1
|
Hong JD, Palczewski K. A short story on how chromophore is hydrolyzed from rhodopsin for recycling. Bioessays 2023; 45:e2300068. [PMID: 37454357 PMCID: PMC10614701 DOI: 10.1002/bies.202300068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023]
Abstract
The photocycle of visual opsins is essential to maintain the light sensitivity of the retina. The early physical observations of the rhodopsin photocycle by Böll and Kühne in the 1870s inspired over a century's worth of investigations on rhodopsin biochemistry. A single photon isomerizes the Schiff-base linked 11-cis-retinylidene chromophore of rhodopsin, converting it to the all-trans agonist to elicit phototransduction through photoactivated rhodopsin (Rho*). Schiff base hydrolysis of the agonist is a key step in the photocycle, not only diminishing ongoing phototransduction but also allowing for entry and binding of fresh 11-cis chromophore to regenerate the rhodopsin pigment and maintain light sensitivity. Many challenges have been encountered in measuring the rate of this hydrolysis, but recent advancements have facilitated studies of the hydrolysis within the native membrane environment of rhodopsin. These techniques can now be applied to study hydrolysis of agonist in other opsin proteins that mediate phototransduction or chromophore turnover. In this review, we discuss the progress that has been made in characterizing the rhodopsin photocycle and the journey to characterize the hydrolysis of its all-trans-retinylidene agonist.
Collapse
Affiliation(s)
- John D. Hong
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
2
|
Hofmann KP, Lamb TD. Rhodopsin, light-sensor of vision. Prog Retin Eye Res 2023; 93:101116. [PMID: 36273969 DOI: 10.1016/j.preteyeres.2022.101116] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
The light sensor of vertebrate scotopic (low-light) vision, rhodopsin, is a G-protein-coupled receptor comprising a polypeptide chain with bound chromophore, 11-cis-retinal, that exhibits remarkable physicochemical properties. This photopigment is extremely stable in the dark, yet its chromophore isomerises upon photon absorption with 70% efficiency, enabling the activation of its G-protein, transducin, with high efficiency. Rhodopsin's photochemical and biochemical activities occur over very different time-scales: the energy of retinaldehyde's excited state is stored in <1 ps in retinal-protein interactions, but it takes milliseconds for the catalytically active state to form, and many tens of minutes for the resting state to be restored. In this review, we describe the properties of rhodopsin and its role in rod phototransduction. We first introduce rhodopsin's gross structural features, its evolution, and the basic mechanisms of its activation. We then discuss light absorption and spectral sensitivity, photoreceptor electrical responses that result from the activity of individual rhodopsin molecules, and recovery of rhodopsin and the visual system from intense bleaching exposures. We then provide a detailed examination of rhodopsin's molecular structure and function, first in its dark state, and then in the active Meta states that govern its interactions with transducin, rhodopsin kinase and arrestin. While it is clear that rhodopsin's molecular properties are exquisitely honed for phototransduction, from starlight to dawn/dusk intensity levels, our understanding of how its molecular interactions determine the properties of scotopic vision remains incomplete. We describe potential future directions of research, and outline several major problems that remain to be solved.
Collapse
Affiliation(s)
- Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik (CC2), Charité, and, Zentrum für Biophysik und Bioinformatik, Humboldt-Unversität zu Berlin, Berlin, 10117, Germany.
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
3
|
Chromophore hydrolysis and release from photoactivated rhodopsin in native membranes. Proc Natl Acad Sci U S A 2022; 119:e2213911119. [PMID: 36322748 PMCID: PMC9659404 DOI: 10.1073/pnas.2213911119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
For sustained vision, photoactivated rhodopsin (Rho*) must undergo hydrolysis and release of all-trans-retinal, producing substrate for the visual cycle and apo-opsin available for regeneration with 11-cis-retinal. The kinetics of this hydrolysis has yet to be described for rhodopsin in its native membrane environment. We developed a method consisting of simultaneous denaturation and chromophore trapping by isopropanol/borohydride, followed by exhaustive protein digestion, complete extraction, and liquid chromatography-mass spectrometry. Using our method, we tracked Rho* hydrolysis, the subsequent formation of N-retinylidene-phosphatidylethanolamine (N-ret-PE) adducts with the released all-trans-retinal, and the reduction of all-trans-retinal to all-trans-retinol. We found that hydrolysis occurred faster in native membranes than in detergent micelles typically used to study membrane proteins. The activation energy of the hydrolysis in native membranes was determined to be 17.7 ± 2.4 kcal/mol. Our data support the interpretation that metarhodopsin II, the signaling state of rhodopsin, is the primary species undergoing hydrolysis and release of its all-trans-retinal. In the absence of NADPH, free all-trans-retinal reacts with phosphatidylethanolamine (PE), forming a substantial amount of N-ret-PE (∼40% of total all-trans-retinal at physiological pH), at a rate that is an order of magnitude faster than Rho* hydrolysis. However, N-ret-PE formation was highly attenuated by NADPH-dependent reduction of all-trans-retinal to all-trans-retinol. Neither N-ret-PE formation nor all-trans-retinal reduction affected the rate of hydrolysis of Rho*. Our study provides a comprehensive picture of the hydrolysis of Rho* and the release of all-trans-retinal and its reentry into the visual cycle, a process in which alteration can lead to severe retinopathies.
Collapse
|
4
|
Human cone elongation responses can be explained by photoactivated cone opsin and membrane swelling and osmotic response to phosphate produced by RGS9-catalyzed GTPase. Proc Natl Acad Sci U S A 2022; 119:e2202485119. [PMID: 36122241 PMCID: PMC9522364 DOI: 10.1073/pnas.2202485119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Optical coherence tomography has established that human cone photoreceptor outer segments elongate in response to stimuli bleaching large fractions of their visual pigment. Elongation responses are completely described over their 200-fold bleaching range as the sum of two exponentially rising components differing 13-fold in time constants and 4-fold in light sensitivity. Bleaching measurements of individual cones with adaptive optics scanning laser ophthalmoscopy (SLO) suggest that component 2 arises from cone opsin and disk membrane swelling triggered by photoactivation. Application of a model of phototransduction suggests that component 1 corresponds to free phosphate generated by regulator of G-protein signaling 9 (RGS9)-catalyzed hydrolysis of guanosine triphosphate (GTP) in the α-subunit of G protein complexed with phosphodiesterase. Human cone outer segment (COS) length changes in response to stimuli bleaching up to 99% of L- and M-cone opsins were measured with high resolution, phase-resolved optical coherence tomography (OCT). Responses comprised a fast phase (∼5 ms), during which COSs shrink, and two slower phases (1.5 s), during which COSs elongate. The slower components saturated in amplitude (∼425 nm) and initial rate (∼3 nm ms−1) and are well described over the 200-fold bleaching range as the sum of two exponentially rising functions with time constants of 80 to 90 ms (component 1) and 1,000 to 1,250 ms (component 2). Measurements with adaptive optics reflection densitometry revealed component 2 to be linearly related to cone pigment bleaching, and the hypothesis is proposed that it arises from cone opsin and disk membrane swelling triggered by isomerization and rate-limited by chromophore hydrolysis and its reduction to membrane-localized all-trans retinol. The light sensitivity and kinetics of component 1 suggested that the underlying mechanism is an osmotic response to an amplified soluble by-product of phototransduction. The hypotheses that component 1 corresponds to G-protein subunits dissociating from the membrane, metabolites of cyclic guanosine monophosphate (cGMP) hydrolysis, or by-products of activated guanylate cyclase are rejected, while the hypothesis that it corresponds to phosphate produced by regulator of G-protein signaling 9 (RGS9)-catalyzed hydrolysis of guanosine triphosphate (GTP) in G protein–phosphodiesterase complexes was found to be consistent with the results. These results provide a basis for the assessment with optoretinography of phototransduction in individual cone photoreceptors in health and during disease progression and therapeutic interventions.
Collapse
|
5
|
Xu Z, Guo L, Qian X, Yu C, Li S, Zhu C, Ma X, Li H, Zhu G, Zhou H, Dai W, Li Q, Gao X. Two entry tunnels in mouse TAAR9 suggest the possibility of multi-entry tunnels in olfactory receptors. Sci Rep 2022; 12:2691. [PMID: 35177711 PMCID: PMC8854740 DOI: 10.1038/s41598-022-06591-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
Orthosteric binding sites of olfactory receptors have been well understood for ligand-receptor interactions. However, a lack of explanation for subtle differences in ligand profile of olfactory receptors even with similar orthosteric binding sites promotes more exploration into the entry tunnels of the receptors. An important question regarding entry tunnels is the number of entry tunnels, which was previously believed to be one. Here, we used TAAR9 that recognizes important biogenic amines such as cadaverine, spermine, and spermidine as a model for entry tunnel study. We identified two entry tunnels in TAAR9 and described the residues that form the tunnels. In addition, we found two vestibular binding pockets, each located in one tunnel. We further confirmed the function of two tunnels through site-directed mutagenesis. Our study challenged the existing views regarding the number of entry tunnels in the subfamily of olfactory receptors and demonstrated the possible mechanism how the entry tunnels function in odorant recognition.
Collapse
Affiliation(s)
- ZhengRong Xu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - LingNa Guo
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - XiaoYun Qian
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - ChenJie Yu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - ShengJu Li
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - ChengWen Zhu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - XiaoFeng Ma
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Hui Li
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - GuangJie Zhu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Han Zhou
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - WenXuan Dai
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Department of Anatomy and Physiology, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Qian Li
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Department of Anatomy and Physiology, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China.
