1
|
Nguyen DLB, Okolicsanyi RK, Haupt LM. Heparan sulfate proteoglycans: Mediators of cellular and molecular Alzheimer's disease pathogenic factors via tunnelling nanotubes? Mol Cell Neurosci 2024; 129:103936. [PMID: 38750678 DOI: 10.1016/j.mcn.2024.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/14/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024] Open
Abstract
Neurological disorders impact around one billion individuals globally (15 % approx.), with significant implications for disability and mortality with their impact in Australia currently amounts to 6.8 million deaths annually. Heparan sulfate proteoglycans (HSPGs) are complex extracellular molecules implicated in promoting Tau fibril formation resulting in Tau tangles, a hallmark of Alzheimer's disease (AD). HSPG-Tau protein interactions contribute to various AD stages via aggregation, toxicity, and clearance, largely via interactions with the glypican 1 and syndecan 3 core proteins. The tunnelling nanotubes (TNTs) pathway is emerging as a facilitator of intercellular molecule transport, including Tau and Amyloid β proteins, across extensive distances. While current TNT-associated evidence primarily stems from cancer models, their role in Tau propagation and its effects on recipient cells remain unclear. This review explores the interplay of TNTs, HSPGs, and AD-related factors and proposes that HSPGs influence TNT formation in neurodegenerative conditions such as AD.
Collapse
Affiliation(s)
- Duy L B Nguyen
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia
| | - Rachel K Okolicsanyi
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Australia
| | - Larisa M Haupt
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia; Centre for Biomedical Technologies, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Australia; Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices, Queensland University of Technology (QUT), Australia.
| |
Collapse
|
2
|
Kines RC, Schiller JT. Harnessing Human Papillomavirus' Natural Tropism to Target Tumors. Viruses 2022; 14:1656. [PMID: 36016277 PMCID: PMC9413966 DOI: 10.3390/v14081656] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPV) are small non-enveloped DNA tumor viruses established as the primary etiological agent for the development of cervical cancer. Decades of research have elucidated HPV's primary attachment factor to be heparan sulfate proteoglycans (HSPG). Importantly, wounding and exposure of the epithelial basement membrane was found to be pivotal for efficient attachment and infection of HPV in vivo. Sulfation patterns on HSPG's become modified at the site of wounds as they serve an important role promoting tissue healing, cell proliferation and neovascularization and it is these modifications recognized by HPV. Analogous HSPG modification patterns can be found on tumor cells as they too require the aforementioned processes to grow and metastasize. Although targeting tumor associated HSPG is not a novel concept, the use of HPV to target and treat tumors has only been realized in recent years. The work herein describes how decades of basic HPV research has culminated in the rational design of an HPV-based virus-like infrared light activated dye conjugate for the treatment of choroidal melanoma.
Collapse
Affiliation(s)
| | - John T. Schiller
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA;
| |
Collapse
|
3
|
Seabury CM, Lockwood MA, Nichols TA. Genotype by environment interactions for chronic wasting disease in farmed US white-tailed deer. G3 (BETHESDA, MD.) 2022; 12:jkac109. [PMID: 35536181 PMCID: PMC9258584 DOI: 10.1093/g3journal/jkac109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 04/25/2022] [Indexed: 11/21/2022]
Abstract
Despite implementation of enhanced management practices, chronic wasting disease in US white-tailed deer (Odocoileus virginianus) continues to expand geographically. Herein, we perform the largest genome-wide association analysis to date for chronic wasting disease (n = 412 chronic wasting disease-positive; n = 758 chronic wasting disease-nondetect) using a custom Affymetrix Axiom single-nucleotide polymorphism array (n = 121,010 single-nucleotide polymorphisms), and confirm that differential susceptibility to chronic wasting disease is a highly heritable (h2= 0.611 ± 0.056) polygenic trait in farmed US white-tailed deer, but with greater trait complexity than previously appreciated. We also confirm PRNP codon 96 (G96S) as having the largest-effects on risk (P ≤ 3.19E-08; phenotypic variance explained ≥ 0.025) across 3 US regions (Northeast, Midwest, South). However, 20 chronic wasting disease-positive white-tailed deer possessing codon 96SS genotypes were also observed, including one that was lymph node and obex positive. Beyond PRNP, we also detected 23 significant single-nucleotide polymorphisms (P-value ≤ 5E-05) implicating ≥24 positional candidate genes; many of which have been directly implicated in Parkinson's, Alzheimer's and prion diseases. Genotype-by-environment interaction genome-wide association analysis revealed a single-nucleotide polymorphism in the lysosomal enzyme gene ARSB as having the most significant regional heterogeneity of effects on chronic wasting disease (P ≤ 3.20E-06); with increasing copy number of the minor allele increasing susceptibility to chronic wasting disease in the Northeast and Midwest; but with opposite effects in the South. In addition to ARSB, 38 significant genotype-by-environment single-nucleotide polymorphisms (P-value ≤ 5E-05) were also detected, thereby implicating ≥ 36 positional candidate genes; the majority of which have also been associated with aspects of Parkinson's, Alzheimer's, and prion diseases.
Collapse
Affiliation(s)
- Christopher M Seabury
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | | | - Tracy A Nichols
- USDA-APHIS-VS-Cervid Health Program, Fort Collins, CO 80526-8117, USA
| |
Collapse
|
4
|
Teruya K, Doh-Ura K. Therapeutic development of polymers for prion disease. Cell Tissue Res 2022; 392:349-365. [PMID: 35307792 DOI: 10.1007/s00441-022-03604-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/24/2022] [Indexed: 12/20/2022]
Abstract
Prion diseases, also known as transmissible spongiform encephalopathies, are caused by the accumulation of abnormal isoforms of the prion protein (scrapie isoform of the prion protein, PrPSc) in the central nervous system. Many compounds with anti-prion activities have been found using in silico screening, in vitro models, persistently prion-infected cell models, and prion-infected rodent models. Some of these compounds include several types of polymers. Although the inhibition or removal of PrPSc production is the main target of therapy, the unique features of prions, namely protein aggregation and assembly accompanied by steric structural transformation, may require different strategies for the development of anti-prion drugs than those for conventional therapeutics targeting enzyme inhibition, agonist ligands, or modulation of signaling. In this paper, we first overview the history of the application of polymers to prion disease research. Next, we describe the characteristics of each type of polymer with anti-prion activity. Finally, we discuss the common features of these polymers. Although drug delivery of these polymers to the brain is a challenge, they are useful not only as leads for therapeutic drugs but also as tools to explore the structure of PrPSc and are indispensable for prion disease research.
Collapse
Affiliation(s)
- Kenta Teruya
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan.
| |
Collapse
|
5
|
Jin W, Zhang F, Linhardt RJ. Glycosaminoglycans in Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:189-204. [PMID: 34495536 DOI: 10.1007/978-3-030-70115-4_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glycosaminoglycans (GAGs) are linear polysaccharides that consist of alternating disaccharides sequences of uronic acids and/or galactose hexamino sugars most of which are sulfated. GAGs are ubiquitously expressed on the cell surface, in the intracellular milieu and in the extracellular matrix of all animal cells. Thus, GAGs exhibit many essential roles in a variety of physiological and pathological processes. The targets of GAGs are GAG-binding proteins and related proteins that are of significant interest to both the academic community and in the pharmaceutical industry. In this review, the structures of GAGs, their binding proteins, and analogs are presented that further the development of GAGs and their analogs for the treatment of neurodegenerative diseases agents.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA. .,Department of Biological Science, Departments of Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
6
|
Shih CY, Cheng YC, Hsieh C, Tseng T, Jiang S, Lee SC. Drug-selected population in melanoma A2058 cells as melanoma stem-like cells retained angiogenic features - the potential roles of heparan-sulfate binding ANGPTL4 protein. Aging (Albany NY) 2020; 12:22700-22718. [PMID: 33196458 PMCID: PMC7746371 DOI: 10.18632/aging.103890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Malignant cancer may contain highly heterogeneous populations of cells, including stem-like cells which were resistant to chemotherapy agents, radiation, mechanical stress, and immune surveillance. The characterization of these specific subpopulations might be critical to develop novel strategy to remove malignant tumors. We selected and enriched small population of human melanoma A2058 cells by repetitive selection cycles (selection, restoration, and amplification). These subpopulation of melanoma cells persisted the characteristics of slower cell proliferation, enhanced drug-resistance, elevated percentage of side population as analyzed by Hoechst33342 exclusion, in vitro sphere formation, and in vivo xenograft tumor formation by small amount of tumor cells. The selected populations would be melanoma stem-like cells with high expression of stem cell markers and altered kinase activation. Microarray and bioinformatics analysis highlighted the high expression of angiopoietin-like 4 protein in drug-selected melanoma stem-like cells. Further validation by specific shRNA demonstrated the role of angiopoietin-like 4 protein in drug-selected subpopulation associated with enhanced drug-resistance, sphere formation, reduced kinase activation, in vitro tube-forming ability correlated with heparan-sulfate proteoglycans. Our finding would be applicable to explore the mechanism of melanoma stemness and use angiopoietin-like 4 as potential biomarkers to identify melanoma stem-like cells.
Collapse
Affiliation(s)
- Chia-Yu Shih
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Yu-Che Cheng
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan.,Proteomics Laboratory, Cathay Medical Research Institute, Cathay General Hospital, Taipei, Taiwan.,Department of Biomedical Science and Engineering, National Central University, Jhongli, Taiwan
| | - ChiaoHui Hsieh
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - TingTing Tseng
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - ShihSheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Shao-Chen Lee
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| |
Collapse
|
7
|
Shortening heparan sulfate chains prolongs survival and reduces parenchymal plaques in prion disease caused by mobile, ADAM10-cleaved prions. Acta Neuropathol 2020; 139:527-546. [PMID: 31673874 DOI: 10.1007/s00401-019-02085-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/18/2022]
Abstract
Cofactors are essential for driving recombinant prion protein into pathogenic conformers. Polyanions promote prion aggregation in vitro, yet the cofactors that modulate prion assembly in vivo remain largely unknown. Here we report that the endogenous glycosaminoglycan, heparan sulfate (HS), impacts prion propagation kinetics and deposition sites in the brain. Exostosin-1 haploinsufficient (Ext1+/-) mice, which produce short HS chains, show a prolonged survival and a redistribution of plaques from the parenchyma to vessels when infected with fibrillar prions, and a modest delay when infected with subfibrillar prions. Notably, the fibrillar, plaque-forming prions are composed of ADAM10-cleaved prion protein lacking a glycosylphosphatidylinositol anchor, indicating that these prions are mobile and assemble extracellularly. By analyzing the prion-bound HS using liquid chromatography-mass spectrometry (LC-MS), we identified the disaccharide signature of HS differentially bound to fibrillar compared to subfibrillar prions, and found approximately 20-fold more HS bound to the fibrils. Finally, LC-MS of prion-bound HS from human patients with familial and sporadic prion disease also showed distinct HS signatures and higher HS levels associated with fibrillar prions. This study provides the first in vivo evidence of an endogenous cofactor that accelerates prion disease progression and enhances parenchymal deposition of ADAM10-cleaved, mobile prions.
