1
|
Moradi A, Ghaffari Novin M, Bayat M. A Comprehensive Systematic Review of the Effects of Photobiomodulation Therapy in Different Light Wavelength Ranges (Blue, Green, Red, and Near-Infrared) on Sperm Cell Characteristics in Vitro and in Vivo. Reprod Sci 2024; 31:3275-3302. [PMID: 39095677 DOI: 10.1007/s43032-024-01657-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/13/2024] [Indexed: 08/04/2024]
Abstract
Around 7% of the male population in the world are entangle with considerable situation which is known as male infertility. Photobiomodulation therapy (PBMT) is the application of low-level laser radiation, that recently used to increase or promote the various cell functions including, proliferation, differentiation, ATP production, gene expressions, regulation of reactive oxygen spices (ROS), and also boost the tissue healing and reduction of inflammation. This systematic review's main idea is a comprehensive appraisal of the literatures on subjects of PBMT consequences in four light ranges wavelength (blue, green, red, near-infrared (NIR)) on sperm cell characteristics, in vitro and in vivo. In this study, PubMed, Google Scholar, and Scopus databases were used for abstracts and full-text scientific papers published from 2003-2023 that reported the application of PBM on sperm cells. Criteria's for inclusion and exclusion to review were applied. Finally, the studies that matched with our goals were included, classified, and reported in detail. Also, searched studies were subdivided into the effects of four ranges of light irradiation, including the blue light range (400-500 nm), green light range (500-600 nm), red light range (600-780 nm), and NIR light range (780-3000 nm) of laser irradiation on human or animal sperm cells, in situations of in vitro or in vivo. Searches with our keywords results in 137 papers. After primary analysis, some articles were excluded because they were review articles or incomplete and unrelated studies. Finally, we use the 63 articles for this systematic review. Our category tables were based on the light range of irradiation, source of sperm cells (human or animal cells) and being in vitro or in vivo. Six% of publications reported the effects of blue, 10% green, 53% red and 31% NIR, light on sperm cell. In general, most of these studies showed that PBMT exerted a positive effect on the sperm cell motility. The various effects of PBMT in different wavelength ranges, as mentioned in this review, provide more insights for its potential applications in improving sperm characteristics. PBMT as a treatment method has significant effectiveness for treatment of different medical problems. Due to the lack of reporting data in this field, there is a need for future studies to assessment the biochemical and molecular effects of PBMT on sperm cells for the possible application of this treatment to the human sperm cells before the ART process.
Collapse
Affiliation(s)
- Ali Moradi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Price Institute of Surgical Research, University of Louisville, Louisville, KY, USA.
- Noveratech LLC of Louisville, Louisville, KY, USA.
| |
Collapse
|
2
|
Parvin A, Erabi G, Saboohi Tasooji MR, Sadeghpour S, Mellatyar H, Rezaei Arablouydareh S, Navapour L, Taheri-Anganeh M, Ghasemnejad-Berenji H. The effects of photobiomodulation on the improvement of sperm parameters: A review study. Photochem Photobiol 2024. [PMID: 38623963 DOI: 10.1111/php.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/27/2024] [Accepted: 03/18/2024] [Indexed: 04/17/2024]
Abstract
The prevalence of male infertility has become a significant clinical concern worldwide, with a noticeable upward trend in recent times. The rates of fertilization and subsequent development of embryos are dependent on many parameters associated with the quality and viability of sperm. Photobiomodulation (PBM) is a promising approach with a great potential for translational applications in the treatment of spermatozoa exhibiting low quality and motility. In this study, a comprehensive analysis of the existing literature, specifically examining the mechanisms of action of PBM has been presented. Our objective was to enhance knowledge in the field of laser light therapy in order to promote the usage of irradiation in clinical settings in a more effective way. Within the realm of reproductive science, the utilization of PBM has been employed to enhance the metabolic processes, motility, and viability of spermatozoa. This is attributed to its advantageous effects on mitochondria, resulting in the activation of the mitochondrial respiratory chain and subsequent synthesis of ATP. This therapeutic approach can be highly advantageous in circumventing the reliance on chemical substances within the culture medium for spermatozoa while also facilitating the viability and motility of spermatozoa, particularly in circumstances involving thawing or samples with significant immotility.
Collapse
Affiliation(s)
- Ali Parvin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Sonia Sadeghpour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Sahar Rezaei Arablouydareh
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Navapour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
3
|
Escobar LM, Grajales M, Bendahan Z, Jaimes S, Baldión P. Osteoblastic differentiation and changes in the redox state in pulp stem cells by laser treatment. Lasers Med Sci 2024; 39:87. [PMID: 38443654 PMCID: PMC10914891 DOI: 10.1007/s10103-024-04016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
The aim of this study was to determine the effect of low-level laser therapy (LLLT) on cell proliferation, mitochondrial membrane potential changes (∆Ψm), reactive oxygen species (ROS), and osteoblast differentiation of human dental pulp stem cells (hDPSCs). These cells were irradiated with 660- and 940-nm lasers for 5 s, 50 s, and 180 s. Cell proliferation was assessed using the resazurin assay, cell differentiation by RUNX2 and BMP2 expression, and the presence of calcification nodules using alizarin-red S staining. ROS was determined by the dichlorofluorescein-diacetate technique and changes in ∆Ψm by the tetramethylrhodamine-ester assay. Data were analyzed by a Student's t-test and Mann-Whitney U test. The 940-nm wavelength for 5 and 50 s increased proliferation at 4 days postirradiation. After 8 days, a significant decrease in proliferation was observed in all groups. Calcification nodules were evident in all groups, with a greater staining intensity in cells treated with a 940-nm laser for 50 s, an effect that correlated with increased RUNX2 and BMP2 expression. ROS production and Δψm increased independently of irradiation time. In conclusion, photobiomodulation (PBM) with LLLT induced morphological changes and reduced cell proliferation rate, which was associated with osteoblastic differentiation and increased ROS and Δψm, independent of wavelength and time.
Collapse
Affiliation(s)
- Lina M Escobar
- Grupo de Investigaciones Básicas y Aplicadas en Odontología, IBAPO Facultad de Odontología, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bloque 210, 111321, Bogotá, Colombia.
| | - Marggie Grajales
- Departamento de Salud Oral, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Zita Bendahan
- Unidad de Manejo Integral de Malformaciones Craneofaciales UMIMC, Facultad de Odontología, Universidad El Bosque, Bogotá, Colombia
| | - Sully Jaimes
- Grupo de Investigaciones Básicas y Aplicadas en Odontología, IBAPO Facultad de Odontología, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bloque 210, 111321, Bogotá, Colombia
| | - Paula Baldión
- Departamento de Salud Oral, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
4
|
Ribeiro M, Santos KC, Macedo MR, de Souza GA, Neto FIDA, Araujo GHM, Cavalcante DR, Costa FF, de Sá Ferreira G, Peixoto LA, de Miranda Moraes J, Vulcani VAS. Use of adipose derived stem cells accelerates the healing process in third-degree burns. Burns 2024; 50:132-145. [PMID: 37741785 DOI: 10.1016/j.burns.2023.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/25/2023] [Accepted: 08/20/2023] [Indexed: 09/25/2023]
Abstract
INTRODUCTION Burns are defined as a traumatic injury, usually of thermal origin, that affects the epithelial and adjacent tissue and is classified according to the depth reached. Tissue repair involved in this type of injury is often a challenge both due to its severity and the multiplicity of complications. Regenerative medicine has focused on the use of low-level laser photobiomodulation therapy (LLLT) and adipose-derived stem cells (ADSC), especially in the early stages of the process, to promote better healing and shorten repair time. Therefore, aim of this study was to evaluate the action of LLLT (660 nm) and ADSC in the repair process of burned skin tissue and investigate the association of the techniques (LLLT and ADSC). MATERIALS AND METHODS An in vivo study was carried out using 96 rats (Wister) with a scald burn model at a temperature of 95ºC, exposing the animal's back for 14 s. Animals were randomized into seven groups and three periods, five, 14 and 21 days. The groups included GC: Control group, ADSC-: Group treated with CD49d negative cells, ADSC+ : Group treated with positive CD49d cells, CULT: Group treated with conventional isolation cells, LLLT: Group treated only with LLLT Low Power Laser, ADSC-LLLT: Group treated with CD49d negative cells and LLLT. ADSC+LLLT: Group treated with positive CD49d cells and LLLT. The groups treated with LLLT (660 nm; 5 J/cm2) received irradiation three times a week, on alternate days for five, 14 and 21 days, according to the time of biopsy. ADSC-treated groups received one to three applications of the cells in a total volume of 1000 μL starting soon after the surgical debridement of the burn. Photographic monitoring was carried out at 5, 14 and 21 days after the beginning of the experiment to assess the degree of lesion contraction. Macroscopic, morphometric and histopathological analyzes were performed. RESULTS We showed significant re-epithelialization as well as an improvement in the healing process in the ADSC+, LLLT and ADSC+LLLT groups. We observed effects in the reduction of the inflammatory phase, increase in angiogenesis, decrease in oedema, greater collagen deposition, and better organization of the extracellular matrix compared to the other treatments. Moreover, the immunomagnetic separation of ADSC cells through the expression of the CD49d protein proved to be a useful means to obtain a more homogeneous population of cells with a role in tissue regeneration compared to the ADSC- and CULT groups. CONCLUSION In conclusion, the association of ADSC+ with LLLT was effective in accelerating the burn repair process, stimulating cell proliferation and formation of more normal skin tissue.
