1
|
Ragagnin AMG, Sundaramoorthy V, Farzana F, Gautam S, Saravanabavan S, Takalloo Z, Mehta P, Do-Ha D, Parakh S, Shadfar S, Hunter J, Vidal M, Jagaraj CJ, Brocardo M, Konopka A, Yang S, Rayner SL, Williams KL, Blair IP, Chung RS, Lee A, Ooi L, Atkin JD. ALS/FTD-associated mutation in cyclin F inhibits ER-Golgi trafficking, inducing ER stress, ERAD and Golgi fragmentation. Sci Rep 2023; 13:20467. [PMID: 37993492 PMCID: PMC10665471 DOI: 10.1038/s41598-023-46802-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/05/2023] [Indexed: 11/24/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severely debilitating neurodegenerative condition that is part of the same disease spectrum as frontotemporal dementia (FTD). Mutations in the CCNF gene, encoding cyclin F, are present in both sporadic and familial ALS and FTD. However, the pathophysiological mechanisms underlying neurodegeneration remain unclear. Proper functioning of the endoplasmic reticulum (ER) and Golgi apparatus compartments is essential for normal physiological activities and to maintain cellular viability. Here, we demonstrate that ALS/FTD-associated variant cyclin FS621G inhibits secretory protein transport from the ER to Golgi apparatus, by a mechanism involving dysregulation of COPII vesicles at ER exit sites. Consistent with this finding, cyclin FS621G also induces fragmentation of the Golgi apparatus and activates ER stress, ER-associated degradation, and apoptosis. Induction of Golgi fragmentation and ER stress were confirmed with a second ALS/FTD variant cyclin FS195R, and in cortical primary neurons. Hence, this study provides novel insights into pathogenic mechanisms associated with ALS/FTD-variant cyclin F, involving perturbations to both secretory protein trafficking and ER-Golgi homeostasis.
Collapse
Affiliation(s)
- Audrey M G Ragagnin
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Vinod Sundaramoorthy
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Fabiha Farzana
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shashi Gautam
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sayanthooran Saravanabavan
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Zeinab Takalloo
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Prachi Mehta
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Dzung Do-Ha
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Sonam Parakh
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sina Shadfar
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Julie Hunter
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Marta Vidal
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Cyril J Jagaraj
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Mariana Brocardo
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Anna Konopka
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shu Yang
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Stephanie L Rayner
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Kelly L Williams
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ian P Blair
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Roger S Chung
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Albert Lee
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Lezanne Ooi
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Julie D Atkin
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
2
|
Chung KP, Zeng Y, Li Y, Ji C, Xia Y, Jiang L. Signal motif-dependent ER export of the Qc-SNARE BET12 interacts with MEMB12 and affects PR1 trafficking in Arabidopsis. J Cell Sci 2018; 131:jcs.202838. [PMID: 28546447 DOI: 10.1242/jcs.202838] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/23/2017] [Indexed: 12/27/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) are well-known for their role in controlling membrane fusion, the final, but crucial step, in vesicular transport in eukaryotes. SNARE proteins contribute to various biological processes including pathogen defense and channel activity regulation, as well as plant growth and development. Precise targeting of SNARE proteins to destined compartments is a prerequisite for their proper functioning. However, the underlying mechanism(s) for SNARE targeting in plants remains obscure. Here, we investigate the targeting mechanism of the Arabidopsis thaliana Qc-SNARE BET12, which is involved in protein trafficking in the early secretory pathway. Two distinct signal motifs that are required for efficient BET12 ER export were identified. Pulldown assays and in vivo imaging implicated that both the COPI and COPII pathways were required for BET12 targeting. Further studies using an ER-export-defective form of BET12 revealed that the Golgi-localized Qb-SNARE MEMB12, a negative regulator of pathogenesis-related protein 1 (PR1; At2g14610) secretion, was its interacting partner. Ectopic expression of BET12 caused no inhibition in the general ER-Golgi anterograde transport but caused intracellular accumulation of PR1, suggesting that BET12 has a regulatory role in PR1 trafficking in A. thaliana.
Collapse
Affiliation(s)
- Kin Pan Chung
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yimin Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Changyang Ji
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China .,The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
3
|
Padgett LR, Arrizabalaga G, Sullivan WJ. Targeting of tail-anchored membrane proteins to subcellular organelles in Toxoplasma gondii. Traffic 2017; 18:149-158. [PMID: 27991712 DOI: 10.1111/tra.12464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022]
Abstract
Proper protein localization is essential for critical cellular processes, including vesicle-mediated transport and protein translocation. Tail-anchored (TA) proteins are integrated into organellar membranes via the C-terminus, orienting the N-terminus towards the cytosol. Localization of TA proteins occurs posttranslationally and is governed by the C-terminus, which contains the integral transmembrane domain (TMD) and targeting sequence. Targeting of TA proteins is dependent on the hydrophobicity of the TMD as well as the length and composition of flanking amino acid sequences. We previously identified an unusual homologue of elongator protein, Elp3, in the apicomplexan parasite Toxoplasma gondii as a TA protein targeting the outer mitochondrial membrane. We sought to gain further insight into TA proteins and their targeting mechanisms using this early-branching eukaryote as a model. Our bioinformatics analysis uncovered 59 predicted TA proteins in Toxoplasma, 9 of which were selected for follow-up analyses based on representative features. We identified novel TA proteins that traffic to specific organelles in Toxoplasma, including the parasite endoplasmic reticulum, mitochondrion, and Golgi apparatus. Domain swap experiments elucidated that targeting of TA proteins to these specific organelles was strongly influenced by the TMD sequence, including charge of the flanking C-terminal sequence.
