1
|
Zhang M, Wang T, Guo Q, Su Y, Yang F. Systematic Identification and Characterization of O-Methyltransferase Gene Family Members Involved in Flavonoid Biosynthesis in Chrysanthemum indicum L. Int J Mol Sci 2024; 25:10037. [PMID: 39337522 PMCID: PMC11432614 DOI: 10.3390/ijms251810037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Chrysanthemum indicum L. capitulum is an enriched source of flavonoids with broad-ranging biological activities, mainly due to their anti-inflammatory, anti-cancer, immune regulation, anti-microbial activity, hepatoprotective, and neuroprotective effects. The O-methylation of various secondary metabolites has previously been demonstrated to be mainly catalyzed by S-adenosyl-L-methionine-dependent O-methyltransferase (OMT) proteins encoded by the OMT gene family. However, limited comprehensive study was published on the OMT gene family, especially the CCoAOMT subfamily, involved in the O-methylation of flavonoids in Chrysanthemum. Here, we analyzed the spatiotemporal expression patterns of C. indicum OMT genes in leaf and flower at different developmental stages. Transcriptome sequencing and qRT-PCR analysis showed that COMTs were mainly highly expressed in capitulum, especially in full bloom, while CCoAOMTs were mainly highly expressed in leaves. Correlation analysis of OMT gene expression and flavonoids accumulation revealed that four OMTs (CHR00029120, CHR00029783, CHR00077404, and CHR00078333) were putatively involved in most methylated flavonoids biosynthesis in the capitulum. Furthermore, we identified a true CCoAOMT enzyme, CiCCoAOMT1, and found that it catalyzed O-methylation of quercetin and luteolin at the 3'-OH position. In summary, this work provides an important theoretical basis for further research on the biological functions of OMTs in C. indicum.
Collapse
Affiliation(s)
| | | | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China; (M.Z.); (T.W.); (Y.S.); (F.Y.)
| | | | | |
Collapse
|
2
|
Wang B, Hai Y, Zhang L, Zhang M, Ding N, Fan J, Zhang B, Zhang Z, Wang J, Wang X, Li J, Tu P, Liu X, Shi SP. Identification of O-Methyltransferases Potentially Contributing to the Structural Diversity of 2-(2-Phenylethyl)chromones in Agarwood. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13297-13307. [PMID: 38830127 DOI: 10.1021/acs.jafc.4c02440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
2-(2-Phenylethyl)chromones (PECs) are the primary constituents responsible for the promising pharmacological activities and unique fragrance of agarwood. However, the O-methyltransferases (OMTs) involved in the formation of diverse methylated PECs have not been reported. In this study, we identified one Mg2+-dependent caffeoyl-CoA-OMT subfamily enzyme (AsOMT1) and three caffeic acid-OMT subfamily enzymes (AsOMT2-4) from NaCl-treated Aquilaria sinensis calli. AsOMT1 not only converts caffeoyl-CoA to feruloyl-CoA but also performs nonregioselective methylation at either the 6-OH or 7-OH position of 6,7-dihydroxy-PEC. On the other hand, AsOMT2-4 preferentially utilizes PECs as substrates to produce structurally diverse methylated PECs. Additionally, AsOMT2-4 also accepts nonPEC-type substrates such as caffeic acid and apigenin to generate methylated products. Protein structure prediction and site-directed mutagenesis revealed that residues of L313 and I318 in AsOMT3, as well as S292 and F313 in AsOMT4 determine the distinct regioselectivity of these two OMTs toward apigenin. These findings provide important biochemical evidence of the remarkable structural diversity of PECs in agarwood.
Collapse
Affiliation(s)
- Bingbing Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Yan Hai
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Le Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Mingliang Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Ning Ding
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jiangping Fan
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Beibei Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Zekun Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Juan Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Xiaohui Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, People's Republic of China
| | - Xiao Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - She-Po Shi
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| |
Collapse
|
3
|
He Y, Zhang J, He Y, Liu H, Wang C, Guan G, Zhao Y, Tian Y, Zhong X, Lu X. Two O-methyltransferases are responsible for multiple O-methylation steps in the biosynthesis of furanocoumarins from Angelicadecursiva. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108142. [PMID: 39492167 DOI: 10.1016/j.plaphy.2023.108142] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
Angelica decursiva, an important traditional medicinal plant, possesses a unique pharmacological activity. Its principal active ingredients are coumarins, including scopoletin, bergapten, and imperatorin. However, the enzymes catalyzing the critical step of coumarins biosynthesis pathway remain unidentified. This study initially screened 14 candidate O-methyltransferases (OMTs) through transcriptomics and metabolic determination. Combined with gene expression profile and biochemical assays, two OMTs (AdOMT1 and AdOMT2) were identified to be responsible for the O-methylation of coumarins in A. decursiva. AdOMT1 showed higher catalytic efficiency for bergaptol (Kcat/Km = 3123.70), while AdOMT2 exhibited higher substrate and catalytic promiscuity, allowing it to catalyze the methylation of various coumarins, phenylpropanes, and flavonoids. Based on molecular docking and site-specific mutagenesis determined that His126/Asn132, Phe171/Phe177, Trp261/Trp267, and Asn312/Ile317 were the key catalytic residues of AdOMT1 and AdOMT2 for the O-methylation of bergaptol and xanthotoxol. Further phylogenetic analysis confirmed the reasons for the catalytic functional differentiation of AdOMT1 and AdOMT2. This study provides a basis for exploring the coumarins O-methylation mechanism and plays a critical role in diversifying the structures used in coumarins drug discovery.
Collapse
Affiliation(s)
- Yuedong He
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Jing Zhang
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yuewei He
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Huhu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Chong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Guiping Guan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yucheng Zhao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Xiaohong Zhong
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
4
|
Ji P, Lin M, Chen M, Kashif MH, Fan Y, Ali T, Dai R, Peng C, Wang Z, Liu Z. Caffeoyl-coenzyme A O-methyltransferase mediates regulation of carbon flux fluctuations during phenylpropenes and lignin biosynthesis in the vegetative organ roots of Asarum sieboldii Miq. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107855. [PMID: 37433236 DOI: 10.1016/j.plaphy.2023.107855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/27/2023] [Accepted: 06/19/2023] [Indexed: 07/13/2023]
Abstract
Asarum sieboldii Miq. possesses remarkable medicinal value due to its essential oil enriched with phenylpropenes (e.g., methyleugenol and safrole). Although the biosynthesis of phenylpropenes shares a common pathway with lignin, the regulation mechanisms in carbon flux allocation between them are unclear. This study is the first to genetically verify the carbon flux regulation mechanism in A. sieboldii roots. We regulated the expression of Caffeoyl-coenzyme A O-methyltransferase (CCoAOMT), an essential enzyme in the common pathway, to investigate carbon flux allocation in vegetative organs. Here, the lignin and phenylpropene content fluctuation was analyzed by wet chemistry and GC-MS methods. A bona fide CCoAOMT gene from A. sieboldii was firstly cloned and verified. Preliminary heterologous expression validation in transgenic Arabidopsis thaliana showed that RNAi-induced CCoAOMT down-regulation significantly decreased lignin content by 24% and increased the S/G ratio by 30%; however, AsCCoAOMT over-expression in A. thaliana resulted in a 40% increase in lignin content and a 20% decrease in the S/G ratio when compared to the wild type. Similar trends were noted in homologous transformation in A. sieboldii, although the variations were not conspicuous. Nevertheless, the transgenic A. sieboldii plants displayed substantial differences in the level of phenylpropene compounds methyleugenol and safrole leading to a 168% increase in the methyleugenol/safrole ratio in the over-expression line and a 73% reduction in RNAi-suppression line. These findings suggest that the biosynthesis of phenylpropene constituents methyleugenol and safrole seems to be prioritized over lignin. Furthermore, this study indicated that suppression of AsCCoAOMT resulted in marked root susceptibility to pathogenic fungal disease, implying a significant additional role of CCoAOMT in protecting plant vegetative parts from diseases. Overall, the present study provides important references and suggests that future research should be aimed at elucidating the detailed mechanisms of the carbon flux allocation between phenylpropenes and lignin biosynthesis, as well as the disease resistance competency.
Collapse
Affiliation(s)
- Pingping Ji
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Maoyi Lin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengying Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Yuling Fan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tahir Ali
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruixian Dai
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Chongsheng Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhiqing Wang
- School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Zhong Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Liao Z, Liu X, Zheng J, Zhao C, Wang D, Xu Y, Sun C. A multifunctional true caffeoyl coenzyme A O-methyltransferase enzyme participates in the biosynthesis of polymethoxylated flavones in citrus. PLANT PHYSIOLOGY 2023; 192:2049-2066. [PMID: 37086474 PMCID: PMC10315319 DOI: 10.1093/plphys/kiad249] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Polymethoxylated flavones (PMFs) have received extensive attention due to their abundant bioactivities. Citrus peels specifically accumulate abundant PMFs, and methylation modification is a key step in PMF biosynthesis; however, the function of reported O-methyltransferase (OMT) in citrus is insufficient to elucidate the complete methylation process of PMFs. In this study, we analyzed the accumulation pattern of PMFs in the flavedo of the sweet orange (Citrus sinensis) cultivar "Bingtangcheng" at different developmental stages. We found that accumulation of PMFs was completed at the early stage of fruit development (60-d after flowering). Furthermore, we characterized a true caffeoyl-CoA O-methyltransferase (named CsCCoAOMT1) from C. sinensis. Functional analysis in vitro showed that CsCCoAOMT1 preferred flavonoids to caffeoyl-CoA and esculetin. This enzyme efficiently methylated the 6-, 7- 8-, and 3'-OH of a wide array of flavonoids with vicinal hydroxyl groups with a strong preference for quercetin (flavonol) and flavones. The transient overexpression and virus-induced gene silencing experiments verified that CsCCoAOMT1 could promote the accumulation of PMFs in citrus. These results reveal the function of true CCoAOMTs and indicate that CsCCoAOMT1 is a highly efficient multifunctional O-methyltransferase involved in the biosynthesis of PMFs in citrus.
Collapse
Affiliation(s)
- Zhenkun Liao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310000, China
| | - Xiaojuan Liu
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310000, China
| | - Juan Zheng
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310000, China
| | - Chenning Zhao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310000, China
| | - Dengliang Wang
- Quzhou Academy of Agriculture and Forestry Science, Quzhou 324000, China
| | - Yang Xu
- Xiangshan Country Agricultural Economic Specialty Technology Extension Center, Ningbo 315799, China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
6
|
Wu X, Yuwen M, Pu Z, Zhao Z, Yu H, Zha J. Engineering of flavonoid 3'-O-methyltransferase for improved biosynthesis of chrysoeriol in Escherichia coli. Appl Microbiol Biotechnol 2023; 107:1663-1672. [PMID: 36719434 DOI: 10.1007/s00253-023-12403-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/01/2023]
Abstract
O-Methylation catalyzed by O-methyltransferases (OMTs) is an important modification of flavonoids for improving the transport efficiency across membranes and metabolic stability in mammalian cells. Chrysoeriol, also known as 3'-O-methylated luteolin, is a methylated flavonoid compound with health-promoting activities. The generation of chrysoeriol from luteolin can be catalyzed by a rice-derived 3'-OMT named ROMT-9, which has a high regiospecificity and activity toward flavonoids in vitro. Herein, we explored the potential of ROMT-9 for in vivo biosynthesis of chrysoeriol in Escherichia coli and adopted semi-rational enzyme engineering guided by homology modeling and molecular docking to improve the bio-production. Two positive variants including L34Q and W284A were obtained which promoted chrysoeriol formation to more than 85 mg/L from 200 mg/L of luteolin in 24 h compared with a titer of 55 mg/L for the strain expressing the native enzyme. Further biochemical analysis confirmed that such improvement in production stemmed from a higher enzyme expression level for the L34Q variant and higher efficiency in substrate binding and catalysis for the W284A variant. This study provides some insights into the engineering of other flavonoid OMTs and will facilitate high-level biosynthesis of methylated flavonoids in engineered microorganisms. KEY POINTS: • Biosynthesis of chrysoeriol from luteolin in E. coli using ROMT-9 • Engineering of ROMT-9 for better bio-production • ROMT-9 variants promote production via better expression or better catalysis.