Collapse
Affiliation(s)
- Maisa Ribeiro
- Medicine Course, University Center of Mineiros, Mineiros, Goiás, Brazil; School of Veterinary and Zootechnics, Federal University of Goiás, Goiânia, Goiás, Brazil.
| | | | - Mathias Rezende Macedo
- Medicine Course, Health Sciences Academic Unit, Federal University of Jataí, Jataí, Goiás, Brazil
| | | | | | | | | | - Flavia Ferreira Costa
- Medicine Course, Health Sciences Academic Unit, Federal University of Jataí, Jataí, Goiás, Brazil
| | - Gabriel de Sá Ferreira
- Medicine Course, Health Sciences Academic Unit, Federal University of Jataí, Jataí, Goiás, Brazil
| | - Larissa Alves Peixoto
- Medicine Course, Health Sciences Academic Unit, Federal University of Jataí, Jataí, Goiás, Brazil
| | - Júlia de Miranda Moraes
- Medicine Course, Health Sciences Academic Unit, Federal University of Jataí, Jataí, Goiás, Brazil
| | - Valcinir Aloísio Scalla Vulcani
- School of Veterinary and Zootechnics, Federal University of Goiás, Goiânia, Goiás, Brazil; Veterinary Medicine Course, Agricultural Sciences Academic Unit, Federal University of Jataí, Jataí, Goiás, Brazil
| |
Collapse
|
5
|
Zhang H, Zhang C, Pan L, Chen Y, Bian Z, Yang Y, Ke T, Sun W, Chen L, Tan J. Low-level Nd:YAG laser inhibiting inflammation and oxidative stress in human gingival fibroblasts via AMPK/SIRT3 axis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 251:112845. [PMID: 38244301 DOI: 10.1016/j.jphotobiol.2024.112845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
OBJECTIVE Photobiomodulation is extensively employed in the management of chronic inflammatory diseases such as periodontitis because of its anti-inflammatory and antioxidant effects. This study used low-level Nd:YAG laser to investigate the mechanism of photobiomodulation as well as the role of adenosine monophosphate-activated protein kinase (AMPK) and Sirtuins (SIRT) 3 in it, providing new clues for the treatment of periodontitis. METHODS Human gingival fibroblasts (HGFs) were extracted from gingiva and stimulated with LPS. The suitable parameters of Nd:YAG laser were chosen for subsequent experiments by detecting cell viability. We assessed the level of inflammation and oxidative stress as well as AMPK and SIRT3. The mechanism for AMPK targeting SIRT3 modulating the anti-inflammatory and antioxidant effects of photobiomodulation was explored by the AMPK inhibitor (Compound C) test, cell transfection, western blot, and immunofluorescence. RESULTS HGFs were isolated and identified, followed by the identification of optimal Nd:YAG laser parameters (60 mJ, 15 Hz, 10s) for subsequent experimentation. With this laser, inflammatory factors (IL-6, TNF-α, COX2, and iNOS) decreased as well as the phosphorylation and nuclear translocation of NFκB-P65. SOD2 was up-regulated but reactive oxygen species (ROS) was down-regulated. The laser treatment exhibited enhancements in AMPK phosphorylation and SIRT3 expression. The above effects could all be reversed by Compound C. Silencing AMPK or SIRT3 by siRNA, the down-regulation of COX2, iNOS, and ROS by laser was inhibited. SIRT3 was down-regulated when the AMPK was silenced. CONCLUSION Low-level Nd:YAG laser activated AMPK-SIRT3 signaling pathway, facilitating the anti-inflammatory and antioxidative activity.
Collapse
Affiliation(s)
- Haizheng Zhang
- Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chenyi Zhang
- Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lai Pan
- Dental Department, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yifan Chen
- Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zirui Bian
- Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuxuan Yang
- Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Ke
- Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weilian Sun
- Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lili Chen
- Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China..
| | - Jingyi Tan
- Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China..
| |
Collapse
|
6
|
Alshial EE, Abdulghaney MI, Wadan AHS, Abdellatif MA, Ramadan NE, Suleiman AM, Waheed N, Abdellatif M, Mohammed HS. Mitochondrial dysfunction and neurological disorders: A narrative review and treatment overview. Life Sci 2023; 334:122257. [PMID: 37949207 DOI: 10.1016/j.lfs.2023.122257] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Mitochondria play a vital role in the nervous system, as they are responsible for generating energy in the form of ATP and regulating cellular processes such as calcium (Ca2+) signaling and apoptosis. However, mitochondrial dysfunction can lead to oxidative stress (OS), inflammation, and cell death, which have been implicated in the pathogenesis of various neurological disorders. In this article, we review the main functions of mitochondria in the nervous system and explore the mechanisms related to mitochondrial dysfunction. We discuss the role of mitochondrial dysfunction in the development and progression of some neurological disorders including Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD), depression, and epilepsy. Finally, we provide an overview of various current treatment strategies that target mitochondrial dysfunction, including pharmacological treatments, phototherapy, gene therapy, and mitotherapy. This review emphasizes the importance of understanding the role of mitochondria in the nervous system and highlights the potential for mitochondrial-targeted therapies in the treatment of neurological disorders. Furthermore, it highlights some limitations and challenges encountered by the current therapeutic strategies and puts them in future perspective.
Collapse
Affiliation(s)
- Eman E Alshial
- Biochemistry Department, Faculty of Science, Damanhour University, Al Buhayrah, Egypt
| | | | - Al-Hassan Soliman Wadan
- Department of Oral Biology, Faculty of Dentistry, Sinai University, Arish, North Sinai, Egypt
| | | | - Nada E Ramadan
- Department of Biotechnology, Faculty of Science, Tanta University, Gharbia, Egypt
| | | | - Nahla Waheed
- Biochemistry Department, Faculty of Science, Mansoura University, Egypt
| | | | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
7
|
Ishimoto T, Mori H. Control of actin polymerization via reactive oxygen species generation using light or radiation. Front Cell Dev Biol 2022; 10:1014008. [PMID: 36211457 PMCID: PMC9538341 DOI: 10.3389/fcell.2022.1014008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Actin is one of the most prevalent proteins in cells, and its amino acid sequence is remarkably conserved from protozoa to humans. The polymerization-depolymerization cycle of actin immediately below the plasma membrane regulates cell function, motility, and morphology. It is known that actin and other actin-binding proteins are targets for reactive oxygen species (ROS), indicating that ROS affects cells through actin reorganization. Several researchers have attempted to control actin polymerization from outside the cell to mimic or inhibit actin reorganization. To modify the polymerization state of actin, ultraviolet, visible, and near-infrared light, ionizing radiation, and chromophore-assisted light inactivation have all been reported to induce ROS. Additionally, a combination of the fluorescent protein KillerRed and the luminescent protein luciferase can generate ROS on actin fibers and promote actin polymerization. These techniques are very useful tools for analyzing the relationship between ROS and cell function, movement, and morphology, and are also expected to be used in therapeutics. In this mini review, we offer an overview of the advancements in this field, with a particular focus on how to control intracellular actin polymerization using such optical approaches, and discuss future challenges.
Collapse
Affiliation(s)
- Tetsuya Ishimoto
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- *Correspondence: Tetsuya Ishimoto,
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan
| |
Collapse
|
8
|
Kuzu TE, Öztürk K, Gürgan CA, Üşümez A, Yay A, Göktepe Ö. Effect of Photobiomodulation Therapy on Peri-Implant Bone Healing in Extra-Short Implants in a Rabbit Model: A Pilot Study. Photobiomodul Photomed Laser Surg 2022; 40:402-409. [PMID: 35749706 DOI: 10.1089/photob.2021.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: To evaluate the effects of photobiomodulation therapy (PBMT) at distinct energy levels on peri-implant bone healing in extra-short implants in a experimental rabbit model. Background: The effect of PBMT on peri-implant bone healing in short implants remains unclear. This explored the effect of PBMT on extra-short implants in terms of bone-implant contact (BIC) length and rate, and implant stability quotient (ISQ). Methods: Fifteen white New Zealand rabbits were randomly divided into five groups. In all groups, extra-short implants (3.5 × 4 mm; Nucleoss T6, İzmir/Turkey) were placed in both tibias of the rabbits. PBMT was performed in four groups (group 1, 5 J/cm2; group 2, 10 J/cm2; group 3, 20 J/cm2; and group 4, 25 J/cm2); no PBMT was performed in the control group. On the 30th day, the rabbits were sacrificed and peri-implant tissue samples were obtained to determine the BIC length and BIC rate. Implant stability levels were measured by resonance frequency analysis using the Osstell penguin device and were determined as ISQ values on the 1st and 30th days of the study. Results: PBMT significantly increased the BIC length and BIC rate in groups 3 and 4 (p < 0.001). For the ISQ values, there were significant differences between the 1st and 30th day (p < 0.001). On the 30th day, the ISQ values were significantly higher in groups 3 and 4 compared with the remaining groups (p < 0.001). Conclusions: In this study, PBMT improved peri-implant bone healing through increase in BIC length, BIC rate, and ISQ parameter values in extra-short implants.
Collapse
Affiliation(s)
- Turan Emre Kuzu
- Department of Periodontology, Faculty of Dentistry, Nuh Naci Yazgan University, Kayseri, Turkey
| | - Kübra Öztürk
- Department of Oral and Maxillofacial Surgery, and Faculty of Dentistry, Nuh Naci Yazgan University, Kayseri, Turkey
| | - Cem A Gürgan
- Department of Periodontology, Faculty of Dentistry, Nuh Naci Yazgan University, Kayseri, Turkey
| | - Aslihan Üşümez
- Department of Prosthodontics, Dental Plus Dental Clinic, İstanbul, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Özge Göktepe
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| |
Collapse
|
9
|
Zhang WW, Wang XY, Chu YX, Wang YQ. Light-emitting diode phototherapy: pain relief and underlying mechanisms. Lasers Med Sci 2022; 37:2343-2352. [DOI: 10.1007/s10103-022-03540-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/01/2022] [Indexed: 12/15/2022]
|
10
|
Muneekaew S, Wang MJ, Chen SY. Control of stem cell differentiation by using extrinsic photobiomodulation in conjunction with cell adhesion pattern. Sci Rep 2022; 12:1812. [PMID: 35110659 PMCID: PMC8811059 DOI: 10.1038/s41598-022-05888-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
The induction and direction of stem cell differentiation into needed cell phenotypes is the central pillar of tissue engineering for repairing damaged tissues or organs. Conventionally, a special recipe of chemical factors is formulated to achieve this purpose for each specific target cell type. In this work, it is demonstrated that the combination of extrinsic photobiomodulation and collagen-covered microislands could be used to induce differentiation of Wharton’s jelly mesenchymal stem cells (WJ-MSCs) with the differentiation direction dictated by the specific island topography without use of chemical factors. Both neurogenic differentiation and adipogenic differentiation could be attained with a rate surpassing that using chemical factors. Application of this method to other cell types is possible by utilizing microislands with a pattern tailored particularly for each specific cell type, rendering it a versatile modality for initiating and guiding stem cell differentiation.
Collapse
Affiliation(s)
- Saitong Muneekaew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106, Taiwan
| | - Meng-Jiy Wang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106, Taiwan.
| | - Szu-Yuan Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei City, 106, Taiwan. .,Department of Physics, National Central University, Taoyuan City, 320, Taiwan.
| |
Collapse
|
11
|
Liebert A, Seyedsadjadi N, Pang V, Litscher G, Kiat H. Evaluation of Gender Differences in Response to Photobiomodulation Therapy, Including Laser Acupuncture: A Narrative Review and Implication to Precision Medicine. Photobiomodul Photomed Laser Surg 2022; 40:78-87. [PMID: 34964662 DOI: 10.1089/photob.2021.0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: The influence of gender is significant in the manifestation and response to many diseases and in the treatment strategy. Photobiomodulation (PBM) therapy, including laser acupuncture, is an evidence-based treatment and disease prevention modality that has shown promising efficacy for a myriad of chronic and acute diseases. Anecdotal experience and limited clinical trials suggest gender differences exist in treatment outcomes to PBM therapy. There is preliminary evidence that gender may be as important as skin color in the individual response to PBM therapy. Purpose: To conduct a literature search of publications addressing the effects of gender differences in PBM therapy, including laser acupuncture, to provide a narrative review of the findings, and to explore potential mechanisms for the influence of gender. Methods: A narrative review of the literature on gender differences in PBM applications was conducted using key words relating to PBM therapy and gender. Results: A total of 13 articles were identified. Of these articles, 11 have direct experimental investigations into the response difference in gender for PBM, including laser acupuncture. A variety of cadaver, human, and experimental studies demonstrated results that gender effects were significant in PBM outcome responses, including differences in tendon structural and mechanical outcomes, and mitochondrial gene expression. One cadaver experiment showed that gender was more important than skin tone. The physiologic mechanisms directing gender differences are explored and postulated. Conclusions: The review suggests that to address the requirements of a proficient precision medicine-based strategy, it is important for PBM therapy to consider gender in its treatment plan and dosing prescription. Further research is warranted to determine the correct dose for optimal gender treatment, including gender-specific treatment plans to improve outcomes, taking into account wavelength, energy exposure, intensity, and parameters related to the deliverance of treatment to each anatomical location.