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
6
|
Krishna Deepak RNV, Verma RK, Hartono YD, Yew WS, Fan H. Recent Advances in Structure, Function, and Pharmacology of Class A Lipid GPCRs: Opportunities and Challenges for Drug Discovery. Pharmaceuticals (Basel) 2021; 15:12. [PMID: 35056070 PMCID: PMC8779880 DOI: 10.3390/ph15010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 01/01/2023] Open
Abstract
Great progress has been made over the past decade in understanding the structural, functional, and pharmacological diversity of lipid GPCRs. From the first determination of the crystal structure of bovine rhodopsin in 2000, much progress has been made in the field of GPCR structural biology. The extraordinary progress in structural biology and pharmacology of GPCRs, coupled with rapid advances in computational approaches to study receptor dynamics and receptor-ligand interactions, has broadened our comprehension of the structural and functional facets of the receptor family members and has helped usher in a modern age of structure-based drug design and development. First, we provide a primer on lipid mediators and lipid GPCRs and their role in physiology and diseases as well as their value as drug targets. Second, we summarize the current advancements in the understanding of structural features of lipid GPCRs, such as the structural variation of their extracellular domains, diversity of their orthosteric and allosteric ligand binding sites, and molecular mechanisms of ligand binding. Third, we close by collating the emerging paradigms and opportunities in targeting lipid GPCRs, including a brief discussion on current strategies, challenges, and the future outlook.
Collapse
Affiliation(s)
- R. N. V. Krishna Deepak
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
| | - Ravi Kumar Verma
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
| | - Yossa Dwi Hartono
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Wen Shan Yew
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Hao Fan
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore;
| |
Collapse
|
7
|
Murray IJ, Rodrigo-Diaz E, Kelly JMF, Tahir HJ, Carden D, Patryas L, Parry NR. The role of dark adaptation in understanding early AMD. Prog Retin Eye Res 2021; 88:101015. [PMID: 34626782 DOI: 10.1016/j.preteyeres.2021.101015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 11/27/2022]
Abstract
The main aim of the paper is to discuss current knowledge on how Age Related Macular Degeneration (AMD) affects Dark Adaptation (DA). The paper is divided into three parts. Firstly, we outline some of the molecular mechanisms that control DA. Secondly, we review the psychophysical issues and the corresponding analytical techniques. Finally, we characterise the link between slowed DA and the morphological abnormalities in early AMD. Historically, DA has been regarded as too cumbersome for widespread clinical application. Yet the technique is extremely useful; it is widely accepted that the psychophysically obtained slope of the second rod-mediated phase of the dark adaptation function is an accurate assay of photoreceptor pigment regeneration kinetics. Technological developments have prompted new ways of generating the DA curve, but analytical problems remain. A simple potential solution to these, based on the application of a novel fast mathematical algorithm, is presented. This allows the calculation of the parameters of the DA curve in real time. Improving current management of AMD will depend on identifying a satisfactory endpoint for evaluating future therapeutic strategies. This must be implemented before the onset of severe disease. Morphological changes progress too slowly to act as a satisfactory endpoint for new therapies whereas functional changes, such as those seen in DA, may have more potential in this regard. It is important to recognise, however, that the functional changes are not confined to rods and that building a mathematical model of the DA curve enables the separation of rod and cone dysfunction and allows more versatility in terms of the range of disease severity that can be monitored. Examples are presented that show how analysing the DA curve into its constituent components can improve our understanding of the morphological changes in early AMD.
Collapse
Affiliation(s)
- Ian J Murray
- Vision Science Lab., Faculty of Biology, Medicine and Health, University of Manchester, UK.
| | - Elena Rodrigo-Diaz
- Vision Science Lab., Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Jeremiah M F Kelly
- Vision Science Lab., Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Humza J Tahir
- Vision Science Lab., Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - David Carden
- Vision Science Lab., Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Laura Patryas
- Vision Science Lab., Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Neil Ra Parry
- Vision Science Lab., Faculty of Biology, Medicine and Health, University of Manchester, UK; Vision Science Centre, Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
8
|
Membrane binding properties of the C-terminal segment of retinol dehydrogenase 8. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183605. [PMID: 33766534 DOI: 10.1016/j.bbamem.2021.183605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022]
Abstract
Light absorption by rhodopsin leads to the release of all-trans retinal (ATRal) in the lipid phase of photoreceptor disc membranes. Retinol dehydrogenase 8 (RDH8) then reduces ATRal into all-trans retinol, which is the first step of the visual cycle. The membrane binding of RDH8 has been postulated to be mediated by one or more palmitoylated cysteines located in its C-terminus. Different peptide variants of the C-terminus of RDH8 were thus used to obtain information on the mechanism of membrane binding of this enzyme. Steady-state and time-resolved fluorescence measurements were performed using short and long C-terminal segments of bovine RDH8, comprising one or two tryptophan residues. The data demonstrate that the amphipathic alpha helical structure of the first portion of the C-terminus of RDH8 strongly contributes to its membrane binding, which is also favored by palmitoylation of at least one of the cysteines located in the last portion of the C-terminus.
Collapse
|
9
|
Fanelli F, Felline A, Marigo V. Structural aspects of rod opsin and their implication in genetic diseases. Pflugers Arch 2021; 473:1339-1359. [PMID: 33728518 DOI: 10.1007/s00424-021-02546-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023]
Abstract
Vision in dim-light conditions is triggered by photoactivation of rhodopsin, the visual pigment of rod photoreceptor cells. Rhodopsin is made of a protein, the G protein coupled receptor (GPCR) opsin, and the chromophore 11-cis-retinal. Vertebrate rod opsin is the GPCR best characterized at the atomic level of detail. Since the release of the first crystal structure 20 years ago, a huge number of structures have been released that, in combination with valuable spectroscopic determinations, unveiled most aspects of the photobleaching process. A number of spontaneous mutations of rod opsin have been found linked to vision-impairing diseases like autosomal dominant or autosomal recessive retinitis pigmentosa (adRP or arRP, respectively) and autosomal congenital stationary night blindness (adCSNB). While adCSNB is mainly caused by constitutive activation of rod opsin, RP shows more variegate determinants affecting different aspects of rod opsin function. The vast majority of missense rod opsin mutations affects folding and trafficking and is linked to adRP, an incurable disease that awaits light on its molecular structure determinants. This review article summarizes all major structural information available on vertebrate rod opsin conformational states and the insights gained so far into the structural determinants of adCSNB and adRP linked to rod opsin mutations. Strategies to design small chaperones with therapeutic potential for selected adRP rod opsin mutants will be discussed as well.
Collapse
Affiliation(s)
- Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy. .,Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via Campi 287, Modena, 41125, Italy.
| | - Angelo Felline
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy
| | - Valeria Marigo
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via Campi 287, Modena, 41125, Italy.,Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125, Modena, Italy
| |
Collapse
|
10
|
Pasqualetto G, Schepelmann M, Varricchio C, Pileggi E, Khogali C, Morgan SR, Boostrom I, Rozanowska M, Brancale A, Ferla S, Bassetto M. Computational Studies towards the Identification of Novel Rhodopsin-Binding Compounds as Chemical Chaperones for Misfolded Opsins. Molecules 2020; 25:molecules25214904. [PMID: 33114011 PMCID: PMC7660337 DOI: 10.3390/molecules25214904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/19/2023] Open
Abstract
Accumulation of misfolded and mistrafficked rhodopsin on the endoplasmic reticulum of photoreceptor cells has a pivotal role in the pathogenesis of retinitis pigmentosa and a subset of Leber’s congenital amaurosis. One potential strategy to reduce rhodopsin misfolding and aggregation in these conditions is to use opsin-binding compounds as chemical chaperones for opsin. Such molecules have previously shown the ability to aid rhodopsin folding and proper trafficking to the outer cell membranes of photoreceptors. As means to identify novel chemical chaperones for rhodopsin, a structure-based virtual screening of commercially available drug-like compounds (300,000) was performed on the main binding site of the visual pigment chromophore, the 11-cis-retinal. The best 24 virtual hits were examined for their ability to compete for the chromophore-binding site of opsin. Among these, four small molecules demonstrated the ability to reduce the rate constant for the formation of the 9-cis-retinal-rhodopsin complex, while five molecules surprisingly enhanced the formation of this complex. Compound 7, 13, 20 and 23 showed a weak but detectable increase in the trafficking of the P23H mutant, widely used as a model for both retinitis pigmentosa and Leber’s congenital amaurosis, from the ER to the cell membrane. The compounds did not show any relevant cytotoxicity in two different human cell lines, with the only exception of 13. Based on the structures of these active compounds, a series of in silico studies gave important insights on the potential structural features required for a molecule to act either as chemical chaperone or as stabiliser of the 11-cis-retinal-rhodopsin complex. Thus, this study revealed a series of small molecules that represent a solid foundation for the future development of novel therapeutics against these severe inherited blinding diseases.
Collapse
Affiliation(s)
- Gaia Pasqualetto
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK; (G.P.); (C.V.); (E.P.)
| | - Martin Schepelmann
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria;
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, UK; (C.K.); (S.R.M.); (I.B.); (M.R.)
| | - Carmine Varricchio
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK; (G.P.); (C.V.); (E.P.)
| | - Elisa Pileggi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK; (G.P.); (C.V.); (E.P.)
| | - Caroline Khogali
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, UK; (C.K.); (S.R.M.); (I.B.); (M.R.)
| | - Siân R. Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, UK; (C.K.); (S.R.M.); (I.B.); (M.R.)
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff University, Cardiff CF10 3NB, UK
| | - Ian Boostrom
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, UK; (C.K.); (S.R.M.); (I.B.); (M.R.)
| | - Malgorzata Rozanowska
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, UK; (C.K.); (S.R.M.); (I.B.); (M.R.)