Collapse
Affiliation(s)
- Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China
| | - Miaomiao Yuwen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China
| | - Zhongji Pu
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, Zhejiang, China
| | - Zhen Zhao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China
| | - Haoran Yu
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, Zhejiang, China. .,Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China.
| | - Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China.
| |
Collapse
|
7
|
Lashley A, Miller R, Provenzano S, Jarecki SA, Erba P, Salim V. Functional Diversification and Structural Origins of Plant Natural Product Methyltransferases. Molecules 2022; 28:43. [PMID: 36615239 PMCID: PMC9822479 DOI: 10.3390/molecules28010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
In plants, methylation is a common step in specialized metabolic pathways, leading to a vast diversity of natural products. The methylation of these small molecules is catalyzed by S-adenosyl-l-methionine (SAM)-dependent methyltransferases, which are categorized based on the methyl-accepting atom (O, N, C, S, or Se). These methyltransferases are responsible for the transformation of metabolites involved in plant defense response, pigments, and cell signaling. Plant natural product methyltransferases are part of the Class I methyltransferase-superfamily containing the canonical Rossmann fold. Recent advances in genomics have accelerated the functional characterization of plant natural product methyltransferases, allowing for the determination of substrate specificities and regioselectivity and further realizing the potential for enzyme engineering. This review compiles known biochemically characterized plant natural product methyltransferases that have contributed to our knowledge in the diversification of small molecules mediated by methylation steps.
Collapse
Affiliation(s)
- Audrey Lashley
- Department of Biological Sciences, Louisiana State University, Shreveport, LA 71115, USA
| | - Ryan Miller
- Department of Biological Sciences, Louisiana State University, Shreveport, LA 71115, USA
- School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA
| | - Stephanie Provenzano
- Department of Biological Sciences, Louisiana State University, Shreveport, LA 71115, USA
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
| | - Sara-Alexis Jarecki
- Department of Biological Sciences, Louisiana State University, Shreveport, LA 71115, USA
| | - Paul Erba
- Department of Biological Sciences, Louisiana State University, Shreveport, LA 71115, USA
- School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA
| | - Vonny Salim
- Department of Biological Sciences, Louisiana State University, Shreveport, LA 71115, USA
| |
Collapse
|
8
|
Xian L, Sahu SK, Huang L, Fan Y, Lin J, Su J, Bai M, Chen Y, Wang S, Ye P, Wang F, Luo Q, Bai H, Lin X, Yuan C, Geng X, Liu H, Wu H. The draft genome and multi-omics analyses reveal new insights into geo-herbalism properties of Citrus grandis 'Tomentosa'. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111489. [PMID: 36216298 DOI: 10.1016/j.plantsci.2022.111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/29/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Citrus grandis 'Tomentosa' (CGT) (Huajuhong, HJH) is a widely used medicinal plant, which is mainly produced in Guangdong and Guangxi provinces of South China. Particularly, HJH from Huazhou (HZ) county of Guangdong province has been well-regarded as the best national product for geo-herbalism. But the reasons for geo-herbalism property in HJH from HZ county remains a mystery. Therefore, a multi-omics approach was applied to identify the nature of the geo-herbalism in CGT from three different regions. The comprehensive screening of differential metabolites revealed that the Nobiletin content was significantly different in HZ region compared to other regions, and could be employed as a key indicator to determine the geo-herbalism. Furthermore, the high-quality genome (N50 of 9.12 Mb), coupled with genomics and transcriptomics analyses indicated that CGT and Citrus grandis are closely related, with a predicted divergence time of 19.1 million years ago (MYA), and no recent WGD occurred in the CGT, and the bioactive ingredients of CGT were more abundant than that of Citrus grandis. Interestingly, Nobiletin (Polymethoxyflavones) content was identified as a potential indicator of geo-herbalism, and O-methyltransferase (OMT) genes are involved in the synthesis of Polymethoxyflavones. Further multi-omics analysis led to the identification of a novel OMT gene (CtgOMT1) whose transient overexpression displayed significantly higher Nobiletin content, suggesting that CtgOMT1 was involved in the synthesis of Nobiletin. Overall, our findings provide new data resources for geo-herbalism evaluation, germplasm conservation and insights into Nobiletin biosynthesis pathways for the medicinal plant C. grandis 'Tomentosa'.
Collapse
Affiliation(s)
- Lin Xian
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Liying Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yannan Fan
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Jianhao Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jianmu Su
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Mei Bai
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yewen Chen
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujie Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Peng Ye
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fang Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qun Luo
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Haiyi Bai
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojing Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Caihong Yuan
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaodie Geng
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China.
| | - Hong Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Dippe M, Davari MD, Weigel B, Heinke R, Vogt T, Wessjohann LA. Altering the Regiospecificity of a Catechol
O
‐methyltransferase through Rational Design: Vanilloid vs. Isovanilloid Motifs in the B‐ring of Flavonoids. ChemCatChem 2022. [DOI: 10.1002/cctc.202200511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Martin Dippe
- Department of Bioorganic Chemistry Leibniz-Institute of Plant Biochemistry Weinberg 3 D-06120 Halle Germany
| | - Mehdi D. Davari
- Department of Bioorganic Chemistry Leibniz-Institute of Plant Biochemistry Weinberg 3 D-06120 Halle Germany
| | - Benjamin Weigel
- Department of Bioorganic Chemistry Leibniz-Institute of Plant Biochemistry Weinberg 3 D-06120 Halle Germany
| | - Ramona Heinke
- Department of Bioorganic Chemistry Leibniz-Institute of Plant Biochemistry Weinberg 3 D-06120 Halle Germany
| | - Thomas Vogt
- Department of Cell and Metabolic Biology Leibniz-Institute of Plant Biochemistry Weinberg 3 D-06120 Halle Germany
| | - Ludger A. Wessjohann
- Department of Bioorganic Chemistry Leibniz-Institute of Plant Biochemistry Weinberg 3 D-06120 Halle Germany
| |
Collapse
|
10
|
Fang T, Zhou S, Qian C, Yan X, Yin X, Fan X, Zhao P, Liao Y, Shi L, Chang Y, Ma XF. Integrated metabolomics and transcriptomics insights on flavonoid biosynthesis of a medicinal functional forage, Agriophyllum squarrosum (L.), based on a common garden trial covering six ecotypes. FRONTIERS IN PLANT SCIENCE 2022; 13:985572. [PMID: 36204072 PMCID: PMC9530573 DOI: 10.3389/fpls.2022.985572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Agriophyllum squarrosum (L.) Moq., well known as sandrice, is an important wild forage in sandy areas and a promising edible and medicinal resource plant with great domestication potential. Previous studies showed flavonoids are one of the most abundant medicinal ingredients in sandrice, whereby isorhamnetin and isorhamnetin-3-glycoside were the top two flavonols with multiple health benefits. However, the molecular regulatory mechanisms of flavonoids in sandrice remain largely unclear. Based on a common garden trial, in this study, an integrated transcriptomic and flavonoids-targeted metabolomic analysis was performed on the vegetative and reproductive periods of six sandrice ecotypes, whose original habitats covered a variety of environmental factor gradients. Multiple linear stepwise regression analysis unveiled that flavonoid accumulation in sandrice was positively correlated with temperature and UVB and negatively affected by precipitation and sunshine duration, respectively. Weighted co-expression network analysis (WGCNA) indicated the bHLH and MYB transcription factor (TF) families might play key roles in sandrice flavonoid biosynthesis regulation. A total of 22,778 differentially expressed genes (DEGs) were identified between ecotype DL and ecotype AEX, the two extremes in most environmental factors, whereby 85 DEGs could be related to known flavonoid biosynthesis pathway. A sandrice flavonoid biosynthesis network embracing the detected 23 flavonoids in this research was constructed. Gene families Plant flavonoid O-methyltransferase (AsPFOMT) and UDP-glucuronosyltransferase (AsUGT78D2) were identified and characterized on the transcriptional level and believed to be synthases of isorhamnetin and isorhamnetin-3-glycoside in sandrice, respectively. A trade-off between biosynthesis of rutin and isorhamnetin was found in the DL ecotype, which might be due to the metabolic flux redirection when facing environmental changes. This research provides valuable information for understanding flavonoid biosynthesis in sandrice at the molecular level and laid the foundation for precise development and utilization of this functional resource forage.
Collapse
Affiliation(s)
- Tingzhou Fang
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Shanshan Zhou
- Faculty of Environmental Science and Engineering, Shanxi Institute of Science and Technology, Jincheng, China
| | - Chaoju Qian
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xia Yan
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Marsgreen Biotech Jiangsu Co., Ltd., Haian, China
| | - Xiaoyue Yin
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xingke Fan
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Pengshu Zhao
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqiu Liao
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Shi
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuxiao Chang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiao-Fei Ma
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Marsgreen Biotech Jiangsu Co., Ltd., Haian, China
| |
Collapse
|
11
|
Xie L, Guo Y, Ren C, Cao Y, Li J, Lin J, Grierson D, Zhao X, Zhang B, Sun C, Chen K, Li X. Unravelling the consecutive glycosylation and methylation of flavonols in peach in response to UV-B irradiation. PLANT, CELL & ENVIRONMENT 2022; 45:2158-2175. [PMID: 35357710 DOI: 10.1111/pce.14323] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Flavonol glycosides are bioactive compounds important for plant defence and human nutrition. Glycosylation and methylation play an important role in enriching the diversity of flavonols in response to the environment. Peach flowers and fruit are rich in flavonol diglycosides such as isorhamnetin 3-O-rutinoside (I3Rut), kaempferol 3-O-rutinoside and quercetin 3-O-rutinoside, and flavonol monoglycosides such as I 3-O-glucoside and Q 3-O-galactoside. UV-B irradiation of fruit significantly induced accumulation of all these flavonol glycosides. Candidate biosynthetic genes induced by UV-B were identified by genome homology searches and the in vitro catalytic activities of purified recombinant proteins determined. PpUGT78T3 and PpUGT78A2 were identified as flavonol 3-O-glucosyltransferase and 3-O-galactosyltransferase, respectively. PpUGT91AK6 was identified as flavonol 1,6-rhamnosyl trasferase catalysing the formation of flavonol rutinosides and PpFOMT1 was identified as a flavonol O-methyltransferase that methylated Q at the 3'-OH-OH to form isorhamnetin derivatives. Transient expression in Nicotiana benthamiana confirmed the specificity of PpUGT78T3 as a flavonol 3-O-glucosyltransferase, PpUGT78A2 as a 3-O-galactosyltransferase, PpUGT91AK6 as a 1,6-rhamnosyltrasferase and PpFOMT1 as an O-methyltransferase. This study provides new insights into the mechanisms of glycosylation and methylation of flavonols, especially the formation of flavonol diglycosides such as I3Rut, and will also be useful for future potential metabolic engineering of complex flavonols.
Collapse
Affiliation(s)
- Linfeng Xie
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Yan Guo
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Chuanhong Ren
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Yunlin Cao
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Jiajia Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Jing Lin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Xiaoyong Zhao
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Bo Zhang
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Chongde Sun
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Kunsong Chen
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Xian Li
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Tan Y, Yang J, Jiang Y, Sun S, Wei X, Wang R, Bu J, Li D, Kang L, Chen T, Guo J, Cui G, Tang J, Huang L. Identification and characterization of two Isatis indigotica O-methyltransferases methylating C-glycosylflavonoids. HORTICULTURE RESEARCH 2022; 9:uhac140. [PMID: 36072835 PMCID: PMC9437721 DOI: 10.1093/hr/uhac140] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Isatis indigotica accumulates several active substances, including C-glycosylflavonoids, which have important pharmacological activities and health benefits. However, enzymes catalyzing the methylation step of C-glycosylflavonoids in I. indigotica remain unknown. In this study, three O-methyltransferases (OMTs) were identified from I. indigotica that have the capacity for O-methylation of the C-glycosylflavonoid isoorientin. The Type II OMTs IiOMT1 and IiOMT2 efficiently catalyze isoorientin to form isoscoparin, and decorate one of the aromatic vicinal hydroxyl groups on flavones and methylate the C6, C8, and 3'-hydroxyl positions to form oroxylin A, wogonin, and chrysoeriol, respectively. However, the Type I OMT IiOMT3 exhibited broader substrate promiscuity and methylated the C7 and 3'-hydroxyl positions of flavonoids. Further site-directed mutagenesis studies demonstrated that five amino acids of IiOMT1/IiOMT2 (D121/D100, D173/D149, A174/A150R, N200/N176, and D248/D233) were critical residues for their catalytic activity. Additionally, only transient overexpression of Type II OMTs IiOMT1 and IiOMT2 in Nicotiana benthamiana significantly increased isoscoparin accumulation, indicating that the Type II OMTs IiOMT1 and IiOMT2 could catalyze the methylation step of C-glycosylflavonoid, isoorientin at the 3'-hydroxyl position. This study provides insights into the biosynthesis of methylated C-glycosylflavonoids, and IiOMTs could be promising catalysts in the synthesis of bioactive compounds.