Collapse
Affiliation(s)
- Ann Liebert
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia.,Research and Governance, Adventist Hospital Group, Wahroonga, Australia.,SYMBYX Pty Ltd., Artarmon, Australia
| | - Neda Seyedsadjadi
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| | | | - Gerhard Litscher
- Traditional Chinese Medicine, Research Center Graz, Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, and Research Unit for Complementary and Integrative Laser Medicine, Medical University of Graz, Graz, Austria
| | - Hosen Kiat
- Cardiac Health Institute, Sydney, Australia.,Faculty of Medicine, University of NSW, Kensington, Australia.,Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, Australia
| |
Collapse
|
12
|
Hossein-khannazer N, Kazem Arki M, Keramatinia A, Rezaei-Tavirani M. The Role of Low-Level Laser Therapy in the Treatment of Multiple Sclerosis: A Review Study. J Lasers Med Sci 2021; 12:e88. [PMID: 35155173 PMCID: PMC8837843 DOI: 10.34172/jlms.2021.88] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/25/2021] [Indexed: 11/12/2023]
Abstract
Introduction: Multiple sclerosis (MS) is an autoimmune disease. Inflammatory cells, cytokines and chemokines play a major role in the pathogenesis of the disease. Low-level laser therapy (LLLT) as a photobiostimulation approach could affect a wide range of cellular responses. LLLT inhibits the inflammatory signaling pathway, improves cell viability, inhibits apoptosis, modulates immune responses and induces the production of growth factors. Methods: In this review, we discuss the effect of LLLT on cellular responses and its application in the treatment of MS. Such keywords as "low-level laser therapy", "photobiomodulation" and "multiple sclerosis" were used to find studies related to laser therapy in MS in Google scholar, PubMed and Medline databases. Results: LLLT reduced the inflammatory immune cells and mediators. It also enhanced the regeneration of neurons. Conclusion: Investigations showed that besides current treatment strategies, LLLT could be a promising therapeutic approach for the treatment of MS.
Collapse
Affiliation(s)
- Nikoo Hossein-khannazer
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mandana Kazem Arki
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aliasghar Keramatinia
- Department of Social Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Zhang W, Gao X, Wang X, Li D, Zhao Y, Zhang T, Ne J, Xu B, Li S, Jiang Z, Sun H, Ma W, Yang F, Cai B, Yang B. Light Emitting Diodes Photobiomodulation Improves Cardiac Function by Promoting ATP Synthesis in Mice With Heart Failure. Front Cardiovasc Med 2021; 8:753664. [PMID: 34926608 PMCID: PMC8674466 DOI: 10.3389/fcvm.2021.753664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/08/2021] [Indexed: 12/02/2022] Open
Abstract
Heart failure (HF) is the common consequences of various cardiovascular diseases, often leading to severe cardiac output deficits with a high morbidity and mortality. In recent years, light emitting diodes-based therapy (LEDT) has been widely used in multiple cardiac diseases, while its modulatory effects on cardiac function with HF still remain unclear. Therefore, the objective of this study was to investigate the effects of LED-Red irradiation on cardiac function in mice with HF and to reveal its mechanisms. In this study, we constructed a mouse model of HF. We found that LED-Red (630 nm) was an effective wavelength for the treatment of HF. Meanwhile, the application of LED-Red therapy to treat HF mice improved cardiac function, ameliorate heart morphology, reduced pulmonary edema, as well as inhibited collagen deposition. Moreover, LED-Red therapy attenuated the extent of perivascular fibrosis. Besides, LED-Red irradiation promoted calcium transients in cardiomyocytes as well as upregulated ATP synthesis, which may have positive implications for contractile function in mice with HF. Collectively, we identified that LED-Red exerts beneficial effects on cardiac function in HF mice possibly by promoting the synthesis of ATP.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xinlu Gao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiuxiu Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Desheng Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yiming Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Tingting Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jingwen Ne
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Binbin Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shuainan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zuke Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hongyue Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wenya Ma
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Fan Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Benzhi Cai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- Institute of Clinical Pharmacy, The Heilongjiang Key Laboratory of Drug Research, Harbin Medical University, Harbin, China
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
The role of UV and blue light in photo-eradication of microorganisms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
15
|
|
16
|
Wang Q, Chang H, Shen Q, Li Y, Xing D. Photobiomodulation therapy for thrombocytopenia by upregulating thrombopoietin expression via the ROS-dependent Src/ERK/STAT3 signaling pathway. J Thromb Haemost 2021; 19:2029-2043. [PMID: 33501731 DOI: 10.1111/jth.15252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Chemotherapy-induced thrombocytopenia (CIT) can increase the risk of bleeding, which may delay or prevent the administration of anticancer treatment schedules. Photobiomodulation therapy (PBMT), a non-invasive physical treatment, has been proposed to improve thrombocytopenia; however, its underlying regulatory mechanism is not fully understood. OBJECTIVE To further investigate the mechanism of thrombopoietin (TPO) in megakaryocytopoiesis and thrombopoiesis. METHODS Multiple approaches such as western blotting, cell transfection, flow cytometry, and animal studies were utilized to explore the effect and mechanism of PBMT on thrombopoiesis. RESULTS PBMT prevented a severe drop in platelet count by increasing platelet production, and then ameliorated CIT. Mechanistically, PBMT significantly upregulated hepatic TPO expression in a thrombocytopenic mouse model, which promoted megakaryocytopoiesis and thrombopoiesis. The levels of TPO mRNA and protein increased by PBMT via the Src/ERK/STAT3 signaling pathway in hepatic cells. Furthermore, the generation of the reactive oxygen species was responsible for PBMT-induced activation of Src and its downstream target effects. CONCLUSIONS Our research suggests that PBMT is a promising therapeutic strategy for the treatment of CIT.
Collapse
Affiliation(s)
- Qiuhong Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Qi Shen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yonghua Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
17
|
Effects of photobiomodulation on bone remodeling in an osteoblast-osteoclast co-culture system. Lasers Med Sci 2021; 37:1049-1059. [PMID: 34142255 DOI: 10.1007/s10103-021-03352-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
The general bone anabolic effect of photobiomodulation (PBM) is largely accepted. As a result, PBM therapy is expected to be beneficial in the medical fields of dentistry and bone healing. However, most of the previous in vitro studies on PBM and bone metabolism were performed with single-cell cultures of osteoclast-lineage cells or osteoblast-lineage cells. In the present study, the bone-modulating effects of PBM were evaluated in an in vitro osteoblast/osteoclast co-culture system. Mouse bone marrow-derived macrophages (BMMs) and mouse calvarial pre-osteoblasts cells were purified and used as precursor cells for osteoclasts and osteoblasts, respectively. The PBM effects on single-cell culture of osteoclasts or osteoblasts as well as co-culture were examined by 1.2 J/cm2 low-level Ga-Al-As laser (λ = 808 ± 3 nm, 80 mW, and 80 mA; spot size, 1cm2; NDLux, Seoul, Korea) irradiation for 30 s at daily intervals throughout culture period. At the end of culture, the osteoclast differentiation and osteoblast differentiation were assessed by TRAP staining and ALP staining, respectively. The expressions of osteoclastogenic cytokines were evaluated by RT-PCR and Western blot analyses. Under the single-cell culture condition, PBM enhanced osteoblast differentiation but had minor effects on osteoclast differentiation. However, in the co-culture condition, its osteoblastogenic effect was maintained, and osteoclast differentiation was substantially reduced. Subsequent RT-PCR analyses and western blot results revealed marked reduction in receptor activator of NF-κB ligand (RANKL) expression and elevation in osteoprotegerin (OPG) expression by PBM in co-cultured cells. More importantly, these alterations in RANKL/OPG levels were not observed under the single-cell culture conditions. Our results highlight the different effects of PBM on bone cells based on culture conditions. Further, our findings suggest the indirect anti-osteoclastogenic effect of PBM, which is accompanied by a decrease in RANKL expression and an increase in OPG expression.
Collapse
|
18
|
Khorsandi K, Hosseinzadeh R, Abrahamse H, Fekrazad R. Biological Responses of Stem Cells to Photobiomodulation Therapy. Curr Stem Cell Res Ther 2021; 15:400-413. [PMID: 32013851 DOI: 10.2174/1574888x15666200204123722] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/26/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Stem cells have attracted the researchers interest, due to their applications in regenerative medicine. Their self-renewal capacity for multipotent differentiation, and immunomodulatory properties make them unique to significantly contribute to tissue repair and regeneration applications. Recently, stem cells have shown increased proliferation when irradiated with low-level laser therapy or Photobiomodulation Therapy (PBMT), which induces the activation of intracellular and extracellular chromophores and the initiation of cellular signaling. The purpose of this study was to evaluate this phenomenon in the literature. METHODS The literature investigated the articles written in English in four electronic databases of PubMed, Scopus, Google Scholar and Cochrane up to April 2019. Stem cell was searched by combining the search keyword of "low-level laser therapy" OR "low power laser therapy" OR "low-intensity laser therapy" OR "photobiomodulation therapy" OR "photo biostimulation therapy" OR "LED". In total, 46 articles were eligible for evaluation. RESULTS Studies demonstrated that red to near-infrared light is absorbed by the mitochondrial respiratory chain. Mitochondria are significant sources of reactive oxygen species (ROS). Mitochondria play an important role in metabolism, energy generation, and are also involved in mediating the effects induced by PBMT. PBMT may result in the increased production of (ROS), nitric oxide (NO), adenosine triphosphate (ATP), and cyclic adenosine monophosphate (cAMP). These changes, in turn, initiate cell proliferation and induce the signal cascade effect. CONCLUSION The findings of this review suggest that PBMT-based regenerative medicine could be a useful tool for future advances in tissue engineering and cell therapy.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran;
and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Hosseinzadeh
- Department of Medical Laser, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran
| | - Heidi Abrahamse
- Laser Research Centre, NRF SARChI Chair: Laser Applications in Health, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Reza Fekrazad
- Department of Periodontology, Dental Faculty - Radiation Sciences Research Center, Laser Research
Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran,International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
19
|
Akamatsu FE, Teodoro WR, Itezerote AM, da Silveira LKR, Saleh S, Martinez CAR, Ribeiro ML, Pereira JA, Hojaij F, Andrade M, Jacomo AL. Photobiomodulation therapy increases collagen II after tendon experimental injury. Histol Histopathol 2021; 36:663-674. [PMID: 33755188 DOI: 10.14670/hh-18-330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A tendon is a mechanosensitive tissue that transmits muscle-derived forces to bones. Photobiomodulation (PBM), also known as low-level laser therapy (LLLT), has been used in therapeutic approaches in tendon lesions, but uncertainties regarding its mechanisms of action have prevented its widespread use. We investigated the response of PBM therapy in experimental lesions of the Achilles tendon in rats. Thirty adult male Wistar rats weighing 250 to 300 g were surgically submitted to bilateral partial transverse section of the Achilles tendon. The right tendon was treated with PBM, whereas the left tendon served as a control. On the third postoperative day, the rats were divided into three experimental groups consisting of ten rats each, which were treated with PBM (Konf, Aculas - HB 750), 780 nm and 80 mW for 20 seconds, three times/week for 7, 14 and 28 days. The rats were sacrificed at the end of the therapeutic time period. The Sca-1 was examined by immunohistochemistry and histomorphometry, and COLA1, COLA2 and COLA3 gene expression was examined by qRT-PCR. COLA2 gene expression was higher in PBM treated tendons than in the control group. The histomorphometric analysis coincided with increased number of mesenchymal cells, characterized by Sca-1 expression in the lesion region (p<0.001). PBM effectively interferes in tendon tissue repair after injury by stimulating mesenchymal cell proliferation and the synthesis of collagen type II, which is suggested to provide structural support to the interstitial tissues during the healing process of the Achilles tendon. Further studies are needed to confirm the role of PBM in tendon healing.
