cholesterol binding is attributed to a cholesterol recognition consensus (CRAC) motif in a flexible domain of the ectodomain preceding the trans-membrane segment. This specific CRAC sequence mediates gp41 binding to a cholesterol affinity column. Mutations in this motif arrest virus fusion at the hemifusion stage and modify the ability of the isolated CRAC peptide to induce segregation of cholesterol in artificial membranes.Influenza A virus M2 protein co-purifies with cholesterol. Its proton translocation activity, responsible for virus uncoating, is not cholesterol-dependent, and the transmembrane channel appears too short for integral raft insertion. Cholesterol binding may be mediated by CRAC motifs in the flexible post-TM domain, which harbours three determinants of binding to membrane rafts. Mutation of the CRAC motif of the WSN strain attenuates virulence for mice. Its affinity to the raft-non-raft interface is predicted to target M2 protein to the periphery of lipid raft microdomains, the sites of virus assembly. Its influence on the morphology of budding virus implicates M2 as factor in virus fission at the raft boundary. Moreover, M2 is an essential factor in sorting the segmented genome into virus particles, indicating that M2 also has a role in priming the outgrowth of virus buds.SFV E1 protein is the first viral type-II fusion protein demonstrated to directly bind cholesterol when the fusion peptide loop locks into the target membrane. Cholesterol binding is modulated by another, proximal loop, which is also important during virus budding and as a host range determinant, as shown by mutational studies.
Collapse
Affiliation(s)
- Cornelia Schroeder
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, D-01307, Dresden, Germany.
| |
Collapse
|
25
|
Solignat M, Gay B, Higgs S, Briant L, Devaux C. Replication cycle of chikungunya: a re-emerging arbovirus. Virology 2009; 393:183-97. [PMID: 19732931 PMCID: PMC2915564 DOI: 10.1016/j.virol.2009.07.024] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 07/07/2009] [Accepted: 07/22/2009] [Indexed: 12/13/2022]
Abstract
Arboviruses (or arthropod-borne viruses), represent a threat for the new century. The 2005-2006 year unprecedented epidemics of chikungunya virus (CHIKV) in the French Reunion Island in the Indian Ocean, followed by several outbreaks in other parts of the world such as India, have attracted the attention of clinicians, scientists, and state authorities about the risks linked to this re-emerging mosquito-borne virus. CHIKV, which belongs to the Alphaviruses genus, was not previously regarded as a highly pathogenic arbovirus. However, this opinion was challenged by the death of several CHIKV-infected persons in Reunion Island. The epidemic episode began in December 2005 and four months later the seroprevalence survey report indicated that 236,000 persons, more than 30% of Reunion Island population, had been infected with CHIKV, among which 0.4-0.5% of cases were fatal. Since the epidemic peak, the infection case number has continued to increase to almost 40% of the population, with a total of more than 250 fatalities. Although information available on CHIKV is growing quite rapidly, we are still far from understanding the strategies required for the ecologic success of this virus, virus replication, its interactions with its vertebrate hosts and arthropod vectors, and its genetic evolution. In this paper, we summarize the current knowledge of CHIKV genomic organization, cell tropism, and the virus replication cycle, and evaluate the possibility to predict its future evolution. Such understanding may be applied in order to anticipate future epidemics and reduce the incidence by development and application of, for example, vaccination and antiviral therapy.
Collapse
Affiliation(s)
- Maxime Solignat
- Université Montpellier 1, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), Montpellier, France
- CNRS, UMR5236, CPBS, F-34965 Montpellier, France
- Université Montpellier 2, CPBS, F-34095 Montpellier, France
| | - Bernard Gay
- Université Montpellier 1, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), Montpellier, France
- CNRS, UMR5236, CPBS, F-34965 Montpellier, France
- Université Montpellier 2, CPBS, F-34095 Montpellier, France
| | - Stephen Higgs
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Laurence Briant
- Université Montpellier 1, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), Montpellier, France
- CNRS, UMR5236, CPBS, F-34965 Montpellier, France
- Université Montpellier 2, CPBS, F-34095 Montpellier, France
| | - Christian Devaux
- Université Montpellier 1, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), Montpellier, France
- CNRS, UMR5236, CPBS, F-34965 Montpellier, France
- Université Montpellier 2, CPBS, F-34095 Montpellier, France
| |
Collapse
|
26
|
Abstract
Exocytosis is a highly conserved and essential process. Although numerous proteins are involved throughout the exocytotic process, the defining membrane fusion step appears to occur through a lipid-dominated mechanism. Here we review and integrate the current literature on protein and lipid roles in exocytosis, with emphasis on the multiple roles of cholesterol in exocytosis and membrane fusion, in an effort to promote a more molecular systems-level view of the as yet poorly understood process of Ca2+-triggered membrane mergers.