Collapse
Affiliation(s)
- Leah R Padgett
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gustavo Arrizabalaga
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - William J Sullivan
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
4
|
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) and Sec1/Munc18 (SM) proteins constitute the core of an ancient vesicle fusion machine that diversified into distinct sets that now function in different trafficking steps in eukaryotic cells. Deciphering their precise mode of action has proved challenging. SM proteins are thought to act primarily through one type of SNARE protein, the syntaxins. Despite high structural similarity, however, contrasting binding modes have been found for different SM proteins and syntaxins. Whereas the secretory SM protein Munc18 binds to the ‟closed conformation" of syntaxin 1, the ER-Golgi SM protein Sly1 interacts only with the N-peptide of Sed5. Recent findings, however, indicate that SM proteins might interact simultaneously with both syntaxin regions. In search for a common mechanism, we now reinvestigated the Sly1/Sed5 interaction. We found that individual Sed5 adopts a tight closed conformation. Sly1 binds to both the closed conformation and the N-peptide of Sed5, suggesting that this is the original binding mode of SM proteins and syntaxins. In contrast to Munc18, however, Sly1 facilitates SNARE complex formation by loosening the closed conformation of Sed5.
Collapse
|
5
|
Abstract
Protein traffic is necessary to maintain homeostasis in all eukaryotic organisms. All newly synthesized secretory proteins destined to the secretory and endolysosmal systems are transported from the endoplasmic reticulum to the Golgi before delivery to their final destinations. Here, we describe the COPII and COPI coating machineries that generate carrier vesicles and the tethers and SNAREs that mediate COPII and COPI vesicle fusion at the ER-Golgi interface.
Collapse
Affiliation(s)
- Tomasz Szul
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
6
|
Thayanidhi N, Helm JR, Nycz DC, Bentley M, Liang Y, Hay JC. Alpha-synuclein delays endoplasmic reticulum (ER)-to-Golgi transport in mammalian cells by antagonizing ER/Golgi SNAREs. Mol Biol Cell 2010; 21:1850-63. [PMID: 20392839 PMCID: PMC2877643 DOI: 10.1091/mbc.e09-09-0801] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This work demonstrates that α-synuclein inhibits the biosynthetic secretory pathway of mammalian cells potently and directly under nontoxic conditions and in the absence of insoluble α-synuclein aggregates. A potential mechanism involving α-synuclein binding to ER/Golgi SNAREs and inhibiting fusogenic SNARE complex assembly is elucidated. Toxicity of human α-synuclein when expressed in simple organisms can be suppressed by overexpression of endoplasmic reticulum (ER)-to-Golgi transport machinery, suggesting that inhibition of constitutive secretion represents a fundamental cause of the toxicity. Whether similar inhibition in mammals represents a cause of familial Parkinson's disease has not been established. We tested elements of this hypothesis by expressing human α-synuclein in mammalian kidney and neuroendocrine cells and assessing ER-to-Golgi transport. Overexpression of wild type or the familial disease-associated A53T mutant α-synuclein delayed transport by up to 50%; however, A53T inhibited more potently. The secretory delay occurred at low expression levels and was not accompanied by insoluble α-synuclein aggregates or mistargeting of transport machinery, suggesting a direct action of soluble α-synuclein on trafficking proteins. Co-overexpression of ER/Golgi arginine soluble N-ethylmaleimide-sensitive factor attachment protein receptors (R-SNAREs) specifically rescued transport, indicating that α-synuclein antagonizes SNARE function. Ykt6 reversed α-synuclein inhibition much more effectively than sec22b, suggesting a possible neuroprotective role for the enigmatic high expression of ykt6 in neurons. In in vitro reconstitutions, purified α-synuclein A53T protein specifically inhibited COPII vesicle docking and fusion at a pre-Golgi step. Finally, soluble α-synuclein A53T directly bound ER/Golgi SNAREs and inhibited SNARE complex assembly, providing a potential mechanism for toxic effects in the early secretory pathway.