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff University, Cardiff CF10 3NB, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK; (G.P.); (C.V.); (E.P.)
- Correspondence:
| | - Salvatore Ferla
- Swansea University Medical School, Institute of Life Sciences 2, Swansea University, Swansea SA2 8PP, UK;
| | | |
Collapse
|
11
|
Srinivasan S, Guixà-González R, Cordomí A, Garriga P. Ligand Binding Mechanisms in Human Cone Visual Pigments. Trends Biochem Sci 2019; 44:629-639. [PMID: 30853245 DOI: 10.1016/j.tibs.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 12/13/2022]
Abstract
Vertebrate vision starts with light absorption by visual pigments in rod and cone photoreceptor cells of the retina. Rhodopsin, in rod cells, responds to dim light, whereas three types of cone opsins (red, green, and blue) function under bright light and mediate color vision. Cone opsins regenerate with retinal much faster than rhodopsin, but the molecular mechanism of regeneration is still unclear. Recent advances in the area pinpoint transient intermediate opsin conformations, and a possible secondary retinal-binding site, as determinant factors for regeneration. In this Review, we compile previous and recent findings to discuss possible mechanisms of ligand entry in cone opsins, involving a secondary binding site, which may have relevant functional and evolutionary implications.
Collapse
Affiliation(s)
- Sundaramoorthy Srinivasan
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Rambla de Sant Nebridi 22, 08222 Terrassa, Spain
| | - Ramon Guixà-González
- Laboratori de Medicina Computational, Universitat Autonòma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Arnau Cordomí
- Laboratori de Medicina Computational, Universitat Autonòma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Pere Garriga
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Rambla de Sant Nebridi 22, 08222 Terrassa, Spain.
| |
Collapse
|
12
|
Rodgers J, Peirson SN, Hughes S, Hankins MW. Functional characterisation of naturally occurring mutations in human melanopsin. Cell Mol Life Sci 2018; 75:3609-3624. [PMID: 29700553 PMCID: PMC6133154 DOI: 10.1007/s00018-018-2813-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/06/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022]
Abstract
Melanopsin is a blue light-sensitive opsin photopigment involved in a range of non-image forming behaviours, including circadian photoentrainment and the pupil light response. Many naturally occurring genetic variants exist within the human melanopsin gene (OPN4), yet it remains unclear how these variants affect melanopsin protein function and downstream physiological responses to light. Here, we have used bioinformatic analysis and in vitro expression systems to determine the functional phenotypes of missense human OPN4 variants. From 1242 human OPN4 variants collated in the NCBI Short Genetic Variation database (dbSNP), we identified 96 that lead to non-synonymous amino acid substitutions. These 96 missense mutations were screened using sequence alignment and comparative approaches to select 16 potentially deleterious variants for functional characterisation using calcium imaging of melanopsin-driven light responses in HEK293T cells. We identify several previously uncharacterised OPN4 mutations with altered functional properties, including attenuated or abolished light responses, as well as variants demonstrating abnormal response kinetics. These data provide valuable insight into the structure-function relationships of human melanopsin, including several key functional residues of the melanopsin protein. The identification of melanopsin variants with significantly altered function may serve to detect individuals with disrupted melanopsin-based light perception, and potentially highlight those at increased risk of sleep disturbance, circadian dysfunction, and visual abnormalities.
Collapse
Affiliation(s)
- Jessica Rodgers
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK
| | - Stuart N Peirson
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK
| | - Steven Hughes
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK.
| | - Mark W Hankins
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
13
|
Srinivasan S, Fernández-Sampedro MA, Morillo M, Ramon E, Jiménez-Rosés M, Cordomí A, Garriga P. Human Blue Cone Opsin Regeneration Involves Secondary Retinal Binding with Analog Specificity. Biophys J 2018; 114:1285-1294. [PMID: 29590586 PMCID: PMC5883618 DOI: 10.1016/j.bpj.2018.01.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/16/2022] Open
Abstract
Human color vision is mediated by the red, green, and blue cone visual pigments. Cone opsins are G-protein-coupled receptors consisting of an opsin apoprotein covalently linked to the 11-cis-retinal chromophore. All visual pigments share a common evolutionary origin, and red and green cone opsins exhibit a higher homology, whereas blue cone opsin shows more resemblance to the dim light receptor rhodopsin. Here we show that chromophore regeneration in photoactivated blue cone opsin exhibits intermediate transient conformations and a secondary retinoid binding event with slower binding kinetics. We also detected a fine-tuning of the conformational change in the photoactivated blue cone opsin binding site that alters the retinal isomer binding specificity. Furthermore, the molecular models of active and inactive blue cone opsins show specific molecular interactions in the retinal binding site that are not present in other opsins. These findings highlight the differential conformational versatility of human cone opsin pigments in the chromophore regeneration process, particularly compared to rhodopsin, and point to relevant functional, unexpected roles other than spectral tuning for the cone visual pigments.
Collapse
Affiliation(s)
| | | | | | - Eva Ramon
- Universitat Politècnica de Catalunya, Terrassa, Spain
| | - Mireia Jiménez-Rosés
- Unitat de Bioestadística Bellaterra, Laboratori de Medicina Computacional, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Arnau Cordomí
- Unitat de Bioestadística Bellaterra, Laboratori de Medicina Computacional, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pere Garriga
- Universitat Politècnica de Catalunya, Terrassa, Spain.
| |
Collapse
|
14
|
Removal of the blue component of light significantly decreases retinal damage after high intensity exposure. PLoS One 2018; 13:e0194218. [PMID: 29543853 PMCID: PMC5854379 DOI: 10.1371/journal.pone.0194218] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 02/27/2018] [Indexed: 12/14/2022] Open
Abstract
Light causes damage to the retina (phototoxicity) and decreases photoreceptor responses to light. The most harmful component of visible light is the blue wavelength (400–500 nm). Different filters have been tested, but so far all of them allow passing a lot of this wavelength (70%). The aim of this work has been to prove that a filter that removes 94% of the blue component may protect the function and morphology of the retina significantly. Three experimental groups were designed. The first group was unexposed to light, the second one was exposed and the third one was exposed and protected by a blue-blocking filter. Light damage was induced in young albino mice (p30) by exposing them to white light of high intensity (5,000 lux) continuously for 7 days. Short wavelength light filters were used for light protection. The blue component was removed (94%) from the light source by our filter. Electroretinographical recordings were performed before and after light damage. Changes in retinal structure were studied using immunohistochemistry, and TUNEL labeling. Also, cells in the outer nuclear layer were counted and compared among the three different groups. Functional visual responses were significantly more conserved in protected animals (with the blue-blocking filter) than in unprotected animals. Also, retinal structure was better kept and photoreceptor survival was greater in protected animals, these differences were significant in central areas of the retina. Still, functional and morphological responses were significantly lower in protected than in unexposed groups. In conclusion, this blue-blocking filter decreases significantly photoreceptor damage after exposure to high intensity light. Actually, our eyes are exposed for a very long time to high levels of blue light (screens, artificial light LED, neons…). The potential damage caused by blue light can be palliated.
Collapse
|
15
|
Abstract
GPCRs play a pervasive physiological role and, in turn, are the leading target class for pharmaceuticals. Beginning with the determination of the structure of rhodopsin, and dramatically accelerating since the reporting of the first ligand-mediated GPCR X-ray structures, our understanding of the structural and functional characteristics of these proteins has grown dramatically. Deploying this now rapidly emerging information for drug discovery has already been extensively demonstrated through a watershed of studies appearing in numerous scientific reports. Included in these expositions are areas such as sites and characteristics of ligand to GPCR binding, protein activation, effector bias, allosteric mechanisms, dimerization, polypharmacology and others. Computational chemistry studies are demonstrating an increasing role in capitalizing on the structural studies to further advance our understanding of these proteins as well as to drive drug discovery. Such drug discovery activities range from the design of orthosteric site inhibitors through, for example, allosteric modulators, biased ligands, partial agonists and bitopic ligands. Herein, these topics are outlined through specific examples in the hopes of providing a glimpse of the state of the field.
Collapse
|
16
|
Tian H, Sakmar TP, Huber T. The Energetics of Chromophore Binding in the Visual Photoreceptor Rhodopsin. Biophys J 2017; 113:60-72. [PMID: 28700926 DOI: 10.1016/j.bpj.2017.05.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/04/2017] [Accepted: 05/25/2017] [Indexed: 01/06/2023] Open
Abstract
The visual photoreceptor rhodopsin is a prototypical G-protein-coupled receptor (GPCR) that stabilizes its inverse agonist ligand, 11-cis-retinal (11CR), by a covalent, protonated Schiff base linkage. In the visual dark adaptation, the fundamental molecular event after photobleaching of rhodopsin is the recombination reaction between its apoprotein opsin and 11CR. Here we present a detailed analysis of the kinetics and thermodynamics of this reaction, also known as the "regeneration reaction". We compared the regeneration of purified rhodopsin reconstituted into phospholipid/detergent bicelles with rhodopsin reconstituted into detergent micelles. We found that the lipid bilayer of bicelles stabilized the chromophore-free opsin over the long timescale required for the regeneration experiments, and also facilitated the ligand reuptake binding reaction. We utilized genetic code expansion and site-specific bioorthogonal labeling of rhodopsin with Alexa488 to enable, to our knowledge, a novel fluorescence resonance energy transfer-based measurement of the binding kinetics between opsin and 11CR. Based on these results, we report a complete energy diagram for the regeneration reaction of rhodopsin. We show that the dissociation reaction of rhodopsin to 11CR and opsin has a 25-pM equilibrium dissociation constant, which corresponds to only 0.3 kcal/mol stabilization compared to the noncovalent, tightly bound antagonist-GPCR complex of iodopindolol and β-adrenergic receptor. However, 11CR dissociates four orders-of-magnitude slower than iodopindolol, which corresponds to a 6-kcal/mol higher dissociation free energy barrier. We further used isothermal titration calorimetry to show that ligand binding in rhodopsin is enthalpy driven with -22 kcal/mol, which is 12 kcal/mol more stable than the antagonist-GPCR complex. Our data provide insights into the ligand-receptor binding reaction for rhodopsin in particular, and for GPCRs more broadly.