Collapse
|
8
|
Stopschinski BE, Thomas TL, Nadji S, Darvish E, Fan L, Holmes BB, Modi AR, Finnell JG, Kashmer OM, Estill-Terpack S, Mirbaha H, Luu HS, Diamond MI. A synthetic heparinoid blocks Tau aggregate cell uptake and amplification. J Biol Chem 2020; 295:2974-2983. [PMID: 31974166 DOI: 10.1074/jbc.ra119.010353] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 01/21/2020] [Indexed: 01/30/2023] Open
Abstract
Tau aggregation underlies neurodegeneration in Alzheimer's disease and related tauopathies. We and others have proposed that transcellular propagation of pathology is mediated by Tau prions, which are ordered protein assemblies that faithfully replicate in vivo and cause specific biological effects. The prion model predicts the release of aggregates from a first-order cell and subsequent uptake into a second-order cell. The assemblies then serve as templates for their own replication, a process termed "seeding." We have previously observed that heparan sulfate proteoglycans on the cell surface mediate the cellular uptake of Tau aggregates. This interaction is blocked by heparin, a sulfated glycosaminoglycan. Indeed, heparin-like molecules, or heparinoids, have previously been proposed as a treatment for PrP prion disorders. However, heparin is not ideal for managing chronic neurodegeneration, because it is difficult to synthesize in defined sizes, may have poor brain penetration because of its negative charge, and is a powerful anticoagulant. Therefore, we sought to generate an oligosaccharide that would bind Tau and block its cellular uptake and seeding, without exhibiting anticoagulation activity. We created a compound, SN7-13, from pentasaccharide units and tested it in a range of assays that measured direct binding of Tau to glycosaminoglycans and inhibition of Tau uptake and seeding in cells. SN7-13 does not inhibit coagulation, binds Tau with low nanomolar affinity, and inhibits cellular Tau aggregate propagation similarly to standard porcine heparin. This synthetic heparinoid could facilitate the development of agents to treat tauopathy.
Collapse
Affiliation(s)
- Barbara E Stopschinski
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Neurology, RWTH University Aachen, 52074 Aachen, Germany
| | - Talitha L Thomas
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Sourena Nadji
- PharmaRen Discovery LLC, Berkeley, Missouri 63134-3115
| | - Eric Darvish
- PharmaRen Discovery LLC, Berkeley, Missouri 63134-3115
| | - Linfeng Fan
- Shanghai Acana Pharmtech Co. Ltd., Berkeley, Missouri 63134-3115
| | - Brandon B Holmes
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Neurology, University of California, San Francisco, California 94143
| | - Anuja R Modi
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jordan G Finnell
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Omar M Kashmer
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Sandi Estill-Terpack
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Hilda Mirbaha
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Hung S Luu
- Department of Pathology, Children's Health, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390.
| |
Collapse
|
9
|
Heparan Sulfate in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1245:147-161. [PMID: 32266657 DOI: 10.1007/978-3-030-40146-7_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The biology of tumor cells strictly depends on their microenvironment architecture and composition, which controls the availability of growth factors and signaling molecules. Thus, the network of glycosaminoglycans, proteoglycans, and proteins known as extracellular matrix (ECM) that surrounds the cells plays a central role in the regulation of tumor fate. Heparan sulfate (HS) and heparan sulfate proteoglycans (HSPGs) are highly versatile ECM components that bind and regulate the activity of growth factors, cell membrane receptors, and other ECM molecules. These HS binding partners modulate cell adhesion, motility, and proliferation that are processes altered during tumor progression. Modification in the expression and activity of HS, HSPGs, and the respective metabolic enzymes results unavoidably in alteration of tumor cell microenvironment. In this light, the targeting of HS structure and metabolism is potentially a new tool in the treatment of different cancer types.
Collapse
|
10
|
Uslupehlivan M, Deveci R, Ün C. In silico investigation of the prion protein glycosylation profiles in relation to scrapie disease resistance in domestic sheep (Ovis aries). Mol Cell Probes 2018; 42:1-9. [PMID: 30261281 DOI: 10.1016/j.mcp.2018.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/07/2018] [Accepted: 09/23/2018] [Indexed: 01/04/2023]
Abstract
The prion protein is a membrane-bound glycoprotein which consists mainly α-helix structure. In contrast, the infectious prion protein shows the beta-sheet structure. The prion-associated diseases are all lethal neurodegenerative abnormalities, called transmissible spongiform encephalopathies. Scrapie is the most common type of these illnesses affecting sheep, goats, and moufflon. The VRQ, AHQ, ARR and N146S polymorphisms in the sheep prion gene have been found to be associated with resistance to scrapie disease. So far, the relationship of polymorphisms to three-dimensional protein structures, post-translational modifications, and scrapie resistance has not been studied. In this study, the potential N- and O-glycosylation positions of sheep prion protein polymorphisms were analyzed, the secondary and three-dimensional protein structure models were predicted, three-dimensional glycoprotein models were constructed and the role of glycosylation positions in protein interactions was investigated. Here, we found that protein secondary and three-dimensional structures vary among polymorphisms. Moreover, we found wild-type prion and all polymorphic variants show N-glycosylation at Asn184 and Asn200 positions, while O-glycosylation profiles are variant-specific. We also found that structural changes among prion polymorphisms leads to the formation of variant spesific O-glycosylation profiles and these positions are associated with protein interactions. Based on these findings, we suggest that O-glycosylation may be effective on resistance/susceptibility of sheep prion polymorphisms to scrapie disease.
Collapse
Affiliation(s)
- Muhammet Uslupehlivan
- Ege University, Faculty of Science, Department of Biology, Molecular Biology Section, Izmir, Turkey.
| | - Remziye Deveci
- Ege University, Faculty of Science, Department of Biology, Molecular Biology Section, Izmir, Turkey.
| | - Cemal Ün
- Ege University, Faculty of Science, Department of Biology, Molecular Biology Section, Izmir, Turkey.
| |
Collapse
|
11
|
Stopschinski BE, Holmes BB, Miller GM, Manon VA, Vaquer-Alicea J, Prueitt WL, Hsieh-Wilson LC, Diamond MI. Specific glycosaminoglycan chain length and sulfation patterns are required for cell uptake of tau versus α-synuclein and β-amyloid aggregates. J Biol Chem 2018; 293:10826-10840. [PMID: 29752409 DOI: 10.1074/jbc.ra117.000378] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/07/2018] [Indexed: 12/21/2022] Open
Abstract
Transcellular propagation of protein aggregate "seeds" has been proposed to mediate the progression of neurodegenerative diseases in tauopathies and α-synucleinopathies. We previously reported that tau and α-synuclein aggregates bind heparan sulfate proteoglycans (HSPGs) on the cell surface, promoting cellular uptake and intracellular seeding. However, the specificity and binding mode of these protein aggregates to HSPGs remain unknown. Here, we measured direct interaction with modified heparins to determine the size and sulfation requirements for tau, α-synuclein, and β-amyloid (Aβ) aggregate binding to glycosaminoglycans (GAGs). Varying the GAG length and sulfation patterns, we next conducted competition studies with heparin derivatives in cell-based assays. Tau aggregates required a precise GAG architecture with defined sulfate moieties in the N- and 6-O-positions, whereas the binding of α-synuclein and Aβ aggregates was less stringent. To determine the genes required for aggregate uptake, we used CRISPR/Cas9 to individually knock out the major genes of the HSPG synthesis pathway in HEK293T cells. Knockouts of the extension enzymes exostosin 1 (EXT1), exostosin 2 (EXT2), and exostosin-like 3 (EXTL3), as well as N-sulfotransferase (NDST1) or 6-O-sulfotransferase (HS6ST2) significantly reduced tau uptake, consistent with our biochemical findings, and knockouts of EXT1, EXT2, EXTL3, or NDST1, but not HS6ST2 reduced α-synuclein uptake. In summary, tau aggregates display specific interactions with HSPGs that depend on GAG length and sulfate moiety position, whereas α-synuclein and Aβ aggregates exhibit more flexible interactions with HSPGs. These principles may inform the development of mechanism-based therapies to block transcellular propagation of amyloid protein-based pathologies.
Collapse
Affiliation(s)
- Barbara E Stopschinski
- From the Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,the Department of Neurology, RWTH University Aachen, D-52074 Aachen, Germany
| | - Brandon B Holmes
- From the Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,the Medical Scientist Training Program, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Gregory M Miller
- the Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Victor A Manon
- From the Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jaime Vaquer-Alicea
- From the Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - William L Prueitt
- From the Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Linda C Hsieh-Wilson
- the Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Marc I Diamond
- From the Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390,
| |
Collapse
|
12
|
Wang J, Chang Y, Dong X, Zhang R, Tang Y, Zhang M, Yu R, Jiang T, Zhang L. Cytotoxic and glycosaminoglycan priming activities of novel 4-anilinequinazoline β-D-xylosides. Carbohydr Res 2018; 463:6-13. [PMID: 29689449 DOI: 10.1016/j.carres.2018.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 01/26/2023]
Abstract
β-D-xylosides with cytotoxic aglycones have augmented cytotoxicity towards animal cells because β-D-xyloside-primed glycosaminoglycans further enhance the aglycone's cytotoxicity. In this study, we designed and synthesized different 4-anilinequinazoline β-D-xylosides and found that compounds 7-10 possessing 3-chloro-4-((3-fluorobenzyl)oxy)aniline group as in anticancer drug lapatinib also primed glycosaminoglycans and were highly cytotoxic to cancer cells.