Collapse
|
7
|
Murray HM, Lall SP, Rajaselvam R, Boutilier LA, Flight RM, Blanchard B, Colombo S, Mohindra V, Yúfera M, Douglas SE. Effect of early introduction of microencapsulated diet to larval Atlantic halibut, Hippoglossus hippoglossus L. assessed by microarray analysis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:214-229. [PMID: 19618242 DOI: 10.1007/s10126-009-9211-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 05/06/2009] [Indexed: 05/28/2023]
Abstract
An experimental microdiet prepared using an internal gelation method was used to partially replace the traditional live feed (Artemia) for larval Atlantic halibut, Hippoglossus hippoglossus L. Three trials were conducted with microdiet introduced at 20, 32, and 43 days post first feeding and larvae were sampled at approximately 2, 13, 23, and 33 days after microdiet introduction in each trial. The success of feeding was assessed by morphometrics and histological analysis of gut contents. Microdiet particles were readily consumed after a period of adaptation and provided an adequate source of nutrients with no significant increase in mortality in the microdiet-fed group compared to the control group. However, growth was limited and there was an increased incidence of malpigmentation of the eye and skin. Subtle changes in underlying digestive and developmental physiology were revealed by microarray analysis of RNA from control and experimental fish given microdiet from day 20 post first feeding. Fifty-eight genes were differentially expressed over the four sampling times in the course of the trial and the 28 genes with annotated functions fell into five major categories: metabolism and biosynthesis, cell division and proliferation, protein trafficking, cell structure, and stress. Interestingly, several of these genes were involved in pigmentation and eye development, in agreement with the phenotypic abnormalities seen in the larvae.
Collapse
Affiliation(s)
- H M Murray
- Institute for Marine Biosciences, 1411 Oxford Street, Halifax, Nova Scotia, Canada, B3H 3Z1
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Siddiqi S, Saleem U, Abumrad NA, Davidson NO, Storch J, Siddiqi SA, Mansbach CM. A novel multiprotein complex is required to generate the prechylomicron transport vesicle from intestinal ER. J Lipid Res 2010; 51:1918-28. [PMID: 20237389 DOI: 10.1194/jlr.m005611] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dietary lipid absorption is dependent on chylomicron production whose rate-limiting step across the intestinal absorptive cell is the exit of chylomicrons from the endoplasmic reticulum (ER) in its ER-to-Golgi transport vesicle, the prechylomicron transport vesicle (PCTV). This study addresses the composition of the budding complex for PCTV. Immunoprecipitation (IP) studies from rat intestinal ER solubilized in Triton X-100 suggested that vesicle-associated membrane protein 7 (VAMP7), apolipoprotein B48 (apoB48), liver fatty acid-binding protein (L-FABP), CD36, and the COPII proteins were associated on incubation of the ER with cytosol and ATP. This association was confirmed by chromatography of the solubilized ER over Sephacryl S400-HR in which these constituents cochromatographed with an apparent kDa of 630. No multiprotein complex was detected when the ER was chromatographed in the absence of PCTV budding activity (resting ER or PKCzeta depletion of ER and cytosol). Treatment of the ER with anti-apoB48 or anti-VAMP7 antibodies or using gene disrupted L-FABP or CD36 mice all significantly inhibited PCTV generation. A smaller complex (no COPII proteins) was formed when only rL-FABP was used to bud PCTV. The data support the conclusion that the PCTV budding complex in intestinal ER is composed of VAMP7, apoB48, CD36, and L-FABP, plus the COPII proteins.
Collapse
Affiliation(s)
- Shahzad Siddiqi
- Division of Gastroenterology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Bentley M, Nycz DC, Joglekar A, Fertschai I, Malli R, Graier WF, Hay JC. Vesicular calcium regulates coat retention, fusogenicity, and size of pre-Golgi intermediates. Mol Biol Cell 2010; 21:1033-46. [PMID: 20089833 PMCID: PMC2836956 DOI: 10.1091/mbc.e09-10-0914] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study establishes a role for luminal Ca2+ in ER/Golgi transport organelles and elucidates an effector mechanism involving the EF-hand protein ALG-2 and regulation of COPII coat retention. The significance and extent of Ca2+ regulation of the biosynthetic secretory pathway have been difficult to establish, and our knowledge of regulatory relationships integrating Ca2+ with vesicle coats and function is rudimentary. Here, we investigated potential roles and mechanisms of luminal Ca2+ in the early secretory pathway. Specific depletion of luminal Ca2+ in living normal rat kidney cells using cyclopiazonic acid (CPA) resulted in the extreme expansion of vesicular tubular cluster (VTC) elements. Consistent with this, a suppressive role for vesicle-associated Ca2+ in COPII vesicle homotypic fusion was demonstrated in vitro using Ca2+ chelators. The EF-hand–containing protein apoptosis-linked gene 2 (ALG-2), previously implicated in the stabilization of sec31 at endoplasmic reticulum exit sites, inhibited COPII vesicle fusion in a Ca2+-requiring manner, suggesting that ALG-2 may be a sensor for the effects of vesicular Ca2+ on homotypic fusion. Immunoisolation established that Ca2+ chelation inhibits and ALG-2 specifically favors residual retention of the COPII outer shell protein sec31 on pre-Golgi fusion intermediates. We conclude that vesicle-associated Ca2+, acting through ALG-2, favors the retention of residual coat molecules that seem to suppress membrane fusion. We propose that in cells, these Ca2+-dependent mechanisms temporally regulate COPII vesicle interactions, VTC biogenesis, cargo sorting, and VTC maturation.