Collapse
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York; Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden.
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York.
| |
Collapse
|
17
|
Morrow JM, Castiglione GM, Dungan SZ, Tang PL, Bhattacharyya N, Hauser FE, Chang BSW. An experimental comparison of human and bovine rhodopsin provides insight into the molecular basis of retinal disease. FEBS Lett 2017; 591:1720-1731. [PMID: 28369862 DOI: 10.1002/1873-3468.12637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/22/2017] [Accepted: 03/25/2017] [Indexed: 11/05/2022]
Abstract
Rhodopsin is the visual pigment that mediates dim-light vision in vertebrates and is a model system for the study of retinal disease. The majority of rhodopsin experiments are performed using bovine rhodopsin; however, recent evidence suggests that significant functional differences exist among mammalian rhodopsins. In this study, we identify differences in both thermal decay and light-activated retinal release rates between bovine and human rhodopsin and perform mutagenesis studies to highlight two clusters of substitutions that contribute to these differences. We also demonstrate that the retinitis pigmentosa-associated mutation G51A behaves differently in human rhodopsin compared to bovine rhodopsin and determine that the thermal decay rate of an ancestrally reconstructed mammalian rhodopsin displays an intermediate phenotype compared to the two extant pigments.
Collapse
Affiliation(s)
- James M Morrow
- Department of Cell and Systems Biology, University of Toronto, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Canada
| | | | - Sarah Z Dungan
- Department of Ecology and Evolutionary Biology, University of Toronto, Canada
| | - Portia L Tang
- Department of Cell and Systems Biology, University of Toronto, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Canada
| | | | - Frances E Hauser
- Department of Ecology and Evolutionary Biology, University of Toronto, Canada
| | - Belinda S W Chang
- Department of Cell and Systems Biology, University of Toronto, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Canada.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Canada
| |
Collapse
|
18
|
Tian H, Fürstenberg A, Huber T. Labeling and Single-Molecule Methods To Monitor G Protein-Coupled Receptor Dynamics. Chem Rev 2016; 117:186-245. [DOI: 10.1021/acs.chemrev.6b00084] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Alexandre Fürstenberg
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Thomas Huber
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| |
Collapse
|
19
|
Grundmann M, Tikhonova IG, Hudson BD, Smith NJ, Mohr K, Ulven T, Milligan G, Kenakin T, Kostenis E. A Molecular Mechanism for Sequential Activation of a G Protein-Coupled Receptor. Cell Chem Biol 2016; 23:392-403. [PMID: 26991104 DOI: 10.1016/j.chembiol.2016.02.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/11/2016] [Accepted: 02/22/2016] [Indexed: 01/05/2023]
Abstract
Ligands targeting G protein-coupled receptors (GPCRs) are currently classified as either orthosteric, allosteric, or dualsteric/bitopic. Here, we introduce a new pharmacological concept for GPCR functional modulation: sequential receptor activation. A hallmark feature of this is a stepwise ligand binding mode with transient activation of a first receptor site followed by sustained activation of a second topographically distinct site. We identify 4-CMTB (2-(4-chlorophenyl)-3-methyl-N-(thiazol-2-yl)butanamide), previously classified as a pure allosteric agonist of the free fatty acid receptor 2, as the first sequential activator and corroborate its two-step activation in living cells by tracking integrated responses with innovative label-free biosensors that visualize multiple signaling inputs in real time. We validate this unique pharmacology with traditional cellular readouts, including mutational and pharmacological perturbations along with computational methods, and propose a kinetic model applicable to the analysis of sequential receptor activation. We envision this form of dynamic agonism as a common principle of nature to spatiotemporally encode cellular information.
Collapse
Affiliation(s)
- Manuel Grundmann
- Molecular-, Cellular- and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany.
| | - Irina G Tikhonova
- Molecular Therapeutics, School of Pharmacy, Medical Biology Centre, Queen's University, Belfast BT7 1NN Northern Ireland
| | - Brian D Hudson
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ Scotland
| | - Nicola J Smith
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ Scotland; Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Klaus Mohr
- Pharmacology and Toxicology, University of Bonn, 53347 Bonn, Germany
| | - Trond Ulven
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Graeme Milligan
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ Scotland
| | - Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Evi Kostenis
- Molecular-, Cellular- and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
20
|
Morrow JM, Chang BSW. Comparative Mutagenesis Studies of Retinal Release in Light-Activated Zebrafish Rhodopsin Using Fluorescence Spectroscopy. Biochemistry 2015; 54:4507-18. [PMID: 26098991 DOI: 10.1021/bi501377b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Rhodopsin is the visual pigment responsible for initiating scotopic (dim-light) vision in vetebrates. Once activated by light, release of all-trans-retinal from rhodopsin involves hydrolysis of the Schiff base linkage, followed by dissociation of retinal from the protein moiety. This kinetic process has been well studied in model systems such as bovine rhodopsin, but not in rhodopsins from cold-blooded animals, where physiological temperatures can vary considerably. Here, we characterize the rate of retinal release from light-activated rhodopsin in an ectotherm, zebrafish (Danio rerio), demonstrating in a fluorescence assay that this process occurs more than twice as fast as bovine rhodopsin at similar temperatures in 0.1% dodecyl maltoside. Using site-directed mutagenesis, we found that differences in retinal release rates can be attributed to a series of variable residues lining the retinal channel in three key structural motifs: an opening in metarhodopsin II between transmembrane helix 5 (TM5) and TM6, in TM3 near E122, and in the "retinal plug" formed by extracellular loop 2 (EL2). The majority of these sites are more proximal to the β-ionone ring of retinal than the Schiff base, indicating their influence on retinal release is more likely due to steric effects during retinal dissociation, rather than alterations to Schiff base stability. An Arrhenius plot of zebrafish rhodopsin was consistent with this model, inferring that the activation energy for Schiff base hydrolysis is similar to that of bovine rhodopsin. Functional variation at key sites identified in this study is consistent with the idea that retinal release might be an adaptive property of rhodopsin in vertebrates. Our study is one of the few investigating a nonmammalian rhodopsin, which will help establish a better understanding of the molecular mechanisms contributing to vision in cold-blooded vertebrates.
Collapse
|
21
|
Struts AV, Barmasov AV, Brown MF. SPECTRAL METHODS FOR STUDY OF THE G-PROTEIN-COUPLED RECEPTOR RHODOPSIN. I. VIBRATIONAL AND ELECTRONIC SPECTROSCOPY. OPTICS AND SPECTROSCOPY 2015; 118:711-717. [PMID: 28260815 PMCID: PMC5334778 DOI: 10.1134/s0030400x15050240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Here we review the application of modern spectral methods for the study of G-protein-coupled receptors (GPCRs) using rhodopsin as a prototype. Because X-ray analysis gives us immobile snapshots of protein conformations, it is imperative to apply spectroscopic methods for elucidating their function: vibrational (Raman, FTIR), electronic (UV-visible absorption, fluorescence) spectroscopies, and magnetic resonance (electron paramagnetic resonance, EPR), and nuclear magnetic resonance, NMR). In the first of the two companion articles, we discuss the application of optical spectroscopy for studying rhodopsin in a membrane environment. Information is obtained regarding the time-ordered sequence of events in rhodopsin activation. Isomerization of the chromophore and deprotonation of the retinal Schiff base leads to a structural change of the protein involving the motion of helices H5 and H6 in a pH-dependent process. Information is obtained that is unavailable from X-ray crystallography, which can be combined with spectroscopic studies to achieve a more complete understanding of GPCR function.
Collapse
Affiliation(s)
- A V Struts
- St. Petersburg State Medical University, 194100 St. Petersburg, Russia; St. Petersburg State University, 199034 St. Petersburg, Russia; University of Arizona, Tucson, AZ 85721 USA
| | - A V Barmasov
- St. Petersburg State Medical University, 194100 St. Petersburg, Russia; St. Petersburg State University, 199034 St. Petersburg, Russia
| | - M F Brown
- University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
22
|
Mertz B, Feng J, Corcoran C, Neeley B. Explaining the mobility of retinal in activated rhodopsin and opsin. Photochem Photobiol Sci 2015; 14:1952-64. [PMID: 26248892 DOI: 10.1039/c5pp00173k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Computational studies reveal flexibility of the rhodopsin cofactor, retinal, within the protein binding pocket that play a key role in the activated state and regeneration of rhodopsin.