Collapse
|
27
|
Waheed AA, Freed EO. Lipids and membrane microdomains in HIV-1 replication. Virus Res 2009; 143:162-76. [PMID: 19383519 DOI: 10.1016/j.virusres.2009.04.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/01/2009] [Accepted: 04/03/2009] [Indexed: 10/20/2022]
Abstract
Several critical steps in the replication cycle of human immunodeficiency virus type 1 (HIV-1) - entry, assembly and budding - are complex processes that take place at the plasma membrane of the host cell. A growing body of data indicates that these early and late steps in HIV-1 replication take place in specialized plasma membrane microdomains, and that many of the viral and cellular components required for entry, assembly, and budding are concentrated in these microdomains. In particular, a number of studies have shown that cholesterol- and sphingolipid-enriched microdomains known as lipid rafts play important roles in multiple steps in the virus replication cycle. In this review, we provide an overview of what is currently known about the involvement of lipids and membrane microdomains in HIV-1 replication.
Collapse
Affiliation(s)
- Abdul A Waheed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA.
| | | |
Collapse
|
28
|
Petelska AD, Naumowicz M, Figaszewski ZA. Complex Formation Equilibria in Two-Component Bilayer Lipid Membrane: Interfacial Tension Method. J Membr Biol 2009; 228:71-7. [DOI: 10.1007/s00232-009-9160-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 02/02/2009] [Indexed: 11/28/2022]
Affiliation(s)
- Aneta D Petelska
- Institute of Chemistry, University of Bialystok, Bialystok, Poland
| | | | | |
Collapse
|
29
|
White JM, Delos SE, Brecher M, Schornberg K. Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol 2008; 43:189-219. [PMID: 18568847 DOI: 10.1080/10409230802058320] [Citation(s) in RCA: 665] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent work has identified three distinct classes of viral membrane fusion proteins based on structural criteria. In addition, there are at least four distinct mechanisms by which viral fusion proteins can be triggered to undergo fusion-inducing conformational changes. Viral fusion proteins also contain different types of fusion peptides and vary in their reliance on accessory proteins. These differing features combine to yield a rich diversity of fusion proteins. Yet despite this staggering diversity, all characterized viral fusion proteins convert from a fusion-competent state (dimers or trimers, depending on the class) to a membrane-embedded homotrimeric prehairpin, and then to a trimer-of-hairpins that brings the fusion peptide, attached to the target membrane, and the transmembrane domain, attached to the viral membrane, into close proximity thereby facilitating the union of viral and target membranes. During these conformational conversions, the fusion proteins induce membranes to progress through stages of close apposition, hemifusion, and then the formation of small, and finally large, fusion pores. Clearly, highly divergent proteins have converged on the same overall strategy to mediate fusion, an essential step in the life cycle of every enveloped virus.
Collapse
Affiliation(s)
- Judith M White
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908-0732, USA.
| | | | | | | |
Collapse
|
30
|
Teissier É, Pécheur EI. Lipids as modulators of membrane fusion mediated by viral fusion proteins. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:887-99. [PMID: 17882414 PMCID: PMC7080115 DOI: 10.1007/s00249-007-0201-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 05/17/2007] [Accepted: 06/11/2007] [Indexed: 11/24/2022]
Abstract
Enveloped viruses infect host cells by fusion of viral and target membranes. This fusion event is triggered by specific glycoproteins in the viral envelope. Fusion glycoproteins belong to either class I, class II or the newly described third class, depending upon their arrangement at the surface of the virion, their tri-dimensional structure and the location within the protein of a short stretch of hydrophobic amino acids called the fusion peptide, which is able to induce the initial lipid destabilization at the onset of fusion. Viral fusion occurs either with the plasma membrane for pH-independent viruses, or with the endosomal membranes for pH-dependent viruses. Although, viral fusion proteins are parted in three classes and the subcellular localization of fusion might vary, these proteins have to act, in common, on lipid assemblies. Lipids contribute to fusion through their physical, mechanical and/or chemical properties. Lipids can thus play a role as chemically defined entities, or through their preferential partitioning into membrane microdomains called “rafts”, or by modulating the curvature of the membranes involved in the fusion process. The purpose of this review is to make a state of the art on recent findings on the contribution of cholesterol, sphingolipids and glycolipids in cell entry and membrane fusion of a number of viral families, whose members bear either class I or class II fusion proteins, or fusion proteins of the recently discovered third class.