Collapse
Affiliation(s)
- Flávia Emi Akamatsu
- Department of Surgery, Laboratory of Medical Research - Division of Human Structural Topography, Faculty of Medicine of the University of São Paulo (FMUSP), São Paulo-SP, Brazil.
| | - Walcy Rosolia Teodoro
- Rheumatology Division of the Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo-SP, Brazil.
| | - Ana Maria Itezerote
- Department of Surgery, Laboratory of Medical Research - Division of Human Structural Topography, Faculty of Medicine of the University of São Paulo (FMUSP), São Paulo-SP, Brazil
| | | | - Samir Saleh
- Department of Surgery, Laboratory of Medical Research - Division of Human Structural Topography, Faculty of Medicine of the University of São Paulo (FMUSP), São Paulo-SP, Brazil
| | - Carlos Augusto Real Martinez
- Department of Surgery, Laboratory of Medical Research - Division of Human Structural Topography, Faculty of Medicine of the University of São Paulo (FMUSP), São Paulo-SP, Brazil
| | - Marcelo Lima Ribeiro
- Department of Surgery, Laboratory of Medical Research - Division of Human Structural Topography, Faculty of Medicine of the University of São Paulo (FMUSP), São Paulo-SP, Brazil
| | - José Aires Pereira
- Department of Surgery, Laboratory of Medical Research - Division of Human Structural Topography, Faculty of Medicine of the University of São Paulo (FMUSP), São Paulo-SP, Brazil
| | - Flávio Hojaij
- Department of Surgery, Laboratory of Medical Research - Division of Human Structural Topography, Faculty of Medicine of the University of São Paulo (FMUSP), São Paulo-SP, Brazil
| | - Mauro Andrade
- Department of Surgery, Laboratory of Medical Research - Division of Human Structural Topography, Faculty of Medicine of the University of São Paulo (FMUSP), São Paulo-SP, Brazil
| | - Alfredo Luiz Jacomo
- Department of Surgery, Laboratory of Medical Research - Division of Human Structural Topography, Faculty of Medicine of the University of São Paulo (FMUSP), São Paulo-SP, Brazil
| |
Collapse
|
20
|
Photobiomodulation effects on photodynamic therapy in HNSCC cell lines. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 217:112170. [PMID: 33676286 DOI: 10.1016/j.jphotobiol.2021.112170] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/13/2021] [Accepted: 02/24/2021] [Indexed: 12/31/2022]
Abstract
A combination of metabolic modifications by light stimulus and photodynamic action is very attractive. Photobiomodulation therapy (PBMT) comprehends a vast range of applications and has been shown to be suitable to ease morbidities caused by chemotherapy and radiation, such as mucositis and dermatitis. The current study investigates the effects of near-infrared PBMT combined with porphyrin-based photodynamic therapy (PDT) in squamous cell carcinoma cell lines SCC-25 and SCC-4. The aim is to evaluate the potential of this combination to improve PDT outcome by increasing cell toxicity. Many techniques were used to verify the combined effect. Photobiomodulation (PBM) enhanced PDT action in SCC-25 cells by increasing photosensitizer (PS) uptake and production of reactive oxygen species (ROS). The equivalent was not seen in SCC-4 cells compared to the PDT only group. We believe these effects are strongly related to the interval of application between PBMT, PS incubation and PDT. Additionally, the effect of ascorbic acid on preventing PBM effects in PDT shows that ROS play an important role in the early mechanisms of PBM-PDT. Therefore, we believe PBM-PDT combination is worth exploring, for its benefit-cost ratio and simple protocols, along with the possibility of improvement in treatment resuts.
Collapse
|
21
|
Structural membrane changes induced by pulsed blue light on methicillin-resistant Staphylococcus aureus (MRSA). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112150. [PMID: 33578335 DOI: 10.1016/j.jphotobiol.2021.112150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/16/2020] [Accepted: 01/29/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND In a recent study we showed that blue light inactivates methicillin-resistant Staphylococcus aureus (MRSA) by perturbing, depolarizing, and disrupting its cell membrane. PURPOSE The current study presents visual evidence that the observed biochemical changes also result in cell metabolic changes and structural alteration of the cell membrane. METHODS Cultures of MRSA were treated with 450 nm pulsed blue light (PBL) at 3 mW/cm2 irradiance, using a sub lethal dose of 2.7 J/cm2 radiant exposure three times at 30-min intervals. Following 24 h incubation at 37 °C, irradiated colonies and control non-irradiated colonies were processed for light and transmission electron microscopy. RESULTS The images obtained revealed three major effects of PBL; (1) disruption of MRSA cell membrane, (2) alteration of membrane structure, and (3) disruption of cell replication. CONCLUSION These signs of bacterial inactivation at a dose deliberately selected to be sub-lethal supports our previous finding that rapid depolarization of bacterial cell membrane and disruption of cellular function comprise another mechanism underlying photo-inactivation of bacteria. Further, it affirms the potency of PBL.
Collapse
|
22
|
Bumah VV, Cortez PM, Morrow BN, Rojas P, Bowman CR, Masson-Meyers DS, Enwemeka CS. Blue light absorbing pigment in Streptococcus agalactiae does not potentiate the antimicrobial effect of pulsed 450 nm light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112149. [PMID: 33578336 DOI: 10.1016/j.jphotobiol.2021.112149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/22/2020] [Accepted: 01/29/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Recently, it was shown that Group B Streptococcus (GBS) COH1 strain, which has granadaene-an endogenous chromophore known to absorb blue light-is not susceptible to 450 nm pulsed blue light (PBL) inactivation unless the bacterium is co-cultured with exogenous porphyrin. PURPOSE To confirm or refute the finding, we studied the effect of blue light on NCTC, another strain of GBS with more granadaene than COH1, to determine if the abundance of granadaene-and by implication more absorption of blue light-fosters GBS susceptibility to PBL. METHODS We irradiated cultures of the bacterium with or without protoporphyrin, coproporphyrin, flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), nicotinamide adenine dinucleotide (NAD) or NADH. After 24-h incubation, bacterial colonies were enumerated, log10 CFU/mL computed, and descriptive and inferential data analyzed and compared. RESULTS (1) The rich amount of granadaene in NCTC did not enhance its susceptibility to antimicrobial pulsed blue light (PBL). (2) Adding exogenous porphyrin fostered NCTC susceptibility to irradiation, resulting in 100% bacterial suppression. (3) Exogenous FMN or FAD, which strongly absorb 450 nm light, did not promote the antimicrobial effect of PBL, neither did exogenous NAD or NADH, two weak blue light-absorbing photosensitizers. CONCLUSION These results strengthen our previous assertion that an endogenous chromophore with the capacity to absorb and transform light energy into a biochemical process that engenders bacterial cell death, is essential for 450 nm PBL to suppress GBS.
Collapse
Affiliation(s)
- Violet Vakunseh Bumah
- Department of Chemistry and Biochemistry, College of Sciences, San Diego State University, San Diego, CA, USA; College of Health and Human Services, San Diego State University, San Diego, CA, USA.
| | | | | | - Paulina Rojas
- Department of Biology, San Diego State University, CA 92182, USA
| | | | | | | |
Collapse
|
23
|
Arias JL, Mendez M, Martínez JÁ, Arias N. Differential effects of photobiomodulation interval schedules on brain cytochrome c-oxidase and proto-oncogene expression. NEUROPHOTONICS 2020; 7:045011. [PMID: 33313338 PMCID: PMC7723391 DOI: 10.1117/1.nph.7.4.045011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Significance: Transcranial photobiomodulation (PBM) is a noninvasive neuromodulation technique capable of producing changes in the mitochondrial cytochrome c-oxidase (CCO) activity of neurons. Although the application of PBM in clinical practice and as a neurophysiological tool is increasing, less is known about how different treatment time intervals may result in different outcomes. Aim: We evaluated the effects of different PBM treatment intervals on brain metabolic activity through the CCO and proto-oncogene expression (c-Fos). Approach: We studied PBM effects on brain CCO and c-Fos expression in three groups of animals: Control (CN, n = 8 ), long interval PBM treatment (LI, n = 5 ), and short interval PBM treatment (SI, n = 5 ). Results: Increased CCO activity in the LI group, compared to the SI and CN groups, was found in the prefrontal cortices, dorsal and ventral striatum, and hippocampus. Regarding c-Fos expression, we found a significant increase in the SI group compared to LI and CN, whereas LI showed increased c-Fos expression compared to CN in the cingulate and infralimbic cortices. Conclusions: We show the effectiveness of different PBM interval schedules in increasing brain metabolic activity or proto-oncogene expression.