Collapse
Affiliation(s)
- Blake Mertz
- The C. Eugene Bennett Department of Chemistry
- West Virginia University
- Morgantown
- USA
| | - Jun Feng
- The C. Eugene Bennett Department of Chemistry
- West Virginia University
- Morgantown
- USA
| | - Conor Corcoran
- The C. Eugene Bennett Department of Chemistry
- West Virginia University
- Morgantown
- USA
| | - Brandon Neeley
- The C. Eugene Bennett Department of Chemistry
- West Virginia University
- Morgantown
- USA
| |
Collapse
|
23
|
Schafer CT, Farrens DL. Conformational selection and equilibrium governs the ability of retinals to bind opsin. J Biol Chem 2014; 290:4304-18. [PMID: 25451936 DOI: 10.1074/jbc.m114.603134] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Despite extensive study, how retinal enters and exits the visual G protein-coupled receptor rhodopsin remains unclear. One clue may lie in two openings between transmembrane helix 1 (TM1) and TM7 and between TM5 and TM6 in the active receptor structure. Recently, retinal has been proposed to enter the inactive apoprotein opsin (ops) through these holes when the receptor transiently adopts the active opsin conformation (ops*). Here, we directly test this "transient activation" hypothesis using a fluorescence-based approach to measure rates of retinal binding to samples containing differing relative fractions of ops and ops*. In contrast to what the transient activation hypothesis model would predict, we found that binding for the inverse agonist, 11-cis-retinal (11CR), slowed when the sample contained more ops* (produced using M257Y, a constitutively activating mutation). Interestingly, the increased presence of ops* allowed for binding of the agonist, all-trans-retinal (ATR), whereas WT opsin showed no binding. Shifting the conformational equilibrium toward even more ops* using a G protein peptide mimic (either free in solution or fused to the receptor) accelerated the rate of ATR binding and slowed 11CR binding. An arrestin peptide mimic showed little effect on 11CR binding; however, it stabilized opsin · ATR complexes. The TM5/TM6 hole is apparently not involved in this conformational selection. Increasing its size by mutagenesis did not enable ATR binding but instead slowed 11CR binding, suggesting that it may play a role in trapping 11CR. In summary, our results indicate that conformational selection dictates stable retinal binding, which we propose involves ATR and 11CR binding to different states, the latter a previously unidentified, open-but-inactive conformation.
Collapse
Affiliation(s)
- Christopher T Schafer
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239-3098
| | - David L Farrens
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239-3098
| |
Collapse
|
24
|
Tian H, Naganathan S, Kazmi MA, Schwartz TW, Sakmar TP, Huber T. Bioorthogonal fluorescent labeling of functional G-protein-coupled receptors. Chembiochem 2014; 15:1820-9. [PMID: 25045132 DOI: 10.1002/cbic.201402193] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Indexed: 11/12/2022]
Abstract
Novel methods are required for site-specific, quantitative fluorescent labeling of G-protein-coupled receptors (GPCRs) and other difficult-to-express membrane proteins. Ideally, fluorescent probes should perturb the native structure and function as little as possible. We evaluated bioorthogonal reactions to label genetically encoded p-acetyl-L-phenylalanine (AcF) or p-azido-L-phenylalanine (azF) residues in receptors heterologously expressed in mammalian cells. We found that keto-selective reagents were not truly bioorthogonal, possibly owing to post-translational protein oxidation reactions. In contrast, the strain-promoted [3+2] azide-alkyne cycloaddition (SpAAC) with dibenzocyclooctyne (DIBO) reagents yielded stoichiometric conjugates with azF-rhodopsin while undergoing negligible background reactions. As one application of this technique, we used Alexa488-rhodopsin to measure the kinetics of ligand uptake and release in membrane-mimetic bicelles using a novel fluorescence-quenching assay.
Collapse
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (USA)
| | | | | | | | | | | |
Collapse
|
25
|
Chen Y, Jastrzebska B, Cao P, Zhang J, Wang B, Sun W, Yuan Y, Feng Z, Palczewski K. Inherent instability of the retinitis pigmentosa P23H mutant opsin. J Biol Chem 2014; 289:9288-303. [PMID: 24515108 PMCID: PMC3979360 DOI: 10.1074/jbc.m114.551713] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/05/2014] [Indexed: 11/06/2022] Open
Abstract
The P23H opsin mutation is the most common cause of autosomal dominant retinitis pigmentosa. Even though the pathobiology of the resulting retinal degeneration has been characterized in several animal models, its complex molecular mechanism is not well understood. Here, we expressed P23H bovine rod opsin in the nervous system of Caenorhabditis elegans. Expression was low due to enhanced protein degradation. The mutant opsin was glycosylated, but the polysaccharide size differed from that of the normal protein. Although P23H opsin aggregated in the nervous system of C. elegans, the pharmacological chaperone 9-cis-retinal stabilized it during biogenesis, producing a variant of rhodopsin called P23H isorhodopsin. In vitro, P23H isorhodopsin folded correctly, formed the appropriate disulfide bond, could be photoactivated but with reduced sensitivity, and underwent Meta II decay at a rate similar to wild type isorhodopsin. In worm neurons, P23H isorhodopsin initiated phototransduction by coupling with the endogenous Gi/o signaling cascade that induced loss of locomotion. Using pharmacological interventions affecting protein synthesis and degradation, we showed that the chromophore could be incorporated either during or after mutant protein translation. However, regeneration of P23H isorhodopsin with chromophore was significantly slower than that of wild type isorhodopsin. This effect, combined with the inherent instability of P23H rhodopsin, could lead to the structural cellular changes and photoreceptor death found in autosomal dominant retinitis pigmentosa. These results also suggest that slow regeneration of P23H rhodopsin could prevent endogenous chromophore-mediated stabilization of rhodopsin in the retina.
Collapse
Affiliation(s)
| | | | | | | | - Benlian Wang
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965 and
| | - Wenyu Sun
- Polgenix Inc., Cleveland, Ohio 44106
| | | | | | | |
Collapse
|
26
|
Schott RK, Refvik SP, Hauser FE, López-Fernández H, Chang BSW. Divergent positive selection in rhodopsin from lake and riverine cichlid fishes. Mol Biol Evol 2014; 31:1149-65. [PMID: 24509690 DOI: 10.1093/molbev/msu064] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Studies of cichlid evolution have highlighted the importance of visual pigment genes in the spectacular radiation of the African rift lake cichlids. Recent work, however, has also provided strong evidence for adaptive diversification of riverine cichlids in the Neotropics, which inhabit environments of markedly different spectral properties from the African rift lakes. These ecological and/or biogeographic differences may have imposed divergent selective pressures on the evolution of the cichlid visual system. To test these hypotheses, we investigated the molecular evolution of the dim-light visual pigment, rhodopsin. We sequenced rhodopsin from Neotropical and African riverine cichlids and combined these data with published sequences from African cichlids. We found significant evidence for positive selection using random sites codon models in all cichlid groups, with the highest levels in African lake cichlids. Tests using branch-site and clade models that partitioned the data along ecological (lake, river) and/or biogeographic (African, Neotropical) boundaries found significant evidence of divergent selective pressures among cichlid groups. However, statistical comparisons among these models suggest that ecological, rather than biogeographic, factors may be responsible for divergent selective pressures that have shaped the evolution of the visual system in cichlids. We found that branch-site models did not perform as well as clade models for our data set, in which there was evidence for positive selection in the background. One of our most intriguing results is that the amino acid sites found to be under positive selection in Neotropical and African lake cichlids were largely nonoverlapping, despite falling into the same three functional categories: spectral tuning, retinal uptake/release, and rhodopsin dimerization. Taken together, these results would imply divergent selection across cichlid clades, but targeting similar functions. This study highlights the importance of molecular investigations of ecologically important groups and the flexibility of clade models in explicitly testing ecological hypotheses.
Collapse
Affiliation(s)
- Ryan K Schott
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
27
|
Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown L, Kandori H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 2014; 114:126-63. [PMID: 24364740 PMCID: PMC3979449 DOI: 10.1021/cr4003769] [Citation(s) in RCA: 799] [Impact Index Per Article: 79.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Oliver P. Ernst
- Departments
of Biochemistry and Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| | - David T. Lodowski
- Center
for Proteomics and Bioinformatics, Case
Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Marcus Elstner
- Institute
for Physical Chemistry, Karlsruhe Institute
of Technology, Kaiserstrasse
12, 76131 Karlsruhe, Germany
| | - Peter Hegemann
- Institute
of Biology, Experimental Biophysics, Humboldt-Universität
zu Berlin, Invalidenstrasse
42, 10115 Berlin, Germany
| | - Leonid
S. Brown
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Hideki Kandori
- Department
of Frontier Materials, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
28
|
Affiliation(s)
| | | | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case
Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106-4965,
United States
| |
Collapse
|
29
|
Abstract
The sphingosine 1 phosphate receptor family has been studied widely since the initial discovery of its first member, endothelium differentiation gene 1. Since this initial discovery, the family has been renamed and the primary member of the family, the S1P1 receptor, has been targeted for a variety of disease indications and successfully drugged for the treatment of patients with relapsing multiple sclerosis. Recently, the three-dimensional structure of the S1P1 receptor has been determined by X-ray crystallography and the specifics of the sphingosine 1 phosphate ligand binding pocket mapped. Key structural features for the S1P1 receptor will be reviewed and the potential binding modes of additional pharmacologically active agents against the receptor will be analyzed in an effort to better understand the structural basis of important receptor-ligand interactions.
Collapse
|
30
|
Sommer ME, Hofmann KP, Heck M. Not just signal shutoff: the protective role of arrestin-1 in rod cells. Handb Exp Pharmacol 2014; 219:101-16. [PMID: 24292826 DOI: 10.1007/978-3-642-41199-1_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The retinal rod cell is an exquisitely sensitive single-photon detector that primarily functions in dim light (e.g., moonlight). However, rod cells must routinely survive light intensities more than a billion times greater (e.g., bright daylight). One serious challenge to rod cell survival in daylight is the massive amount of all-trans-retinal that is released by Meta II, the light-activated form of the photoreceptor rhodopsin. All-trans-retinal is toxic, and its condensation products have been implicated in disease. Our recent work has developed the concept that rod arrestin (arrestin-1), which terminates Meta II signaling, has an additional role in protecting rod cells from the consequences of bright light by limiting free all-trans-retinal. In this chapter we will elaborate upon the molecular mechanisms by which arrestin-1 serves as both a single-photon response quencher as well as an instrument of rod cell survival in bright light. This discussion will take place within the framework of three distinct functional modules of vision: signal transduction, the retinoid cycle, and protein translocation.