Collapse
Affiliation(s)
- Marvin Bentley
- Division of Biological Sciences and Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812-4824, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Melser S, Wattelet-Boyer V, Brandizzi F, Moreau P. Blocking ER export of the Golgi SNARE SYP31 affects plant growth. PLANT SIGNALING & BEHAVIOR 2009; 4:962-4. [PMID: 19826222 PMCID: PMC2801362 DOI: 10.4161/psb.4.10.9643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We recently identified a novel and transplantable di-acidic motif (EXXD) that facilitates ER export of the Golgi syntaxin SYP31 (type IV protein) and which may function also for type I and type II proteins in plants. By mutagenesis of Arabidopsis thaliana SYP31 and live cell imaging experiments in tobacco leaf epidermal cells, we determined that replacing the MELAD sequence of SYP31 with gagag retained SYP31 in the ER, which demonstrates that the di-acidic motif ELAD is critical for SYP31 ER export. To investigate whether blockage of a Golgi SNARE in the ER have consequences for plant growth, we produced tobacco plants stably overexpressing either the wild type MELAD or the mutant gagag form of SYP31. Whereas tobacco plants overexpressing the wild-type SYP31 developed to set seed, tobacco plants overexpressing the mutant form gagag rapidly became chlorotic, ceased their growth and invariably died after several weeks. This indicated that retention of overexpressed SYP31 in the ER is likely toxic for the secretory pathway and, therefore, plant development. Putative explanations for this observation are discussed taking into account SNARE properties and possible interactions.
Collapse
Affiliation(s)
- Su Melser
- University of Bordeaux 2; Membrane Biogenesis Laboratory; CNRS UMR 5200; Bordeaux, France
| | - Valérie Wattelet-Boyer
- University of Bordeaux 2; Membrane Biogenesis Laboratory; CNRS UMR 5200; Bordeaux, France
| | - Federica Brandizzi
- Michigan State University-DOE Plant Research Laboratory; Michigan State University; East Lansing, MI USA
| | - Patrick Moreau
- University of Bordeaux 2; Membrane Biogenesis Laboratory; CNRS UMR 5200; Bordeaux, France
| |
Collapse
|
11
|
Chatre L, Wattelet-Boyer V, Melser S, Maneta-Peyret L, Brandizzi F, Moreau P. A novel di-acidic motif facilitates ER export of the syntaxin SYP31. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3157-65. [PMID: 19516076 PMCID: PMC2718219 DOI: 10.1093/jxb/erp155] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 03/16/2009] [Accepted: 04/16/2009] [Indexed: 05/18/2023]
Abstract
It is generally accepted that ER protein export is largely influenced by the transmembrane domain (TMD). The situation is unclear for membrane-anchored proteins such as SNAREs, which are anchored to the membrane by their TMD at the C-terminus. For example, in plants, Sec22 and SYP31 (a yeast Sed5 homologue) have a 17 aa TMD but different locations (ER/Golgi and Golgi), indicating that TMD length alone is not sufficient to explain their targeting. To establish the identity of factors that influence SNARE targeting, mutagenesis and live cell imaging experiments were performed on SYP31. It was found that deletion of the entire N-terminus domain of SYP31 blocked the protein in the ER. Several deletion mutants of different parts of this N-terminus domain indicated that a region between the SNARE helices Hb and Hc is required for Golgi targeting. In this region, replacement of the aa sequence MELAD by GAGAG or MALAG retained the protein in the ER, suggesting that MELAD may function as a di-acidic ER export motif EXXD. This suggestion was further verified by replacing the established di-acidic ER export motif DLE of a type II Golgi protein AtCASP and a membrane-anchored type I chimaera, TMcCCASP, by MELAD or GAGAG. The MELAD motif allowed the proteins to reach the Golgi, whereas the motif GAGAG was found to be insufficient to facilitate ER protein export. Our analyses indicate that we have identified a novel and transplantable di-acidic motif that facilitates ER export of SYP31 and may function for type I and type II proteins in plants.
Collapse
Affiliation(s)
- Laurent Chatre
- University of Bordeaux 2, Membrane Biogenesis Laboratory, CNRS UMR 5200, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - Valérie Wattelet-Boyer
- University of Bordeaux 2, Membrane Biogenesis Laboratory, CNRS UMR 5200, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Su Melser
- University of Bordeaux 2, Membrane Biogenesis Laboratory, CNRS UMR 5200, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Lilly Maneta-Peyret
- University of Bordeaux 2, Membrane Biogenesis Laboratory, CNRS UMR 5200, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Federica Brandizzi
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
- Michigan State University-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Patrick Moreau
- University of Bordeaux 2, Membrane Biogenesis Laboratory, CNRS UMR 5200, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
- Imaging platform of the IFR 103, INRA-Bordeaux, France
| |
Collapse
|
12
|
Members of a mammalian SNARE complex interact in the endoplasmic reticulum in vivo and are found in COPI vesicles. Eur J Cell Biol 2008; 87:863-78. [DOI: 10.1016/j.ejcb.2008.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 06/19/2008] [Accepted: 07/03/2008] [Indexed: 11/18/2022] Open
|
13
|
Affiliation(s)
- James A McNew
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street MS-140, Houston, Texas 77251-1892, USA.