Collapse
Affiliation(s)
- Jorge L. Arias
- University of Oviedo, Neuroscience Laboratory, Department of Psychology, Oviedo, Spain
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Marta Mendez
- University of Oviedo, Neuroscience Laboratory, Department of Psychology, Oviedo, Spain
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Juan Ángel Martínez
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
- University of Oviedo, Escuela Politécnica de Gijón, Departamento Ingeniería Eléctrica, Electrónica, Computadores y Sistemas, Gijón, Spain
| | - Natalia Arias
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
- Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King´s College London, Department of Basic and Clinical Neuroscience, London, United Kingdom
| |
Collapse
|
24
|
Bumah VV, Morrow BN, Cortez PM, Bowman CR, Rojas P, Masson-Meyers DS, Suprapto J, Tong WG, Enwemeka CS. The importance of porphyrins in blue light suppression of Streptococcus agalactiae. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 212:111996. [PMID: 32863128 DOI: 10.1016/j.jphotobiol.2020.111996] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/06/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023]
Abstract
It is well documented that blue light absorption by bacterial chromophores triggers downstream production of reactive oxygen species (ROS), which in turn results in bacterial cell death. To elucidate the importance of chromophores in the bactericidal effect of blue light, and to determine whether blue light absorption per se or the presence of porphyrins known to engender ROS is crucial in blue light treatment, we studied the effect of 450 nm pulsed light on Streptococcus agalactiae, also known as Group B Streptococcus (GBS) strain COH1. GBS does not synthesize porphyrins but has a blue light-absorbing chromophore, granadaene. We irradiated planktonic cultures of GBS with or without exogenous chromophore supplementation using either protoporphyrin IX (PPIX), coproporphyrin III (CPIII), Nicotinamide adenine dinucleotide (NAD), reduced nicotinamide adenine dinucleotide (NADH), Flavin adenine dinucleotide (FAD), or Flavin mononucleotide (FMN). Quantification of surviving bacterial colonies, presented as percent survival and CFU/mL (log10), showed that (1) 450 nm blue light does not suppress the growth of GBS, even though its endogenous chromophore, granadaene, absorbs light in the 450 nm spectrum. (2) The addition of either of the two exogenous porphyrins, PPIX or CPIII, significantly suppressed GBS, indicating the importance of porphyrins in the antimicrobial action of blue light. (3) Adding exogenous FMN or FAD, two known absorbers of 450 nm light, minimally potentiated the bactericidal effect of blue light, again confirming that mere absorption of blue light by chromophores does not necessarily result in bacterial suppression. (4) Irradiation of GBS with or without NAD+ or NADH supplementation-two weak absorbers of 450 nm light-minimally suppressed GBS, indicating that a blue light-absorbing chromophore is essential for the bactericidal action of blue light. (5) Collectively, these findings show that in addition to the presence of a blue light-absorbing chromophore in bacteria, a chromophore with the right metabolic machinery and biochemical structure, capable of producing ROS, is necessary for 450 nm blue light to suppress GBS.
Collapse
Affiliation(s)
- Violet Vakunseh Bumah
- Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182, USA; College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | | | | | | | - Paulina Rojas
- Department of Biology, 5500 Campanile Dr, San Diego, CA 92182. USA
| | - Daniela Santos Masson-Meyers
- College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA; Marquette University School of Dentistry, 1801 W Wisconsin Ave, Milwaukee, WI 53233, USA
| | - James Suprapto
- Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | - William G Tong
- Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | - Chukuka Samuel Enwemeka
- College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA.
| |
Collapse
|
25
|
Tam SY, Tam VCW, Ramkumar S, Khaw ML, Law HKW, Lee SWY. Review on the Cellular Mechanisms of Low-Level Laser Therapy Use in Oncology. Front Oncol 2020; 10:1255. [PMID: 32793501 PMCID: PMC7393265 DOI: 10.3389/fonc.2020.01255] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
Photobiomodulation (PBM) using low-level laser therapy (LLLT) is a treatment that is increasingly used in oncology. Studies reported enhancement of wound healing with reduction in pain, tissue swelling and inflammatory conditions such as radiation dermatitis, oral mucositis, and lymphedema. However, factors such as wavelength, energy density and irradiation frequency influence the cellular mechanisms of LLLT. Moreover, the effects of LLLT vary according to cell types. Thus, controversy arose as a result of poor clinical response reported in some studies that may have used inadequately planned treatment protocols. Since LLLT may enhance tumor cell proliferation, these will also need to be considered before clinical use. This review aims to summarize the current knowledge of the cellular mechanisms of LLLT by considering its effects on cell proliferation, metabolism, angiogenesis, apoptosis and inflammation. With a better understanding of the cellular mechanisms, bridging findings from laboratory studies to clinical application can be improved.
Collapse
Affiliation(s)
- Shing Yau Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Victor C W Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Shanmugasundaram Ramkumar
- Department of Clinical Oncology, NHS Foundation Trust, University Hospital Southampton, Southampton, United Kingdom
| | - May Ling Khaw
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Helen K W Law
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Shara W Y Lee
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
26
|
Cheng W, Yao M, Sun K, Li W. Progress in Photobiomodulation for Bone Fractures: A Narrative Review. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 38:260-271. [PMID: 32427551 DOI: 10.1089/photob.2019.4732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Objective: The aim of this article is to examine current concepts and the future direction of implementing photobiomodulation (PBM) for fracture treatment. Background data: The effectiveness of PBM for bone regeneration has been demonstrated throughout in vitro studies and animal models. Yet, insufficient clinical trials have been reported on treating fractures with PBM. Materials and methods: A narrative review was composed on the basis of a literary search. Inclusion criteria consisted of studies between 2000 and 2019 using animal or human fracture models. Exclusion criteria consisted of studies that did not pertain to complete fractures or used other forms of intervention. Results: Ten animal studies on rats and rabbits and four clinical trials were found on using PBM for complete fractures. Conclusions: Based on positive outcomes in animal trials, parameter optimization of PBM for human fractures still requires extensive research on factors such as dosage, wavelength, penetration depth, treatment frequency, and the use of pulsed waves.
Collapse
Affiliation(s)
- Weyland Cheng
- Department of Orthopaedics, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Manye Yao
- Department of Orthopaedics, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Keming Sun
- Department of Orthopaedics, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Weili Li
- Department of Orthopaedics, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Enwemeka CS, Bumah VV, Masson-Meyers DS. Light as a potential treatment for pandemic coronavirus infections: A perspective. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 207:111891. [PMID: 32388486 PMCID: PMC7194064 DOI: 10.1016/j.jphotobiol.2020.111891] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022]
Abstract
The recent outbreak of COVID-19, which continues to ravage communities with high death tolls and untold psychosocial and catastrophic economic consequences, is a vivid reminder of nature's capacity to defy contemporary healthcare. The pandemic calls for rapid mobilization of every potential clinical tool, including phototherapy—one of the most effective treatments used to reduce the impact of the 1918 “Spanish influenza” pandemic. This paper cites several studies showing that phototherapy has immense potential to reduce the impact of coronavirus diseases, and offers suggested ways that the healthcare industry can integrate modern light technologies in the fight against COVID-19 and other infections. The evidence shows that violet/blue (400–470 nm) light is antimicrobial against numerous bacteria, and that it accounts for Niels Ryberg Finsen's Nobel-winning treatment of tuberculosis. Further evidence shows that blue light inactivates several viruses, including the common flu coronavirus, and that in experimental animals, red and near infrared light reduce respiratory disorders, similar to those complications associated with coronavirus infection. Moreover, in patients, red light has been shown to alleviate chronic obstructive lung disease and bronchial asthma. These findings call for urgent efforts to further explore the clinical value of light, and not wait for another pandemic to serve as a reminder. The ubiquity of inexpensive light emitting lasers and light emitting diodes (LEDs), makes it relatively easy to develop safe low-cost light-based devices with the potential to reduce infections, sanitize equipment, hospital facilities, emergency care vehicles, homes, and the general environment as pilot studies have shown.
Collapse
Affiliation(s)
- Chukuka Samuel Enwemeka
- College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | - Violet Vakunseh Bumah
- College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA; Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | | |
Collapse
|
28
|
Abdel-Magied N, Elkady AA, Abdel Fattah SM. Effect of Low-Level Laser on Some Metals Related to Redox State and Histological Alterations in the Liver and Kidney of Irradiated Rats. Biol Trace Elem Res 2020; 194:410-422. [PMID: 31313245 DOI: 10.1007/s12011-019-01779-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022]
Abstract
Low-level laser therapy (LLLT) is a type of medicine that uses laser light at low levels to activate the cellular chromophores and the initiation of cellular signaling. This study aimed to evaluate the photomodulation effect of LLL against ionizing radiation (IR)-induced metal disorders related to redox state in the liver and kidney of male rats. Rats were divided into 4 groups (control, LLLT, IR (7Gy), IR+LLLT). The results showed that LLLT 870 nm one time for 3 days post-irradiation revealed redistribution of iron (Fe), copper (Cu), zinc (Zn),calcium (Ca), magnesium (Mg), manganese (Mn), and selenium (Se) in the liver and kidney tissues. Moreover, LLLT attenuated the oxidative stress manifested by a marked reduction of hydrogen peroxide (H2O2), 4-hydroxynonenal (4-HNE), total oxidant state (TOS), and oxidative stress index (OSI) associated with a significant increase in total antioxidant status (TAS), glutathione (GSH) content, and glutathione peroxide (GPx), glutathione reductase (GRx), superoxide dismutase(SOD), and catalase (CAT) activities. Moreover, LLLT displayed an increase in glutathione-S-transferase (GSH-T) and ceruloplasmin activities and a decrease in the activity of gamma-glutamyl transferase (γ-GT). Besides, LLLT significantly attenuated the histological changes in the liver and kidney tissues, denoted by a reduction in the necrotic and degenerative changes of hepatocytes and an improvement in the corpuscles and tubules of the kidney. In conclusion, LLLT could be used as an adjuvant treatment post-exposure to radiation, while it is not beneficial to use it on the normal tissue.