Collapse
Affiliation(s)
- Martha E Sommer
- Institut für Medizinische Physik und Biophysik (CC2), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany,
| | | | | |
Collapse
|
31
|
Alexiev U, Farrens DL. Fluorescence spectroscopy of rhodopsins: insights and approaches. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:694-709. [PMID: 24183695 DOI: 10.1016/j.bbabio.2013.10.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/11/2013] [Accepted: 10/16/2013] [Indexed: 01/30/2023]
Abstract
Fluorescence spectroscopy has become an established tool at the interface of biology, chemistry and physics because of its exquisite sensitivity and recent technical advancements. However, rhodopsin proteins present the fluorescence spectroscopist with a unique set of challenges and opportunities due to the presence of the light-sensitive retinal chromophore. This review briefly summarizes some approaches that have successfully met these challenges and the novel insights they have yielded about rhodopsin structure and function. We start with a brief overview of fluorescence fundamentals and experimental methodologies, followed by more specific discussions of technical challenges rhodopsin proteins present to fluorescence studies. Finally, we end by discussing some of the unique insights that have been gained specifically about visual rhodopsin and its interactions with affiliate proteins through the use of fluorescence spectroscopy. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Ulrike Alexiev
- Physics Department, Freie Universität Berlin, Berlin, Germany.
| | - David L Farrens
- Departments of Biochemistry and Molecular Biology, Oregon Health Sciences University, USA
| |
Collapse
|
32
|
Opefi CA, South K, Reynolds CA, Smith SO, Reeves PJ. Retinitis pigmentosa mutants provide insight into the role of the N-terminal cap in rhodopsin folding, structure, and function. J Biol Chem 2013; 288:33912-33926. [PMID: 24106275 DOI: 10.1074/jbc.m113.483032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autosomal dominant retinitis pigmentosa (ADRP) mutants (T4K, N15S, T17M, V20G, P23A/H/L, and Q28H) in the N-terminal cap of rhodopsin misfold when expressed in mammalian cells. To gain insight into the causes of misfolding and to define the contributions of specific residues to receptor stability and function, we evaluated the responses of these mutants to 11-cis-retinal pharmacological chaperone rescue or disulfide bond-mediated repair. Pharmacological rescue restored folding in all mutants, but the purified mutant pigments in all cases were thermo-unstable and exhibited abnormal photobleaching, metarhodopsin II decay, and G protein activation. As a complementary approach, we superimposed this panel of ADRP mutants onto a rhodopsin background containing a juxtaposed cysteine pair (N2C/D282C) that forms a disulfide bond. This approach restored folding in T4K, N15S, V20G, P23A, and Q28H but not T17M, P23H, or P23L. ADRP mutant pigments obtained by disulfide bond repair exhibited enhanced stability, and some also displayed markedly improved photobleaching and signal transduction properties. Our major conclusion is that the N-terminal cap stabilizes opsin during biosynthesis and contributes to the dark-state stability of rhodopsin. Comparison of these two restorative approaches revealed that the correct position of the cap relative to the extracellular loops is also required for optimal photochemistry and efficient G protein activation.
Collapse
Affiliation(s)
- Chikwado A Opefi
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, United Kingdom
| | - Kieron South
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, United Kingdom
| | - Christopher A Reynolds
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, United Kingdom
| | - Steven O Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215
| | - Philip J Reeves
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, United Kingdom.
| |
Collapse
|
33
|
Topiol S. X-ray structural information of GPCRs in drug design: what are the limitations and where do we go? Expert Opin Drug Discov 2013; 8:607-20. [PMID: 23537065 DOI: 10.1517/17460441.2013.783815] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION In 2007, the X-ray structural determination of non-rhodopsin G-Protein coupled receptors (GPCRs), considered the most extensively targeted protein class for marketed drugs, commenced. With the relatively rapid availability of additional structures, an assessment of the progression made is needed in addition to the assessment of the understandings gleaned, deployment successes and forthcoming prospects. AREAS COVERED The author reviews the approaches and tools that have made it possible to determine the three dimensional structures of GPCRs using X-ray crystallography. Furthermore, the author describes the methods suited for crystallization of membrane bound GPCR proteins including the lipidic cubic phase and various protein modification approaches. The author also provides highlights, from the literature, of the structures determined to date including targets solved, the nature of the content provided (such as selectivity, activating vs. inactivating determinants) and how these structural features relate to drug design strategies. EXPERT OPINION The GPCR X-ray structures that have been so far determined have yielded significant information. This has presented dramatic evidence concerning their ability to impact the discovery of compounds through their action as traditional, orthosteric modulators. It is, however, noted that more challenging design strategies, such as identifying biased agonists and the use of sites remote from the orthosteric site for allosteric modulation, are still in their infancy.
Collapse
Affiliation(s)
- Sid Topiol
- 3D-2Drug LLC, PO Box 184, Fair Lawn, NJ 07410, USA.
| |
Collapse
|
34
|
Hurst DP, Schmeisser M, Reggio PH. Endogenous lipid activated G protein-coupled receptors: emerging structural features from crystallography and molecular dynamics simulations. Chem Phys Lipids 2013; 169:46-56. [PMID: 23485612 DOI: 10.1016/j.chemphyslip.2013.01.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 01/20/2013] [Accepted: 01/22/2013] [Indexed: 01/01/2023]
Abstract
Class A G-protein coupled receptors (GPCRs) are thought to have a common topology that includes seven transmembrane alpha helices (TMHs) that are arranged to form a closed bundle. This bundle forms the ligand binding pocket into which ligands are commonly thought to enter via the extracellular milieu. This ligand approach direction makes sense for GPCRs that have small positively charged ligands, such as the beta-2-adrenergic or the dopamine D2 receptor. However, there is a growing sub-group of Class A GPCRs that bind lipid-derived endogenous ligands, such as the cannabinoid CB1 and CB2 receptors (with endogenous ligands, N-arachidonoylethanolamine (anandamide) and sn-2-arachidonylglycerol (2-AG)) and the S1P1-5 receptors (with endogenous ligand, sphingosine-1-phosphate). Even the widely studied Class A GPCR, rhodopsin, binds a highly lipophillic chromophore (11-cis-retinal). For these receptors, ligand approach from the extracellular milieu has seemed unlikely given that the ligands of these receptors readily partition into lipid or are actually synthesized in the lipid bilayer. The recent X-ray-crystal structure of the sub-type 1 sphingosine-1-phosphate receptor (S1P1) provides important information on the key structural variations that may be the hallmarks for a Class A GPCR that binds lipid-derived ligands. These include an extracellular domain that is closed off to the extracellular milieu and the existence of an opening between transmembrane helices that may serve as a portal for ligand entry via the lipid bilayer. This review examines structural aspects that the cannabinoid receptors may share with the S1P1 receptor based upon sequence homology. This review also examines experimental and simulation results that suggest ligand entry via a lipid portal is quite likely for this emerging sub-group.
Collapse
Affiliation(s)
- Dow P Hurst
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC 27402, USA
| | | | | |
Collapse
|
35
|
Jastrzebska B, Orban T, Golczak M, Engel A, Palczewski K. Asymmetry of the rhodopsin dimer in complex with transducin. FASEB J 2013; 27:1572-84. [PMID: 23303210 DOI: 10.1096/fj.12-225383] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A large body of evidence for G-protein-coupled receptor (GPCR) oligomerization has accumulated over the past 2 decades. The smallest of these oligomers in vivo most likely is a dimer that buries 1000-Å(2) intramolecular surfaces and on stimulation forms a complex with heterotrimeric G protein in 2:1 stoichiometry. However, it is unclear whether each of the monomers adopts the same or a different conformation and function after activation of this dimer. With bovine rhodopsin (Rho) and its cognate bovine G-protein transducin (Gt) as a model system, we used the retinoid chromophores 11-cis-retinal and 9-cis-retinal to monitor each monomer of the dimeric GPCR within a stable complex with nucleotide-free Gt. We found that only 50% of Rho* in the Rho*-Gt complex is trapped in a Meta II conformation, while 50% evolves toward an opsin conformation and can be regenerated with 9-cis-retinal. We also found that all-trans-retinal can regenerate chromophore-depleted Rho*e complexed with Gt and FAK*TSA peptide containing Lys(296) with the attached all-trans retinoid (m/z of 934.5[MH](+)) was identified by mass spectrometry. Thus, our study shows that each of the monomers contributes unequally to the pentameric (2:1:1:1) complex of Rho dimer and Gt heterotrimer, validating the oligomeric structure of the complex and the asymmetry of the GPCR dimer, and revealing its structural/functional signature. This study provides a clear functional distinction between monomers of family A GPCRs in their oligomeric form.