| |
Collapse
|
14
|
Bentley M, Liang Y, Mullen K, Xu D, Sztul E, Hay JC. SNARE status regulates tether recruitment and function in homotypic COPII vesicle fusion. J Biol Chem 2006; 281:38825-33. [PMID: 17038314 DOI: 10.1074/jbc.m606044200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammals, coat complex II (COPII)-coated transport vesicles deliver secretory cargo to vesicular tubular clusters (VTCs) that facilitate cargo sorting and transport to the Golgi. We documented in vitro tethering and SNARE-dependent homotypic fusion of endoplasmic reticulum-derived COPII transport vesicles to form larger cargo containers characteristic of VTCs ( Xu, D., and Hay, J. C. (2004) J. Cell Biol. 167, 997-1003). COPII vesicles thus appear to contain all necessary components for homotypic tethering and fusion, providing a pathway for de novo VTC biogenesis. Here we demonstrate that antibodies against the endoplasmic reticulum/Golgi SNARE Syntaxin 5 inhibit COPII vesicle homotypic tethering as well as fusion, implying an unanticipated role for SNAREs upstream of fusion. Inhibition of SNARE complex access and/or disassembly with dominant-negative alpha-soluble NSF attachment protein (SNAP) also inhibited tethering, implicating SNARE status as a critical determinant in COPII vesicle tethering. The tethering-defective vesicles generated in the presence of dominant-negative alpha-SNAP specifically lacked the Rab1 effectors p115 and GM130 but not other peripheral membrane proteins. Furthermore, Rab effectors, including p115, were shown to be required for homotypic COPII vesicle tethering. Thus, our results demonstrate a requirement for SNARE-dependent tether recruitment and function in COPII vesicle fusion. We anticipate that recruitment of tether molecules by an upstream SNARE signal ensures that tethering events are initiated only at focal sites containing appropriately poised fusion machinery.
Collapse
Affiliation(s)
- Marvin Bentley
- Division of Biological Sciences, University of Montana, Missoula, MT 59812-4824, USA
| | | | | | | | | | | |
Collapse
|
15
|
Lerner M, Lemke D, Bertram H, Schillers H, Oberleithner H, Caplan MJ, Reinhardt J. An extracellular loop of the human non-gastric H,K-ATPase alpha-subunit is involved in apical plasma membrane polarization. Cell Physiol Biochem 2006; 18:75-84. [PMID: 16914892 DOI: 10.1159/000095169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The human non-gastric H,K-ATPase, ATP1AL1, belongs to the gene family of P-type ATPases. Consistent with their physiological roles in ion transport, members of this group, including the Na,KATPase and the gastric and non-gastric H,K-ATPases, are differentially polarized to either the basolateral or apical plasma membrane in epithelial cells. However, their polarized distribution is highly complex and depends on specific sorting signals or motifs which are recognized by the subcellular targeting machinery. For the gastric H,K-ATPase it has been suggested that the 4(th) transmembrane spanning domain (TM4) and its flanking regions induce conformational sorting motifs which direct the ion pump exclusively to the epithelial apical membrane. Here, we show in transfected Madin-Darby canine kidney (MDCK) cells that the related non-gastric H,KATPase, ATP1AL1, does contain similar sorting motifs in close proximity to TM4. A short extracellular loop between TM3 and TM4 is critical for this pump's apical delivery. A single point mutation in the corresponding region redirects ATP1AL1 to the basolateral membrane. In conclusion, our work provides further evidence that the cellular distribution of P-type ATPases is determined by conformational sorting motifs.
Collapse
|
16
|
Siddiqi SA, Siddiqi S, Mahan J, Peggs K, Gorelick FS, Mansbach CM. The identification of a novel endoplasmic reticulum to Golgi SNARE complex used by the prechylomicron transport vesicle. J Biol Chem 2006; 281:20974-20982. [PMID: 16735505 PMCID: PMC2833420 DOI: 10.1074/jbc.m601401200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dietary long chain fatty acids are absorbed in the intestine, esterified to triacylglycerol, and packaged in the unique lipoprotein of the intestine, the chylomicron. The rate-limiting step in the transit of chylomicrons through the enterocyte is the exit of chylomicrons from the endoplasmic reticulum in prechylomicron transport vesicles (PCTV) that transport chylomicrons to the cis-Golgi. Because chylomicrons are 250 nm in average diameter and lipid absorption is intermittent, we postulated that a unique SNARE pairing would be utilized to fuse PCTV with their target membrane, cis-Golgi. PCTV loaded with [(3)H]triacylglycerol were incubated with cis-Golgi and were separated from the Golgi by a sucrose step gradient. PCTV-chylomicrons acquire apolipoprotein-AI (apoAI) only after fusion with the Golgi. PCTV became isodense with Golgi upon incubation and were considered fused when their cargo chylomicrons acquired apoAI but docked when they did not. PCTV, docked with cis-Golgi, were solubilized in 2% Triton X-100, and proteins were immunoprecipitated using VAMP7 or rBet1 antibodies. In both cases, a 112-kDa complex was identified in nonboiled samples that dissociated upon boiling. The constituents of the complex were VAMP7, syntaxin 5, vti1a, and rBet1. Antibodies to each SNARE component significantly inhibited fusion of PCTV with cis-Golgi. Membrin, Sec22b, and Ykt6 were not found in the 112-kDa complex. We conclude that the PCTV-cis-Golgi SNARE complex is composed of VAMP7, syntaxin 5, Bet1, and vti1a.