Collapse
Affiliation(s)
- Yuping Tan
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 117004, China
| | - Jian Yang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yinyin Jiang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shufu Sun
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xiaoyan Wei
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ruishan Wang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junling Bu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dayong Li
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Liping Kang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tong Chen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guanghong Cui
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | | | | |
Collapse
|
13
|
Diversification of Chemical Structures of Methoxylated Flavonoids and Genes Encoding Flavonoid-O-Methyltransferases. PLANTS 2022; 11:plants11040564. [PMID: 35214897 PMCID: PMC8876552 DOI: 10.3390/plants11040564] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 11/25/2022]
Abstract
The O-methylation of specialized metabolites in plants is a unique decoration that provides structural and functional diversity of the metabolites with changes in chemical properties and intracellular localizations. The O-methylation of flavonoids, which is a class of plant specialized metabolites, promotes their antimicrobial activities and liposolubility. Flavonoid O-methyltransferases (FOMTs), which are responsible for the O-methylation process of the flavonoid aglycone, generally accept a broad range of substrates across flavones, flavonols and lignin precursors, with different substrate preferences. Therefore, the characterization of FOMTs with the physiology roles of methoxylated flavonoids is useful for crop improvement and metabolic engineering. In this review, we summarized the chemodiversity and physiology roles of methoxylated flavonoids, which were already reported, and we performed a cross-species comparison to illustrate an overview of diversification and conserved catalytic sites of the flavonoid O-methyltransferases.
Collapse
|
14
|
Giri GR, Saxena P. Mycobacterial MMAR_2193 catalyzes O-methylation of diverse polyketide cores. PLoS One 2022; 17:e0262241. [PMID: 34986163 PMCID: PMC8730385 DOI: 10.1371/journal.pone.0262241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
O-methylation of small molecules is a common modification widely present in most organisms. Type III polyketides undergo O-methylation at hydroxyl end to play a wide spectrum of roles in bacteria, plants, algae, and fungi. Mycobacterium marinum harbours a distinctive genomic cluster with a type III pks gene and genes for several polyketide modifiers including a methyltransferase gene, mmar_2193. This study reports functional analyses of MMAR_2193 and reveals multi-methylating potential of the protein. Comparative sequence analyses revealed conservation of catalytically important motifs in MMAR_2193 protein. Homology-based structure-function and molecular docking studies suggested type III polyketide cores as possible substrates for MMAR_2193 catalysis. In vitro enzymatic characterization revealed the capability of MMAR_2193 protein to utilize diverse polyphenolic substrates to methylate several hydroxyl positions on a single substrate molecule. High-resolution mass spectrometric analyses identified multi-methylations of type III polyketides in cell-free reconstitution assays. Notably, our metabolomics analyses identified some of these methylated molecules in biofilms of wild type Mycobacterium marinum. This study characterizes a novel mycobacterial O-methyltransferase protein with multi-methylating enzymatic ability that could be exploited to generate a palette of structurally distinct bioactive molecules.
Collapse
Affiliation(s)
- Gorkha Raj Giri
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India
| | - Priti Saxena
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India
| |
Collapse
|
15
|
Cui M, Lu A, Li J, Liu J, Fang Y, Pei T, Zhong X, Wei Y, Kong Y, Qiu W, Hu Y, Yang J, Chen X, Martin C, Zhao Q. Two types of O-methyltransferase are involved in biosynthesis of anticancer methoxylated 4'-deoxyflavones in Scutellaria baicalensis Georgi. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:129-142. [PMID: 34490975 PMCID: PMC8710825 DOI: 10.1111/pbi.13700] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 05/05/2023]
Abstract
The medicinal plant Scutellaria baicalensis Georgi is rich in specialized 4'-deoxyflavones, which are reported to have many health-promoting properties. We assayed Scutellaria flavones with different methoxyl groups on human cancer cell lines and found that polymethoxylated 4'-deoxyflavones, like skullcapflavone I and tenaxin I have stronger ability to induce apoptosis compared to unmethylated baicalein, showing that methoxylation enhances bioactivity as well as the physical properties of specialized flavones, while having no side-effects on healthy cells. We investigated the formation of methoxylated flavones and found that two O-methyltransferase (OMT) families are active in the roots of S. baicalensis. The Type II OMTs, SbPFOMT2 and SbPFOMT5, decorate one of two adjacent hydroxyl groups on flavones and are responsible for methylation on the C6, 8 and 3'-hydroxyl positions, to form oroxylin A, tenaxin II and chrysoeriol respectively. The Type I OMTs, SbFOMT3, SbFOMT5 and SbFOMT6 account mainly for C7-methoxylation of flavones, but SbFOMT5 can also methylate baicalein on its C5 and C6-hydroxyl positions. The dimethoxylated flavone, skullcapflavone I (found naturally in roots of S. baicalensis) can be produced in yeast by co-expressing SbPFOMT5 plus SbFOMT6 when the appropriately hydroxylated 4'-deoxyflavone substrates are supplied in the medium. Co-expression of SbPFOMT5 plus SbFOMT5 in yeast produced tenaxin I, also found in Scutellaria roots. This work showed that both type I and type II OMT enzymes are involved in biosynthesis of methoxylated flavones in S. baicalensis.
Collapse
Affiliation(s)
- Meng‐Ying Cui
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
| | - An‐Rui Lu
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
- State Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Jian‐Xu Li
- State Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Jie Liu
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
| | - Yu‐Min Fang
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
| | - Tian‐Lin Pei
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
- State Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Xin Zhong
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
| | - Yu‐Kun Wei
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
| | - Yu Kong
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
| | - Wen‐Qing Qiu
- Key Laboratory of Metabolism and Molecular MedicineDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Yong‐Hong Hu
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
- State Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Xiao‐Ya Chen
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
- State Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Cathie Martin
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
- John Innes CentreNorwichUK
| | - Qing Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
- State Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
16
|
Xu RX, Ni R, Gao S, Fu J, Xiong RL, Zhu TT, Lou HX, Cheng AX. Molecular cloning and characterization of two distinct caffeoyl CoA O-methyltransferases (CCoAOMTs) from the liverwort Marchantia paleacea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111102. [PMID: 34895539 DOI: 10.1016/j.plantsci.2021.111102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 06/14/2023]
Abstract
Caffeoyl CoA O-methyltransferases (CCoAOMTs) catalyze the transfer of a methyl group from S-adenosylmethionine to a hydroxyl moiety of caffeoyl-CoA as part of the lignin biosynthetic pathway. CCoAOMT-like proteins also catalyze to a variety of flavonoids, coumarins, and phenylpropanoids. Several CCoAOMTs that prefer flavonoids as substrates have been characterized from liverworts. Here, we cloned two CCoAOMT genes, MpalOMT2 and MpalOMT3, from the liverwort Marchantia paleacea. MpalOMT3 has a second ATG codon downstream and the truncated version that lacks 11 amino acids was named MpalOMT3-Tr. Phylogenetic analysis placed MpalOMT3 at the root of the clade with true CCoAOMTs from vascular plants and placed MpalOMT2 between the CCoAOMT and CCoAOMT-like proteins. Recombinant OMTs methylated caffeoyl CoA, phenylpropanoids, and flavonoids containing two or three vicinal hydroxyl groups. MpalOMT3 showed higher catalytic activity for phenylpropanoids than MpalOMT2, but MpalOMT2 showed more promiscuous towards eriodictyol and myricetin. The lignin content in Arabidopsis thaliana stems increased with constitutive heterologous expression of MpalOMT3-Tr, but not MpalOMT2. Subcellular localization experiments indicated that the N-terminus of MpalOMT3 probably served as a chloroplast transit peptide and inhibited its enzymatic activity. Combining the phylogenetic analysis and functional characterization, we conclude that the liverwort M. paleacea harbors true CCoAOMT and CCoAOMT-like genes.
Collapse
Affiliation(s)
- Rui-Xue Xu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Rong Ni
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Shuai Gao
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Jie Fu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Rui-Lin Xiong
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Ting-Ting Zhu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
17
|
Gu N, Liu S, Qiu C, Zhao L, Pei J. Biosynthesis of 3'-O-methylisoorientin from luteolin by selecting O-methylation/C-glycosylation motif. Enzyme Microb Technol 2021; 150:109862. [PMID: 34489021 DOI: 10.1016/j.enzmictec.2021.109862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 11/26/2022]
Abstract
Glycosylation and methylation of flavonoids are the main types of structural modifications and can endow flavonoids with greater stability, bioactivity, and bioavailability. In this study, five types of O-methyltransferases were screened for producing O-methylated luteolin, and the biosynthesis strategy of 3'-O-methylisoorientin from luteolin was determined. To improve the production of 3'-O-methylluteolin, the S-adenosyl-l-methionine synthesis pathway was reconstructed in the recombinant strain by introducing S-adenosyl-l-methionine synthetase genes. After optimizing the conversion conditions, maximal 3'-O-methylluteolin production reached 641 ± 25 mg/L with a corresponding molar conversion of 76.5 %, which was the highest titer of methylated flavonoids reported to date in Escherichia coli. 3'-O-Methylluteolin (127 mg) was prepared from 250 mL of the broth by silica gel column chromatography and preparative HPLC with a yield of 79.4 %. Subsequently, we used the biocatalytic cascade of Gentiana triflora C-glycosyltransferase (Gt6CGT) and Glycine max sucrose synthase (GmSUS) to biosynthesize 3'-O-methylisoorientin from 3'-O-methylluteolin in vitro. By optimizing the coupled reaction conditions and using the fed-batch operation, maximal 3'-O-methylisoorientin production reached 226 ± 8 mg/L with a corresponding molar conversion of 98 %. Therefore, this study provides an efficient method for the production of novel 3'-O-methylisoorientin and the biosynthesis strategy for methylated C-glycosylation flavonoids by selective O-methylation/C-glycosylation motif on flavonoids.
Collapse
Affiliation(s)
- Na Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, China
| | - Simin Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, China
| | - Cong Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, China.
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, China.
| |
Collapse
|
18
|
Gene-Metabolite Network Analysis Revealed Tissue-Specific Accumulation of Therapeutic Metabolites in Mallotus japonicus. Int J Mol Sci 2021; 22:ijms22168835. [PMID: 34445541 PMCID: PMC8396295 DOI: 10.3390/ijms22168835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Mallotus japonicus is a valuable traditional medicinal plant in East Asia for applications as a gastrointestinal drug. However, the molecular components involved in the biosynthesis of bioactive metabolites have not yet been explored, primarily due to a lack of omics resources. In this study, we established metabolome and transcriptome resources for M. japonicus to capture the diverse metabolite constituents and active transcripts involved in its biosynthesis and regulation. A combination of untargeted metabolite profiling with data-dependent metabolite fragmentation and metabolite annotation through manual curation and feature-based molecular networking established an overall metabospace of M. japonicus represented by 2129 metabolite features. M. japonicus de novo transcriptome assembly showed 96.9% transcriptome completeness, representing 226,250 active transcripts across seven tissues. We identified specialized metabolites biosynthesis in a tissue-specific manner, with a strong correlation between transcripts expression and metabolite accumulations in M. japonicus. The correlation- and network-based integration of metabolome and transcriptome datasets identified candidate genes involved in the biosynthesis of key specialized metabolites of M. japonicus. We further used phylogenetic analysis to identify 13 C-glycosyltransferases and 11 methyltransferases coding candidate genes involved in the biosynthesis of medicinally important bergenin. This study provides comprehensive, high-quality multi-omics resources to further investigate biological properties of specialized metabolites biosynthesis in M. japonicus.
Collapse
|
19
|
Owusu Adjei M, Zhou X, Mao M, Rafique F, Ma J. MicroRNAs Roles in Plants Secondary Metabolism. PLANT SIGNALING & BEHAVIOR 2021; 16:1915590. [PMID: 33938393 PMCID: PMC8205019 DOI: 10.1080/15592324.2021.1915590] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 05/20/2023]
Abstract
Plant growth and development is dependent on the regulation of classes of microRNAs (miRNAs) that have emerged as important gene regulators. These miRNAs can regulate plant gene expression to function. They play an important roles in biological homeostasis and environmental response controls. A wide range of plant biological and metabolic processes, including developmental timing, tissues specific development, and differentiation, depends on miRNAs. They perpetually regulate secondary metabolite functions in different plant family lines. Mapping of molecular phylogenies shows the distribution of secondary metabolism in the plant territory. More importantly, a lot of information related to miRNA regulatory processes in plants is revealed, but the role of miRNAs in secondary metabolism regulation and functions of the metabolites are still unclear. In this review, we pinnacle some potential miRNAs regulating the secondary metabolite biosynthesis activities in plants. This will provide an alternative knowledge for functional studies of secondary metabolism.