Collapse
Affiliation(s)
- Beata Jastrzebska
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA
| | | | | | | | | |
Collapse
|
36
|
Rozanowska MB. Light-Induced Damage to the Retina: Current Understanding of the Mechanisms and Unresolved Questions: A Symposium-in-Print. Photochem Photobiol 2012; 88:1303-8. [DOI: 10.1111/j.1751-1097.2012.01240.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
37
|
Trzaskowski B, Latek D, Yuan S, Ghoshdastider U, Debinski A, Filipek S. Action of molecular switches in GPCRs--theoretical and experimental studies. Curr Med Chem 2012; 19:1090-109. [PMID: 22300046 PMCID: PMC3343417 DOI: 10.2174/092986712799320556] [Citation(s) in RCA: 336] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/30/2011] [Accepted: 01/02/2012] [Indexed: 01/14/2023]
Abstract
G protein coupled receptors (GPCRs), also called 7TM receptors, form a huge superfamily of membrane proteins that, upon activation by extracellular agonists, pass the signal to the cell interior. Ligands can bind either to extracellular N-terminus and loops (e.g. glutamate receptors) or to the binding site within transmembrane helices (Rhodopsin-like family). They are all activated by agonists although a spontaneous auto-activation of an empty receptor can also be observed. Biochemical and crystallographic methods together with molecular dynamics simulations and other theoretical techniques provided models of the receptor activation based on the action of so-called "molecular switches" buried in the receptor structure. They are changed by agonists but also by inverse agonists evoking an ensemble of activation states leading toward different activation pathways. Switches discovered so far include the ionic lock switch, the 3-7 lock switch, the tyrosine toggle switch linked with the nPxxy motif in TM7, and the transmission switch. The latter one was proposed instead of the tryptophan rotamer toggle switch because no change of the rotamer was observed in structures of activated receptors. The global toggle switch suggested earlier consisting of a vertical rigid motion of TM6, seems also to be implausible based on the recent crystal structures of GPCRs with agonists. Theoretical and experimental methods (crystallography, NMR, specific spectroscopic methods like FRET/BRET but also single-molecule-force-spectroscopy) are currently used to study the effect of ligands on the receptor structure, location of stable structural segments/domains of GPCRs, and to answer the still open question on how ligands are binding: either via ensemble of conformational receptor states or rather via induced fit mechanisms. On the other hand the structural investigations of homoand heterodimers and higher oligomers revealed the mechanism of allosteric signal transmission and receptor activation that could lead to design highly effective and selective allosteric or ago-allosteric drugs.
Collapse
Affiliation(s)
- B Trzaskowski
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
38
|
Effect of channel mutations on the uptake and release of the retinal ligand in opsin. Proc Natl Acad Sci U S A 2012; 109:5247-52. [PMID: 22431612 DOI: 10.1073/pnas.1117268109] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the retinal binding pocket of rhodopsin, a Schiff base links the retinal ligand covalently to the Lys296 side chain. Light transforms the inverse agonist 11-cis-retinal into the agonist all-trans-retinal, leading to the active Meta II state. Crystal structures of Meta II and the active conformation of the opsin apoprotein revealed two openings of the 7-transmembrane (TM) bundle towards the hydrophobic core of the membrane, one between TM1/TM7 and one between TM5/TM6, respectively. Computational analysis revealed a putative ligand channel connecting the openings and traversing the binding pocket. Identified constrictions within the channel motivated this study of 35 rhodopsin mutants in which single amino acids lining the channel were replaced. 11-cis-retinal uptake and all-trans-retinal release were measured using UV/visible and fluorescence spectroscopy. Most mutations slow or accelerate both uptake and release, often with opposite effects. Mutations closer to the Lys296 active site show larger effects. The nucleophile hydroxylamine accelerates retinal release 80 times but the action profile of the mutants remains very similar. The data show that the mutations do not probe local channel permeability but rather affect global protein dynamics, with the focal point in the ligand pocket. We propose a model for retinal/receptor interaction in which the active receptor conformation sets the open state of the channel for 11-cis-retinal and all-trans-retinal, with positioning of the ligand at the active site as the kinetic bottleneck. Although other G protein-coupled receptors lack the covalent link to the protein, the access of ligands to their binding pocket may follow similar schemes.
Collapse
|
39
|
Hanson MA, Roth CB, Jo E, Griffith MT, Scott FL, Reinhart G, Desale H, Clemons B, Cahalan SM, Schuerer SC, Sanna MG, Han GW, Kuhn P, Rosen H, Stevens RC. Crystal structure of a lipid G protein-coupled receptor. Science 2012; 335:851-5. [PMID: 22344443 PMCID: PMC3338336 DOI: 10.1126/science.1215904] [Citation(s) in RCA: 545] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The lyso-phospholipid sphingosine 1-phosphate modulates lymphocyte trafficking, endothelial development and integrity, heart rate, and vascular tone and maturation by activating G protein-coupled sphingosine 1-phosphate receptors. Here, we present the crystal structure of the sphingosine 1-phosphate receptor 1 fused to T4-lysozyme (S1P(1)-T4L) in complex with an antagonist sphingolipid mimic. Extracellular access to the binding pocket is occluded by the amino terminus and extracellular loops of the receptor. Access is gained by ligands entering laterally between helices I and VII within the transmembrane region of the receptor. This structure, along with mutagenesis, agonist structure-activity relationship data, and modeling, provides a detailed view of the molecular recognition and requirement for hydrophobic volume that activates S1P(1), resulting in the modulation of immune and stromal cell responses.
Collapse
Affiliation(s)
- Michael A. Hanson
- Receptos, 10835 Road to the Cure, Suite #205, San Diego, CA 92121, USA
| | | | - Euijung Jo
- Department of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mark T. Griffith
- Receptos, 10835 Road to the Cure, Suite #205, San Diego, CA 92121, USA
| | - Fiona L. Scott
- Receptos, 10835 Road to the Cure, Suite #205, San Diego, CA 92121, USA
| | - Greg Reinhart
- Receptos, 10835 Road to the Cure, Suite #205, San Diego, CA 92121, USA
| | - Hans Desale
- Receptos, 10835 Road to the Cure, Suite #205, San Diego, CA 92121, USA
| | - Bryan Clemons
- Receptos, 10835 Road to the Cure, Suite #205, San Diego, CA 92121, USA
| | - Stuart M. Cahalan
- Department of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Stephan C. Schuerer
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - M. Germana Sanna
- Department of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Gye Won Han
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Peter Kuhn
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hugh Rosen
- Department of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- The Scripps Research Institute Molecular Screening Center, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Raymond C. Stevens
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
40
|
Fanelli F, De Benedetti PG. Update 1 of: computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 2011; 111:PR438-535. [PMID: 22165845 DOI: 10.1021/cr100437t] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena, Italy.
| | | |
Collapse
|
41
|
YAO YUAN, HAN WEIWEI, ZHOU YIHAN, LUO QUAN, LI ZESHENG. CATALYTIC REACTION MECHANISM OF HUMAN PHOTORECEPTOR RETINOL DEHYDROGENASE: A THEORETICAL STUDY. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633608003964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human photoreceptor retinol dehydrogenase (hRDH8) catalyzes the reduction of all-trans-retinal to all-trans-retinol with NADPH as a rate-limiting step in the visual cycle. Based on the docking results of the substrate to the 3D structure of hRDH8 which is generated by homology modeling method, three quantum chemical calculation models with different sizes were used to investigate the catalytic reaction mechanism of hRDH8 with the aid of density functional theory. The calculations indicate that hRDH8 employs a general acid/base mechanism that a proton is transferred to the keto oxygen of the substrate after the pro-S hydride of NADPH transfer to keto carbon of the substrate. The H-transfer order is converse to that in the proposed mechanism of 17ß-hydroxysteroid dehydrogenase 1, which is highly related to the hRDH8 sequence. Tyr155 always provides the proton to the keto oxygen of the substrate whether unprotonated Lys159 is considered or not in the calculation models. However, protonated Lys159 changes the initial mechanism and replaces Tyr155 to provide the proton to the keto oxygen of the substrate. Moreover, protonated Lys159 can also decrease very effectively the Gibbs free energy barrier to make the reaction indeed energetically feasible. The role of Lys159 in hRDH8 is different from that in 17ß-hydroxysteroid dehydrogenase 1. The solvent effect calculations indicate that the reaction is more feasible energetically in the protein electrostatic environment than in the gas phase.
Collapse
Affiliation(s)
- YUAN YAO
- Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, P. R. China
| | - WEI-WEI HAN
- Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, P. R. China
| | - YI-HAN ZHOU
- Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, P. R. China
| | - QUAN LUO
- Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, P. R. China
| | - ZE-SHENG LI
- Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, P. R. China
| |
Collapse
|
42
|
Reuter T. Fifty years of dark adaptation 1961–2011. Vision Res 2011; 51:2243-62. [DOI: 10.1016/j.visres.2011.08.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 08/24/2011] [Accepted: 08/24/2011] [Indexed: 02/07/2023]
|
43
|
Matrices for Sensors from Inorganic, Organic, and Biological Nanocomposites. MATERIALS 2011; 4:1483-1518. [PMID: 28824154 PMCID: PMC5448674 DOI: 10.3390/ma4081483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/02/2011] [Accepted: 08/11/2011] [Indexed: 12/12/2022]
Abstract
Matrices and sensors resulting from inorganic, organic and biological nanocomposites are presented in this overview. The term nanocomposite designates a solid combination of a matrix and of nanodimensional phases differing in properties from the matrix due to dissimilarities in structure and chemistry. The nanoocomposites chosen for a wide variety of health and environment sensors consist of Anodic Porous Allumina and P450scc, Carbon nanotubes and Conductive Polymers, Langmuir Blodgett Films of Lipases, Laccases, Cytochromes and Rhodopsins, Three-dimensional Nanoporous Materials and Nucleic Acid Programmable Protein Arrays.
Collapse
|
44
|
Abstract
Mutations to members of the A subfamily of ATP binding cassette (ABC) proteins are responsible for a number of diseases; typically they are associated with aberrant cellular lipid transport processes. Mutations to the ABCA4 protein are linked to a number of visual disorders including Stargardt's disease and retinitis pigmentosa. Over 500 disease-associated mutations in ABCA4 have been demonstrated; however, the genotype-phenotype link has not been firmly established. This shortfall is primarily because the function of ABCA4 in the visual cycle is not yet fully understood. One hypothesis suggests that ABCA4 mediates the trans-bilayer translocation of retinal-phosphatidylethanolamine conjugates to facilitate the retinal regeneration process in the visual cycle. This review examines the evidence to support, or refute, this working hypothesis on the function of this clinically important protein.