Collapse
Affiliation(s)
- Shadab A Siddiqi
- Division of Gastroenterology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Shahzad Siddiqi
- Division of Gastroenterology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - James Mahan
- Veterans Affairs Medical Center, Memphis, Tennessee 38104
| | - Kiffany Peggs
- Division of Gastroenterology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Fred S Gorelick
- Department of Medicine, Veterans Affairs Healthcare, New Haven, Connecticut 06516; Yale University School of Medicine, New Haven, Connecticut 06516
| | - Charles M Mansbach
- Division of Gastroenterology, University of Tennessee Health Science Center, Memphis, Tennessee 38163; Veterans Affairs Medical Center, Memphis, Tennessee 38104.
| |
Collapse
|
17
|
Di Sansebastiano GP, Gigante M, De Domenico S, Piro G, Dalessandro G. Sorting of GFP Tagged NtSyr1, an ABA Related Syntaxin. PLANT SIGNALING & BEHAVIOR 2006; 1:77-85. [PMID: 19521480 PMCID: PMC2633883 DOI: 10.4161/psb.1.2.2621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 02/22/2006] [Indexed: 05/02/2023]
Abstract
Exocytosis molecular mechanisms in plant cells are not fully understood. The full characterization of molecular determinants, such as SNAREs, for the specificity in vesicles delivery to the plasma membrane should shed some light on these mechanisms. Nicotiana tabacum Syntaxin 1 (NtSyr1 or SYP121) is a SNARE protein required for ABA control of ion channels and appears involved in the exocytosis of exogenous markers.NtSyr1 is mainly localized on the plasma membrane, but when over expressed the protein also appears on endomembranes. Since NtSyr1 is a tail-anchored protein inserted into the target membrane post-translationally, it is not clear whether its initial anchoring site is the ER or the plasma membrane.In this study, we investigated the sorting events of NtSyr1 in vivo using its full-length cDNA or its C-terminal domain, fused to a GFP tag and transiently expressed in protoplasts or in the leaves of Nicotiana tabacum cv. SR1. Five chimeras were produced of which two were useful to investigate the protein sorting within the endomembrane system. One (GFP-H3M) had a dominant negative effect on exocytosis; the other one (SP1-GFP) resulted in a slow targeting to the same localization of the full-length chimera (GFP-SP1). The insertion of signal peptides on SP1-GFP further characterized the insertion site for this protein. Our data indicates that NtSyr1 is firstly anchored on ER membrane and then sorted to plasma membrane.
Collapse
|
18
|
Joglekar AP, Hay JC. Evidence for regulation of ER/Golgi SNARE complex formation by hsc70 chaperones. Eur J Cell Biol 2005; 84:529-42. [PMID: 16003907 DOI: 10.1016/j.ejcb.2004.12.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SNARE proteins control intracellular membrane fusion through formation of membrane-bridging helix bundles of amphipathic SNARE motifs. Repetitive cycles of membrane fusion likely involve repetitive folding/unfolding of the SNARE motif helical structure. Despite these conformational demands, little is known about conformational regulation of SNAREs by other proteins. Here we demonstrate that hsc70 chaperones stimulate in vitro SNARE complex formation among the ER/Golgi SNAREs syntaxin 5, membrin, rbetl and sec22b, under conditions in which assembly is normally inhibited. Thus, molecular chaperones can render the SNARE motif more competent for assembly. Partially purified hsc70 fractions from brain cytosol had higher specific activities than fully purified hsc70, suggesting the involvement of unidentified cofactors. Using chemical crosslinking of cells followed by immunoprecipitation, we found that hsc70 was associated with ER/Golgi SNAREs in vivo. Consistent with a modulatory role for hsc70 in transport, we found that excess hsc70 specifically inhibited ER-to-Golgi transport in permeabilized cells.