Collapse
Affiliation(s)
- Élodie Teissier
- Structural NMR and Bioinformatics, UMR CNRS 5086, Institut de Biologie et Chimie des Protéines, IFR 128 BioSciences Lyon-Gerland, 7 passage du Vercors, 69367 Lyon, France
| | - Eve-Isabelle Pécheur
- Structural NMR and Bioinformatics, UMR CNRS 5086, Institut de Biologie et Chimie des Protéines, IFR 128 BioSciences Lyon-Gerland, 7 passage du Vercors, 69367 Lyon, France
| |
Collapse
|
31
|
Vela EM, Zhang L, Colpitts TM, Davey RA, Aronson JF. Arenavirus entry occurs through a cholesterol-dependent, non-caveolar, clathrin-mediated endocytic mechanism. Virology 2007; 369:1-11. [PMID: 17698159 PMCID: PMC2227908 DOI: 10.1016/j.virol.2007.07.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 06/08/2007] [Accepted: 07/10/2007] [Indexed: 12/20/2022]
Abstract
Arenaviruses are important causes of viral hemorrhagic fevers in humans. Arenavirus infection of cells occurs via a pH-dependent endocytic route, but detailed studies of entry pathways have not been done. We investigated the role of cell membrane cholesterol, caveolae, and clathrin coated pits in infection by Lassa virus (LASV), which utilizes alpha-dystroglycan (alpha-DG) as a receptor, and Pichindé virus (PICV), which does not. Depletion of cellular cholesterol by treatment with methyl betacyclodextrin (MbetaCD) or nystatin/progesterone inhibited PICV replication and transfer of packaged marker gene by LASV or PICV pseudotyped retroviral particles. In cells lacking caveolae due to silencing of the caveolin-1 gene, no inhibition of PICV infection or LASV pseudotype transduction was observed. However, PICV infection and LASV and PICV pseudotype transduction was inhibited when an Eps15 dominant negative mutant was used to inhibit clathrin-mediated endocytosis. Altogether, the results indicate that diverse arenaviruses have a common requirement for cell membrane cholesterol and clathrin mediated endocytosis in establishing infection.
Collapse
Affiliation(s)
- Eric M Vela
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | | | | | | | | |
Collapse
|
32
|
Björkbom A, Ramstedt B, Slotte JP. Phosphatidylcholine and sphingomyelin containing an elaidoyl fatty acid can form cholesterol-rich lateral domains in bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1839-47. [PMID: 17499576 DOI: 10.1016/j.bbamem.2007.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 03/22/2007] [Accepted: 04/10/2007] [Indexed: 01/04/2023]
Abstract
Elaidic acid is a trans-fatty acid found in many food products and implicated for having potentially health hazardous effects in humans. Elaidic acid is readily incorporated into membrane lipids in vivo and therefore affects processes regulating membrane physical properties. In this study the membrane properties of sphingomyelin and phosphatidylcholine containing elaidic acid (N-E-SM and PEPC) were determined in bilayer membranes with special emphasis on their interaction with cholesterol and participation in ordered domain formation. In agreement with previous studies the melting temperatures were found to be about 20 degrees C lower for the elaidoyl than for the corresponding saturated lipids. The trans-unsaturation increased the polarity at the membrane-water interface as reported by Laurdan fluorescence. Fluorescence quenching experiments using cholestatrienol as a probe showed that both N-E-SM and PEPC were incorporated in lateral membrane domains with sterol and saturated lipids. At low temperatures the elaidoyl lipids were even able to form sterol-rich domains without any saturated lipids present in the bilayer. We conclude from this study that the ability of N-E-SM and PEPC to form ordered domains together with cholesterol and saturated phospho- and sphingolipids in model membranes indicates that they might have an influence on raft formation in biological membranes.
Collapse
Affiliation(s)
- Anders Björkbom
- Department of Biochemistry and Pharmacy, Abo Akademi University, Tykistökatu 6 A, FIN-20520 Turku, Finland
| | | | | |
Collapse
|
33
|
Raghu H, Sharma-Walia N, Veettil MV, Sadagopan S, Caballero A, Sivakumar R, Varga L, Bottero V, Chandran B. Lipid rafts of primary endothelial cells are essential for Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8-induced phosphatidylinositol 3-kinase and RhoA-GTPases critical for microtubule dynamics and nuclear delivery of viral DNA but dispensable for binding and entry. J Virol 2007; 81:7941-59. [PMID: 17507466 PMCID: PMC1951274 DOI: 10.1128/jvi.02848-06] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Early during de novo infection of human microvascular dermal endothelial (HMVEC-d) cells, Kaposi's sarcoma-associated herpesvirus (KSHV) (human herpesvirus 8 [HHV-8]) induces the host cell's preexisting FAK, Src, phosphatidylinositol 3-kinase (PI3-K), Rho-GTPases, Diaphanous-2 (Dia-2), Ezrin, protein kinase C-zeta, extracellular signal-regulated kinase 1/2 (ERK1/2), and NF-kappaB signal pathways that are critical for virus entry, nuclear delivery of viral DNA, and initiation of viral gene expression. Since several of these signal molecules are known to be associated with lipid raft (LR) domains, we investigated the role of LR during KSHV infection of HMVEC-d cells. Pretreatment of cells with LR-disrupting agents methyl beta-cyclo dextrin (MbetaCD) or nystatin significantly inhibited the expression of viral latent (ORF73) and lytic (ORF50) genes. LR disruption did not affect KSHV binding but increased viral DNA internalization. In contrast, association of internalized viral capsids with microtubules (MTs) and the quantity of infected nucleus-associated