Collapse
Affiliation(s)
- Jinpeng Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Yajing Chang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Systems Biology & Medicine Center for Complex Diseases, Qingdao, 266071, PR China
| | - Xueyang Dong
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Renshuai Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Yang Tang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Systems Biology & Medicine Center for Complex Diseases, Qingdao, 266071, PR China
| | - Meng Zhang
- Systems Biology & Medicine Center for Complex Diseases, Qingdao, 266071, PR China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| | - Lijuan Zhang
- Systems Biology & Medicine Center for Complex Diseases, Qingdao, 266071, PR China.
| |
Collapse
|
13
|
Abstract
Heparin and heparan sulfate glycosaminoglycans are long, linear polysaccharides that are made up of alternating dissacharide sequences of sulfated uronic acid and amino sugars. Unlike heparin, which is only found in mast cells, heparan sulfate is ubiquitously expressed on the cell surface and in the extracellular matrix of all animal cells. These negatively-charged glycans play essential roles in important cellular functions such as cell growth, adhesion, angiogenesis, and blood coagulation. These biomolecules are also involved in pathophysiological conditions such as pathogen infection and human disease. This review discusses past and current methods for targeting these complex biomolecules as a novel therapeutic strategy to treating disorders such as cancer, neurodegenerative diseases, and infection.
Collapse
Affiliation(s)
- Ryan J Weiss
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0358, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0358, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358, USA.
| |
Collapse
|
14
|
PrP Knockout Cells Expressing Transmembrane PrP Resist Prion Infection. J Virol 2017; 91:JVI.01686-16. [PMID: 27847358 DOI: 10.1128/jvi.01686-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/01/2016] [Indexed: 11/20/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchoring of the prion protein (PrPC) influences PrPC misfolding into the disease-associated isoform, PrPres, as well as prion propagation and infectivity. GPI proteins are found in cholesterol- and sphingolipid-rich membrane regions called rafts. Exchanging the GPI anchor for a nonraft transmembrane sequence redirects PrPC away from rafts. Previous studies showed that nonraft transmembrane PrPC variants resist conversion to PrPres when transfected into scrapie-infected N2a neuroblastoma cells, likely due to segregation of transmembrane PrPC and GPI-anchored PrPres in distinct membrane environments. Thus, it remained unclear whether transmembrane PrPC might convert to PrPres if seeded by an exogenous source of PrPres not associated with host cell rafts and without the potential influence of endogenous expression of GPI-anchored PrPC To further explore these questions, constructs containing either a C-terminal wild-type GPI anchor signal sequence or a nonraft transmembrane sequence containing a flexible linker were expressed in a cell line derived from PrP knockout hippocampal neurons, NpL2. NpL2 cells have physiological similarities to primary neurons, representing a novel and advantageous model for studying transmissible spongiform encephalopathy (TSE) infection. Cells were infected with inocula from multiple prion strains and in different biochemical states (i.e., membrane bound as in brain microsomes from wild-type mice or purified GPI-anchorless amyloid fibrils). Only GPI-anchored PrPC supported persistent PrPres propagation. Our data provide strong evidence that in cell culture GPI anchor-directed membrane association of PrPC is required for persistent PrPres propagation, implicating raft microdomains as a location for conversion. IMPORTANCE Mechanisms of prion propagation, and what makes them transmissible, are poorly understood. Glycosylphosphatidylinositol (GPI) membrane anchoring of the prion protein (PrPC) directs it to specific regions of cell membranes called rafts. In order to test the importance of the raft environment on prion propagation, we developed a novel model for prion infection where cells expressing either GPI-anchored PrPC or transmembrane-anchored PrPC, which partitions it to a different location, were treated with infectious, misfolded forms of the prion protein, PrPres We show that only GPI-anchored PrPC was able to convert to PrPres and able to serially propagate. The results strongly suggest that GPI anchoring and the localization of PrPC to rafts are crucial to the ability of PrPC to propagate as a prion.
Collapse
|
15
|
Snezhkova EA, Tridon A, Evrard B, Nikolaev VG, Uvarov VY, Tsimbalyuk RS, Ivanuk AA, Komov VV, Sakhno LA. Binding Potency of Heparin Immobilized on Activated Charcoal for DNA Antibodies. Bull Exp Biol Med 2016; 160:444-7. [PMID: 26902353 DOI: 10.1007/s10517-016-3192-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Indexed: 11/24/2022]
Abstract
In vitro experiments showed that heparin adsorbed on activated charcoal can bind antibodies raised against native and single-stranded DNA in a diluted sera pool with a high level of these DNA. Thus, heparin used as anticoagulant during hemosorption procedure can demonstrate supplementary therapeutic activity resulting from its interaction with various agents involved in acute and chronic inflammatory reactions such as DNA- and RNA-binding substances, proinflammatory cytokines, complement components, growth factors, etc. Research and development of heparin-containing carbonic adsorbents for the therapy of numerous inflammatory and autoimmune diseases seems to be a promising avenue in hematology.
Collapse
Affiliation(s)
- E A Snezhkova
- R. E. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology, National Academy of Science of Ukraine, Kiev, Ukraine.
| | - A Tridon
- Faculty of Medicine and Pharmacy, University d'Auvergne, Clermont-Ferrand, France
| | - B Evrard
- Faculty of Medicine and Pharmacy, University d'Auvergne, Clermont-Ferrand, France
| | - V G Nikolaev
- R. E. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology, National Academy of Science of Ukraine, Kiev, Ukraine
| | - V Yu Uvarov
- A. A. Bogomolets National Medical University, Kiev, Ukraine
| | - R S Tsimbalyuk
- A. A. Bogomolets National Medical University, Kiev, Ukraine
| | - A A Ivanuk
- R. E. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology, National Academy of Science of Ukraine, Kiev, Ukraine
| | - V V Komov
- Research Institute of Physicochemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | - L A Sakhno
- R. E. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology, National Academy of Science of Ukraine, Kiev, Ukraine
| |
Collapse
|
16
|
Mechanistic and therapeutic overview of glycosaminoglycans: the unsung heroes of biomolecular signaling. Glycoconj J 2015; 33:1-17. [DOI: 10.1007/s10719-015-9642-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/28/2022]
|
17
|
Faburay B, Tark D, Kanthasamy AG, Richt JA. In vitro amplification of scrapie and chronic wasting disease PrP(res) using baculovirus-expressed recombinant PrP as substrate. Prion 2015; 8:393-403. [PMID: 25495764 DOI: 10.4161/19336896.2014.983753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Protein misfolding cyclic amplification (PMCA) is an in vitro simulation of prion replication, which relies on the use of normal brain homogenate derived from host species as substrate for the specific amplification of abnormal prion protein, PrP(Sc). Studies showed that recombinant cellular PrP, PrP(C), expressed in Escherichia coli lacks N-glycosylation and an glycophosphatidyl inositol anchor (GPI) and therefore may not be the most suitable substrate in seeded PMCA reactions to recapitulate prion conversion in vitro. In this study, we expressed 2 PRNP genotypes of sheep, V136L141R154Q171 and A136F141R154Q171, and one genotype of white-tailed deer (Q95G96, X132,Y216) using the baculovirus expression system and evaluated their suitability as substrates in seeded-PMCA. It has been reported that host-encoded mammalian RNA molecules and divalent cations play a role in the pathogenesis of prion diseases, and RNA molecules have also been shown to improve the sensitivity of PMCA assays. Therefore, we also assessed the effect of co-factors, such as prion-specific mRNA molecules and a divalent cation, manganese, on protein conversion. Here, we report that baculovirus-expressed recombinant PrP(C) shows a glycoform and GPI-anchor profile similar to mammalian brain-derived PrP(C) and supports amplification of PrP(Sc) and PrP(CWD) derived from prion-affected animals in a single round of seeded PMCA in the absence of exogenous co-factors. Addition of species-specific in vitro transcribed PrP mRNA molecules stimulated the conversion efficiency resulting in increased PrP(Sc) or PrP(CWD) production. Addition of 2 to 20 μM of manganese chloride (MnCl2) to unseeded PMCA resulted in conversion of recombinant PrP(C) to protease-resistant PrP. Collectively, we demonstrate, for the first time, that baculovirus expressed sheep and deer PrP can serve as a substrate in protein misfolding cyclic amplification for sheep and deer prions in the absence of additional exogenous co-factors.
Collapse
Affiliation(s)
- Bonto Faburay
- a Department of Diagnostic Medicine and Pathobiology ; College of Veterinary Medicine ; Kansas State University ; Manhattan , KS USA
| | | | | | | |
Collapse
|
18
|
Abstract
UNLABELLED Mammalian prions are unconventional infectious agents composed primarily of the misfolded aggregated host prion protein PrP, termed PrP(Sc). Prions propagate by the recruitment and conformational conversion of cellular prion protein into abnormal prion aggregates on the cell surface or along the endocytic pathway. Cellular glycosaminoglycans have been implicated as the first attachment sites for prions and cofactors for cellular prion replication. Glycosaminoglycan mimetics and obstruction of glycosaminoglycan sulfation affect prion replication, but the inhibitory effects on different strains and different stages of the cell infection have not been thoroughly addressed. We examined the effects of a glycosaminoglycan mimetic and undersulfation on cellular prion protein metabolism, prion uptake, and the establishment of productive infections in L929 cells by two mouse-adapted prion strains. Surprisingly, both treatments reduced endogenous sulfated glycosaminoglycans but had divergent effects on cellular PrP levels. Chemical or genetic manipulation of glycosaminoglycans did not prevent PrP(Sc) uptake, arguing against their roles as essential prion attachment sites. However, both treatments effectively antagonized de novo prion infection independently of the prion strain and reduced PrP(Sc) formation in chronically infected cells. Our results demonstrate that sulfated glycosaminoglycans are dispensable for prion internalization but play a pivotal role in persistently maintained PrP(Sc) formation independent of the prion strain. IMPORTANCE Recently, glycosaminoglycans (GAGs) became the focus of neurodegenerative disease research as general attachment sites for cell invasion by pathogenic protein aggregates. GAGs influence amyloid formation in vitro. GAGs are also found in intra- and extracellular amyloid deposits. In light of the essential role GAGs play in proteinopathies, understanding the effects of GAGs on protein aggregation and aggregate dissemination is crucial for therapeutic intervention. Here, we show that GAGs are dispensable for prion uptake but play essential roles in downstream infection processes. GAG mimetics also affect cellular GAG levels and localization and thus might affect prion propagation by depleting intracellular cofactor pools.