Collapse
Affiliation(s)
- Ashwini P Joglekar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
19
|
Cosson P, Ravazzola M, Varlamov O, Söllner TH, Di Liberto M, Volchuk A, Rothman JE, Orci L. Dynamic transport of SNARE proteins in the Golgi apparatus. Proc Natl Acad Sci U S A 2005; 102:14647-52. [PMID: 16199514 PMCID: PMC1253604 DOI: 10.1073/pnas.0507394102] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Localization of a membrane protein in a subcellular compartment can be achieved by its retention in the compartment or by its continuous transport toward this compartment. Previous results have suggested that specific enzymes are localized in the Golgi apparatus at least in part by selective retention and exclusion from transport vesicles. However, the function of some Golgi SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins is not compatible with their exclusion from transport vesicles. To help understand the mechanism accounting for the localization of SNARE proteins in the Golgi apparatus, we analyzed their lateral distribution in the Golgi cisternae and their incorporation into transport vesicles. According to our results, all SNARE proteins are efficiently incorporated into transport vesicles, indicating that the localization of SNARE proteins in the Golgi apparatus is not based on a static retention mechanism. Detailed analysis suggested that incorporation into transport vesicles was more efficient for SNARE proteins restricted to the cis face of the Golgi as compared with SNAREs present at the trans face. Furthermore, overexpression of a cis-Golgi SNARE protein altered concomitantly its incorporation in transport vesicles and its intra-Golgi localization. These observations suggest that, contrary to resident Golgi enzymes, SNARE proteins are localized in the Golgi apparatus as the result of a dynamic transport equilibrium.
Collapse
Affiliation(s)
- Pierre Cosson
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Niihama M, Uemura T, Saito C, Nakano A, Sato MH, Tasaka M, Morita MT. Conversion of Functional Specificity in Qb-SNARE VTI1 Homologues of Arabidopsis. Curr Biol 2005; 15:555-60. [PMID: 15797025 DOI: 10.1016/j.cub.2005.02.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 01/19/2005] [Accepted: 01/20/2005] [Indexed: 11/26/2022]
Abstract
In higher multicellular eukaryotes, highly specialized membrane structures or membrane trafficking events are required for supporting various physiological functions. SNAREs (soluble NSF attachment protein receptors) play an important role in specific membrane fusions. These protein receptors are assigned to subgroubs (Qa-, Qb-, Qc-, and R-SNARE) according to their specific SNARE structural motif. A specific set of Qa-, Qb-, and Qc-SNAREs, located on the target membrane, interact with R-SNARE on the vesicle to form a tight complex, leading to membrane fusion. The zig-1 mutant of Arabidopsis lacking Qb-SNARE VTI11 shows little shoot gravitropism and abnormal stem morphology. VTI11 and its homolog VTI12 exhibit partially overlapping but distinct intracellular localization and have different biological functions in plants. Little is known about how SNAREs are targeted to specific organelles, even though their functions and specific localization are closely linked. Here, we report that a novel mutation in VTI12 (zip1) was found as a dominant suppressor of zig-1. The zip1 mutation gave VTI12 the ability to function as VTI11 by changing both the specificity of SNARE complex formation and its intracellular localization. One amino acid substitution drastically altered VTI12, allowing it to suppress abnormalities of higher order physiological functions such as gravitropism and morphology. The zip1 mutation may be an indication of the flexibility in plant cell function afforded by gene duplication, particularly among the VTI11 genes and their recently diverged orthologs.
Collapse
Affiliation(s)
- Mitsuru Niihama
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Xu D, Hay JC. Reconstitution of COPII vesicle fusion to generate a pre-Golgi intermediate compartment. ACTA ACUST UNITED AC 2005; 167:997-1003. [PMID: 15611329 PMCID: PMC2172600 DOI: 10.1083/jcb.200408135] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
What is the first membrane fusion step in the secretory pathway? In mammals, transport vesicles coated with coat complex (COP) II deliver secretory cargo to vesicular tubular clusters (VTCs) that ferry cargo from endoplasmic reticulum exit sites to the Golgi stack. However, the precise origin of VTCs and the membrane fusion step(s) involved have remained experimentally intractable. Here, we document in vitro direct tethering and SNARE-dependent fusion of endoplasmic reticulum–derived COPII transport vesicles to form larger cargo containers. The assembly did not require detectable Golgi membranes, preexisting VTCs, or COPI function. Therefore, COPII vesicles appear to contain all of the machinery to initiate VTC biogenesis via homotypic fusion. However, COPI function enhanced VTC assembly, and early VTCs acquired specific Golgi components by heterotypic fusion with Golgi-derived COPI vesicles.
Collapse
Affiliation(s)
- Dalu Xu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
22
|
Liu Y, Flanagan JJ, Barlowe C. Sec22p Export from the Endoplasmic Reticulum Is Independent of SNARE Pairing. J Biol Chem 2004; 279:27225-32. [PMID: 15123693 DOI: 10.1074/jbc.m312122200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecularly distinct sets of SNARE proteins localize to specific intracellular compartments and catalyze membrane fusion events. Although their central role in membrane fusion is appreciated, little is known about the mechanisms by which individual SNARE proteins are targeted to specific organelles. Here we investigated functional domains in Sec22p that direct this SNARE protein to the endoplasmic reticulum (ER), to Golgi membranes, and into SNARE complexes with Bet1p, Bos1p, and Sed5p. A series of Sec22p deletion mutants were monitored in COPII budding assays, subcellular fractionation gradients, and SNARE complex immunoprecipitations. We found that the N-terminal "profilin-like" domain of Sec22p was required but not sufficient for COPII-dependent export of Sec22p from the ER. Interestingly, versions of Sec22p that lacked the N-terminal domain were assembled into ER/Golgi SNARE complexes. Analyses of Sec22p SNARE domain mutants revealed a second signal within the SNARE motif (between layers -4 and -1) that was required for efficient ER export. Other SNARE domain mutants that contained this signal were efficiently packaged into COPII vesicles but failed to assemble into SNARE complexes. Together these results indicated that SNARE complex formation is neither required nor sufficient for Sec22p packaging into COPII transport vesicles and subsequent targeting to the Golgi complex. We propose that the COPII budding machinery has a preference for unassembled ER/Golgi SNARE proteins.