viral DNA were significantly reduced. Disorganized and disrupted MTs and thick rounded plasma membranes were observed in MbetaCD-treated cells. LR disruption did not affect KSHV-induced FAK and ERK1/2 phosphorylation; in contrast, it increased the phosphorylation of Src, significantly reduced the KSHV-induced PI3-K and RhoA-GTPase and NF-kappaB activation, and reduced the colocalizations of PI3-K and RhoA-GTPase with LRs. Biochemical characterization demonstrated the association of activated PI3-K with LR fractions which was inhibited by MbetaCD treatment. RhoA-GTPase activation was inhibited by PI3-K inhibitors, demonstrating that PI3-K is upstream to RhoA-GTPase. In addition, colocalization of Dia-2, a RhoA-GTPase activated molecule involved in MT activation, with LR was reduced. KSHV-RhoA-GTPase mediated acetylation and aggregation of MTs were also reduced. Taken together, these studies suggest that LRs of endothelial cells play critical roles in KSHV infection and gene expression, probably due to their roles in modulating KSHV-induced PI3-K, RhoA-GTPase, and Dia-2 molecules essential for postbinding and entry stages of infection such as modulation of microtubular dynamics, movement of virus in the cytoplasm, and nuclear delivery of viral DNA.
Collapse
Affiliation(s)
- Hari Raghu
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Megha, Sawatzki P, Kolter T, Bittman R, London E. Effect of ceramide N-acyl chain and polar headgroup structure on the properties of ordered lipid domains (lipid rafts). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2205-12. [PMID: 17574203 DOI: 10.1016/j.bbamem.2007.05.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 04/30/2007] [Accepted: 05/07/2007] [Indexed: 01/10/2023]
Abstract
Ceramides are sphingolipids that greatly stabilize ordered membrane domains (lipid rafts), and displace cholesterol from them. Ceramide-rich rafts have been implicated in diverse biological processes. Because ceramide analogues have been useful for probing the biological function of ceramide, and may have biomedical applications, it is important to characterize how ceramide structure affects membrane properties, including lipid raft stability and composition. In this report, fluorescence quenching assays were used to evaluate the effect of analogues of ceramide with different N-acyl chains or different sphingoid backbones on raft stability and sterol content. The effect of replacing 18 mol% of sphingomyelin (SM) with ceramide in vesicles composed of a 1:1 (mol:mol) mixture of SM and dioleoylphosphatidylcholine (DOPC), with or without 25 mol% sterol, was examined. In the absence of sterol, the thermal stability of the SM-rich ordered domains increased with ceramide N-acyl chain length in the order C2:0 approximately C6:0 approximately C8:0<no ceramide<C12:0<C16:0. In vesicles containing 25 mol% cholesterol (1:1:0.66 sphingolipid:DOPC:cholesterol), the dependence of raft stability on ceramide N-acyl chain length increased in the order C8:0 approximately C6:0<C2:0<C12:0 approximately no ceramide<C16:0. We also studied the stability of lipid rafts in the presence of N-lauroyl- and N-palmitoylsphingosine analogues containing altered structures in or near the polar portion of the sphingoid base. In almost all cases, the analogues stabilized rafts to about the same degree as a normal ceramide containing the same acyl chain. The only exception was N-palmitoyl-4D-ribophytosphingosine, which was very strongly raft-stabilizing. We conclude that variations in sphingoid base structure induce only insignificant changes in raft properties. N-Lauroyl and N-palmitoylsphingosine and their analogues displaced sterol from rafts to a significant degree. Both C12:0 and C16:0 analogues of ceramide may be good mimics of natural ceramide, and useful for cellular studies in which maintenance of the normal physical properties of ceramide are important.
Collapse
Affiliation(s)
- Megha
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | | | | | | |
Collapse
|
35
|
Wessels L, Elting MW, Scimeca D, Weninger K. Rapid membrane fusion of individual virus particles with supported lipid bilayers. Biophys J 2007; 93:526-38. [PMID: 17449662 PMCID: PMC1896232 DOI: 10.1529/biophysj.106.097485] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many enveloped viruses employ low-pH-triggered membrane fusion during cell penetration. Solution-based in vitro assays in which viruses fuse with liposomes have provided much of our current biochemical understanding of low-pH-triggered viral membrane fusion. Here, we extend this in vitro approach by introducing a fluorescence assay using single particle tracking to observe lipid mixing between individual virus particles (influenza or Sindbis) and supported lipid bilayers. Our single-particle experiments reproduce many of the observations of the solution assays. The single-particle approach naturally separates the processes of membrane binding and membrane fusion and therefore allows measurement of details that are not available in the bulk assays. We find that the dynamics of lipid mixing during individual Sindbis fusion events is faster than 30 ms. Although neither virus binds membranes at neutral pH, under acidic conditions, the delay between membrane binding and lipid mixing is less than half a second for nearly all virus-membrane combinations. The delay between binding and lipid mixing lengthened only for Sindbis virus at the lowest pH in a cholesterol-dependent manner, highlighting the complex interaction between lipids, virus proteins, and buffer conditions in membrane fusion.