Collapse
Affiliation(s)
- Nadia Abdel-Magied
- Radiation Biology Research Department, National Center for Radiation Research and Technology (NCRRT), Cairo, Egypt.
| | - Ahmed A Elkady
- Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Cairo, Egypt
| | - Salma M Abdel Fattah
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 29, Nasr City, Cairo, Egypt
| |
Collapse
|
29
|
Castelli MA, Whiteley SL, Georges A, Holleley CE. Cellular calcium and redox regulation: the mediator of vertebrate environmental sex determination? Biol Rev Camb Philos Soc 2020; 95:680-695. [DOI: 10.1111/brv.12582] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Meghan A. Castelli
- CSIROAustralian National Wildlife Collection, GPO Box 1700 Canberra 2601 Australia
- Institute for Applied EcologyUniversity of Canberra Canberra 2617 Australia
| | - Sarah L. Whiteley
- CSIROAustralian National Wildlife Collection, GPO Box 1700 Canberra 2601 Australia
- Institute for Applied EcologyUniversity of Canberra Canberra 2617 Australia
| | - Arthur Georges
- Institute for Applied EcologyUniversity of Canberra Canberra 2617 Australia
| | - Clare E. Holleley
- CSIROAustralian National Wildlife Collection, GPO Box 1700 Canberra 2601 Australia
- Institute for Applied EcologyUniversity of Canberra Canberra 2617 Australia
| |
Collapse
|
30
|
Dini V, Janowska A, Davini G, Kerihuel JC, Fauverghe S, Romanelli M. Biomodulation induced by fluorescent light energy versus standard of care in venous leg ulcers: a retrospective study. J Wound Care 2019; 28:730-736. [DOI: 10.12968/jowc.2019.28.11.730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Objective: The recently completed EUREKA study confirmed the efficacy and safety profile of fluorescent light energy (FLE) in treating hard-to-heal wounds. To supplement the EUREKA prospective, observational, uncontrolled trial results, researchers selected one of the EUREKA clinical centres to conduct a retrospective analysis of matching wound care data for 46 venous leg ulcers (VLU) patients who had received standard wound care over a five-year period, compared with 10 EUREKA VLU subjects. Method: The study centre selected 46 patients with VLUs based on the matching criteria (wound age and size, patient's age and gender). They compared the healing rates of these matching VLUs with 10 VLU patients treated at the same centre during the EUREKA study. Results: The EUREKA patients had larger and significantly older wounds (p<0.05) and significantly more risk factors (p<0.05) than the matching wounds. However, they had better outcomes (EUREKA: 40% versus matching group: 7% for full wound closure by 16 weeks). No wound breakdown was observed at 16 weeks in the EUREKA group, compared with 25% in the matching group. No EUREKA patient developed infections requiring antibiotics, compared with 37% in the matching group. EUREKA wounds had a mean relative wound area regression (RWAR) of 32% at week six and 50% at week 16, compared with −3% at week six and −6% at week 16 for the matching group. Conclusion: These findings show that the system based on FLE was well-tolerated and efficacious, with better clinical outcome results compared with the wounds analysed in this retrospective matching study and treated with standard of care alone.
Collapse
Affiliation(s)
- Valentina Dini
- Wound Healing Research Unit, Department of Dermatology, School of Medicine, University of Pisa, Italy
| | - Agata Janowska
- Wound Healing Research Unit, Department of Dermatology, School of Medicine, University of Pisa, Italy
| | - Giulia Davini
- Wound Healing Research Unit, Department of Dermatology, School of Medicine, University of Pisa, Italy
| | | | | | - Marco Romanelli
- Wound Healing Research Unit, Department of Dermatology, School of Medicine, University of Pisa, Italy
| |
Collapse
|
31
|
Al-Gubory KH. Shedding light on fibered confocal fluorescence microscopy: Applications in biomedical imaging and therapies. JOURNAL OF BIOPHOTONICS 2019; 12:e201900146. [PMID: 31343844 DOI: 10.1002/jbio.201900146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Discoveries of major importance in life sciences and preclinical research are linked to the invention of microscopes that enable imaging of cells and their microstructures. Imaging technologies involving in vivo procedures using fluorescent dyes that permit labelling of cells have been developed over the last two decades. Fibered confocal fluorescence microscopy (FCFM) is an imaging technology equipped with fiber-optic probes to deliver light to organs and tissues of live animals. This enables not only in vivo detection of fluorescent signals and visualization of cells, but also the study of dynamic processes, such cell proliferation, apoptosis and angiogenesis, under physiological and pathological conditions. This will allow the diagnosis of diseased organs and tissues and the evaluation of the efficacy of new therapies in animal models of human diseases. The aim of this report is to shed light on FCFM and its potential medical applications and discusses some factors that compromise the reliability and reproducibility of monitoring biological processes by FCFM. This report also highlights the issues concerning animal experimentation and welfare, and the contributions of FCFM to the 3Rs principals, replacement, reduction and refinement.
Collapse
Affiliation(s)
- Kaïs H Al-Gubory
- National Institute for Agricultural Research, Department of Animal Physiology, Jouy-en-Josas, France
| |
Collapse
|
32
|
Singh G, Sridharan D, Khan M, Seshagiri PB. Mouse embryonic stem cell-derived cardiomyocytes cease to beat following exposure to monochromatic light: association with increased ROS and loss of calcium transients. Am J Physiol Cell Physiol 2019; 317:C725-C736. [PMID: 31314584 DOI: 10.1152/ajpcell.00188.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We earlier established the mouse embryonic stem (ES) cell "GS-2" line expressing enhanced green fluorescent protein (EGFP) and have been routinely using it to understand the molecular regulation of differentiation into cardiomyocytes. During such studies, we made a serendipitous discovery that functional cardiomyocytes derived from ES cells stopped beating when exposed to blue light. We observed a gradual cessation of contractility within a few minutes, regardless of wavelength (nm) ranges tested: blue (~420-495), green (~510-575), and red (~600-700), with green light manifesting the strongest impact. Following shifting of cultures back into the incubator (darkness), cardiac clusters regained beatings within a few hours. The observed light-induced contractility-inhibition effect was intrinsic to cardiomyocytes and not due to interference from other cell types. Also, this was not influenced by any physicochemical parameters or intracellular EGFP expression. Interestingly, the light-induced cardiomyocyte contractility inhibition was accompanied by increased intracellular reactive oxygen species (ROS), which could be abolished in the presence of N-acetylcysteine (ROS quencher). Besides, the increased intracardiomyocyte ROS levels were incidental to the inhibition of calcium transients and suppression of mitochondrial activity, both being essential for sarcomere function. To the best of our knowledge, ours is the first report to demonstrate the monochromatic light-mediated inhibition of contractions of cardiomyocytes with no apparent loss of cell viability and contractility. Our findings have implications in cardiac cell biology context in terms of 1) mechanistic insights into light impact on cardiomyocyte contraction, 2) potential use in laser beam-guided (cardiac) microsurgery, photo-optics-dependent medical diagnostics, 3) transient cessation of hearts during coronary artery bypass grafting, and 4) functional preservation of hearts for transplantation.
Collapse
Affiliation(s)
- Gurbind Singh
- Centre for Stem Cell Research, Christian Medical College Campus, Bagayam, Vellore, India
| | - Divya Sridharan
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore, India
| | - Mahmood Khan
- Department of Emergency Medicine, Wexner Medical Centre, Ohio State University, Columbus, Ohio
| | - Polani B Seshagiri
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
33
|
Nagay BE, Dini C, Cordeiro JM, Ricomini-Filho AP, de Avila ED, Rangel EC, da Cruz NC, Barão VAR. Visible-Light-Induced Photocatalytic and Antibacterial Activity of TiO 2 Codoped with Nitrogen and Bismuth: New Perspectives to Control Implant-Biofilm-Related Diseases. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18186-18202. [PMID: 31038914 DOI: 10.1021/acsami.9b03311] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Biofilm-associated diseases are one of the main causes of implant failure. Currently, the development of implant surface treatment goes beyond the osseointegration process and focuses on the creation of surfaces with antimicrobial action and with the possibility to be re-activated (i.e., light source activation). Titanium dioxide (TiO2), an excellent photocatalyst used for photocatalytic antibacterial applications, could be a great alternative, but its efficiency is limited to the ultraviolet (UV) range of the electromagnetic spectrum. Since UV radiation has carcinogenic potential, we created a functional TiO2 coating codoped with nitrogen and bismuth via the plasma electrolytic oxidation (PEO) of titanium to achieve an antibacterial effect under visible light with re-activation potential. A complex surface topography was demonstrated by scanning electron microscopy and three-dimensional confocal laser scanning microscopy. Additionally, PEO-treated surfaces showed greater hydrophilicity and albumin adsorption compared to control, untreated titanium. Bismuth incorporation shifted the band gap of TiO2 to the visible region and facilitated higher degradation of methyl orange (MO) in the dark, with a greater reduction in the concentration of MO after visible-light irradiation even after 72 h of aging. These results were consistent with the in vitro antibacterial effect, where samples with nitrogen and bismuth in their composition showed the greatest bacterial reduction after 24 h of dual-species biofilm formation ( Streptococcus sanguinis and Actinomyces naeslundii) in darkness with a superior effect at 30 min of visible-light irradiation. In addition, such a coating presents reusable photocatalytic potential and good biocompatibility by presenting a noncytotoxicity effect on human gingival fibroblast cells. Therefore, nitrogen and bismuth incorporation into TiO2 via PEO can be considered a promising alternative for dental implant application with antibacterial properties in darkness, with a stronger effect after visible-light application.
Collapse
Affiliation(s)
| | | | | | | | - Erica D de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara , São Paulo State University (UNESP) , R. Humaitá, 1680 , Araraquara , São Paulo 14801-903 , Brazil
| | - Elidiane C Rangel
- Laboratory of Technological Plasmas, Institute of Science and Technology , São Paulo State University (UNESP) , Av. Três de Março, 511 , Sorocaba , São Paulo 18087-180 , Brazil
| | - Nilson C da Cruz
- Laboratory of Technological Plasmas, Institute of Science and Technology , São Paulo State University (UNESP) , Av. Três de Março, 511 , Sorocaba , São Paulo 18087-180 , Brazil
| | | |
Collapse
|
34
|
Mussttaf RA, Jenkins DFL, Jha AN. Assessing the impact of low level laser therapy (LLLT) on biological systems: a review. Int J Radiat Biol 2019; 95:120-143. [DOI: 10.1080/09553002.2019.1524944] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ruwaidah A. Mussttaf
- School of Computing, Electronics and Mathematics, University of Plymouth, Plymouth, UK
| | - David F. L. Jenkins
- School of Computing, Electronics and Mathematics, University of Plymouth, Plymouth, UK
| | - Awadhesh N. Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
35
|
Amaroli A, Ferrando S, Benedicenti S. Photobiomodulation Affects Key Cellular Pathways of all Life-Forms: Considerations on Old and New Laser Light Targets and the Calcium Issue. Photochem Photobiol 2018; 95:455-459. [PMID: 30281800 DOI: 10.1111/php.13032] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/26/2018] [Indexed: 12/22/2022]
Abstract
After 50 years of studies on photobiomodulation (PBM), there is still so much to investigate to understand the laser light-nonplant cells interactions. The current scientific knowledge allows to say that the phenomena induced by PBM are based on cellular pathways that are the key points of cell life. The mitochondria chromophores, also present on the bacterial membrane, the calcium channels, ion that regulates the life-and-death cellular processes, as well as the TRP family, whose genes have been found in protozoa and suggest that its basic mechanism evolved long before the appearance of animals, seem to be elective targets in photobiomodulatory events by wavelengths from 600 up to 980 nm. The ambiguous resulting cellular communication way, mediated by ATP, ROS and/or calcium, leads to cell manipulation, which modifies its metabolism and whose response connects all life-forms from bacteria to vertebrates. Because of the Giano-Bifronte features of ROS and calcium, as well as the fine balance of energetic mitochondrial processes, whose alteration is responsible for several diseases, the PBM can show unpredictable results and it requires scrupulous approach to avoid cellular damages. However, when carefully applied, PBM is able to improve nonhealthy cell's responses and represents a reliable support in human and veterinary medicine.