Collapse
Affiliation(s)
- Mark Owusu Adjei
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xuzixin Zhou
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Meiqin Mao
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fatima Rafique
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jun Ma
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Modeling the Formation and Propagation of 2,4,6-trichloroanisole, a Dominant Taste and Odor Compound, in Water Distribution Systems. WATER 2021. [DOI: 10.3390/w13050638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
2,4,6-trichloroanisole (2,4,6-TCA) formation is often reported as a cause of taste and odor (T&O) problems in water distribution systems (WDSs). The biosynthesis via microbial O-methylation of 2,4,6-trichlorophenol (2,4,6-TCP) is the dominant formation pathway in distribution pipes. This paper attempted to utilize the reported data on the microbial O-methylation process to formulate deterministic kinetic models for explaining 2,4,6-TCA formation dynamics in WDSs. The pipe material’s critical role in stimulating O-methyltransferases enzymatic activity and regulating 2,4,6-TCP bioconversion in water was established. The kinetic expressions formulated were later applied to develop a novel EPANET-MSX-based multi-species reactive-transport (MSRT) model. The effects of operating conditions and temperature in directing the microbiological, chemical, and organoleptic quality variations in WDSs were analyzed using the MSRT model on two benchmark systems. The simulation results specified chlorine application’s implication in maintaining 2,4,6-TCA levels within its perception limit (4 ng/L). In addition, the temperature sensitivity of O-methyltransferases enzymatic activity was described, and the effect of temperature increase from 10 to 25 °C in accelerating the 2,4,6-TCA formation rate in WDSs was explained. Controlling source water 2,4,6-TCP concentration by accepting appropriate treatment techniques was recommended as the primary strategy for regulating the T&O problems in WDSs.
Collapse
|
21
|
Lin SJ, Yang YZ, Teng RM, Liu H, Li H, Zhuang J. Identification and expression analysis of caffeoyl-coenzyme A O-methyltransferase family genes related to lignin biosynthesis in tea plant (Camellia sinensis). PROTOPLASMA 2021; 258:115-127. [PMID: 32929631 DOI: 10.1007/s00709-020-01555-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/02/2020] [Indexed: 05/09/2023]
Abstract
Tea plant, an economically important crop, is used in producing tea, which is a non-alcoholic beverage. Lignin, the second most abundant component of the cell wall, reduces the tenderness of tea leaves and affects tea quality. Caffeoyl-coenzyme A O-methyltransferase (CCoAOMT) involved in lignin biosynthesis affects the efficiency of lignin synthesis and lignin composition. A total of 10 CsCCoAOMTs were identified based on tea plant genome. Systematic analysis of CCoAOMTs was conducted for its physicochemical properties, phylogenetic relationships, conserved motifs, gene structure, and promoter cis-element prediction. Phylogenetic analysis suggested that all the CsCCoAOMT proteins can be categorized into three clades. The promoters of six CsCCoAOMT genes possessed lignin-specific cis-elements, indicating they are possibly essential for lignin biosynthesis. According to the distinct tempo-spatial expression profiles, five genes were substantially expressed in eight tested tissues. Most CsCCoAOMT genes were expressed in stems and leaves in three tea plant cultivars 'Longjing 43,' 'Anjibaicha,' and 'Fudingdabai' by RT-qPCR detection and analysis. The expression levels of two genes (CsCCoAOMT5 and CsCCoAOMT6) were higher than those of the other genes. The expression levels of most CsCCoAOMT genes in 'Longjing 43' were significantly higher than that those in 'Anjibaicha' and 'Fudingdabai.' Correlation analysis revealed that only the expression levels of CsCCoAOMT6 were positively correlated with lignin content in the leaves and stems. These results lay a foundation for the future exploration of the roles of CsCCoAOMTs in lignin biosynthesis in tea plant.
Collapse
Affiliation(s)
- Shi-Jia Lin
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, People's Republic of China
| | - Ya-Zhuo Yang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, People's Republic of China
| | - Rui-Min Teng
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, People's Republic of China
| | - Hao Liu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, People's Republic of China
| | - Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, People's Republic of China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, People's Republic of China.
| |
Collapse
|
22
|
Uchida K, Sawada Y, Ochiai K, Sato M, Inaba J, Hirai MY. Identification of a Unique Type of Isoflavone O-Methyltransferase, GmIOMT1, Based on Multi-Omics Analysis of Soybean under Biotic Stress. PLANT & CELL PHYSIOLOGY 2020; 61:1974-1985. [PMID: 32894761 PMCID: PMC7758036 DOI: 10.1093/pcp/pcaa112] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/25/2020] [Indexed: 05/15/2023]
Abstract
Isoflavonoids are commonly found in leguminous plants. Glycitein is one of the isoflavones produced by soybean. The genes encoding the enzymes in the isoflavone biosynthetic pathway have mostly been identified and characterized. However, the gene(s) for isoflavone O-methyltransferase (IOMT), which catalyzes the last step of glycitein biosynthesis, has not yet been identified. In this study, we conducted multi-omics analyses of fungal-inoculated soybean and indicated that glycitein biosynthesis was induced in response to biotic stress. Moreover, we identified a unique type of IOMT, which participates in glycitein biosynthesis. Soybean seedlings were inoculated with Aspergillus oryzae or Rhizopus oligosporus and sampled daily for 8 d. Multi-omics analyses were conducted using liquid chromatography-tandem mass spectrometry and RNA sequencing. Metabolome analysis revealed that glycitein derivatives increased following fungal inoculation. Transcriptome co-expression analysis identified two candidate IOMTs that were co-expressed with the gene encoding flavonoid 6-hydroxylase (F6H), the key enzyme in glycitein biosynthesis. The enzymatic assay of the two IOMTs using respective recombinant proteins showed that one IOMT, named as GmIOMT1, produced glycitein. Unlike other IOMTs, GmIOMT1 belongs to the cation-dependent OMT family and exhibited the highest activity with Zn2+ among cations tested. Moreover, we demonstrated that GmIOMT1 overexpression increased the levels of glycitein derivatives in soybean hairy roots when F6H was co-expressed. These results strongly suggest that GmIOMT1 participates in inducing glycitein biosynthesis in response to biotic stress.
Collapse
Affiliation(s)
- Kai Uchida
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| | - Yuji Sawada
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| | | | - Muneo Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| | - Jun Inaba
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| | | |
Collapse
|
23
|
Liu X, Zhao C, Gong Q, Wang Y, Cao J, Li X, Grierson D, Sun C. Characterization of a caffeoyl-CoA O-methyltransferase-like enzyme involved in biosynthesis of polymethoxylated flavones in Citrus reticulata. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3066-3079. [PMID: 32182355 PMCID: PMC7475179 DOI: 10.1093/jxb/eraa083] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 02/16/2020] [Indexed: 05/07/2023]
Abstract
Polymethoxylated flavones (PMFs), which accumulate exclusively in fruit peel of citrus, play important physiological and pharmacological roles but the genetic basis for the methylation of flavonoids has not been fully elucidated in citrus. Here we characterize a caffeoyl-CoA O-methyltransferase-like enzyme, designated CrOMT1. The expression pattern of CrOMT1 was highly correlated with the concentration of the three major PMFs in two different citrus fruit tissues during fruit maturation. Exposure of fruit to UV-B radiation sharply increased the level of CrOMT1 transcripts and also led to the accumulation of three PMFs. The potential role of CrOMT1 was studied by testing the catalytic activity of recombinant CrOMT1 with numerous possible substrates in vitro. The enzyme could most efficiently methylate flavones with neighboring hydroxy moieties, with high catalytic efficiencies found with 6-OH- and 8-OH-containing compounds, preferences that correspond precisely with the essential methylation sites involved in the synthesis of the three naturally occurring PMFs in Citrus reticulata. This indicates that CrOMT1 is capable of in vitro methylation reactions required to synthesize PMFs in vivo. Furthermore, transient overexpression of CrOMT1 increased levels of the three major PMFs in fruit, indicating that CrOMT1 is likely to play an essential role in the biosynthesis of PMFs in citrus.
Collapse
Affiliation(s)
- Xiaojuan Liu
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Chenning Zhao
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Qin Gong
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yue Wang
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jinping Cao
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xian Li
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, People’s Republic of China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, People’s Republic of China
| | - Donald Grierson
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Chongde Sun
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, People’s Republic of China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, People’s Republic of China
- Correspondence:
| |
Collapse
|
24
|
Leung J, Gaudin V. Who Rules the Cell? An Epi-Tale of Histone, DNA, RNA, and the Metabolic Deep State. FRONTIERS IN PLANT SCIENCE 2020; 11:181. [PMID: 32194593 PMCID: PMC7066317 DOI: 10.3389/fpls.2020.00181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/06/2020] [Indexed: 05/23/2023]
Abstract
Epigenetics refers to the mode of inheritance independent of mutational changes in the DNA. Early evidence has revealed methylation, acetylation, and phosphorylation of histones, as well as methylation of DNA as part of the underlying mechanisms. The recent awareness that many human diseases have in fact an epigenetic basis, due to unbalanced diets, has led to a resurgence of interest in how epigenetics might be connected with, or even controlled by, metabolism. The Next-Generation genomic technologies have now unleashed torrents of results exposing a wondrous array of metabolites that are covalently attached to selective sites on histones, DNA and RNA. Metabolites are often cofactors or targets of chromatin-modifying enzymes. Many metabolites themselves can be acetylated or methylated. This indicates that the acetylome and methylome can actually be deep and pervasive networks to ensure the nuclear activities are coordinated with the metabolic status of the cell. The discovery of novel histone marks also raises the question on the types of pathways by which their corresponding metabolites are replenished, how they are corralled to the specific histone residues and how they are recognized. Further, atypical cytosines and uracil have also been found in eukaryotic genomes. Although these new and extensive connections between metabolism and epigenetics have been established mostly in animal models, parallels must exist in plants, inasmuch as many of the basic components of chromatin and its modifying enzymes are conserved. Plants are chemical factories constantly responding to stress. Plants, therefore, should lend themselves readily for identifying new endogenous metabolites that are also modulators of nuclear activities in adapting to stress.
Collapse
Affiliation(s)
- Jeffrey Leung
- Institut Jean-Pierre Bourgin, ERL3559 CNRS, INRAE, Versailles, France
| | - Valérie Gaudin
- Institut Jean-Pierre Bourgin, UMR1318 INRAE-AgroParisTech, Université Paris-Saclay, Versailles, France
| |
Collapse
|
25
|
Jardim-Messeder D, da Franca Silva T, Fonseca JP, Junior JN, Barzilai L, Felix-Cordeiro T, Pereira JC, Rodrigues-Ferreira C, Bastos I, da Silva TC, de Abreu Waldow V, Cassol D, Pereira W, Flausino B, Carniel A, Faria J, Moraes T, Cruz FP, Loh R, Van Montagu M, Loureiro ME, de Souza SR, Mangeon A, Sachetto-Martins G. Identification of genes from the general phenylpropanoid and monolignol-specific metabolism in two sugarcane lignin-contrasting genotypes. Mol Genet Genomics 2020; 295:717-739. [PMID: 32124034 DOI: 10.1007/s00438-020-01653-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/12/2020] [Indexed: 11/29/2022]
Abstract
The phenylpropanoid pathway is an important route of secondary metabolism involved in the synthesis of different phenolic compounds such as phenylpropenes, anthocyanins, stilbenoids, flavonoids, and monolignols. The flux toward monolignol biosynthesis through the phenylpropanoid pathway is controlled by specific genes from at least ten families. Lignin polymer is one of the major components of the plant cell wall and is mainly responsible for recalcitrance to saccharification in ethanol production from lignocellulosic biomass. Here, we identified and characterized sugarcane candidate genes from the general phenylpropanoid and monolignol-specific metabolism through a search of the sugarcane EST databases, phylogenetic analysis, a search for conserved amino acid residues important for enzymatic function, and analysis of expression patterns during culm development in two lignin-contrasting genotypes. Of these genes, 15 were cloned and, when available, their loci were identified using the recently released sugarcane genomes from Saccharum hybrid R570 and Saccharum spontaneum cultivars. Our analysis points out that ShPAL1, ShPAL2, ShC4H4, Sh4CL1, ShHCT1, ShC3H1, ShC3H2, ShCCoAOMT1, ShCOMT1, ShF5H1, ShCCR1, ShCAD2, and ShCAD7 are strong candidates to be bona fide lignin biosynthesis genes. Together, the results provide information about the candidate genes involved in monolignol biosynthesis in sugarcane and may provide useful information for further molecular genetic studies in sugarcane.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiane da Franca Silva
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, São Paulo, Brazil
| | - Jose Pedro Fonseca
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Nicomedes Junior
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro de Pesquisa e Desenvolvimento Leopoldo Américo Miguez de Mello, Gerência de Biotecnologia, CENPES, Petrobras, Rio de Janeiro, Brazil
| | - Lucia Barzilai
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thais Felix-Cordeiro
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joyce Carvalho Pereira
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clara Rodrigues-Ferreira
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabela Bastos
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tereza Cristina da Silva
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinicius de Abreu Waldow
- Centro de Pesquisa e Desenvolvimento Leopoldo Américo Miguez de Mello, Gerência de Biotecnologia, CENPES, Petrobras, Rio de Janeiro, Brazil
| | - Daniela Cassol
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Willian Pereira
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Bruno Flausino
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriano Carniel
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro de Pesquisa e Desenvolvimento Leopoldo Américo Miguez de Mello, Gerência de Biotecnologia, CENPES, Petrobras, Rio de Janeiro, Brazil
| | - Jessica Faria
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thamirys Moraes
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda P Cruz
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberta Loh
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marc Van Montagu
- Institute of Plant Biotechnology Outreach, Gent University, Technologiepark 3, Zwijnaarde, 9052, Gent, Belgium
| | - Marcelo Ehlers Loureiro
- Laboratório de Fisiologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Sonia Regina de Souza
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Amanda Mangeon
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Gilberto Sachetto-Martins
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
26
|
Exploring the Phytochemical Landscape of the Early-Diverging Flowering Plant Amborella trichopoda Baill. Molecules 2019; 24:molecules24213814. [PMID: 31652707 PMCID: PMC6864642 DOI: 10.3390/molecules24213814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/10/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
Although the evolutionary significance of the early-diverging flowering plant Amborella (Amborella trichopoda Baill.) is widely recognized, its metabolic landscape, particularly specialized metabolites, is currently underexplored. In this work, we analyzed the metabolomes of Amborella tissues using liquid chromatography high-resolution electrospray ionization mass spectrometry (LC-HR-ESI-MS). By matching the mass spectra of Amborella metabolites with those of authentic phytochemical standards in the publicly accessible libraries, 63, 39, and 21 compounds were tentatively identified in leaves, stems, and roots, respectively. Free amino acids, organic acids, simple sugars, cofactors, as well as abundant glycosylated and/or methylated phenolic specialized metabolites were observed in Amborella leaves. Diverse metabolites were also detected in stems and roots, including those that were not identified in leaves. To understand the biosynthesis of specialized metabolites with glycosyl and methyl modifications, families of small molecule UDP-dependent glycosyltransferases (UGTs) and O-methyltransferases (OMTs) were identified in the Amborella genome and the InterPro database based on conserved functional domains. Of the 17 phylogenetic groups of plant UGTs (A–Q) defined to date, Amborella UGTs are absent from groups B, N, and P, but they are highly abundant in group L. Among the 25 Amborella OMTs, 7 cluster with caffeoyl-coenzyme A (CCoA) OMTs involved in lignin and phenolic metabolism, whereas 18 form a clade with plant OMTs that methylate hydroxycinnamic acids, flavonoids, or alkaloids. Overall, this first report of metabolomes and candidate metabolic genes in Amborella provides a starting point to a better understanding of specialized metabolites and biosynthetic enzymes in this basal lineage of flowering plants.