Collapse
Affiliation(s)
- Laura Wessels
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | |
Collapse
|
36
|
Connolly SA, Lamb RA. Paramyxovirus fusion: real-time measurement of parainfluenza virus 5 virus-cell fusion. Virology 2006; 355:203-12. [PMID: 16916528 DOI: 10.1016/j.virol.2006.07.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 06/30/2006] [Accepted: 07/13/2006] [Indexed: 11/20/2022]
Abstract
Although cell-cell fusion assays are useful surrogate methods for studying virus fusion, differences between cell-cell and virus-cell fusion exist. To examine paramyxovirus fusion in real time, we labeled viruses with fluorescent lipid probes and monitored virus-cell fusion by fluorimetry. Two parainfluenza virus 5 (PIV5) isolates (W3A and SER) and PIV5 containing mutations within the fusion protein (F) were studied. Fusion was specific and temperature-dependent. Compared to many low pH-dependent viruses, the kinetics of PIV5 fusion was slow, approaching completion within several minutes. As predicted from cell-cell fusion assays, virus containing an F protein with an extended cytoplasmic tail (rSV5 F551) had reduced fusion compared to wild-type virus (W3A). In contrast, virus-cell fusion for SER occurred at near wild-type levels, despite the fact that this isolate exhibits a severely reduced cell-cell fusion phenotype. These results support the notion that virus-cell and cell-cell fusion have significant differences.
Collapse
Affiliation(s)
- Sarah A Connolly
- Howard Hughes Medical Institute, Northwestern University, Evanston, IL 60208-3500, USA
| | | |
Collapse
|
37
|
Ng CG, Griffin DE. Acid sphingomyelinase deficiency increases susceptibility to fatal alphavirus encephalomyelitis. J Virol 2006; 80:10989-99. [PMID: 16943298 PMCID: PMC1642146 DOI: 10.1128/jvi.01154-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Accepted: 08/23/2006] [Indexed: 01/31/2023] Open
Abstract
Sindbis virus (SV), an enveloped virus with a single-stranded, plus-sense RNA genome, is the prototype alphavirus in the Togaviridae family. In mice, SV infects neurons and can cause apoptosis of immature neurons. Sphingomyelin (SM) is the most prevalent cellular sphingolipid, is particularly abundant in the nervous systems of mammals, and is required for alphavirus fusion and entry. The level of SM is tightly regulated by sphingomyelinases. A defect in acid sphingomyelinase (ASMase) results in SM storage and subsequent intracellular accumulation of SM. To better understand the role of the SM pathway in SV pathogenesis, we have characterized SV infection of transgenic mice deficient in the ASMase gene. ASMase knockout (ASM-KO) mice were more susceptible to SV infection than wild-type (WT) or heterozygous (Het) animals. Titers of SV were higher in the brains of ASM-KO mice than in the brains of WT mice. More SV RNA was detected by in situ hybridization, more SV protein was detected by immunohistochemistry, and more terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling-positive cells were present in the cortex and hippocampus of ASM-KO mice than in those of WT or Het mice. Interleukin-6 (IL-6), but not IL-1beta or tumor necrosis factor alpha, was elevated in infected ASM-KO mice compared to levels in WT or Het mice, but studies with IL-6-KO mice and recombinant SV expressing IL-6 showed no role for IL-6 in fatal disease. Together these data indicate that the increase in susceptibility of ASM-KO mice to SV infection was the result of more-rapid replication and spread of SV in the nervous system and increased neuronal death.
Collapse
Affiliation(s)
- Ching G Ng
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
38
|
Abstract
Virus entry, assembly, and budding are important processes in the replication cycle of a virus. Viruses are dependent on host living cells for their replication. Viruses use the proliferative mechanism of host cells for replication of viral components. Lipid rafts, specific membrane microdomains play a critical role in virus replication because localizing and concentrating viral components in the microdomains for entry, assembly, and budding of various types of virus. In this review, we describe the involvement of membrane lipid rafts in the virus replication cycle with our current findings for understanding the role of membrane lipid rafts in virus infection.