Collapse
Affiliation(s)
- Andrea Amaroli
- Department of Surgical and Diagnostic Sciences (D.I.S.C), Laser Therapy Center, University of Genoa, Genoa, Italy
| | - Sara Ferrando
- Department of Earth, Environmental and Life Sciences, Laboratory of New Model Organism (NeMo LAB), University of Genoa, Genoa, Italy
| | - Stefano Benedicenti
- Department of Surgical and Diagnostic Sciences (D.I.S.C), Laser Therapy Center, University of Genoa, Genoa, Italy
| |
Collapse
|
36
|
Romanelli M, Piaggesi A, Scapagnini G, Dini V, Janowska A, Iacopi E, Scarpa C, Fauverghe S, Bassetto F. Evaluation of fluorescence biomodulation in the real-life management of chronic wounds: the EUREKA trial. J Wound Care 2018; 27:744-753. [DOI: 10.12968/jowc.2018.27.11.744] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Marco Romanelli
- Wound Healing Research Unit, Division of Dermatology, School of Medicine, University of Pisa, Italy
| | - Alberto Piaggesi
- Diabetic Foot Section, Department of Medicine, University of Pisa, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences, School of Medicine, University of Molise, Campobasso, Italy
| | - Valentina Dini
- Wound Healing Research Unit, Division of Dermatology, School of Medicine, University of Pisa, Italy
| | - Agata Janowska
- Wound Healing Research Unit, Division of Dermatology, School of Medicine, University of Pisa, Italy
| | - Elisabetta Iacopi
- Diabetic Foot Section, Department of Medicine, University of Pisa, Italy
| | - Carlotta Scarpa
- Clinic of Plastic and Reconstructive Surgery, Padova University-Hospital, Italy
| | | | - Franco Bassetto
- Clinic of Plastic and Reconstructive Surgery, Padova University-Hospital, Italy
| | | |
Collapse
|
37
|
Odinokov D, Hamblin MR. Aging of lymphoid organs: Can photobiomodulation reverse age-associated thymic involution via stimulation of extrapineal melatonin synthesis and bone marrow stem cells? JOURNAL OF BIOPHOTONICS 2018; 11:e201700282. [PMID: 29227581 PMCID: PMC5995606 DOI: 10.1002/jbio.201700282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/07/2017] [Indexed: 05/27/2023]
Abstract
Thymic atrophy and the subsequent reduction in T-cell production are the most noticeable age-related changes affecting lymphoid organs in the immune system. In fact, thymic involution has been described as "programmed aging." New therapeutic approaches, such as photobiomodulation (PBM), may reduce or reverse these changes. PBM (also known as low-level laser therapy) involves the delivery of non-thermal levels of red or near-infrared light that are absorbed by mitochondrial chromophores, in order to prevent tissue death and stimulate healing and regeneration. PBM may reverse or prevent thymic involution due to its ability to induce extrapineal melatonin biosynthesis via cyclic adenosine monophosphate (AMP) or NF-kB activation, or alternatively by stimulating bone marrow stem cells that can regenerate the thymus. This perspective puts forward a hypothesis that PBM can alter thymic involution, improve immune functioning in aged people and even extend lifespan.
Collapse
Affiliation(s)
- Denis Odinokov
- Department of Biomedical Engineering, Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| |
Collapse
|
38
|
Hochman L. Photobiomodulation Therapy in Veterinary Medicine: A Review. Top Companion Anim Med 2018; 33:83-88. [PMID: 30243364 DOI: 10.1053/j.tcam.2018.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022]
Abstract
Laser therapy, or photobiomodulation, has rapidly grown in popularity in human and veterinary medicine. With a number of proposed indications and broad, sometimes anecdotal, use in practice, research interest has expanded aimed at providing scientific support. Recent studies have shown that laser therapy alters the inflammatory and immune response as well as promotes healing for a variety of tissue types. This review will cover the history of the modality, basic principles, proposed mechanisms of action, evidence-based clinical indications, and will guide the practitioner through its application in practice.
Collapse
Affiliation(s)
- Lindsay Hochman
- University of Florida, College of Veterinary Medicine, Integrative Medicine Service, Gainesville, FL, USA.
| |
Collapse
|
39
|
|
40
|
da Silveira Campos RM, Dâmaso AR, Masquio DCL, Duarte FO, Sene-Fiorese M, Aquino AE, Savioli FA, Quintiliano PCL, Kravchychyn ACP, Guimarães LI, Tock L, Oyama LM, Boldarine VT, Bagnato VS, Parizotto NA. The effects of exercise training associated with low-level laser therapy on biomarkers of adipose tissue transdifferentiation in obese women. Lasers Med Sci 2018; 33:1245-1254. [PMID: 29473115 DOI: 10.1007/s10103-018-2465-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/07/2018] [Indexed: 02/07/2023]
Abstract
Investigations suggest the benefits of low-level laser therapy (LLLT) to improve noninvasive body contouring treatments, inflammation, insulin resistance and to reduce body fat. However, the mechanism for such potential effects in association with exercise training (ET) and possible implications in browning adiposity processes remains unclear. Forty-nine obese women were involved, aged between 20 and 40 years with a body mass index (BMI) of 30-40 kg/m2. The volunteers were divided into Phototherapy (808 nm) and SHAM groups. Interventions consisted of exercise training and phototherapy applications post exercise for 4 months, with three sessions/week. Body composition, lipid profile, insulin resistance, atrial natriuretic peptide (ANP), WNT5 signaling, interleukin-6 (IL-6), and fibroblast growth factor-21 (FGF-21) were measured. Improvements in body mass, BMI, body fat mass, lean mass, visceral fat, waist circumference, insulin, HOMA-IR, total cholesterol, LDL-cholesterol, triglycerides, and ANP in both groups were demonstrated. Only the Phototherapy group showed a reduction in interleukin-6 and an increase in WNT5 signaling. In addition, it was possible to observe a higher magnitude change for the fat mass, insulin, HOMA-IR, and FGF-21 variables in the Phototherapy group. In the present investigation, it was demonstrated that exercise training associated with LLLT promotes an improvement in body composition and inflammatory processes as previously demonstrated. The Phototherapy group especially presented positive modifications of WNT5 signaling, FGF-21, and ANP, possible biomarkers associated with browning adiposity processes. This suggests that this kind of intervention promotes results applicable in clinical practice to control obesity and related comorbidities.
Collapse
Affiliation(s)
- Raquel Munhoz da Silveira Campos
- Department of Physiotherapy, Therapeutic Resources Laboratory, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luis, Km 235, São Carlos, São Paulo, 13565-905, Brazil.
| | - Ana Raimunda Dâmaso
- Post Graduated Program of Nutrition Paulista Medicine School, Universidade Federal de São Paulo (UNIFESP), Rua Marselhesa, 650-Vila Clementino, São Paulo, SP, 04020-050, Brazil.
| | | | - Fernanda Oliveira Duarte
- Electrical Engineering Department, Engineering School of São Carlos, Universidade de São Paulo (USP), Av. Trabalhador Sãocarlense 400, São Carlos, SP, 13566-590, Brazil
| | - Marcela Sene-Fiorese
- São Carlos Institute of Physics, Universidade de São Paulo (USP), PO Box 369, São Carlos, SP, 13560-970, Brazil
| | - Antonio Eduardo Aquino
- São Carlos Institute of Physics, Universidade de São Paulo (USP), PO Box 369, São Carlos, SP, 13560-970, Brazil
| | - Filippo Aragão Savioli
- Centro de Traumato-Ortopedia do Esporte (CETE), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Ana Claudia Pelissari Kravchychyn
- Post Graduated Program of Nutrition Paulista Medicine School, Universidade Federal de São Paulo (UNIFESP), Rua Marselhesa, 650-Vila Clementino, São Paulo, SP, 04020-050, Brazil
| | - Liliane Isabel Guimarães
- Centro de Traumato-Ortopedia do Esporte (CETE), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Lian Tock
- Weight Science, São Paulo, SP, Brazil
| | - Lila Missae Oyama
- Post Graduated Program of Nutrition Paulista Medicine School, Universidade Federal de São Paulo (UNIFESP), Rua Marselhesa, 650-Vila Clementino, São Paulo, SP, 04020-050, Brazil.,Department of Physiology Paulista Medicine School, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Valter Tadeu Boldarine
- Department of Physiology Paulista Medicine School, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Vanderlei Salvador Bagnato
- São Carlos Institute of Physics, Universidade de São Paulo (USP), PO Box 369, São Carlos, SP, 13560-970, Brazil.,Post Graduated Program of Biotechnology, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Nivaldo Antonio Parizotto
- Department of Physiotherapy, Therapeutic Resources Laboratory, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luis, Km 235, São Carlos, São Paulo, 13565-905, Brazil. .,Post Graduated Program of Biotechnology, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
41
|
Djavid GE, Bigdeli B, Goliaei B, Nikoofar A, Hamblin MR. Photobiomodulation leads to enhanced radiosensitivity through induction of apoptosis and autophagy in human cervical cancer cells. JOURNAL OF BIOPHOTONICS 2017; 10:1732-1742. [PMID: 28464474 PMCID: PMC5668202 DOI: 10.1002/jbio.201700004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/05/2017] [Accepted: 02/15/2017] [Indexed: 06/07/2023]
Abstract
The radiomodulatory effect of photobiomodulation (PBM) has recently been studied in cancer cells. The aim of this study was to investigate cellular mechanisms involved in the X-ray radiosensitivity of HeLa cells pre-exposed to PBM. HeLa cells were irradiated with 685 nm laser at different energy densities prior to X-ray ionizing radiation. After irradiation, clonogenic cell survival, cell death due to apoptosis and autophagy were determined. Levels of intracellular reactive oxygen species (ROS), DNA damage and, cell cycle distribution after PBM were measured. PBM at different energy densities (5-20 J/cm2 ) was not cytotoxic. However, HeLa cells pre-exposed to 20 J/cm2 showed enhanced inhibition of colony formation following ionizing radiation. Enhanced radiosensitivity was due to increased oxidative stress, DNA damage, and radiation-induced apoptosis and autophagy. These results suggest that 685 nm PBM at a higher energy density could possibly be a promising radiosensitizing agent in cervical cancer, to decrease the radiation dose delivered, and therefore prevent the side-effects that are associated with cancer radiotherapy.