Collapse
|
19
|
Kovalchuk Ben-Zaken O, Nissan I, Tzaban S, Taraboulos A, Zcharia E, Matzger S, Shafat I, Vlodavsky I, Tal Y. Transgenic over-expression of mammalian heparanase delays prion disease onset and progression. Biochem Biophys Res Commun 2015; 464:698-704. [PMID: 26168721 DOI: 10.1016/j.bbrc.2015.06.170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 06/30/2015] [Indexed: 12/25/2022]
Abstract
Cellular heparan sulfate (HS) has a dual role in scrapie pathogenesis; it is required for PrP(Sc) (scrapie prion protein) formation and facilitates infection of cells, mediating cellular uptake of prions. We examined the involvement of heparanase, a mammalian endoglycosidase degrading HS, in scrapie infection. In cultured cells, heparanase treatment or over-expression resulted in a profound decrease in PrP(Sc). Moreover, disease onset and progression were dramatically delayed in scrapie infected transgenic mice over-expressing heparanase. Together, our results provide direct in vivo evidence for the involvement of intact HS in the pathogenesis of prion disease and the protective role of heparanase both in terms of susceptibility to infection and disease progression.
Collapse
Affiliation(s)
- O Kovalchuk Ben-Zaken
- Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel; Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, 31096, Haifa, Israel
| | - I Nissan
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - S Tzaban
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - A Taraboulos
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - E Zcharia
- Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - S Matzger
- Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - I Shafat
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, 31096, Haifa, Israel
| | - I Vlodavsky
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, 31096, Haifa, Israel.
| | - Y Tal
- Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| |
Collapse
|
20
|
Ellett LJ, Coleman BM, Shambrook MC, Johanssen VA, Collins SJ, Masters CL, Hill AF, Lawson VA. Glycosaminoglycan sulfation determines the biochemical properties of prion protein aggregates. Glycobiology 2015; 25:745-55. [PMID: 25701659 DOI: 10.1093/glycob/cwv014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 02/15/2015] [Indexed: 02/06/2023] Open
Abstract
Prion diseases are transmissible neurodegenerative disorders associated with the conversion of the cellular prion protein, PrP(C), to a misfolded isoform called PrP(Sc). Although PrP(Sc) is a necessary component of the infectious prion, additional factors, or cofactors, have been shown to contribute to the efficient formation of transmissible PrP(Sc). Glycosaminoglycans (GAGs) are attractive cofactor candidates as they can be found associated with PrP(Sc) deposits, have been shown to enhance PrP misfolding in vitro, are found in the same cellular compartments as PrP(C) and have been shown to be disease modifying in vivo. Here we investigated the effects of the sulfated GAGs, heparin and heparan sulfate (HS), on disease associated misfolding of full-length recombinant PrP. More specifically, the degree of sulfation of these molecules was investigated for its role in modulating the disease-associated characteristics of PrP. Both heparin and HS induced a β-sheet conformation in recombinant PrP that was associated with the formation of aggregated species; however, the biochemical properties of the aggregates formed in the presence of heparin or HS varied in solubility and protease resistance. Furthermore, these properties could be modified by changes in GAG sulfation, indicating that subtle changes in the properties of prion disease cofactors could initiate disease associated misfolding.
Collapse
Affiliation(s)
| | - Bradley M Coleman
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute
| | - Mitch C Shambrook
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute
| | | | | | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University Of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew F Hill
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute
| | | |
Collapse
|
21
|
Wujak L, Didiasova M, Zakrzewicz D, Frey H, Schaefer L, Wygrecka M. Heparan sulfate proteoglycans mediate factor XIIa binding to the cell surface. J Biol Chem 2015; 290:7027-39. [PMID: 25589788 DOI: 10.1074/jbc.m114.606343] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hageman factor (FXIIa) initiates the intrinsic coagulation pathway and triggers the kallikrein-kinin and the complement systems. In addition, it functions as a growth factor by expressing promitogenic activities toward several cell types. FXIIa binds to the cell surface via a number of structurally unrelated surface receptors; however, the underlying mechanisms are not yet fully understood. Here, we demonstrate that FXIIa utilizes cell membrane-bound glycosaminoglycans to interact with the cell surface of human lung fibroblasts (HLF). The combination of enzymatic, inhibitory, and overexpression approaches identified a heparan sulfate (HS) component of proteoglycans as an important determinant of the FXIIa binding capacity of HLF. Moreover, cell-free assays and competition experiments revealed preferential binding of FXIIa to HS and heparin over dextran sulfate, dermatan sulfate, and chondroitin sulfate A and C. Finally, we demonstrate that fibroblasts isolated from the lungs of the patients suffering from idiopathic pulmonary fibrosis (IPF) exhibit enhanced FXIIa binding capacity. Increased sulfation of HS resulting from elevated HS 6-O-sulfotransferase-1 expression in IPF HLF accounted, in part, for this phenomenon. Application of RNA interference technology and inhibitors of intracellular sulfation revealed the cooperative action of cell surface-associated HS and urokinase-type plasminogen activator receptor in the accumulation of FXIIa on the cell surface of IPF HLF. Moreover, FXIIa stimulated IPF HLF migration, which was abrogated by pretreatment of cells with heparinase I. Collectively, our study uncovers a novel role of HS-type glycosaminoglycans in a local accumulation of FXIIa on the cell membrane. The enhanced association of FXIIa with IPF HLF suggests its contribution to fibrogenesis.
Collapse
Affiliation(s)
- Lukasz Wujak
- From the Department of Biochemistry, University of Giessen Lung Center, Friedrichstrasse 24, 35392 Giessen, Germany and
| | - Miroslava Didiasova
- From the Department of Biochemistry, University of Giessen Lung Center, Friedrichstrasse 24, 35392 Giessen, Germany and
| | - Dariusz Zakrzewicz
- From the Department of Biochemistry, University of Giessen Lung Center, Friedrichstrasse 24, 35392 Giessen, Germany and
| | - Helena Frey
- the Institute of Pharmacology and Toxicology, Goethe University School of Medicine, University Hospital, 60590 Frankfurt am Main, Germany
| | - Liliana Schaefer
- the Institute of Pharmacology and Toxicology, Goethe University School of Medicine, University Hospital, 60590 Frankfurt am Main, Germany
| | - Malgorzata Wygrecka
- From the Department of Biochemistry, University of Giessen Lung Center, Friedrichstrasse 24, 35392 Giessen, Germany and
| |
Collapse
|
22
|
Haïk S, Brandel JP. Infectious prion diseases in humans: cannibalism, iatrogenicity and zoonoses. INFECTION GENETICS AND EVOLUTION 2014; 26:303-12. [PMID: 24956437 DOI: 10.1016/j.meegid.2014.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 12/24/2022]
Abstract
In contrast with other neurodegenerative disorders associated to protein misfolding, human prion diseases include infectious forms (also called transmitted forms) such as kuru, iatrogenic Creutzfeldt-Jakob disease and variant Creutzfeldt-Jakob disease. The transmissible agent is thought to be solely composed of the abnormal isoform (PrP(Sc)) of the host-encoded prion protein that accumulated in the central nervous system of affected individuals. Compared to its normal counterpart, PrP(Sc) is β-sheet enriched and aggregated and its propagation is based on an autocatalytic conversion process. Increasing evidence supports the view that conformational variations of PrP(Sc) encoded the biological properties of the various prion strains that have been isolated by transmission studies in experimental models. Infectious forms of human prion diseases played a pivotal role in the emergence of the prion concept and in the characterization of the very unconventional properties of prions. They provide a unique model to understand how prion strains are selected and propagate in humans. Here, we review and discuss how genetic factors interplay with strain properties and route of transmission to influence disease susceptibility, incubation period and phenotypic expression in the light of the kuru epidemics due to ritual endocannibalism, the various series iatrogenic diseases secondary to extractive growth hormone treatment or dura mater graft and the epidemics of variant Creutzfeldt-Jakob disease linked to dietary exposure to the agent of bovine spongiform encephalopathy.
Collapse
Affiliation(s)
- Stéphane Haïk
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm, U 1127, CNRS UMR 7225, ICM, F-75013 Paris, France; AP-HP, Groupe hospitalier Pitié-Salpêtrière, Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, F-75013 Paris, France; Centre National de Référence des Agents Transmissibles Non Conventionnels, F-75013 Paris, France.
| | - Jean-Philippe Brandel
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm, U 1127, CNRS UMR 7225, ICM, F-75013 Paris, France; AP-HP, Groupe hospitalier Pitié-Salpêtrière, Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, F-75013 Paris, France; Centre National de Référence des Agents Transmissibles Non Conventionnels, F-75013 Paris, France
| |
Collapse
|
23
|
Marbiah MM, Harvey A, West BT, Louzolo A, Banerjee P, Alden J, Grigoriadis A, Hummerich H, Kan HM, Cai Y, Bloom GS, Jat P, Collinge J, Klöhn PC. Identification of a gene regulatory network associated with prion replication. EMBO J 2014; 33:1527-47. [PMID: 24843046 PMCID: PMC4198050 DOI: 10.15252/embj.201387150] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Prions consist of aggregates of abnormal conformers of the cellular prion protein (PrPC). They propagate by recruiting host-encoded PrPC although the critical interacting proteins and the reasons for the differences in susceptibility of distinct cell lines and populations are unknown. We derived a lineage of cell lines with markedly differing susceptibilities, unexplained by PrPC expression differences, to identify such factors. Transcriptome analysis of prion-resistant revertants, isolated from highly susceptible cells, revealed a gene expression signature associated with susceptibility and modulated by differentiation. Several of these genes encode proteins with a role in extracellular matrix (ECM) remodelling, a compartment in which disease-related PrP is deposited. Silencing nine of these genes significantly increased susceptibility. Silencing of Papss2 led to undersulphated heparan sulphate and increased PrPC deposition at the ECM, concomitantly with increased prion propagation. Moreover, inhibition of fibronectin 1 binding to integrin α8 by RGD peptide inhibited metalloproteinases (MMP)-2/9 whilst increasing prion propagation. In summary, we have identified a gene regulatory network associated with prion propagation at the ECM and governed by the cellular differentiation state.