Collapse
Affiliation(s)
- Takashi Suzuki
- COE Program in the 21st Century, Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan.
| | | |
Collapse
|
39
|
Tenchov BG, MacDonald RC, Siegel DP. Cubic phases in phosphatidylcholine-cholesterol mixtures: cholesterol as membrane "fusogen". Biophys J 2006; 91:2508-16. [PMID: 16829556 PMCID: PMC1562400 DOI: 10.1529/biophysj.106.083766] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
X-ray diffraction reveals that mixtures of some unsaturated phosphatidylcholines (PCs) with cholesterol (Chol) readily form inverted bicontinuous cubic phases that are stable under physiological conditions. This effect was studied in most detail for dioleoyl PC/Chol mixtures with molar ratios of 1:1 and 3:7. Facile formation of Im3m and Pn3m phases with lattice constants of 30-50 nm and 25-30 nm, respectively, took place in phosphate-buffered saline, in sucrose solution, and in water near the temperature of the Lalpha-HII transition of the mixtures, as well as during cooling of the HII phase. Once formed, the cubic phases displayed an ability to supercool and replace the initial Lalpha phase over a broad range of physiological temperatures. Conversion into stable cubic phases was also observed for mixtures of Chol with dilinoleoyl PC but not for mixtures with palmitoyl-linoleoyl PC or palmitoyl-oleoyl PC, for which only transient cubic traces were recorded at elevated temperatures. A saturated, branched-chain PC, diphytanoyl PC, also displayed a cubic phase in mixture with Chol. Unlike the PEs, the membrane PCs are intrinsically nonfusogenic lipids: in excess water they only form lamellar phases and not any of the inverted phases on their own. Thus, the finding that Chol induces cubic phases in mixtures with unsaturated PCs may have important implications for its role in fusion. In ternary mixtures, saturated PCs and sphingomyelin are known to separate into liquid-ordered domains along with Chol. Our results thus suggest that unsaturated PCs, which are excluded from these domains, could form fusogenic domains with Chol. Such a dual role of Chol may explain the seemingly paradoxical ability of cell membranes to simultaneously form rigid, low-curvature raft-like patches while still being able to undergo facile membrane fusion.
Collapse
Affiliation(s)
- Boris G Tenchov
- Northwestern University, Department of Biochemistry, Molecular Biology and Cell Biology, Evanston, Illinois 60208, USA.
| | | | | |
Collapse
|
40
|
Coste V, Breton M, Angelova MI, Puff N. How to extract selectively the lo-phase domains from large unilamellar vesicles with Triton X-100? Colloids Surf A Physicochem Eng Asp 2006. [DOI: 10.1016/j.colsurfa.2005.12.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Huang H, Li Y, Sadaoka T, Tang H, Yamamoto T, Yamanishi K, Mori Y. Human herpesvirus 6 envelope cholesterol is required for virus entry. J Gen Virol 2006; 87:277-285. [PMID: 16432012 DOI: 10.1099/vir.0.81551-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In this study, the role of cholesterol in the envelope of human herpesvirus 6 (HHV-6) was examined by using methyl-beta-cyclodextrin (MbetaCD) depletion. When cholesterol was removed from HHV-6 virions with MbetaCD, infectivity was abolished, but it could be rescued by the addition of exogenous cholesterol. HHV-6 binding was affected slightly by MbetaCD treatment. In contrast, envelope cholesterol depletion markedly affected HHV-6 infectivity and HHV-6-induced cell fusion. These results suggest that the cholesterol present in the HHV-6 envelope plays a prominent role in the fusion process and is a key component in viral entry.
Collapse
Affiliation(s)
- Honglan Huang
- Department of Microbiology, Osaka University, Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yongmei Li
- Department of Microbiology, Osaka University, Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tomohiko Sadaoka
- Laboratory of Virology and Vaccinology, Division of Biomedical Research, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Huanmin Tang
- Laboratory of Virology and Vaccinology, Division of Biomedical Research, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Takahito Yamamoto
- The Research Foundation for Microbial Diseases of Osaka University, 2-9-41 Yahata-Cho, Kanonji, Kagawa 768-0061, Japan
| | - Koichi Yamanishi
- Laboratory of Virology and Vaccinology, Division of Biomedical Research, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
- Department of Microbiology, Osaka University, Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yasuko Mori
- Laboratory of Virology and Vaccinology, Division of Biomedical Research, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
- Department of Microbiology, Osaka University, Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
42
|
Abstract
Enveloped animal viruses fuse their membrane with a host cell membrane, thus delivering the virus genetic material into the cytoplasm and initiating infection. This critical membrane fusion reaction is mediated by a virus transmembrane protein known as the fusion protein, which inserts its hydrophobic fusion peptide into the cell membrane and refolds to drive the fusion reaction. This review describes recent advances in our understanding of the structure and function of the class II fusion proteins of the alphaviruses and flaviviruses. Inhibition of the fusion protein refolding reaction confirms its importance in fusion and suggests new antiviral strategies for these medically important viruses.