Collapse
|
27
|
Lee S, Kang J, Kim J. Structural and biochemical characterization of Rv0187, an O-methyltransferase from Mycobacterium tuberculosis. Sci Rep 2019; 9:8059. [PMID: 31147608 PMCID: PMC6543040 DOI: 10.1038/s41598-019-44592-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/20/2019] [Indexed: 01/05/2023] Open
Abstract
Catechol O-methyltransferase (COMT) is widely distributed in nature and installs a methyl group onto one of the vicinal hydroxyl groups of a catechol derivative. Enzymes belonging to this family require two cofactors for methyl transfer: S-adenosyl-l-methionine as a methyl donor and a divalent metal cation for regiospecific binding and activation of a substrate. We have determined two high-resolution crystal structures of Rv0187, one of three COMT paralogs from Mycobacterium tuberculosis, in the presence and absence of cofactors. The cofactor-bound structure clearly locates strontium ions and S-adenosyl-l-homocysteine in the active site, and together with the complementary structure of the ligand-free form, it suggests conformational dynamics induced by the binding of cofactors. Examination of in vitro activities revealed promiscuous substrate specificity and relaxed regioselectivity against various catechol-like compounds. Unexpectedly, mutation of the proposed catalytic lysine residue did not abolish activity but altered the overall landscape of regiospecific methylation.
Collapse
Affiliation(s)
- Sanghyun Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jihoon Kang
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jungwook Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
28
|
Zhang XS, Ni R, Wang PY, Zhu TT, Sun CJ, Lou HX, Cheng AX. Isolation and functional characterization of two Caffeoyl Coenzyme A 3-O-methyltransferases from the fern species Polypodiodes amoena. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 136:169-177. [PMID: 30685696 DOI: 10.1016/j.plaphy.2019.01.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Caffeoyl Coenzyme A 3-O-methyltransferases (CCoAOMTs) catalyze the transfer of a methyl group from S-adenosylmethionine (SAM) to a hydroxyl moiety. CCoAOMTs are important for the synthesis of lignin, which provides much of the rigidity required by tracheophytes to enable the long distance transport of water. So far, no CCoAOMTs has been characterized from the ancient tracheophytes ferns. Here, two genes, each encoding a CCoAOMT (and hence denoted PaCCoAOMT1 and PaCCoAOMT2), were isolated from the fern species Polypodiodes amoena. Sequence comparisons confirmed that the product of each gene resembled enzymes known to be associated with lignin synthesis in higher plants. When either of the genes was heterologously expressed in E. coli, the resulting recombinant protein was able to methylate caffeoyl CoA, along with a number of phenylpropanoids, flavones and flavonols containing two vicinal hydroxyl groups. Their in vitro conversion rate when presented with either caffeoyl CoA or certain flavonoids as substrate was comparable with that of the Medicago sativa MsCCoAOMT. Their constitutive expression in Arabidopsis thaliana boosted the plants' lignin content, but did not affect that of methylated flavonols, indicating that both PaCCoAOMTs contributed to lignin synthesis and that neither was able to methylate flavonols in planta. The transient expression of a PaCCoAOMT-GFP fusion gene in tobacco demonstrated that in planta, PaCCoAOMTs are likely directed to the cytoplasm.
Collapse
Affiliation(s)
- Xiao-Shuang Zhang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Rong Ni
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Piao-Yi Wang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Ting-Ting Zhu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Chun-Jing Sun
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| |
Collapse
|
29
|
Antioxidant Activity and Phytochemical Characterization of Senecio clivicolus Wedd. Molecules 2018; 23:molecules23102497. [PMID: 30274255 PMCID: PMC6222922 DOI: 10.3390/molecules23102497] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 11/16/2022] Open
Abstract
Antioxidant phytochemicals play a key role in oxidative stress control and in the prevention of related disorders, such as premature aging, degenerative diseases, diabetes, and cancer. The aim of this study was to investigate the potential antioxidant activity and the phytochemical profile of Senecio clivicolus Wedd., a perennial shrub, belonging to the Asteraceae family. Despite the wide interest of this family, this specie has not been investigated yet. S. clivicolus aerial parts were extracted with 96% ethanol. Then, the ethanol extract was fractionated by liquid/liquid extraction using an increasing solvents polarity. Total polyphenol and terpenoid contents were measured. Moreover, the antioxidant activity was evaluated by six different complementary in vitro assays. The Relative Antioxidant Capacity Index (RACI) was used to compare data obtained by different tests. The sample showing the highest RACI was subjected to characterization and quantitation of its phenolic composition using LC-MS/MS analysis. The ethyl acetate fraction, investigated by LC-MS/MS analysis, showed 30 compounds, most of them are chlorogenic acid and flavonoid derivatives. To the best of our knowledge, this is the first report about the evaluation of antioxidant activity and phytochemical profile of S. clivicolus, underlying the importance of this species as a source of health-promoting phytochemicals.
Collapse
|
30
|
Sun B, Wang P, Wang R, Li Y, Xu S. Molecular Cloning and Characterization of a meta/ para- O-Methyltransferase from Lycoris aurea. Int J Mol Sci 2018; 19:ijms19071911. [PMID: 29966257 PMCID: PMC6073595 DOI: 10.3390/ijms19071911] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/05/2018] [Accepted: 06/28/2018] [Indexed: 11/16/2022] Open
Abstract
O-methyltransferases (OMTs) have been demonstrated to play key roles in the biosynthesis of plant secondary metabolites, such as alkaloids, isoprenoids, and phenolic compounds. Here, we isolated and characterized an OMT gene from Lycoris aurea (namely LaOMT1), based on our previous transcriptome sequencing data. Sequence alignment and phylogenetic analysis showed that LaOMT1 belongs to the class I OMT, and shares high identity to other known plant OMTs. Also, LaOMT1 is highly identical in its amino acid sequence to NpN4OMT, a norbelladine 4′-OMT from Narcissus sp. aff. pseudonarcissus involved in the biosynthesis of Amaryllidaceae alkaloids. Biochemical analysis indicated that the recombinant LaOMT1 displayed both para and metaO-methylation activities with caffeic acid and 3,4-dihydroxybenzaldehyde, and showed a strong preference for the meta position. Besides, LaOMT1 also catalyzes the O-methylation of norbelladine to form 4′-O-methylnorbelladine, which has been demonstrated to be a universal precursor of all the primary Amaryllidaceae alkaloid skeletons. The results from quantitative real-time PCR assay indicated that LaOMT1 was ubiquitously expressed in different tissues of L. aurea, and its highest expression level was observed in the ovary. Meanwhile, the largest concentration of lycorine and galanthamine were found in the ovary, whereas the highest level of narciclasine was observed in the bulb. In addition, sodium chloride (NaCl), cold, polyethylene glycol (PEG), sodium nitroprusside (SNP), and methyl jasmonate (MeJA) treatments could significantly increase LaOMT1 transcripts, while abscisic acid (ABA) treatment dramatically decreased the expression level of LaOMT1. Subcellular localization showed that LaOMT1 is mainly localized in cytoplasm and endosome. Our results in this study indicate that LaOMT1 may play a multifunctional role, and lay the foundation for Amaryllidaceae alkaloid biosynthesis in L. aurea.
Collapse
Affiliation(s)
- Bin Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Peng Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Ren Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Gerplasm, Nanjing 210014, China.
| | - Yikui Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Gerplasm, Nanjing 210014, China.
| | - Sheng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Gerplasm, Nanjing 210014, China.
| |
Collapse
|
31
|
Rakoczy M, Femiak I, Alejska M, Figlerowicz M, Podkowinski J. Sorghum CCoAOMT and CCoAOMT-like gene evolution, structure, expression and the role of conserved amino acids in protein activity. Mol Genet Genomics 2018; 293:1077-1089. [PMID: 29721721 PMCID: PMC6153501 DOI: 10.1007/s00438-018-1441-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/24/2018] [Indexed: 11/28/2022]
Abstract
Sorghum is a crop plant that is grown for seeds, sucrose, forage and biofuel production. In all these applications, lignin is a superfluous component that decreases the efficiency of technological processes. Caffeoyl-coenzyme A O-methyltransferase (CCoAOMT) is an enzyme involved in monolignol synthesis that affects the efficiency of lignification and lignin composition. The sorghum genome harbors one CCoAOMT gene and six closely related CCoAOMT-like genes. The structures of four sorghum CCoAOMT-like enzymes suggest that these proteins might methylate caffeoyl coenzyme A and contribute to monolignol synthesis. In this study, two sorghum genes, CCoAOMT and one CCoAOMT-like, were found to be highly expressed in leaves, stems and immature seeds. The promoters of these genes possess clusters of transcription factor-binding sites specific for lignification, and this suggests that they are important for lignification. Phylogenetic analysis revealed that one sorghum CCoAOMT-like enzyme is closely related to ancestral cyanobacterial CCoAOMT-like proteins. The remaining CCoAOMT-like enzymes, including the one highly expressed in the leaves and stem, are closely related to CCoAOMT. Genes from these two groups possess different, evolutionarily conserved gene structures. The structure of the sorghum CCoAOMT-like protein from the ancestral clade was modeled and differences between enzymes from the two clades were analyzed. These results facilitate a better understanding of the evolution of genes involved in lignification, and provide valuable data for sorghum improvement through traditional breeding or molecular genetic techniques. The findings suggest that CCoAOMT-like genes might be recruited in lignification and raise questions of the frequency of such functional shifts.