Collapse
Affiliation(s)
- Masue M Marbiah
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology Queen Square, London, UK
| | - Anna Harvey
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology Queen Square, London, UK
| | - Billy T West
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology Queen Square, London, UK
| | - Anais Louzolo
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Priya Banerjee
- Biomedical Communications, Terrence Donnelly Health Sciences Complex University of Toronto, Toronto, ON, Canada
| | - Jack Alden
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology Queen Square, London, UK
| | - Anita Grigoriadis
- Breakthrough Breast Cancer Research Unit, Research Oncology, Guy's Hospital, London, UK
| | - Holger Hummerich
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology Queen Square, London, UK
| | - Ho-Man Kan
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Ying Cai
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - George S Bloom
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Parmjit Jat
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology Queen Square, London, UK
| | - John Collinge
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology Queen Square, London, UK
| | - Peter-Christian Klöhn
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology Queen Square, London, UK
| |
Collapse
|
24
|
Rouvinski A, Karniely S, Kounin M, Moussa S, Goldberg MD, Warburg G, Lyakhovetsky R, Papy-Garcia D, Kutzsche J, Korth C, Carlson GA, Godsave SF, Peters PJ, Luhr K, Kristensson K, Taraboulos A. Live imaging of prions reveals nascent PrPSc in cell-surface, raft-associated amyloid strings and webs. ACTA ACUST UNITED AC 2014; 204:423-41. [PMID: 24493590 PMCID: PMC3912534 DOI: 10.1083/jcb.201308028] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammalian prions refold host glycosylphosphatidylinositol-anchored PrP(C) into β-sheet-rich PrP(Sc). PrP(Sc) is rapidly truncated into a C-terminal PrP27-30 core that is stable for days in endolysosomes. The nature of cell-associated prions, their attachment to membranes and rafts, and their subcellular locations are poorly understood; live prion visualization has not previously been achieved. A key obstacle has been the inaccessibility of PrP27-30 epitopes. We overcame this hurdle by focusing on nascent full-length PrP(Sc) rather than on its truncated PrP27-30 product. We show that N-terminal PrP(Sc) epitopes are exposed in their physiological context and visualize, for the first time, PrP(Sc) in living cells. PrP(Sc) resides for hours in unexpected cell-surface, slow moving strings and webs, sheltered from endocytosis. Prion strings observed by light and scanning electron microscopy were thin, micrometer-long structures. They were firmly cell associated, resisted phosphatidylinositol-specific phospholipase C, aligned with raft markers, fluoresced with thioflavin, and were rapidly abolished by anti-prion glycans. Prion strings and webs are the first demonstration of membrane-anchored PrP(Sc) amyloids.
Collapse
Affiliation(s)
- Alexander Rouvinski
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Vieira TCRG, Cordeiro Y, Caughey B, Silva JL. Heparin binding confers prion stability and impairs its aggregation. FASEB J 2014; 28:2667-76. [PMID: 24648544 DOI: 10.1096/fj.13-246777] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The conversion of the prion protein (PrP) into scrapie PrP (PrP(Sc)) is a central event in prion diseases. Several molecules work as cofactors in the conversion process, including glycosaminoglycans (GAGs). GAGs exhibit a paradoxical effect, as they convert PrP into protease-resistant PrP (PrP-res) but also exert protective activity. We compared the stability and aggregation propensity of PrP and the heparin-PrP complex through the application of different in vitro aggregation approaches, including real-time quaking-induced conversion (RT-QuIC). Transmissible spongiform encephalopathy-associated forms from mouse and hamster brain homogenates were used to seed RT-QuIC-induced fibrillization. In our study, interaction between heparin and cellular PrP (PrP(C)) increased thermal PrP stability, leading to an 8-fold decrease in temperature-induced aggregation. The interaction of low-molecular-weight heparin (LMWHep) with the PrP N- or C-terminal domain affected not only the extent of PrP fibrillization but also its kinetics, lowering the reaction rate constant from 1.04 to 0.29 s(-1) and increasing the lag phase from 12 to 19 h in RT-QuIC experiments. Our findings explain the protective effect of heparin in different models of prion and prion-like neurodegenerative diseases and establish the groundwork for the development of therapeutic strategies based on GAGs.
Collapse
Affiliation(s)
- Tuane C R G Vieira
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo De Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, and
| | - Yraima Cordeiro
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; and
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Hamilton, Montana, USA
| | - Jerson L Silva
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo De Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, and
| |
Collapse
|
26
|
Affiliation(s)
- Vitor H. Pomin
- Program of
Glycobiology, Institute of Medical Biochemistry,
and University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-913,
Brazil
| |
Collapse
|
27
|
Allard EK, Grujic M, Fisone G, Kristensson K. Prion formation correlates with activation of translation-regulating protein 4E-BP and neuronal transcription factor Elk1. Neurobiol Dis 2013; 58:116-22. [PMID: 23742760 DOI: 10.1016/j.nbd.2013.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 03/27/2013] [Accepted: 05/20/2013] [Indexed: 11/19/2022] Open
Abstract
Cellular mechanisms play a role in conversion of the normal prion protein PrP(C) to the disease-associated protein PrP(Sc). The cells provide not only PrP(C), but also still largely undefined factors required for efficient prion replication. Previously, we have observed that interference with ERK and p38-JNK MAP kinase pathways has opposing effects on the formation of prions indicating that the process is regulated by a balance in intracellualar signaling pathways. In order to obtain a "flow-chart" of such pathways, we here studied the activation of MEK/ERK and mTORC1 downstream targets in relation to PrP(Sc) accumulation in GT1-1 cells infected with the RML or 22L prion strains. We show that inhibition of mTORC1 with rapamycin causes a reduction of PrP(Sc) accumulation at similar low levels as seen when the interaction between the translation initiation factors eIF4E and eIF4G downstream mTORC1 is inhibited using 4EGI-1. No effect is seen following the inhibition of molecules (S6K1 and Mnk1) that links MEK/ERK signaling to mTORC1-mediated control of translation. Instead, stimulation (high [KCl] or [serum]) or inhibition (MEK-inhibitor) of prion formation is associated with increased or decreased phosphorylation of the neuronal transcription factor Elk1, respectively. This study shows that prion formation can be modulated by translational initiating factors, and suggests that MEK/ERK signaling plays a role in the conversion of PrP(C) to PrP(Sc) via an Elk1-mediated transcriptional control. Altogether, our studies indicate that prion protein conversion is under the control of intracellular signals, which hypothetically, under certain conditions may elicit irreversible responses leading to progressive neurodegenerative diseases.
Collapse
Affiliation(s)
- Elin K Allard
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
28
|
Holmqvist K, Persson A, Johnsson R, Löfgren J, Mani K, Ellervik U. Synthesis and biology of oligoethylene glycol linked naphthoxylosides. Bioorg Med Chem 2013; 21:3310-7. [DOI: 10.1016/j.bmc.2013.02.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 10/27/2022]
|
29
|
Cellular aspects of prion replication in vitro. Viruses 2013; 5:374-405. [PMID: 23340381 PMCID: PMC3564126 DOI: 10.3390/v5010374] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/07/2013] [Accepted: 01/16/2013] [Indexed: 12/19/2022] Open
Abstract
Prion diseases or transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative disorders in mammals that are caused by unconventional agents predominantly composed of aggregated misfolded prion protein (PrP). Prions self-propagate by recruitment of host-encoded PrP into highly ordered β-sheet rich aggregates. Prion strains differ in their clinical, pathological and biochemical characteristics and are likely to be the consequence of distinct abnormal prion protein conformers that stably replicate their alternate states in the host cell. Understanding prion cell biology is fundamental for identifying potential drug targets for disease intervention. The development of permissive cell culture models has greatly enhanced our knowledge on entry, propagation and dissemination of TSE agents. However, despite extensive research, the precise mechanism of prion infection and potential strain effects remain enigmatic. This review summarizes our current knowledge of the cell biology and propagation of prions derived from cell culture experiments. We discuss recent findings on the trafficking of cellular and pathologic PrP, the potential sites of abnormal prion protein synthesis and potential co-factors involved in prion entry and propagation.
Collapse
|
30
|
Prion propagation and toxicity occur in vitro with two-phase kinetics specific to strain and neuronal type. J Virol 2012; 87:2535-48. [PMID: 23255799 DOI: 10.1128/jvi.03082-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Prion diseases, or transmissible spongiform encephalopathies (TSEs), are fatal neurodegenerative disorders that occur in humans and animals. The neuropathological hallmarks of TSEs are spongiosis, glial proliferation, and neuronal loss. The only known specific molecular marker of TSEs is the abnormal isoform (PrP(Sc)) of the host-encoded prion protein (PrP(C)), which accumulates in the brain of infected subjects and forms infectious prion particles. Although this transmissible agent lacks a specific nucleic acid component, several prion strains have been isolated. Prion strains are characterized by differences in disease outcome, PrP(Sc) distribution patterns, and brain lesion profiles at the terminal stage of the disease. The molecular factors and cellular mechanisms involved in strain-specific neuronal tropism and toxicity remain largely unknown. Currently, no cellular model exists to facilitate in vitro studies of these processes. A few cultured cell lines that maintain persistent scrapie infections have been developed, but only two of them have shown the cytotoxic effects associated with prion propagation. In this study, we have developed primary neuronal cultures to assess in vitro neuronal tropism and toxicity of different prion strains (scrapie strains 139A, ME7, and 22L). We have tested primary neuronal cultures enriched in cerebellar granular, striatal, or cortical neurons. Our results showed that (i) a strain-specific neuronal tropism operated in vitro; (ii) the cytotoxic effect varied among strains and neuronal cell types; (iii) prion propagation and toxicity occurred in two kinetic phases, a replicative phase followed by a toxic phase; and (iv) neurotoxicity peaked when abnormal PrP accumulation reached a plateau.