Collapse
Affiliation(s)
- Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| |
Collapse
|
43
|
Tischler ND, Gonzalez A, Perez-Acle T, Rosemblatt M, Valenzuela PDT. Hantavirus Gc glycoprotein: evidence for a class II fusion protein. J Gen Virol 2006; 86:2937-2947. [PMID: 16227214 DOI: 10.1099/vir.0.81083-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Hantavirus cell entry is promoted by its envelope glycoproteins, Gn and Gc, through cell attachment and by fusion between viral and endosomal membranes at low pH. However, the role of Gn and Gc in receptor binding and cell fusion has not yet been defined. In this work, a sequence presenting characteristics similar to those of class II fusion peptides (FPs) of alphavirus E1 and flavivirus E proteins is identified within the hantavirus Gc glycoprotein. A three-dimensional comparative molecular model based on crystallographic data of tick-borne encephalitis virus E protein is proposed for the Andes virus (ANDV) Gc ectodomain, which supports a feasible class II fusion-protein fold. In vitro experimental evidence is provided for the binding activity of the ANDV FP candidate to artificial membranes, as demonstrated by fluorescence anisotropy assays. Taken together, these results support the hypothesis that the Gc glycoprotein of hantaviruses and of other members of the family Bunyaviridae directs the viral fusion activity and that it may be classified as a class II viral fusion protein.
Collapse
Affiliation(s)
- Nicole D Tischler
- Instituto Milenio MIFAB, Zañartu 1482, Santiago, Chile
- Fundación Ciencia para la Vida, Zañartu 1482, Santiago, Chile
| | - Angel Gonzalez
- Centro de Genómica y Bioinformática, Pontificia Universidad Católica, Zañartu 1482, Santiago, Chile
| | - Tomas Perez-Acle
- Centro de Genómica y Bioinformática, Pontificia Universidad Católica, Zañartu 1482, Santiago, Chile
| | - Mario Rosemblatt
- Universidad Andrés Bello, Zañartu 1482, Santiago, Chile
- Instituto Milenio MIFAB, Zañartu 1482, Santiago, Chile
- Fundación Ciencia para la Vida, Zañartu 1482, Santiago, Chile
| | - Pablo D T Valenzuela
- Fundación Ciencia para la Vida, Zañartu 1482, Santiago, Chile
- Centro de Genómica y Bioinformática, Pontificia Universidad Católica, Zañartu 1482, Santiago, Chile
- Instituto Milenio MIFAB, Zañartu 1482, Santiago, Chile
- Universidad Andrés Bello, Zañartu 1482, Santiago, Chile
| |
Collapse
|
44
|
Chapter 7 Lipid Vesicles—Development and Applications for Studding Membrane Heterogeneity and Interactions. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2006. [DOI: 10.1016/s1554-4516(06)05007-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
45
|
Piver E, Collin C, Diatta A, Vaudin P, Pagès JC. Cellular factors influencing Semliki Forest Virus vector biology. Gene Ther 2005; 12 Suppl 1:S111-7. [PMID: 16231043 DOI: 10.1038/sj.gt.3302625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Viral vectors are currently the best tools for gene delivery in a therapeutic setting, especially for in vivo use. Alphaviruses, a family of positive singlestranded RNA viruses, have been engineered to allow the formation of a highly efficient replicon. Using these replicons, it is possible to generate recombinant particles. Parental viruses and recombinant vectors share certain pathways while interacting with their target cells. In this review, we describe the consecutive events leading to transduction, and transgene expression, in view of the cellular factors that affect each individual step. Classical virology will benefit from the knowledge accumulated studying vectors, and such work will shed light on crosstalk between intruding viruses and their hosts. Ultimately, these data should help the design of vectors adapted to specific target cells.
Collapse
Affiliation(s)
- E Piver
- Université François Rabelais, The Vector Group, Faculté de Médecine Tours, France
| | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Akira Ono
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, National Institutes of Health, Maryland 21702, USA
| | | |
Collapse
|
47
|
Waarts BL, Smit JM, Aneke OJC, McInerney GM, Liljeström P, Bittman R, Wilschut J. Reversible acid-induced inactivation of the membrane fusion protein of Semliki Forest virus. J Virol 2005; 79:7942-8. [PMID: 15919953 PMCID: PMC1143635 DOI: 10.1128/jvi.79.12.7942-7948.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, it has been shown that the exposure of Semliki Forest virus (SFV) to a mildly acidic environment induces a rapid and complete loss of the ability of the virus to bind and fuse to target membranes added subsequently. In the present study, incubation of SFV at low pH followed by a specific reneutralization step resulted in a partial reversion of this loss of viral fusion capacity, as assessed in a liposomal model system. Also, the ability of the viral E1 fusion protein to undergo liposome-stimulated trimerization was restored. Furthermore, acid-treated and neutralized SFV largely retained infectivity. Exposure of SFV to low pH induced dissociation of the E1/E2 heterodimer, which was not reversed upon neutralization. It is concluded that the SFV E1 fusion protein, after acid-induced dissociation from E2, rapidly adopts an intermediate, nontrimeric conformation in which it is no longer able to interact with target membrane lipids. Neutralization restores the ability of E1 to interact with membranes. This interaction, however, remains strictly dependent on low pH.