Collapse
Affiliation(s)
- M Rakoczy
- Institute of Bioorganic Chemistry PAS, ul. Noskowskiego 12/14, 61-704, Poznan, Poland
| | - I Femiak
- Institute of Bioorganic Chemistry PAS, ul. Noskowskiego 12/14, 61-704, Poznan, Poland
| | - M Alejska
- Institute of Bioorganic Chemistry PAS, ul. Noskowskiego 12/14, 61-704, Poznan, Poland
| | - M Figlerowicz
- Institute of Bioorganic Chemistry PAS, ul. Noskowskiego 12/14, 61-704, Poznan, Poland
| | - J Podkowinski
- Institute of Bioorganic Chemistry PAS, ul. Noskowskiego 12/14, 61-704, Poznan, Poland.
| |
Collapse
|
32
|
Guo X, Crnovcic I, Chang CY, Luo J, Lohman JR, Papinski M, Bechthold A, Horsman GP, Shen B. PokMT1 from the Polyketomycin Biosynthetic Machinery of Streptomyces diastatochromogenes Tü6028 Belongs to the Emerging Family of C-Methyltransferases That Act on CoA-Activated Aromatic Substrates. Biochemistry 2018; 57:1003-1011. [PMID: 29341603 DOI: 10.1021/acs.biochem.7b01219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent biochemical characterizations of the MdpB2 CoA ligase and MdpB1 C-methyltransferase (C-MT) from the maduropeptin (MDP, 2) biosynthetic machinery revealed unusual pathway logic involving C-methylation occurring on a CoA-activated aromatic substrate. Here we confirmed this pathway logic for the biosynthesis of polyketomycin (POK, 3). Biochemical characterization unambiguously established that PokM3 and PokMT1 catalyze the sequential conversion of 6-methylsalicylic acid (6-MSA, 4) to form 3,6-dimethylsalicylyl-CoA (3,6-DMSA-CoA, 6), which serves as the direct precursor for the 3,6-dimethylsalicylic acid (3,6-DMSA) moiety in the biosynthesis of 3. PokMT1 catalyzes the C-methylation of 6-methylsalicylyl-CoA (6-MSA-CoA, 5) with a kcat of 1.9 min-1 and a Km of 2.2 ± 0.1 μM, representing the most proficient C-MT characterized to date. Bioinformatics analysis of MTs from natural product biosynthetic machineries demonstrated that PokMT1 and MdpB1 belong to a phylogenetic clade of C-MTs that preferably act on aromatic acids. Significantly, this clade includes the structurally characterized enzyme SibL, which catalyzes C-methylation of 3-hydroxykynurenine in its free acid form, using two conserved tyrosine residues for catalysis. A homology model and site-directed mutagenesis suggested that PokMT1 also employs this unusual arrangement of tyrosine residues to coordinate C-methylation but revealed a large cavity capable of accommodating the CoA moiety tethered to 5. CoA activation of the aromatic acid substrate may represent a general strategy that could be exploited to improve catalytic efficiency. This study sets the stage to further investigate and exploit the catalytic utility of this emerging family of C-MTs in biocatalysis and synthetic biology.
Collapse
Affiliation(s)
- Xun Guo
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Ivana Crnovcic
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Chin-Yuan Chang
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Jun Luo
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Jeremy R Lohman
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Monica Papinski
- Department of Chemistry and Biochemistry, Wilfrid Laurier University , Waterloo, ON N2L 3C5, Canada
| | - Andreas Bechthold
- Institute for Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, University of Freiburg , Stefan-Meier-Strasse 19, 79104 Freiburg, Germany
| | - Geoffrey P Horsman
- Department of Chemistry and Biochemistry, Wilfrid Laurier University , Waterloo, ON N2L 3C5, Canada
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States.,Department of Molecular Medicine, The Scripps Research Institute , Jupiter, Florida 33458, United States.,Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute , Jupiter, Florida 33458, United States
| |
Collapse
|
33
|
Substrate Scope of O-Methyltransferase from Streptomyces peucetius for Biosynthesis of Diverse Natural Products Methoxides. Appl Biochem Biotechnol 2017; 184:1404-1420. [PMID: 29043664 DOI: 10.1007/s12010-017-2603-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022]
Abstract
Methylation is a common post-modification reaction that is observed during the biosynthesis of secondary metabolites produced by plants and microorganisms. Based on the sequence information from Streptomyces peucetius ATCC27952, a putative O-methyltransferase (OMT) gene SpOMT7740 was polymerase chain reaction amplified and cloned into E. coli BL21 (DE3) host to test the substrate promiscuity and conduct functional characterization. In vitro and in vivo reaction assays were carried out over various classes of substrates: flavonoids (flavonol, flavones, and isoflavonoid), chalcones, anthraquinones, anthracyclines, and sterol molecules, and the applications in synthesizing diverse classes of O-methoxy natural products were also illustrated. SpOMT7740 catalyzed the O-methylation reaction to form various natural and non-natural O-methoxides, includes 7-hydroxy-8-O-methoxy flavone, 3-O-methoxy flavone, three mono-, di-, and tri-O-methoxy genistein, mono-O-methoxy phloretin, mono-O-methoxy luteolin, 3-O-methoxy β-sitosterol, and O-methoxy anthraquinones (emodin and aloe emodin) and O-methoxy anthracycline (daunorubicin) exhibiting diverse substrate flexibility. Daunorubicin is a native secondary metabolite of S. peucetius. Among the compounds tested, 7,8-dihydroxyflavone was the best substrate for bioconversion to 7-hydroxy-8-O-methoxy flavone, and it was structurally elucidated. This enzyme showed a flexible catalysis over the given ranges of temperature, pH, and divalent cationic conditions for O-methylation.
Collapse
|
34
|
Yan Q, Shaw N, Qian L, Jiang D. Crystal structure of Rv1220c, a SAM-dependent O-methyltransferase from Mycobacterium tuberculosis. Acta Crystallogr F Struct Biol Commun 2017; 73:315-320. [PMID: 28580918 PMCID: PMC5458387 DOI: 10.1107/s2053230x17006057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 04/21/2017] [Indexed: 11/11/2022] Open
Abstract
Rv1220c from Mycobacterium tuberculosis is annotated as an O-methyltransferase (MtbOMT). Currently, no structural information is available for this protein. Here, the crystal structure of MtbOMT refined to 2.0 Å resolution is described. The structure reveals the presence of a methyltransferase fold and shows clear electron density for one molecule of S-adenosylmethionine (SAM), which was apparently bound by the protein during its production in Escherichia coli. Although the overall structure of MtbOMT resembles the structures of O-methyltransferases from Cornybacterium glutamicum, Coxiella burnetti and Alfa alfa, differences are observed in the residues that make up the active site. Notably, substitution of Asp by His164 seems to abrogate metal binding by MtbOMT. A putative catalytic His-Asp pair located in the vicinity of SAM is absolutely conserved in MtbOMT homologues from all species of Mycobacterium, suggesting a conserved function for this protein.
Collapse
Affiliation(s)
- Qiaoling Yan
- College of Life Science, Nankai University, Weijin Road, Nankai District, Tianjin City 300071, People’s Republic of China
| | - Neil Shaw
- College of Life Science, Nankai University, Weijin Road, Nankai District, Tianjin City 300071, People’s Republic of China
| | - Lanfang Qian
- College of Life Science, Nankai University, Weijin Road, Nankai District, Tianjin City 300071, People’s Republic of China
| | - Dunquan Jiang
- College of Life Science, Nankai University, Weijin Road, Nankai District, Tianjin City 300071, People’s Republic of China
| |
Collapse
|
35
|
Zhang K, Luo Z, Zhang T, Mao M, Fu J. Study on formation of 2,4,6-trichloroanisole by microbial O-methylation of 2,4,6-trichlorophenol in lake water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:228-234. [PMID: 27814539 DOI: 10.1016/j.envpol.2016.10.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/05/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
To explore the mechanisms and influence factors on the production of 2,4,6-trichloroanisole (2,4,6-TCA) in surface waters, the 2,4,6-TCA formation potential (FP) test was conducted by incubating the real lake water with the addition of 2,4,6-trichlorophenol (2,4,6-TCP) precursor. Besides bacteria and fungi, two common cyanobacteria and algae species, i.e., Chlorella vulgaris and Anabaena flos-aquae, have been proved to have strong capabilities to produce 2,4,6-TCA, which may contribute the high 2,4,6-TCA FP (152.2 ng/L) of lake water. The microbial O-methylation of 2,4,6-TCP precursor is catalyzed by chlorophenol O-methyltransferases (CPOMTs), and their characteristics were identified by adding inductive methyl donors or excluding microorganisms via ultrafiltration. The results indicated both S-adenosyl methionine (SAM) dependent and non-SAM dependent CPOMTs played important roles; extracellular CPOMTs also participated in the biosynthesis of 2,4,6-TCA. Moreover, investigating the effects of various environmental factors revealed initial 2,4,6-TCP processor concentration, temperature, pH and some divalent metal cations (i.e., Mn2+, Mg2+ and Zn2+) had obvious effects on the production of 2,4,6-TCA.
Collapse
Affiliation(s)
- Kejia Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zhang Luo
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Tuqiao Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Minmin Mao
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jie Fu
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
36
|
Wiens B, De Luca V. Molecular and biochemical characterization of a benzenoid/phenylpropanoid meta/para-O-methyltransferase from Rauwolfia serpentina roots. PHYTOCHEMISTRY 2016; 132:5-15. [PMID: 27771009 DOI: 10.1016/j.phytochem.2016.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/14/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
The monoterpenoid indole alkaloids, reserpine and rescinnamine contain 3, 4, 5-trimethoxybenzoate or 3, 4, 5-trimethoxycinnamate, respectively, within their structures and they accumulate in different plant organs and particularly within roots of Rauwolfia serpentina. This plant also accumulates acylated sugars substituted with 3, 4, 5-trimethoxybenzoate and 3, 4, 5-trimethoxycinnamate. In the present study, transcriptome and metabolome analyses of R. serpentina roots allowed the identification of 7 candidate O-methytransferase (OMT) genes that might be associated with the formation of 3, 4, 5-trimethoxybenzoate and 3, 4, 5-trimethoxycinnamate and led to the molecular cloning of 4 genes for functional expression and analysis. Two candidate genes were expressed in E. coli and were shown to use different phenolics as methyl acceptors. RsOMT1, a member of the caffeoyl CoA-OMT-like family of genes, converted 3, 5 dimethoxy-4-hydroxycinnamic, caffeic and 3, 4, 5 trihydroxybenzoic acids to trimethoxycinnamic-, ferulic/isoferulic- and 3-methoxy, 4, 5 dihydroxybenzoic or 4-methoxy, 3, 5 dihydroxybenzoic acids, respectively, when supplied with these substrates. RsOMT3, a member of the caffeic acid-OMT-like family of genes, only converted caffeic acid to ferulic acid. Both enzymes showed considerable promiscuity with respect to various flavonoid substrates that they accepted. The para-O-methylation activity of RsOMT1 is quite rare and unusual for plant OMTs. The involvement of RsOMT1 and RsOMT3 in the assembly of trimethoxybenzoic and trimethoxycinnamic acids is discussed.
Collapse
Affiliation(s)
- Brent Wiens
- Department of Biological Sciences, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, Ontario L2S 3A1, Canada.
| | - Vincenzo De Luca
- Department of Biological Sciences, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, Ontario L2S 3A1, Canada.
| |
Collapse
|
37
|
Xu RX, Gao S, Zhao Y, Lou HX, Cheng AX. Functional characterization of a Mg(2+)-dependent O-methyltransferase with coumarin as preferred substrate from the liverwort Plagiochasma appendiculatum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 106:269-277. [PMID: 27213954 DOI: 10.1016/j.plaphy.2016.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 06/05/2023]
Abstract
Coumarins (1,2-benzopyrones), which originate via the phenylpropanoid pathway, are found ubiquitously in plants and make an essential contribution to the health of the plant. Some natural coumarins have been used as human therapeutics. However, the details of their biosynthesis are still largely unknown. Scopoletin is derived from either esculetin or feruloyl CoA according to the plant species involved. Here, a gene encoding a O-methyltransferase (PaOMT2) was isolated from the liverwort species Plagiochasma appendiculatum (Aytoniaceae) through transcriptome sequencing. The purified recombinant enzyme catalyzed the methylation of esculetin, generating scopoletin and isoscopoletin. Kinetic analysis shows that the construct from the second Met in PaOMT2 had a catalytic efficiency for esculetin (Kcat/Km) of about half that of the full length PaOMT2, while the Kms of two enzymes were similar. The catalytic capacities of the studied protein suggest that two routes to scopoletin might co-exist in liverworts in that the enzyme involved in the methylation process participates in both paths, but especially the route from esculetin. The transient expression of a PaOMT2-GFP fusion in tobacco demonstrated that PaOMT2 is directed to the cytoplasm.
Collapse
Affiliation(s)
- Rui-Xue Xu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Shuai Gao
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Yu Zhao
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| |
Collapse
|
38
|
Zhang YY, Xu RX, Gao S, Cheng AX. Enzymatic production of oroxylin A and hispidulin using a liverwort flavone 6-O-methyltransferase. FEBS Lett 2016; 590:2619-28. [PMID: 27432544 DOI: 10.1002/1873-3468.12312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 11/05/2022]
Abstract
Oroxylin A and hispidulin, compounds which are abundant in both Scutellaria and liverwort species, are important lead compounds for the treatment of ischemic cerebrovascular disease. Their enzymatic synthesis requires an O-methyltransferase able to interact with the related flavonoid's 6-OH group, but such an enzyme has yet to be identified in plants. Here, the gene encoding an O-methyltransferase (designated PaF6OMT) was isolated from the liverwort species Plagiochasma appendiculatum. A test of alternative substrates revealed that its strongest preferences were baicalein and scutellarein, which were converted into, respectively, oroxylin A and hispidulin. Allowed a sufficient reaction time, the conversion rate of these two substrates was, respectively, 90% and 100%. PaF6OMT offers an enzymatic route to the synthesis of oroxylin A and hispidulin.