Collapse
|
31
|
Prion subcellular fractionation reveals infectivity spectrum, with a high titre-low PrPres level disparity. Mol Neurodegener 2012; 7:18. [PMID: 22534096 PMCID: PMC3355018 DOI: 10.1186/1750-1326-7-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 04/26/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prion disease transmission and pathogenesis are linked to misfolded, typically protease resistant (PrPres) conformers of the normal cellular prion protein (PrPC), with the former posited to be the principal constituent of the infectious 'prion'. Unexplained discrepancies observed between detectable PrPres and infectivity levels exemplify the complexity in deciphering the exact biophysical nature of prions and those host cell factors, if any, which contribute to transmission efficiency. In order to improve our understanding of these important issues, this study utilized a bioassay validated cell culture model of prion infection to investigate discordance between PrPres levels and infectivity titres at a subcellular resolution. FINDINGS Subcellular fractions enriched in lipid rafts or endoplasmic reticulum/mitochondrial marker proteins were equally highly efficient at prion transmission, despite lipid raft fractions containing up to eight times the levels of detectable PrPres. Brain homogenate infectivity was not differentially enhanced by subcellular fraction-specific co-factors, and proteinase K pre-treatment of selected fractions modestly, but equally reduced infectivity. Only lipid raft associated infectivity was enhanced by sonication. CONCLUSIONS This study authenticates a subcellular disparity in PrPres and infectivity levels, and eliminates simultaneous divergence of prion strains as the explanation for this phenomenon. On balance, the results align best with the concept that transmission efficiency is influenced more by intrinsic characteristics of the infectious prion, rather than cellular microenvironment conditions or absolute PrPres levels.
Collapse
|
32
|
Linden R, Cordeiro Y, Lima LMTR. Allosteric function and dysfunction of the prion protein. Cell Mol Life Sci 2012; 69:1105-24. [PMID: 21984610 PMCID: PMC11114699 DOI: 10.1007/s00018-011-0847-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 12/30/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are neurodegenerative diseases associated with progressive oligo- and multimerization of the prion protein (PrP(C)), its conformational conversion, aggregation and precipitation. We recently proposed that PrP(C) serves as a cell surface scaffold protein for a variety of signaling modules, the effects of which translate into wide-range functional consequences. Here we review evidence for allosteric functions of PrP(C), which constitute a common property of scaffold proteins. The available data suggest that allosteric effects among PrP(C) and its partners are involved in the assembly of multi-component signaling modules at the cell surface, impose upon both physiological and pathological conformational responses of PrP(C), and that allosteric dysfunction of PrP(C) has the potential to entail progressive signal corruption. These properties may be germane both to physiological roles of PrP(C), as well as to the pathogenesis of the TSEs and other degenerative/non-communicable diseases.
Collapse
Affiliation(s)
- Rafael Linden
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, CCS, Cidade Universitária, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
33
|
Pomin VH, Park Y, Huang R, Heiss C, Sharp JS, Azadi P, Prestegard JH. Exploiting enzyme specificities in digestions of chondroitin sulfates A and C: production of well-defined hexasaccharides. Glycobiology 2012; 22:826-38. [PMID: 22345629 DOI: 10.1093/glycob/cws055] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Interactions between proteins and glycosaminoglycans (GAGs) of the extracellular matrix are important to the regulation of cellular processes including growth, differentiation and migration. Understanding these processes can benefit greatly from the study of protein-GAG interactions using GAG oligosaccharides of well-defined structure. Materials for such studies have, however, been difficult to obtain because of challenges in synthetic approaches and the extreme structural heterogeneity in GAG polymers. Here, it is demonstrated that diversity in structures of oligosaccharides derived by limited enzymatic digestion of materials from natural sources can be greatly curtailed by a proper selection of combinations of source materials and digestive enzymes, a process aided by an improved understanding of the specificities of certain commercial preparations of hydrolases and lyases. Separation of well-defined oligosaccharides can then be accomplished by size-exclusion chromatography followed by strong anion-exchange chromatography. We focus here on two types of chondroitin sulfate (CS) as starting material (CS-A, and CS-C) and the use of three digestive enzymes with varying specificities (testicular hyaluronidase and bacterial chondroitinases ABC and C). Analysis using nuclear magnetic resonance and mass spectrometry focuses on isolated CS disaccharides and hexasaccharides. In all, 15 CS hexasaccharides have been isolated and characterized. These serve as useful contributions to growing libraries of well-defined GAG oligosaccharides that can be used in further biophysical assays.
Collapse
Affiliation(s)
- Vitor H Pomin
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Gomes MPB, Vieira TCRG, Cordeiro Y, Silva JL. The role of RNA in mammalian prion protein conversion. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:415-28. [PMID: 22095764 DOI: 10.1002/wrna.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Prion diseases remain a challenge to modern science in the 21st century because of their capacity for transmission without an encoding nucleic acid. PrP(Sc), the infectious and alternatively folded form of the PrP prion protein, is capable of self-replication, using PrP(C), the properly folded form of PrP, as a template. This process is associated with neuronal death and the clinical manifestation of prion-based diseases. Unfortunately, little is known about the mechanisms that drive this process. Over the last decade, the theory that a nucleic acid, such as an RNA molecule, might be involved in the process of prion structural conversion has become more widely accepted; such a nucleic acid would act as a catalyst rather than encoding genetic information. Significant amounts of data regarding the interactions of PrP with nucleic acids have created a new foundation for understanding prion conversion and the transmission of prion diseases. Our knowledge has been enhanced by the characterization of a large group of RNA molecules known as non-coding RNAs, which execute a series of important cellular functions, from transcriptional regulation to the modulation of neuroplasticity. The RNA-binding properties of PrP along with the competition with other polyanions, such as glycosaminoglycans and nucleic acid aptamers, open new avenues for therapy.
Collapse
Affiliation(s)
- Mariana P B Gomes
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
35
|
Martin R, Chantepie S, Chapuis J, Le-Duc A, Maftah A, Papy-Garcia D, Laude H, Petit JM, Gallet PF. Variation in Chst8 gene expression level affects PrPC to PrPSc conversion efficiency in prion-infected Mov cells. Biochem Biophys Res Commun 2011; 414:587-91. [PMID: 21982770 DOI: 10.1016/j.bbrc.2011.09.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 09/24/2011] [Indexed: 10/17/2022]
Abstract
The conversion of the endogenous cellular prion protein to an abnormally folded isoform is a hallmark of transmissible spongiform encephalopathies. It occurs when a misfolded prion protein contacts the cellular PrP. Among the molecular partners suggested to be involved in the misfolding process, the glycosaminoglycans seem to be good candidates. The present study was aimed to examine a possible link between PrP conversion efficiency and transcript level of Chst8 gene that encodes the carbohydrate N-acetylgalactosamine 4-O-sulfotransferase 8. Mov cells expressing ovine PrP were transfected with shRNA directed against Chst8 transcripts. Resulting clones were characterized for their Chst8 and Prnp transcript levels, and for their content in sulfated glycosaminoglycans, more particularly sulfated chondroitins. Unexpectedly, the decreased amount of Chst8 transcript induced an increase of the chondroitin sulfate percentage among total GAGs, with an increased amount of 4-O-sulfation of GalNAc residues. Upon to infection by a sheep prion, a slight amount of PrP(Sc) was observed, which rapidly disappeared upon subpassaging. Together, these findings indicate that the Chst8 transcript level affects the glycosaminoglycan environment of the cellular prion protein, and as a consequence its ability for conversion into PrP(Sc).
Collapse
Affiliation(s)
- Renaud Martin
- INRA, UMR1061 Génétique Moléculaire Animale - Université de Limoges, 87060 Limoges, France
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Piro JR, Supattapone S. Photodegradation illuminates the role of polyanions in prion infectivity. Prion 2011; 5:49-51. [PMID: 21646861 DOI: 10.4161/pri.5.2.16155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Understanding the mechanism by which prion infectivity is encoded by the misfolded protein PrP (Sc ) remains a high priority within the prion field. Work from several groups has indicated cellular cofactors may be necessary to form infectious prions in vitro. The identity of endogenous prion conversion cofactors is currently unknown, but may include polyanions and/or lipid molecules. In a recent study, we manufactured infectious hamster prions containing purified PrP (Sc) , co-purified lipid, and a synthetic photocleavable polyanion. The polyanion was incorporated into infectious PrP (Sc) complexes, and then specifically degraded by exposure to ultraviolet light. Light-induced in situ degradation of the incorporated polyanion had no effect on the specific infectivity of the samples as determined by end-point dilution sPMCA and scrapie incubation time assays. Furthermore, prion strain properties were not changed by polyanion degradation, suggesting that intact polyanions are not required to maintain the infectious properties of hamster prions. Here, we review these results and discuss the potential roles cofactors might play in encoding prion infectivity and/or strain properties.