Collapse
Affiliation(s)
- Yiting Liu
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
23
|
Abstract
Genetic and biochemical analyses of the secretory pathway have produced a detailed picture of the molecular mechanisms involved in selective cargo transport between organelles. This transport occurs by means of vesicular intermediates that bud from a donor compartment and fuse with an acceptor compartment. Vesicle budding and cargo selection are mediated by protein coats, while vesicle targeting and fusion depend on a machinery that includes the SNARE proteins. Precise regulation of these two aspects of vesicular transport ensures efficient cargo transfer while preserving organelle identity.
Collapse
Affiliation(s)
- Juan S Bonifacino
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
24
|
Abstract
Trafficking of cargo molecules through the secretory pathway relies on packaging and delivery of membrane vesicles. These vesicles, laden with cargo, carry integral membrane proteins that can determine with which target membrane the vesicle might productively fuse. The membrane fusion process is highly conserved in all eukaryotes and the central components driving membrane fusion events involved in vesicle delivery to target membranes are a set of integral membrane proteins called SNAREs. The yeast Saccharomyces cerevisiae has served as an extremely useful model for characterizing components of membrane fusion through genetics, biochemistry and bioinformatics, and it is now likely that the complete set of SNAREs is at hand. Here, we present the details from the searches for SNAREs, summarize the domain structures of the complete set, review what is known about localization of SNAREs to discrete membranes, and highlight some of the surprises that have come from the search.
Collapse
Affiliation(s)
- Lena Burri
- Russell Grimwade School of Biochemistry & Molecular Biology, University of Melbourne, Parkville 3010, Australia
| | | |
Collapse
|
25
|
Williams AL, Ehm S, Jacobson NC, Xu D, Hay JC. rsly1 binding to syntaxin 5 is required for endoplasmic reticulum-to-Golgi transport but does not promote SNARE motif accessibility. Mol Biol Cell 2003; 15:162-75. [PMID: 14565970 PMCID: PMC307537 DOI: 10.1091/mbc.e03-07-0535] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Although some of the principles of N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) function are well understood, remarkably little detail is known about sec1/munc18 (SM) protein function and its relationship to SNAREs. Popular models of SM protein function hold that these proteins promote or maintain an open and/or monomeric pool of syntaxin molecules available for SNARE complex formation. To address the functional relationship of the mammalian endoplasmic reticulum/Golgi SM protein rsly1 and its SNARE binding partner syntaxin 5, we produced a conformation-specific monoclonal antibody that binds only the available, but not the cis-SNARE-complexed nor intramolecularly closed form of syntaxin 5. Immunostaining experiments demonstrated that syntaxin 5 SNARE motif availability is nonuniformly distributed and focally regulated. In vitro endoplasmic reticulum-to-Golgi transport assays revealed that rsly1 was acutely required for transport, and that binding to syntaxin 5 was absolutely required for its function. Finally, manipulation of rsly1-syntaxin 5 interactions in vivo revealed that they had remarkably little impact on the pool of available syntaxin 5 SNARE motif. Our results argue that although rsly1 does not seem to regulate the availability of syntaxin 5, its function is intimately associated with syntaxin binding, perhaps promoting a later step in SNARE complex formation or function.
Collapse
Affiliation(s)
- Antionette L Williams
- University of Michigan, Department of Molecular, Cellular, and Developmental Biology, Ann Arbor, Michigan 48109-1048, USA
| | | | | | | | | |
Collapse
|
26
|
Borgese N, Colombo S, Pedrazzini E. The tale of tail-anchored proteins: coming from the cytosol and looking for a membrane. J Cell Biol 2003; 161:1013-9. [PMID: 12821639 PMCID: PMC2173004 DOI: 10.1083/jcb.200303069] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A group of integral membrane proteins, known as C-tail anchored, is defined by the presence of a cytosolic NH2-terminal domain that is anchored to the phospholipid bilayer by a single segment of hydrophobic amino acids close to the COOH terminus. The mode of insertion into membranes of these proteins, many of which play key roles in fundamental intracellular processes, is obligatorily posttranslational, is highly specific, and may be subject to regulatory processes that modulate the protein's function. Although recent work has elucidated structural features in the tail region that determine selection of the correct target membrane, the molecular machinery involved in interpreting this information, and in modulating tail-anchored protein localization, has not been identified yet.
Collapse
Affiliation(s)
- Nica Borgese
- Consiglio Nazionale delle Ricerche Institute for Neuroscience, Cellular and Molecular Pharmacology Section, via Vanvitelli 32, 20129 Milano, Italy.
| | | | | |
Collapse
|