Collapse
Affiliation(s)
- Naomi Laura Pollock
- Nuffield Department of Clinical Laboratory Science, University of Oxford, Oxford, UK
| | | |
Collapse
|
45
|
Kinetic folding mechanism of an integral membrane protein examined by pulsed oxidative labeling and mass spectrometry. J Mol Biol 2011; 410:146-58. [PMID: 21570983 DOI: 10.1016/j.jmb.2011.04.074] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 04/26/2011] [Accepted: 04/29/2011] [Indexed: 11/21/2022]
Abstract
We report the application of pulsed oxidative labeling for deciphering the folding mechanism of a membrane protein. SDS-denatured bacteriorhodopsin (BR) was refolded by mixing with bicelles in the presence of free retinal. At various time points (20 ms to 1 day), the protein was exposed to a microsecond ·OH pulse that induces oxidative modifications at solvent-accessible methionine side chains. The extent of labeling was determined by mass spectrometry. These measurements were complemented by stopped-flow spectroscopy. Major time-dependent changes in solvent accessibility were detected for M20 (helix A) and M118 (helix D). Our kinetic data indicate a sequential folding mechanism, consistent with models previously suggested by others on the basis of optical data. Yet, ·OH labeling provides additional structural insights. An initial folding intermediate I(1) gets populated within 20 ms, concomitantly with formation of helix A. Subsequent structural consolidation leads to a transient species I(2). Noncovalent retinal binding to I(2) induces folding of helix D, thereby generating an intermediate I(R). In the absence of retinal, the latter transition does not take place. Hence, formation of helix D depends on retinal binding, whereas this is not the case for helix A. As the cofactor settles deeper into its binding pocket, a final transient species I(R) is generated. This intermediate converts into native BR within minutes by formation of the retinal-K216 Schiff base linkage. The combination of pulsed covalent labeling and optical spectroscopy employed here should also be suitable for exploring the folding mechanisms of other membrane proteins.
Collapse
|
46
|
deGrip WJ, Bovee-Geurts PHM, Wang Y, Verhoeven MA, Lugtenburg J. Cyclopropyl and isopropyl derivatives of 11-cis and 9-cis retinals at C-9 and C-13: subtle steric differences with major effects on ligand efficacy in rhodopsin. JOURNAL OF NATURAL PRODUCTS 2011; 74:383-390. [PMID: 21309593 DOI: 10.1021/np100744v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Retinal is the natural ligand (chromophore) of the vertebrate rod visual pigment. It occurs in either the 11-cis (rhodopsin) or the 9-cis (isorhodopsin) configuration. In its evolution to a G protein coupled photoreceptor, rhodopsin has acquired exceptional photochemical properties. Illumination isomerizes the chromophore to the all-trans isomer, which acts as a full agonist. This process is extremely efficient, and there is abundant evidence that the C-9 and C-13 methyl groups of retinal play a pivotal role in this process. To examine the steric limits of the C-9 and C-13 methyl binding pocket of the binding site, we have prepared C-9 and C-13 cyclopropyl and isopropyl derivatives of its native ligands and of α-retinal at C-9. Most isopropyl analogues show very poor binding, except for 9-cis-13-isopropylretinal. Most cyclopropyl derivatives exhibit intermediate binding activity, except for 9-cis-13-cyclopropylretinal, which presents good binding activity. In general, the binding site shows preference for the 9-cis analogues over the 11-cis analogues. In fact, 13-isopropyl-9-cis-retinal acts as a superagonist after illumination. Another surprising finding was that 9-cyclopropylisorhodopsin is more like native rhodopsin with respect to spectral and photochemical properties, whereas 9-cyclopropylrhodopsin behaves more like native isorhodopsin in these aspects.
Collapse
Affiliation(s)
- Willem J deGrip
- Department of Biochemistry, UMCN 286, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
47
|
Huang CC, Orban T, Jastrzebska B, Palczewski K, Tesmer JJG. Activation of G protein-coupled receptor kinase 1 involves interactions between its N-terminal region and its kinase domain. Biochemistry 2011; 50:1940-9. [PMID: 21265573 PMCID: PMC3069497 DOI: 10.1021/bi101606e] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
G protein-coupled receptor kinases (GRKs) phosphorylate activated G protein-coupled receptors (GPCRs) to initiate receptor desensitization. In addition to the canonical phosphoacceptor site of the kinase domain, activated receptors bind to a distinct docking site that confers higher affinity and activates GRKs allosterically. Recent mutagenesis and structural studies support a model in which receptor docking activates a GRK by stabilizing the interaction of its ∼20-amino acid N-terminal region with the kinase domain. This interaction in turn stabilizes a closed, more active conformation of the enzyme. To investigate the importance of this interaction for the process of GRK activation, we first validated the functionality of the N-terminal region in rhodopsin kinase (GRK1) by site-directed mutagenesis and then introduced a disulfide bond to cross-link the N-terminal region of GRK1 with its specific binding site on the kinase domain. Characterization of the kinetic and biophysical properties of the cross-linked protein showed that disulfide bond formation greatly enhances the catalytic efficiency of the peptide phosphorylation, but receptor-dependent phosphorylation, Meta II stabilization, and inhibition of transducin activation were unaffected. These data indicate that the interaction of the N-terminal region with the kinase domain is important for GRK activation but does not dictate the affinity of GRKs for activated receptors.
Collapse
Affiliation(s)
- Chih-chin Huang
- Life Sciences Institute, 210 Washtenaw Avenue, University of Michigan, Ann Arbor, Michigan 48109-2216, United States
| | - Tivadar Orban
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, United States
| | - Beata Jastrzebska
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, United States
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, United States
| | - John J. G. Tesmer
- Life Sciences Institute, 210 Washtenaw Avenue, University of Michigan, Ann Arbor, Michigan 48109-2216, United States
- Department of Pharmacology, 210 Washtenaw Avenue, University of Michigan, Ann Arbor, Michigan 48109-2216, United States
| |
Collapse
|
48
|
Makino CL, Riley CK, Looney J, Crouch RK, Okada T. Binding of more than one retinoid to visual opsins. Biophys J 2011; 99:2366-73. [PMID: 20923672 DOI: 10.1016/j.bpj.2010.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/02/2010] [Accepted: 08/04/2010] [Indexed: 02/06/2023] Open
Abstract
Visual opsins bind 11-cis retinal at an orthosteric site to form rhodopsins but increasing evidence suggests that at least some are capable of binding an additional retinoid(s) at a separate, allosteric site(s). Microspectrophotometric measurements on isolated, dark-adapted, salamander photoreceptors indicated that the truncated retinal analog, β-ionone, partitioned into the membranes of green-sensitive rods; however, in blue-sensitive rod outer segments, there was an enhanced uptake of four or more β-ionones per rhodopsin. X-ray crystallography revealed binding of one β-ionone to bovine green-sensitive rod rhodopsin. Cocrystallization only succeeded with extremely high concentrations of β-ionone and binding did not alter the structure of rhodopsin from the inactive state. Salamander green-sensitive rod rhodopsin is also expected to bind β-ionone at sufficiently high concentrations because the binding site is present on its surface. Therefore, both blue- and green-sensitive rod rhodopsins have at least one allosteric binding site for retinoid, but β-ionone binds to the latter type of rhodopsin with low affinity and low efficacy.
Collapse
Affiliation(s)
- Clint L Makino
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
49
|
Wang T, Duan Y. Retinal release from opsin in molecular dynamics simulations. J Mol Recognit 2010; 24:350-8. [DOI: 10.1002/jmr.1087] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 08/03/2010] [Accepted: 08/04/2010] [Indexed: 11/06/2022]
|
50
|
Rakoczy EP, Kiel C, McKeone R, Stricher F, Serrano L. Analysis of disease-linked rhodopsin mutations based on structure, function, and protein stability calculations. J Mol Biol 2010; 405:584-606. [PMID: 21094163 DOI: 10.1016/j.jmb.2010.11.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/28/2010] [Accepted: 11/01/2010] [Indexed: 10/18/2022]
Abstract
Retinitis pigmentosa (RP) refers to a heterogeneous group of inherited diseases that result in progressive retinal degeneration, characterized by visual field constriction and night blindness. A total of 103 mutations in rhodopsin are linked to RP to date, and the phenotypes range from severe to asymptomatic. To study the relation between phenotype and rhodopsin stability in disease mutants, we used a structure-based approach. For 12 of the mutants located at the protein-lipid interphase, we used the von Heijne water-membrane transfer scale, and we find that 9 of the mutations could affect membrane insertion. For 91 mutants, we used the protein design algorithm FoldX. The 3 asymptomatic mutations had no significant reduced stability, 2 were unsuitable for FoldX analysis since the structure was incorrect in this region, 63 mutations had a significant change in protein stability (>1.6 kcal/mol), and 23 mutations had energy change values under the prediction error threshold (<1.6 kcal/mol). Out of these 23, the disease-causing effect could be explained by the involvement in other functions (e.g., glycosylation motifs, the interface with arrestin and transducin, and the cilia-binding motif) for 19 mutants. The remaining 4 mutants were probably incorrectly associated with RP or have functionalities not discovered yet. For destabilizing mutations where clinical data were available, we found a highly significant correlation between FoldX energy changes and the average age of night blindness and between FoldX energy changes and daytime vision loss onset. Our detailed structural, functional, and energetic analysis provides a complete picture of the rhodopsin mutations and can guide mutation-specific therapies.
Collapse
|