Collapse
Affiliation(s)
- Justin R Piro
- Departments of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | | |
Collapse
|
37
|
Bazar E, Sheynis T, Dorosz J, Jelinek R. Heparin Inhibits Membrane Interactions and Lipid-Induced Fibrillation of a Prion Amyloidogenic Determinant. Chembiochem 2011; 12:761-7. [DOI: 10.1002/cbic.201000486] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Indexed: 12/22/2022]
|
38
|
Piro JR, Harris BT, Supattapone S. In situ photodegradation of incorporated polyanion does not alter prion infectivity. PLoS Pathog 2011; 7:e1002001. [PMID: 21304885 PMCID: PMC3033378 DOI: 10.1371/journal.ppat.1002001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 12/13/2010] [Indexed: 01/03/2023] Open
Abstract
Single-stranded polyanions ≥40 bases in length facilitate the formation of hamster scrapie prions in vitro, and polyanions co-localize with PrPSc aggregates in vivo[1], [2]. To test the hypothesis that intact polyanionic molecules might serve as a structural backbone essential for maintaining the infectious conformation(s) of PrPSc, we produced synthetic prions using a photocleavable, 100-base oligonucleotide (PC-oligo). In serial Protein Misfolding Cyclic Amplification (sPMCA) reactions using purified PrPC substrate, PC-oligo was incorporated into physical complexes with PrPSc molecules that were resistant to benzonase digestion. Exposure of these nuclease-resistant prion complexes to long wave ultraviolet light (315 nm) induced degradation of PC-oligo into 5 base fragments. Light-induced photolysis of incorporated PC-oligo did not alter the infectivity of in vitro-generated prions, as determined by bioassay in hamsters and brain homogenate sPMCA assays. Neuropathological analysis also revealed no significant differences in the neurotropism of prions containing intact versus degraded PC-oligo. These results show that polyanions >5 bases in length are not required for maintaining the infectious properties of in vitro-generated scrapie prions, and indicate that such properties are maintained either by short polyanion remnants, other co-purified cofactors, or by PrPSc molecules alone. Prions are unorthodox infectious agents whose composition remains undetermined. Previous experiments have shown that long, negatively charged polymers such as nucleic acid and carbohydrate molecules promote the formation of purified prions in test tube chemical reactions. Various classes of negatively charged polymers have also been found to co-exist within prion complexes in the brains of infected animals. These observations suggest that negatively charged polymers might act as a structural support necessary for prion infectivity. We tested this possibility by chemically synthesizing a negatively charged polymer that can be degraded by exposure to ultraviolet light. Prions containing this light-sensitive polymer remained infectious after light exposure, indicating that negatively charged polymers are not necessary to maintain the structural shapes of infectious prions.
Collapse
Affiliation(s)
- Justin R. Piro
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Brent T. Harris
- Department of Pathology, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Surachai Supattapone
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire, United States of America
- Department of Medicine, Dartmouth Medical School, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
39
|
Huzarewich RLCH, Medina S, Robertson C, Parchaliuk D, Booth SA. Transcriptional modulation in a leukocyte-depleted splenic cell population during prion disease. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:1504-1520. [PMID: 22043911 DOI: 10.1080/15287394.2011.618979] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Prion replication in the periphery precedes neuroinvasion in many experimental rodent scrapie models, and in natural sheep scrapie and chronic wasting disease (CWD) in cervids. Prions propagate in the germinal centers of secondary lymphoid organs and are strongly associated with follicular dendritic cells (FDC) and possibly circulating dendritic cells and macrophages. Given the importance of lymphoid organs in prion disease transmission and pathogenesis, gene expression studies may reveal host factors or biological pathways related to prion replication and accumulation. A procedure was developed to enrich for FDC, dendritic cells, and macrophages prior to the investigation of transcriptional alterations in murine splenic cells during prion pathogenesis. In total, 1753 transcripts exhibited fold changes greater than three (false discovery rates less than 2%) in this population isolated from spleens of prion-infected versus uninfected mice. The gene for the small leucine-rich proteoglycan decorin (DCN) was one of the genes most overexpressed in infected mice, and the splenic protein levels mirrored this in mice infected with scrapie as well as bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (vCJD). A number of groups of functionally related genes were also significantly decreased in infected spleens. These included genes related to iron metabolism and homeostasis, pathways that have also been implicated in prion pathogenesis in the brain. These gene expression alterations provide insights into the molecular mechanisms underlying prion disease pathogenesis and may serve as a pool of potential surrogate markers for the early detection and diagnosis of some prion diseases.
Collapse
Affiliation(s)
- Rhiannon L C H Huzarewich
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | | | | | | | |
Collapse
|
40
|
Vieira TCRG, Reynaldo DP, Gomes MPB, Almeida MS, Cordeiro Y, Silva JL. Heparin Binding by Murine Recombinant Prion Protein Leads to Transient Aggregation and Formation of RNA-Resistant Species. J Am Chem Soc 2010; 133:334-44. [DOI: 10.1021/ja106725p] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tuane C. R. G. Vieira
- Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro 21491-902
| | - Daniel P. Reynaldo
- Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro 21491-902
| | - Mariana P. B. Gomes
- Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro 21491-902
| | - Marcius S. Almeida
- Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro 21491-902
| | - Yraima Cordeiro
- Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro 21491-902
| | - Jerson L. Silva
- Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro 21491-902
| |
Collapse
|
41
|
Silva JL, Vieira TCRG, Gomes MPB, Rangel LP, Scapin SMN, Cordeiro Y. Experimental approaches to the interaction of the prion protein with nucleic acids and glycosaminoglycans: Modulators of the pathogenic conversion. Methods 2010; 53:306-17. [PMID: 21145399 DOI: 10.1016/j.ymeth.2010.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 12/02/2010] [Indexed: 11/17/2022] Open
Abstract
The concept that transmissible spongiform encephalopathies (TSEs) are caused only by proteins has changed the traditional paradigm that disease transmission is due solely to an agent that carries genetic information. The central hypothesis for prion diseases proposes that the conversion of a cellular prion protein (PrP(C)) into a misfolded, β-sheet-rich isoform (PrP(Sc)) accounts for the development of (TSE). There is substantial evidence that the infectious material consists chiefly of a protein, PrP(Sc), with no genomic coding material, unlike a virus particle, which has both. However, prions seem to have other partners that chaperone their activities in converting the PrP(C) into the disease-causing isoform. Nucleic acids (NAs) and glycosaminoglycans (GAGs) are the most probable accomplices of prion conversion. Here, we review the recent experimental approaches that have been employed to characterize the interaction of prion proteins with nucleic acids and glycosaminoglycans. A PrP recognizes many nucleic acids and GAGs with high affinities, and this seems to be related to a pathophysiological role for this interaction. A PrP binds nucleic acids and GAGs with structural selectivity, and some PrP:NA complexes can become proteinase K-resistant, undergoing amyloid oligomerization and conversion to a β-sheet-rich structure. These results are consistent with the hypothesis that endogenous polyanions (such as NAs and GAGs) may accelerate the rate of prion disease progression by acting as scaffolds or lattices that mediate the interaction between PrP(C) and PrP(Sc) molecules. In addition to a still-possible hypothesis that nucleic acids and GAGs, especially those from the host, may modulate the conversion, the recent structural characterization of the complexes has raised the possibility of developing new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Jerson L Silva
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.
| | | | | | | | | | | |
Collapse
|
42
|
Lawson VA, Lumicisi B, Welton J, Machalek D, Gouramanis K, Klemm HM, Stewart JD, Masters CL, Hoke DE, Collins SJ, Hill AF. Glycosaminoglycan sulphation affects the seeded misfolding of a mutant prion protein. PLoS One 2010; 5:e12351. [PMID: 20808809 PMCID: PMC2925953 DOI: 10.1371/journal.pone.0012351] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 07/22/2010] [Indexed: 11/18/2022] Open
Abstract
Background The accumulation of protease resistant conformers of the prion protein (PrPres) is a key pathological feature of prion diseases. Polyanions, including RNA and glycosaminoglycans have been identified as factors that contribute to the propagation, transmission and pathogenesis of prion disease. Recent studies have suggested that the contribution of these cofactors to prion propagation may be species specific. Methodology/Principal Finding In this study a cell-free assay was used to investigate the molecular basis of polyanion stimulated PrPres formation using brain tissue or cell line derived murine PrP. Enzymatic depletion of endogenous nucleic acids or heparan sulphate (HS) from the PrPC substrate was found to specifically prevent PrPres formation seeded by mouse derived PrPSc. Modification of the negative charge afforded by the sulphation of glycosaminoglycans increased the ability of a familial PrP mutant to act as a substrate for PrPres formation, while having no effect on PrPres formed by wildtype PrP. This difference may be due to the observed differences in the binding of wild type and mutant PrP for glycosaminoglycans. Conclusions/Significance Cofactor requirements for PrPres formation are host species and prion strain specific and affected by disease associated mutations of the prion protein. This may explain both species and strain dependent propagation characteristics and provide insights into the underlying mechanisms of familial prion disease. It further highlights the challenge of designing effective therapeutics against a disease which effects a range of mammalian species, caused by range of aetiologies and prion strains.
Collapse
Affiliation(s)
- Victoria A. Lawson
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- The Mental Health Research Institute, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (VAL); (AFH)
| | - Brooke Lumicisi
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jeremy Welton
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Dorothy Machalek
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Katrina Gouramanis
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Helen M. Klemm
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - James D. Stewart
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Colin L. Masters
- The Mental Health Research Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - David E. Hoke
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Steven J. Collins
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- The Mental Health Research Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew F. Hill
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry & Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- The Mental Health Research Institute, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (VAL); (AFH)
| |
Collapse
|
43
|
Robinson PJ, Pinheiro TJT. Phospholipid composition of membranes directs prions down alternative aggregation pathways. Biophys J 2010; 98:1520-8. [PMID: 20409471 DOI: 10.1016/j.bpj.2009.12.4304] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/04/2009] [Accepted: 12/02/2009] [Indexed: 11/16/2022] Open
Abstract
Prion diseases are neurodegenerative disorders of the central nervous system that are associated with the misfolding of the prion protein (PrP). PrP is glycosylphosphatidylinositol-anchored, and therefore the hydrophobic membrane environment may influence the process of prion conversion. This study investigates how the morphology and mechanism of growth of prion aggregates on membranes are influenced by lipid composition. Atomic force microscopy is used to image the aggregation of prions on supported lipid bilayers composed of mixtures of the zwitterionic lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and the anionic lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS). Circular dichroism shows that PrP interactions with POPS membranes result in an increase in beta-sheet structure, whereas interactions with POPC do not influence PrP structure. Prion aggregation is observed on both zwitterionic and anionic membranes, and the morphology of the aggregates formed is dependent on the anionic phospholipid content of the membrane. The aggregates that form on POPC membranes have uniform dimensions and do not disrupt the lipid bilayer. The presence of POPS results in larger aggregates with a distinctive sponge-like morphology that are disruptive to membranes. These data provide detailed information on the aggregation mechanism of PrP on membranes, which can be described by classic models of growth.