Collapse
Affiliation(s)
- Gholamreza Esmaeeli Djavid
- Medical Laser Research Center, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| | - Bahareh Bigdeli
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Bahram Goliaei
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Alireza Nikoofar
- Radiotherapy Department, Firoozgar Hospital, Iran University of Medical sciences. Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USAHarvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
42
|
de Melo NB, dos Santos LFM, de Castro MS, Souza RLM, Marques MJ, Castro AP, de Castro AT, de Carli ML, Hanemann JAC, Silva MS, Moraes GDOI, Beijo LA, Brigagão MRPL, Sperandio FF. Photodynamic therapy for Schistosoma mansoni : Promising outcomes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 176:157-164. [DOI: 10.1016/j.jphotobiol.2017.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/08/2017] [Accepted: 09/18/2017] [Indexed: 11/26/2022]
|
43
|
Tinning PW, Franssen AJPM, Hridi SU, Bushell TJ, McConnell G. A 340/380 nm light-emitting diode illuminator for Fura-2 AM ratiometric Ca 2+ imaging of live cells with better than 5 nM precision. J Microsc 2017; 269:212-220. [PMID: 28837217 PMCID: PMC5836901 DOI: 10.1111/jmi.12616] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 01/17/2023]
Abstract
We report the first demonstration of a fast wavelength‐switchable 340/380 nm light‐emitting diode (LED) illuminator for Fura‐2 ratiometric Ca2+ imaging of live cells. The LEDs closely match the excitation peaks of bound and free Fura‐2 and enables the precise detection of cytosolic Ca2+ concentrations, which is only limited by the Ca2+ response of Fura‐2. Using this illuminator, we have shown that Fura‐2 acetoxymethyl ester (AM) concentrations as low as 250 nM can be used to detect induced Ca2+ events in tsA‐201 cells and while utilising the 150 μs switching speeds available, it was possible to image spontaneous Ca2+ transients in hippocampal neurons at a rate of 24.39 Hz that were blunted or absent at typical 0.5 Hz acquisition rates. Overall, the sensitivity and acquisition speeds available using this LED illuminator significantly improves the temporal resolution that can be obtained in comparison to current systems and supports optical imaging of fast Ca2+ events using Fura‐2.
Collapse
Affiliation(s)
- P W Tinning
- Department of Physics, SUPA University of Strathclyde, Glasgow, U.K
| | - A J P M Franssen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - S U Hridi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - T J Bushell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - G McConnell
- Centre for Biophotonics, University of Strathclyde, Glasgow, U.K
| |
Collapse
|
44
|
Li C, Li Z, Xun S, Jiang P, Yan R, Chen M, Hu F, Rupp RA, Zhang X, Pan L, Xu J. Protection of the biconcave profile of human erythrocytes against osmotic damage by ultraviolet-A irradiation through membrane-cytoskeleton enhancement. Cell Death Discov 2017; 3:17040. [PMID: 28729912 PMCID: PMC5512140 DOI: 10.1038/cddiscovery.2017.40] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/02/2017] [Accepted: 05/31/2017] [Indexed: 12/31/2022] Open
Abstract
To perform various physiological functions, erythrocytes possess a unique biconcave shape provided by a special architecture of the membrane-skeleton system. In the present work, we use a simple irradiation method to treat human erythrocytes with 365 nm ultraviolet-A (UVA) light at the single-cell level in vitro. Depending on the irradiation dose, UVA show protection of the biconcave profile against the detrimental action of distilled water. This protective effect can also be confirmed for saponin that damages the membrane-skeleton by vesiculation and pore formation. Interestingly, at two irradiation doses of UVA pretreatment, erythrocytes still seem to exhibit cell viability as tested by trypan blue assay even if distilled water or saponin is added. The oxidants hydrogen peroxide and cumene hydroperoxide partly simulate the protective effects. Taken together, these results demonstrate that 365 nm UVA irradiation can protect the biconcave profile of human erythrocytes through membrane-skeleton enhancement associated with a production of oxidants.
Collapse
Affiliation(s)
- Cunbo Li
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
| | - Zheming Li
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
| | - Shuang Xun
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
| | - Pengchong Jiang
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
| | - Rui Yan
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Mincai Chen
- Department of Blood Transfusion, PLA 307 Hospital, Beijing, China
| | - Fen Hu
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
| | - Romano A Rupp
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
| | - Xinzheng Zhang
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
| | - Leiting Pan
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China.,The 2011 Project Collaborative Innovation Center for Biological Therapy, Nankai University, Tianjin, China
| | - Jingjun Xu
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
45
|
Non-photonic sensing of membrane-delimited reactive species with a Na + channel protein containing selenocysteine. Sci Rep 2017; 7:46003. [PMID: 28378799 PMCID: PMC5381000 DOI: 10.1038/srep46003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/06/2017] [Indexed: 11/16/2022] Open
Abstract
Photonic experiments are of key importance in life sciences but light-induced side effects are serious confounding factors. Here we introduce roNaV2, an engineered voltage-gated Na+ channel harboring a selenocysteine in its inactivation motif, as a non-photonic, sensitive, gateable, and reversible sensor for membrane-delimited reactive species. roNaV2 allows for the assessment of chemical modification induced in fluorescence microscopy settings with high sensitivity and time resolution and it demonstrates the usefulness of ion channels as highly sensitive reporters of membrane processes.
Collapse
|
46
|
A Critical Assessment of the Evidence for Low-Level Laser Therapy in the Treatment of Hair Loss. Dermatol Surg 2017; 43:188-197. [DOI: 10.1097/dss.0000000000000904] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Yan X, Liu J, Zhang Z, Li W, Sun S, Zhao J, Dong X, Qian J, Sun H. Low-level laser irradiation modulates brain-derived neurotrophic factor mRNA transcription through calcium-dependent activation of the ERK/CREB pathway. Lasers Med Sci 2016; 32:169-180. [PMID: 27864646 DOI: 10.1007/s10103-016-2099-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 10/17/2016] [Indexed: 12/29/2022]
Abstract
Low-level laser (LLL) irradiation has been reported to promote neuronal differentiation, but the mechanism remains unclear. Brain-derived neurotrophic factor (BDNF) has been confirmed to be one of the most important neurotrophic factors because it is critical for the differentiation and survival of neurons during development. Thus, this study aimed to investigate the effects of LLL irradiation on Bdnf messenger RNA (mRNA) transcription and the molecular pathway involved in LLL-induced Bdnf mRNA transcription in cultured dorsal root ganglion neurons (DRGNs) using Ca2+ imaging, pharmacological detections, RNA interference, immunocytochemistry assay, Western blot, and qPCR analysis. We show here that LLL induced increases in the [Ca2+] i level, Bdnf mRNA transcription, cAMP-response element-binding protein (CREB) phosphorylation, and extracellular signal-regulated kinase (ERK) phosphorylation, mediated by Ca2+ release via inositol triphosphate receptor (IP3R)-sensitive calcium (Ca2+) stores. Blockade of Ca2+ increase suppressed Bdnf mRNA transcription, CREB phosphorylation, and ERK phosphorylation. Downregulation of phosphorylated (p)-CREB reduced Bdnf mRNA transcription triggered by LLL. Furthermore, blockade of ERK using PD98059 inhibitor reduced p-CREB and Bdnf mRNA transcription induced by LLL. Taken together, these findings establish the Ca2+-ERK-CREB cascade as a potential signaling pathway involved in LLL-induced Bdnf mRNA transcription. To our knowledge, this is the first report of the mechanisms of Ca2+-dependent Bdnf mRNA transcription triggered by LLL. These findings may help further explore the complex molecular signaling networks in LLL-triggered nerve regeneration in vivo and may also provide experimental evidence for the development of LLL for clinical applications.
Collapse
Affiliation(s)
- Xiaodong Yan
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Juanfang Liu
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhengping Zhang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Wenhao Li
- Cadet Brigade, Fourth Military Medical University, Xi'an, 710032, China
| | - Siguo Sun
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Jian Zhao
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Xin Dong
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Jixian Qian
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, China.
| | - Honghui Sun
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, China.
| |
Collapse
|
48
|
Amaroli A, Benedicenti A, Ferrando S, Parker S, Selting W, Gallus L, Benedicenti S. Photobiomodulation by Infrared Diode Laser: Effects on Intracellular Calcium Concentration and Nitric Oxide Production of Paramecium. Photochem Photobiol 2016; 92:854-862. [PMID: 27716941 DOI: 10.1111/php.12644] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/26/2016] [Indexed: 12/14/2022]
Abstract
In Paramecium, cilia beating is correlated to intracellular calcium concentration ([Ca2+ ]i) and nitric oxide (NO) synthesis. Recent findings affirm that photobiomodulation (PBM) can transiently increase the [Ca2+ ]i in mammalian cells. In this study, we investigated the effect of both 808 and 980 nm diode laser irradiated with flat-top hand-piece on [Ca2+ ]i and NO production of Paramecium primaurelia, to provide basic information for the development of new therapeutic approaches. In the experiments, the laser power in CW varied (0.1; 0.5; 1; and 1.5 W) to generate the following respective fluences: 6.4; 32; 64; and 96 J cm-2 . The 6.4 J cm-2 did not induce PBM if irradiated by both 808 and 980 nm diode laser. Conversely, the 32 J cm-2 fluence had no effect on Paramecium cells if irradiated by the 808 nm laser, while if irradiated by the 980 nm laser induced increment in swimming speed (suggesting an effect on the [Ca2+ ]i, NO production, similar to the 64 J cm-2 with the 808 nm wavelength). The more evident discordance occurred with the 96 J cm-2 fluence, which had the more efficient effect on PBM among the parameters if irradiated with the 808 nm laser and killed the Paramecium cells if irradiated by the 980 nm laser. Lastly, the 980 nm and 64 or 96 J cm-2 were the only parameters to induce a release of stored calcium.
Collapse
Affiliation(s)
- Andrea Amaroli
- Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostic, University of Genoa, Genoa, Italy
| | - Alberico Benedicenti
- Department of Surgical Sciences and Integrated Diagnostic, University of Genoa, Genoa, Italy
| | - Sara Ferrando
- Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy
| | - Steven Parker
- Department of Surgical Sciences and Integrated Diagnostic, University of Genoa, Genoa, Italy
| | - Wayne Selting
- Department of Surgical Sciences and Integrated Diagnostic, University of Genoa, Genoa, Italy
| | - Lorenzo Gallus
- Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostic, University of Genoa, Genoa, Italy
| |
Collapse
|
49
|
Sommer AP, Jaganathan S, Maduro MR, Hancke K, Janni W, Fecht HJ. Genesis on diamonds II: contact with diamond enhances human sperm performance by 300. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:407. [PMID: 27867959 DOI: 10.21037/atm.2016.08.18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Andrei P Sommer
- Institute of Micro and Nanomaterials, University of Ulm, Ulm, Germany
| | | | - Maria R Maduro
- Universitätsfrauenklinik Ulm, Ulm, Germany;; Yale Reproductive Endocrinology and Infertility, Yale University School of Medicine, New Haven, USA
| | | | | | - Hans-Jörg Fecht
- Institute of Micro and Nanomaterials, University of Ulm, Ulm, Germany
| |
Collapse
|
50
|
Duesterdieck-Zellmer KF, Larson MK, Plant TK, Sundholm-Tepper A, Payton ME. Ex vivo penetration of low-level laser light through equine skin and flexor tendons. Am J Vet Res 2016; 77:991-9. [DOI: 10.2460/ajvr.77.9.991] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|