Collapse
Affiliation(s)
- Yu-Ying Zhang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Rui-Xue Xu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shuai Gao
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
39
|
Kilgore MB, Kutchan TM. The Amaryllidaceae alkaloids: biosynthesis and methods for enzyme discovery. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2016; 15:317-337. [PMID: 27340382 PMCID: PMC4914137 DOI: 10.1007/s11101-015-9451-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/08/2015] [Indexed: 05/21/2023]
Abstract
Amaryllidaceae alkaloids are an example of the vast diversity of secondary metabolites with great therapeutic promise. The identification of novel compounds in this group with over 300 known structures continues to be an area of active study. The recent identification of norbelladine 4'-O-methyltransferase (N4OMT), an Amaryllidaceae alkaloid biosynthetic enzyme, and the assembly of transcriptomes for Narcissus sp. aff. pseudonarcissus and Lycoris aurea highlight the potential for discovery of Amaryllidaceae alkaloid biosynthetic genes with new technologies. Recent technical advances of interest include those in enzymology, next generation sequencing, genetic modification, nuclear magnetic resonance spectroscopy (NMR), and mass spectrometry (MS).
Collapse
Affiliation(s)
- Matthew B. Kilgore
- Donald Danforth Plant Science Center, 63132 St. Louis, Missouri, 975 N. Warson Rd., St. Louis, MO
| | - Toni M. Kutchan
- Donald Danforth Plant Science Center, 63132 St. Louis, Missouri, 975 N. Warson Rd., St. Louis, MO
- To whom correspondence should be addressed: Toni M. Kutchan, , Tel.: (314) 587-1473, Fax: (314) 587-1573
| |
Collapse
|
40
|
Giordano D, Provenzano S, Ferrandino A, Vitali M, Pagliarani C, Roman F, Cardinale F, Castellarin SD, Schubert A. Characterization of a multifunctional caffeoyl-CoA O-methyltransferase activated in grape berries upon drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 101:23-32. [PMID: 26851572 DOI: 10.1016/j.plaphy.2016.01.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 05/25/2023]
Abstract
Drought stress affects anthocyanin accumulation and modification in vegetative and reproductive plant tissues. Anthocyanins are the most abundant flavonoids in grape (Vitis vinifera L.) coloured berry genotypes and are essential markers of grape winemaking quality. They are mostly mono- and di-methylated, such modifications increase their stability and improve berry quality for winemaking. Anthocyanin methylation in grape berries is induced by drought stress. A few caffeoyl-CoA O-methyltransferases (CCoAOMTs) active on anthocyanins have been described in grape. However, no drought-activated O-methyltransferases have been described in grape berries yet. In this study, we characterized VvCCoAOMT, a grapevine gene known to induce methylation of CoA esters in cultured grape cells. Transcript accumulation of VvCCoAOMT was detected in berry skins, and increased during berry ripening on the plant, and in cultured berries treated with ABA, concomitantly with accumulation of methylated anthocyanins, suggesting that anthocyanins may be substrates of this enzyme. Contrary as previously observed in cell cultures, biotic stress (Botrytis cinerea inoculation) did not affect VvCCoAOMT gene expression in leaves or berries, while drought stress increased VvCCoAOMT transcript in berries. The recombinant VvCCoAOMT protein showed in vitro methylating activity on cyanidin 3-O-glucoside. We conclude that VvCCoAOMT is a multifunctional O-methyltransferase that may contribute to anthocyanin methylation activity in grape berries, in particular under drought stress conditions.
Collapse
Affiliation(s)
- Debora Giordano
- University of Turin, Dept. Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Sofia Provenzano
- University of Turin, Dept. Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Alessandra Ferrandino
- University of Turin, Dept. Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Marco Vitali
- University of Turin, Dept. Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Chiara Pagliarani
- University of Turin, Dept. Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Federica Roman
- University of Turin, Dept. Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Francesca Cardinale
- University of Turin, Dept. Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Simone D Castellarin
- The University of British Columbia Wine Research Centre, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Andrea Schubert
- University of Turin, Dept. Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy.
| |
Collapse
|
41
|
Koirala N, Thuan NH, Ghimire GP, Thang DV, Sohng JK. Methylation of flavonoids: Chemical structures, bioactivities, progress and perspectives for biotechnological production. Enzyme Microb Technol 2016; 86:103-16. [PMID: 26992799 DOI: 10.1016/j.enzmictec.2016.02.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/02/2016] [Accepted: 02/09/2016] [Indexed: 12/16/2022]
Abstract
Among the natural products, flavonoids have been particularly attractive, highly studied and become one of the most important promising agent to treat cancer, oxidant stress, pathogenic bacteria, inflammations, cardio-vascular dysfunctions, etc. Despite many promising roles of flavonoids, expectations have not been fulfilled when studies were extended to the in vivo condition, particularly in humans. Instability and very low oral bioavailability of dietary flavonoids are the reasons behind this. Researches have demonstrated that the methylation of these flavonoids could increase their promise as pharmaceutical agents leading to novel applications. Methylation of the flavonoids via theirs free hydroxyl groups or C atom dramatically increases their metabolic stability and enhances the membrane transport, leading to facilitated absorption and highly increased oral bioavailability. In this paper, we concentrated on analysis of flavonoid methoxides including O- and C-methoxide derivatives in aspect of structure, bioactivities and description of almost all up-to-date O- and C-methyltransferases' enzymatic characteristics. Furthermore, modern biological approaches for synthesis and production of flavonoid methoxides using metabolic engineering and synthetic biology have been focused and updated up to 2015. This review will give a handful information regarding the methylation of flavonoids, methyltransferases and biotechnological synthesis of the same.
Collapse
Affiliation(s)
- Niranjan Koirala
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, 100, Kalsan-ri, Tangjeonmyun, Asansi, Chungnam 336-708, Republic of Korea.
| | - Nguyen Huy Thuan
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, K7/25 Quang Trung Street, Haichau District, Danang City, Viet Nam.
| | - Gopal Prasad Ghimire
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, 100, Kalsan-ri, Tangjeonmyun, Asansi, Chungnam 336-708, Republic of Korea.
| | - Duong Van Thang
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, 100, Kalsan-ri, Tangjeonmyun, Asansi, Chungnam 336-708, Republic of Korea.
| | - Jae Kyung Sohng
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, 100, Kalsan-ri, Tangjeonmyun, Asansi, Chungnam 336-708, Republic of Korea.
| |
Collapse
|
42
|
Du H, Wu J, Ji KX, Zeng QY, Bhuiya MW, Su S, Shu QY, Ren HX, Liu ZA, Wang LS. Methylation mediated by an anthocyanin, O-methyltransferase, is involved in purple flower coloration in Paeonia. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6563-77. [PMID: 26208646 PMCID: PMC4623676 DOI: 10.1093/jxb/erv365] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Anthocyanins are major pigments in plants. Methylation plays a role in the diversity and stability of anthocyanins. However, the contribution of anthocyanin methylation to flower coloration is still unclear. We identified two homologous anthocyanin O-methyltransferase (AOMT) genes from purple-flowered (PsAOMT) and red-flowered (PtAOMT) Paeonia plants, and we performed functional analyses of the two genes in vitro and in vivo. The critical amino acids for AOMT catalytic activity were studied by site-directed mutagenesis. We showed that the recombinant proteins, PsAOMT and PtAOMT, had identical substrate preferences towards anthocyanins. The methylation activity of PsAOMT was 60 times higher than that of PtAOMT in vitro. Interestingly, this vast difference in catalytic activity appeared to result from a single amino acid residue substitution at position 87 (arginine to leucine). There were significant differences between the 35S::PsAOMT transgenic tobacco and control flowers in relation to their chromatic parameters, which further confirmed the function of PsAOMT in vivo. The expression levels of the two homologous AOMT genes were consistent with anthocyanin accumulation in petals. We conclude that AOMTs are responsible for the methylation of cyanidin glycosides in Paeonia plants and play an important role in purple coloration in Paeonia spp.
Collapse
Affiliation(s)
- Hui Du
- Key Laboratory of Plant Resources/ Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Jie Wu
- Key Laboratory of Plant Resources/ Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kui-Xian Ji
- Key Laboratory of Plant Resources/ Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Qing-Yin Zeng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | | | - Shang Su
- Key Laboratory of Plant Resources/ Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qing-Yan Shu
- Key Laboratory of Plant Resources/ Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Hong-Xu Ren
- Key Laboratory of Plant Resources/ Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Zheng-An Liu
- Key Laboratory of Plant Resources/ Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Liang-Sheng Wang
- Key Laboratory of Plant Resources/ Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| |
Collapse
|
43
|
Xu RX, Zhao Y, Gao S, Zhang YY, Li DD, Lou HX, Cheng AX. Functional characterization of a plastidal cation-dependent O-methyltransferase from the liverwort Plagiochasma appendiculatum. PHYTOCHEMISTRY 2015; 118:33-41. [PMID: 26277769 DOI: 10.1016/j.phytochem.2015.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/26/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
Caffeoyl CoA O-methyltransferases (CCoAOMTs), known to be involved in phenylpropanoid metabolism and lignin synthesis, have been characterized from several higher plant species, which also harbor CCoAOMT-like enzymes responsible for methylation of a variety of flavonoids, anthocyanins, coumarins and phenylpropanoids. Here, a gene encoding a CCoAOMT (PaOMT1) was isolated from a sequenced cDNA library of the liverwort species Plagiochasma appendiculatum, a species belonging to the Family Aytoniaceae. The full-length cDNA sequence of PaOMT1 contains 909 bp, and is predicted to encode a protein with 302 amino acids. The gene products were 40-50% identical to CCoAOMT sequences of other plants. Experiments based on recombinant PaOMT1 showed that the enzyme was able to methylate phenylpropanoids, flavonoids and coumarins, with a preference for the flavonoid quercetin (19). Although the substrate selectivity and biochemical feature of PaOMT1 is similar to CCoAOMT-like enzymes, the sequence alignment results indicated PaOMT1 is closer to true CCoAOMT enzymes. A phylogenetic analysis indicated that PaOMT1 is intermediate between true CCoAOMTs and CCoAOMT-like enzymes. The transient expression of a PaOMT1-GFP fusion in tobacco demonstrated that PaOMT1 is directed to the plastids. PaOMT1 may represent an ancestral form of higher plant true CCoAOMT and CCoAOMT-like enzymes. This is the first time an O-methyltransferase was characterized in liverworts.
Collapse
Affiliation(s)
- Rui-Xue Xu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Yu Zhao
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Shuai Gao
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Yu-Ying Zhang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Dan-Dan Li
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
44
|
Song Y, Desta KT, Kim GS, Lee SJ, Lee WS, Kim YH, Jin JS, Abd El-Aty AM, Shin HC, Shim JH, Shin SC. Polyphenolic profile and antioxidant effects of various parts of Artemisia annua L. Biomed Chromatogr 2015; 30:588-95. [PMID: 26285146 DOI: 10.1002/bmc.3587] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/06/2015] [Accepted: 08/13/2015] [Indexed: 11/07/2022]
Abstract
An annual Korean weed, Artemisia annua L., has been used as a folk medicine for the treatment of a number of diseases. Remarkably, among the 32 polyphenols characterized in various parts of plant tissue, including flowers, leafs, stems and roots, 10 compounds were detected for the first time using liquid chromatography-tandem mass spectrometry (LC/MS/MS). The quantification method was validated using structurally related external standards with determination coefficients (R(2) ) ≥0.9995. The limits of detection and quantitation were 0.068-3.932 and 0.226-13.108 mg/L, respectively. The recoveries estimated at 50 and 100 mg/L ranged between 60.6-92.2 and 61.3-111%, respectively, with relative standard deviations <12%. The roots contained the largest concentration of identified components, while the flowers contained the least. The antioxidant capacity evaluated in terms of 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation-scavenging activities and reducing power was highest in the roots and lowest in the flowers. The findings are well correlated and suggest that the antioxidant capacities principally depend upon the polyphenol concentrations in each part of the plant.