Collapse
Affiliation(s)
- Philip J Robinson
- Department of Biological Sciences, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
44
|
Deleault NR, Kascsak R, Geoghegan JC, Supattapone S. Species-dependent differences in cofactor utilization for formation of the protease-resistant prion protein in vitro. Biochemistry 2010; 49:3928-34. [PMID: 20377181 DOI: 10.1021/bi100370b] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cofactor preferences for in vitro propagation of the protease-resistant isoforms of the prion protein (PrP(Sc)) from various rodent species were investigated using the serial protein misfolding cyclic amplification (sPMCA) technique. Whereas RNA molecules facilitate hamster PrP(Sc) propagation, RNA and several other polyanions do not promote the propagation of mouse and vole PrP(Sc) molecules. Pretreatment of crude Prnp(0/0) (PrP knockout) brain homogenate with RNase A or micrococcal nuclease inhibited hamster but not mouse PrP(Sc) propagation in a reconstituted system. Mouse PrP(Sc) propagation could be reconstituted by mixing PrP(C) substrate with homogenates prepared from either brain or liver, but not from several other tissues that were tested. These results reveal species-specific differences in cofactor utilization for PrP(Sc) propagation in vitro and also demonstrate the existence of an endogenous cofactor present in brain tissue not composed of nucleic acids.
Collapse
Affiliation(s)
- Nathan R Deleault
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | |
Collapse
|
45
|
Nilsson U, Johnsson R, Fransson LÅ, Ellervik U, Mani K. Attenuation of Tumor Growth by Formation of Antiproliferative Glycosaminoglycans Correlates with Low Acetylation of Histone H3. Cancer Res 2010; 70:3771-9. [DOI: 10.1158/0008-5472.can-09-4331] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Dreyfuss JL, Regatieri CV, Jarrouge TR, Cavalheiro RP, Sampaio LO, Nader HB. Heparan sulfate proteoglycans: structure, protein interactions and cell signaling. AN ACAD BRAS CIENC 2010; 81:409-29. [PMID: 19722012 DOI: 10.1590/s0001-37652009000300007] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 10/08/2008] [Indexed: 01/18/2023] Open
Abstract
Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.
Collapse
Affiliation(s)
- Juliana L Dreyfuss
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | | | | | | | | | | |
Collapse
|
47
|
Jen A, Parkyn CJ, Mootoosamy RC, Ford MJ, Warley A, Liu Q, Bu G, Baskakov IV, Moestrup S, McGuinness L, Emptage N, Morris RJ. Neuronal low-density lipoprotein receptor-related protein 1 binds and endocytoses prion fibrils via receptor cluster 4. J Cell Sci 2010; 123:246-55. [PMID: 20048341 DOI: 10.1242/jcs.058099] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For infectious prion protein (designated PrP(Sc)) to act as a template to convert normal cellular protein (PrP(C)) to its distinctive pathogenic conformation, the two forms of prion protein (PrP) must interact closely. The neuronal receptor that rapidly endocytoses PrP(C) is the low-density lipoprotein receptor-related protein 1 (LRP1). We show here that on sensory neurons LRP1 is also the receptor that binds and rapidly endocytoses smaller oligomeric forms of infectious prion fibrils, and recombinant PrP fibrils. Although LRP1 binds two molecules of most ligands independently to its receptor clusters 2 and 4, PrP(C) and PrP(Sc) fibrils bind only to receptor cluster 4. PrP(Sc) fibrils out-compete PrP(C) for internalization. When endocytosed, PrP(Sc) fibrils are routed to lysosomes, rather than recycled to the cell surface with PrP(C). Thus, although LRP1 binds both forms of PrP, it traffics them to separate fates within sensory neurons. The binding of both to ligand cluster 4 should enable genetic modification of PrP binding without disrupting other roles of LRP1 essential to neuronal viability and function, thereby enabling in vivo analysis of the role of this interaction in controlling both prion and LRP1 biology.
Collapse
Affiliation(s)
- Angela Jen
- Wolfson Centre for Age Related Disease, King's College London, SE1 1UL, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Silva JL, Vieira TCRG, Gomes MPB, Bom APA, Lima LMTR, Freitas MS, Ishimaru D, Cordeiro Y, Foguel D. Ligand binding and hydration in protein misfolding: insights from studies of prion and p53 tumor suppressor proteins. Acc Chem Res 2010; 43:271-9. [PMID: 19817406 PMCID: PMC2825094 DOI: 10.1021/ar900179t] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Protein misfolding has been implicated in a large number of diseases termed protein- folding disorders (PFDs), which include Alzheimer's disease, Parkinson's disease, transmissible spongiform encephalopathies, familial amyloid polyneuropathy, Huntington's disease, and type II diabetes. In these diseases, large quantities of incorrectly folded proteins undergo aggregation, destroying brain cells and other tissues. The interplay between ligand binding and hydration is an important component of the formation of misfolded protein species. Hydration drives various biological processes, including protein folding, ligand binding, macromolecular assembly, enzyme kinetics, and signal transduction. The changes in hydration and packing, both when proteins fold correctly or when folding goes wrong, leading to PFDs, are examined through several biochemical, biophysical, and structural approaches. Although in many cases the binding of a ligand such as a nucleic acid helps to prevent misfolding and aggregation, there are several examples in which ligands induce misfolding and assembly into amyloids. This occurs simply because the formation of structured aggregates (such as protofibrillar and fibrillar amyloids) involves decreases in hydration, formation of a hydrogen-bond network in the secondary structure, and burying of nonpolar amino acid residues, processes that also occur in the normal folding landscape. In this Account, we describe the present knowledge of the folding and misfolding of different proteins, with a detailed emphasis on mammalian prion protein (PrP) and tumoral suppressor protein p53; we also explore how ligand binding and hydration together influence the fate of the proteins. Anfinsen's paradigm that the structure of a protein is determined by its amino acid sequence is to some extent contradicted by the observation that there are two isoforms of the prion protein with the same sequence: the cellular and the misfolded isoform. The cellular isoform of PrP has a disordered N-terminal domain and a highly flexible, not-well-packed C-terminal domain, which might account for its significant hydration. When PrP binds to biological molecules, such as glycosaminoglycans and nucleic acids, the disordered segments appear to fold and become less hydrated. Formation of the PrP-nucleic acid complex seems to accelerate the conversion of the cellular form of the protein into the disease-causing isoform. For p53, binding to some ligands, including nucleic acids, would prevent misfolding of the protein. Recently, several groups have begun to analyze the folding-misfolding of the individual domains of p53, but several questions remain unanswered. We discuss the implications of these findings for understanding the productive and incorrect folding pathways of these proteins in normal physiological states and in human disease, such as prion disorders and cancer. These studies are shown to lay the groundwork for the development of new drugs.
Collapse
Affiliation(s)
- Jerson L. Silva
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem
| | - Tuane C. R. G. Vieira
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem
| | - Mariana P. B. Gomes
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem
| | - Ana Paula Ano Bom
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem
| | | | - Monica S. Freitas
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem
| | - Daniella Ishimaru
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem
| | | | - Debora Foguel
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem
| |
Collapse
|
49
|
Graham JF, Agarwal S, Kurian D, Kirby L, Pinheiro TJT, Gill AC. Low density subcellular fractions enhance disease-specific prion protein misfolding. J Biol Chem 2010; 285:9868-9880. [PMID: 20106973 DOI: 10.1074/jbc.m109.093484] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The production of prion particles in vitro by amplification with or without exogenous seed typically results in infectivity titers less than those associated with PrP(Sc) isolated ex vivo and highlights the potential role of co-factors that can catalyze disease-specific prion protein misfolding in vivo. We used a cell-free conversion assay previously shown to replicate many aspects of transmissible spongiform encephalopathy disease to investigate the cellular location of disease-specific co-factors using fractions derived from gradient centrifugation of a scrapie-susceptible cell line. Fractions from the low density region of the gradient doubled the efficiency of conversion of recombinant PrP. These fractions contain plasma membrane and cytoplasmic proteins, and conversion enhancement can be achieved using PrP(Sc) derived from two different strains of mouse-passaged scrapie as seed. Equivalent fractions from a second scrapie-susceptible cell line also stimulate conversion. We also show that subcellular fractions enhancing disease-specific prion protein conversion prevent in vitro fibrillization of recombinant prion protein, suggesting the existence of separate, competing mechanisms of disease-specific and nonspecific misfolding in vivo.
Collapse
Affiliation(s)
- James F Graham
- Neuropathogenesis Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Alexander Robertson Building, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG
| | - Sonya Agarwal
- Neuropathogenesis Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Alexander Robertson Building, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG
| | - Dominic Kurian
- Institute for Animal Health, Compton, Newbury, Berkshire RG20 7NN
| | - Louise Kirby
- Neuropathogenesis Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Alexander Robertson Building, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG
| | - Teresa J T Pinheiro
- School of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Andrew C Gill
- Neuropathogenesis Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Alexander Robertson Building, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG.
| |
Collapse
|
50
|
The role of heparanase in diseases of the glomeruli. Arch Immunol Ther Exp (Warsz) 2010; 58:45-56. [PMID: 20049646 DOI: 10.1007/s00005-009-0061-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 07/30/2009] [Indexed: 12/28/2022]
Abstract
The glomerular basement membrane (GBM) is a kind of net that remains in a state of dynamic equilibrium. Heparan sulfate proteoglycans (HSPGs) are among its most important components. There are much data indicating the significance of these proteoglycans in protecting proteins such as albumins from penetrating to the urine, although some new data indicate that loss of proteoglycans does not always lead to proteinuria. Heparanase is an enzyme which cleaves beta 1,4 D: -glucuronic bonds in sugar groups of HSPGs. Thus it is supposed that heparanase may have an important role in the pathogenesis of proteinuria. Increased heparanase expression and activity in the course of many glomerular diseases was observed. The most widely documented is the significance of heparanase in the pathogenesis of diabetic nephropathy. Moreover, heparanase acts as a signaling molecule and may influence the concentrations of active growth factors in the GBM. It is being investigated whether heparanase inhibition may cause decreased proteinuria. The heparanase inhibitor PI-88 (phosphomannopentaose sulfate) was effective as an antiproteinuric drug in an experimental model of membranous nephropathy. Nevertheless, this drug is burdened by some toxicity, so further investigations should be considered.
Collapse
|