Collapse
Affiliation(s)
- Barry-Lee Waarts
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
48
|
Zaitseva E, Mittal A, Griffin DE, Chernomordik LV. Class II fusion protein of alphaviruses drives membrane fusion through the same pathway as class I proteins. ACTA ACUST UNITED AC 2005; 169:167-77. [PMID: 15809312 PMCID: PMC2171914 DOI: 10.1083/jcb.200412059] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Viral fusion proteins of classes I and II differ radically in their initial structures but refold toward similar conformations upon activation. Do fusion pathways mediated by alphavirus E1 and influenza virus hemagglutinin (HA) that exemplify classes II and I differ to reflect the difference in their initial conformations, or concur to reflect the similarity in the final conformations? Here, we dissected the pathway of low pH–triggered E1-mediated cell–cell fusion by reducing the numbers of activated E1 proteins and by blocking different fusion stages with specific inhibitors. The discovered progression from transient hemifusion to small, and then expanding, fusion pores upon an increase in the number of activated fusion proteins parallels that established for HA-mediated fusion. We conclude that proteins as different as E1 and HA drive fusion through strikingly similar membrane intermediates, with the most energy-intensive stages following rather than preceding hemifusion. We propose that fusion reactions catalyzed by all proteins of both classes follow a similar pathway.
Collapse
Affiliation(s)
- Elena Zaitseva
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
49
|
Fanani ML, Topham MK, Walsh JP, Epand RM. Lipid modulation of the activity of diacylglycerol kinase alpha- and zeta-isoforms: activation by phosphatidylethanolamine and cholesterol. Biochemistry 2005; 43:14767-77. [PMID: 15544347 DOI: 10.1021/bi049145z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diacylglycerol kinase (DGK) isoforms alpha and zeta were extracted from transfected cells that overexpressed these enzymes. We determined the lipid dependence of the binding of these isoforms to liposomes. The modulation by lipid of the rate of phosphorylation of diacylglycerol by these enzymes was also measured. Incorporation of phosphatidylethanolamine into the liposomes resulted in an increased partitioning of both isoforms of DGK to the membrane as well as an increased catalytic rate. We demonstrate that the increased catalytic rate is a consequence of both increased portioning of the enzyme to the membrane and increased catalytic activity of the membrane-bound form. DGKalpha, a calcium-dependent isoform, can be activated in a calcium-independent fashion in the presence of phosphatidylethanolamine. Similar effects are observed with cholesterol. In contrast, sphingomyelin inhibits the activity of both isoforms of DGK. Our results demonstrate that the translocation to membranes and activity of DGKalpha and DGKzeta are modulated by the composition and properties of the membrane. The enzymes are activated by the presence of lipids that promote the formation of inverted phases. However, the promotion of negative curvature is not the sole factor contributing to the lipid effects on enzyme binding and activity. A truncated form of DGKalphalacking both the E-F hand and the recoverin homology domain is constitutively active and is not further activated by any of the lipids tested or by calcium. However, a truncated form lacking only the recoverin homology domain is partially activated by either calcium or certain lipids.
Collapse
Affiliation(s)
- Maria Laura Fanani
- Department of Biochemistry and Biomedical Sciences, McMaster University Health Science Center, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | |
Collapse
|
50
|
Abstract
Every enveloped virus fuses its membrane with a host cell membrane, thereby releasing its genome into the cytoplasm and initiating the viral replication cycle. In each case, one or a small set of viral surface transmembrane glycoproteins mediates fusion. Viral fusion proteins vary in their mode of activation and in structural class. These features combine to yield many different fusion mechanisms. Despite their differences, common principles for how fusion proteins function are emerging: In response to an activating trigger, the metastable fusion protein converts to an extended, in some cases rodlike structure, which inserts into the target membrane via its fusion peptide. A subsequent conformational change causes the fusion protein to fold back upon itself, thereby bringing its fusion peptide and its transmembrane domain-and their attached target and viral membranes-into intimate contact. Fusion ensues as the initial lipid stalk progresses through local hemifusion, and then opening and enlargement of a fusion pore. Here we review recent advances in our understanding of how fusion proteins are activated, how fusion proteins change conformation during fusion, and what is happening to the lipids during fusion. We also briefly discuss the therapeutic potential of fusion inhibitors in treating viral infections.
Collapse
Affiliation(s)
- Mark Marsh
- Cell Biology Unit, MRC-LMCB, University College London, Gower Street, London, WC1E 6BT UK
| |
Collapse
|