Collapse
Affiliation(s)
- Yi Song
- Department of Chemistry and Research Institute of Life Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Kebede Taye Desta
- Department of Chemistry and Research Institute of Life Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Gon-Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Soo Jung Lee
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Won Sup Lee
- Department of Internal Medicine, Institute of Health Sciences and Gyeongnam Regional Cancer Center, Gyeongsang National University, Jinju, 660-702, Republic of Korea
| | - Yun-Hi Kim
- Department of Chemistry and Research Institute of Life Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Jong Sung Jin
- Division of High Technology Materials Research, Busan Center, Korea Basic Science Institute (KBSI), Busan, 618-230, Republic of Korea
| | - A M Abd El-Aty
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Kwangjin-gu, Seoul, 143-701, Republic of Korea.,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Ho-Chul Shin
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Kwangjin-gu, Seoul, 143-701, Republic of Korea
| | - Jae-Han Shim
- Biotechnology Research Institute, College of Agriculture and Life Science, Chonnam National University, Yongbong-ro 77, Buk-gu, 500-757, Gwangju, Republic of Korea
| | - Sung Chul Shin
- Department of Chemistry and Research Institute of Life Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| |
Collapse
|
45
|
Ibarra-Laclette E, Zamudio-Hernández F, Pérez-Torres CA, Albert VA, Ramírez-Chávez E, Molina-Torres J, Fernández-Cortes A, Calderón-Vázquez C, Olivares-Romero JL, Herrera-Estrella A, Herrera-Estrella L. De novo sequencing and analysis of Lophophora williamsii transcriptome, and searching for putative genes involved in mescaline biosynthesis. BMC Genomics 2015; 16:657. [PMID: 26330142 PMCID: PMC4557841 DOI: 10.1186/s12864-015-1821-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 08/07/2015] [Indexed: 12/04/2022] Open
Abstract
Background Lophophora williamsii (commonly named peyote) is a small, spineless cactus with psychoactive alkaloids, particularly mescaline. Peyote utilizes crassulacean acid metabolism (CAM), an alternative form of photosynthesis that exists in succulents such as cacti and other desert plants. Therefore, its transcriptome can be considered an important resource for future research focused on understanding how these plants make more efficient use of water in marginal environments and also for research focused on better understanding of the overall mechanisms leading to production of plant natural products and secondary metabolites. Results In this study, two cDNA libraries were generated from L. williamsii. These libraries, representing buttons (tops of stems) and roots were sequenced using different sequencing platforms (GS-FLX, GS-Junior and PGM, respectively). A total of 5,541,550 raw reads were generated, which were assembled into 63,704 unigenes with an average length of 564.04 bp. A total of 25,149 unigenes (62.19 %) was annotated using public databases. 681 unigenes were found to be differentially expressed when comparing the two libraries, where 400 were preferentially expressed in buttons and 281 in roots. Some of the major alkaloids, including mescaline, were identified by GC-MS and relevant metabolic pathways were reconstructed using the Kyoto encyclopedia of genes and genomes database (KEGG). Subsequently, the expression patterns of preferentially expressed genes putatively involved in mescaline production were examined and validated by qRT-PCR. Conclusions High throughput transcriptome sequencing (RNA-seq) analysis allowed us to efficiently identify candidate genes involved in mescaline biosynthetic pathway in L. williamsii; these included tyrosine/DOPA decarboxylase, hydroxylases, and O-methyltransferases. This study sets the theoretical foundation for bioassay design directed at confirming the participation of these genes in mescaline production. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1821-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Enrique Ibarra-Laclette
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, México. .,Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., 91070, Xalapa, Veracruz, México.
| | - Flor Zamudio-Hernández
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, México.
| | - Claudia Anahí Pérez-Torres
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, México. .,Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., 91070, Xalapa, Veracruz, México. .,Investigador Cátedra CONACyT, Instituto de Ecología A.C., 91070, Xalapa, Veracruz, México.
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, 14260, USA.
| | - Enrique Ramírez-Chávez
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, 36821, Irapuato, Guanajuato, México.
| | - Jorge Molina-Torres
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, 36821, Irapuato, Guanajuato, México.
| | - Araceli Fernández-Cortes
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, México.
| | - Carlos Calderón-Vázquez
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Instituto Politécnico Nacional, 81000, Guasave, Sinaloa, México.
| | | | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, México.
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, México.
| |
Collapse
|
46
|
Ma QH, Luo HR. Biochemical characterization of caffeoyl coenzyme A 3-O-methyltransferase from wheat. PLANTA 2015; 242:113-22. [PMID: 25854602 DOI: 10.1007/s00425-015-2295-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/30/2015] [Indexed: 05/09/2023]
Abstract
TaCCoAOMT1 is located in wheat chromosome 7A and highly expressed in stem and root. It is important for lignin biosynthesis, and associated with stem maturity but not lodging resistance. Caffeoyl coenzyme A 3-O-methyltransferases (CCoAOMTs) are one important class of enzymes to carry out the transfer of the methyl group from S-adenosylmethionine to the hydroxyl group, and play important roles in lignin and flavonoids biosynthesis. In the present study, sequences for CCoAOMT from the wheat genome were analyzed. One wheat CCoAOMT that belonged to bona fide subclade involved in lignin biosynthesis, namely TaCCoAOMT1, was obtained by the prokaryotic expression in E. coli. The three-dimensional structure prediction showed a highly similar structure of TaCCoAOMT1 with MsCCoAOMT. Recombinant TaCCoAOMT1 protein could only use caffeoyl CoA and 5-hydroxyferuloyl CoA as effective substrates and caffeoyl CoA as the best substrate. TaCCoAOMT1 had a narrow optimal pH and thermal stability. The TaCCoAOMT1 gene was highly expressed in wheat stem and root tissues, paralleled CCoAOMT enzyme activity. TaCCoAOMT1 mRNA abundance and enzyme activity increased linearly with stem maturity, but showed little difference between wheat lodging-resistant (H4546) and lodging-sensitive (C6001) cultivars in elongation, heading and milky stages. These data suggest that TaCCoAOMT1 is an important CCoAOMT for lignin biosynthesis that is critical for stem development, but not directly associated with lodging-resistant trait in wheat.
Collapse
Affiliation(s)
- Qing-Hu Ma
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China,
| | | |
Collapse
|
47
|
Brandt W, Manke K, Vogt T. A catalytic triad--Lys-Asn-Asp--Is essential for the catalysis of the methyl transfer in plant cation-dependent O-methyltransferases. PHYTOCHEMISTRY 2015; 113:130-139. [PMID: 25596806 DOI: 10.1016/j.phytochem.2014.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 12/10/2014] [Accepted: 12/16/2014] [Indexed: 06/04/2023]
Abstract
Crystal structure data of cation-dependent catechol O-methyltransferases (COMTs) from mammals and related caffeoyl coenzyme A OMTs (CCoAOMTs) from plants have suggested operative molecular mechanisms. These include bivalent cations that facilitate deprotonation of vicinal aromatic dihydroxy systems and illustrate a conserved arrangement of hydroxyl and carboxyl ligands consistent with the requirements of a metal-activated catalytic mechanism. The general concept of metal-dependent deprotonation via a complexed aspartate is only one part of a more pronounced proton relay, as shown by semiempirical and DFT quantum mechanical calculations and experimental validations. A previously undetected catalytic triad, consisting of Lys157-Asn181-Asp228 residues is required for complete methyl transfer in case of a cation-dependent phenylpropanoid and flavonoid OMT, as described in this report. This triad appears essential for efficient methyl transfer to catechol-like hydroxyl group in phenolics. The observation is consistent with a catalytic lysine in the case of mammalian COMTs, but jettisons existing assumptions on the initial abstraction of the meta-hydroxyl proton to the metal stabilizing Asp154 (PFOMT) or comparable Asp-carboxyl groups in type of cation-dependent enzymes in plants. The triad is conserved among all characterized plant CCoAOMT-like enzymes, which are required not only for methylation of soluble phenylpropanoids like coumarins or monolignol monomers, but is also present in the similar microbial and mammalian cation-dependent enzymes which methylate a comparable set of substrates.
Collapse
Affiliation(s)
- Wolfgang Brandt
- Leibniz Institute of Plant Biochemistry, Dept. Bioorganic Chemistry, Weinberg 3, D-06120 Halle(Saale), Germany.
| | - Kerstin Manke
- Leibniz Institute of Plant Biochemistry, Dept. Cell and Metabolic Biology, Weinberg 3, D-06120 Halle(Saale), Germany
| | - Thomas Vogt
- Leibniz Institute of Plant Biochemistry, Dept. Cell and Metabolic Biology, Weinberg 3, D-06120 Halle(Saale), Germany
| |
Collapse
|
48
|
Kosma DK, Murmu J, Razeq FM, Santos P, Bourgault R, Molina I, Rowland O. AtMYB41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:216-29. [PMID: 25060192 PMCID: PMC4321041 DOI: 10.1111/tpj.12624] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 05/18/2023]
Abstract
Suberin is a lipid and phenolic cell wall heteropolymer found in the roots and other organs of all vascular plants. Suberin plays a critical role in plant water relations and in protecting plants from biotic and abiotic stresses. Here we describe a transcription factor, AtMYB41 (At4g28110), that can activate the steps necessary for aliphatic suberin synthesis and deposition of cell wall-associated suberin-like lamellae in both Arabidopsis thaliana and Nicotiana benthamiana. Overexpression of AtMYB41 increased the abundance of suberin biosynthetic gene transcripts by orders of magnitude and resulted in the accumulation of up to 22 times more suberin-type than cutin-type aliphatic monomers in leaves. Overexpression of AtMYB41 also resulted in elevated amounts of monolignols in leaves and an increase in the accumulation of phenylpropanoid and lignin biosynthetic gene transcripts. Surprisingly, ultrastructural data indicated that overexpression led to the formation of suberin-like lamellae in both epidermal and mesophyll cells of leaves. We further implicate AtMYB41 in the production of aliphatic suberin under abiotic stress conditions. These results provide insight into the molecular-genetic mechanisms of the biosynthesis and deposition of a ubiquitous cell wall-associated plant structure and will serve as a basis for discovering the transcriptional network behind one of the most abundant lipid-based polymers in nature.
Collapse
Affiliation(s)
- Dylan K Kosma
- Department of Plant Biology, Michigan State UniversityEast Lansing, MI, 48824, USA
| | - Jhadeswar Murmu
- Department of Biology and Institute of Biochemistry, Carleton UniversityOttawa, ON, K1S 5B6, Canada
| | - Fakhria M Razeq
- Department of Biology and Institute of Biochemistry, Carleton UniversityOttawa, ON, K1S 5B6, Canada
| | - Patricia Santos
- Department of Plant, Soil and Microbial Sciences, Michigan State UniversityEast Lansing, MI, 48824, USA
| | - Richard Bourgault
- Department of Biology, Algoma UniversitySault Ste Marie, ON, P6A 2G4, Canada
| | - Isabel Molina
- Department of Biology, Algoma UniversitySault Ste Marie, ON, P6A 2G4, Canada
| | - Owen Rowland
- Department of Biology and Institute of Biochemistry, Carleton UniversityOttawa, ON, K1S 5B6, Canada
| |
Collapse
|
49
|
Caffeic acid O-methyltransferase from Leucaena leucocephala: Cloning, expression, characterization and molecular docking analyses. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.04.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Cloning and characterization of a norbelladine 4'-O-methyltransferase involved in the biosynthesis of the Alzheimer's drug galanthamine in Narcissus sp. aff. pseudonarcissus. PLoS One 2014; 9:e103223. [PMID: 25061748 PMCID: PMC4111509 DOI: 10.1371/journal.pone.0103223] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/25/2014] [Indexed: 01/13/2023] Open
Abstract
Galanthamine is an Amaryllidaceae alkaloid used to treat the symptoms of Alzheimer’s disease. This compound is primarily isolated from daffodil (Narcissus spp.), snowdrop (Galanthus spp.), and summer snowflake (Leucojum aestivum). Despite its importance as a medicine, no genes involved in the biosynthetic pathway of galanthamine have been identified. This absence of genetic information on biosynthetic pathways is a limiting factor in the development of synthetic biology platforms for many important botanical medicines. The paucity of information is largely due to the limitations of traditional methods for finding biochemical pathway enzymes and genes in non-model organisms. A new bioinformatic approach using several recent technological improvements was applied to search for genes in the proposed galanthamine biosynthetic pathway, first targeting methyltransferases due to strong signature amino acid sequences in the proteins. Using Illumina sequencing, a de novo transcriptome assembly was constructed for daffodil. BLAST was used to identify sequences that contain signatures for plant O-methyltransferases in this transcriptome. The program HAYSTACK was then used to identify methyltransferases that fit a model for galanthamine biosynthesis in leaf, bulb and inflorescence tissues. One candidate gene for the methylation of norbelladine to 4′-O-methylnorbelladine in the proposed galanthamine biosynthetic pathway was identified. This methyltransferase cDNA was expressed in E. coli and the protein purified by affinity chromatography. The resulting protein was found to be a norbelladine 4′-O-methyltransferase (NpN4OMT) of the proposed galanthamine biosynthetic pathway.
Collapse
|