1
|
Sæterstad S, Østvik AE, Hansen MD, Bruland T, van Beelen Granlund A. The effect of rs2910686 on ERAP2 expression in IBD and epithelial inflammatory response. J Transl Med 2024; 22:750. [PMID: 39123229 PMCID: PMC11316291 DOI: 10.1186/s12967-024-05532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND ERAP2 is an aminopeptidase involved in antigen processing and presentation, and harbor genetic variants linked to several inflammatory diseases such as Inflammatory Bowel Disease (IBD). The lack of an ERAP2 gene homologue in mice has hampered functional studies, and most human studies have focused on cells of hematopoietic origin. Using an IBD biobank as vantage point, this study explores how genetic variation in ERAP2 affects gene expression in human-derived epithelial organoids upon proinflammatory stimulation. METHODS An IBD patient cohort was genotyped with regards to two single nucleotide polymorphisms (SNP) (rs2910686/rs2248374) associated with ERAP2 expression levels, and we examined the correlation between colon gene expression and genotype, specifically aiming to establish a relationship with ERAP2 expression proficiency. Human-derived colon organoids (colonoids) with known ERAP2 genotype were established and used to explore differences in whole genome gene expression between ERAP2-deficient (n = 4) and -proficient (n = 4) donors upon pro-inflammatory encounter. RESULTS When taking rs2910686 genotype into account, ERAP2 gene expression is upregulated in the inflamed colon of IBD patients. Colonoids upregulate ERAP2 upon IFNɣ stimulation, and ERAP2 expression proficiency is dependent on rs2910686 genotype. Colonoid genotyping confirms that mechanisms independent of the frequently studied SNP rs2248374 can cause ERAP2-deficiency. A total of 586 genes involved in various molecular mechanisms are differentially expressed between ERAP2 proficient- and deficient colonoids upon proinflammatory stimulation, including genes encoding proteins with the following molecular function: catalytic activity (AOC1, CPE, ANPEP and MEP1A), regulator activity (TNFSF9, MDK, GDF15, ILR6A, LGALS3 and FLNA), transmembrane transporter activity (SLC40A1 and SLC5A1), and extracellular matrix structural constituents (FGL2, HMCN2, and MUC17). CONCLUSIONS ERAP2 is upregulated in the inflamed IBD colon mucosa, and expression proficiency is highly correlated with genotype of rs2910686. While the SNP rs2248374 is commonly used to determine ERAP2 expressional proficiency, our data confirms that mechanisms independent of this SNP can lead to ERAP2 deficiency. Our data demonstrates that epithelial ERAP2 presence affects the inflammatory response in colonoids, suggesting a pleiotropic role of ERAP2 beyond MHC class I antigen processing.
Collapse
Affiliation(s)
- Siri Sæterstad
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ann Elisabeth Østvik
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Marianne Doré Hansen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Torunn Bruland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Atle van Beelen Granlund
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway.
- Department of Pathology, St. Olav's University Hospital, Trondheim, Norway.
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
2
|
Al-Okaily A, Abu Khashabeh R, Alsmadi O, Ahmad Y, Sultan I, Tbakhi A, Srivastava PK. ERAMER: A novel in silico tool for prediction of ERAP1 enzyme trimming. J Immunol Methods 2024; 531:113713. [PMID: 38925438 DOI: 10.1016/j.jim.2024.113713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
MHC class I pathway consists of four main steps: proteasomal cleavage in the cytosol in which precursor proteins are cleaved into smaller peptides, which are then transported into the endoplasmic reticulum by the transporter associated with antigen processing, TAP, for further processing (trimming) from the N-terminal region by an ER resident aminopeptidases 1 (ERAP1) enzyme, to generate optimal peptides (8-10 amino acids in length) to produce a stable MHCI-peptide complex, that get transited via the Golgi apparatus to the cell surface for presentation to the cellular immune system. Several studies reported specificities related to the ERAP1 trimming process, yet there is no in silico tool for the prediction of the trimming process of the ERAP1 enzyme. In this paper, we provide and implement a prediction model for the trimming process of the ERAP1 enzyme.
Collapse
Affiliation(s)
- Anas Al-Okaily
- Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman, Jordan.
| | - Razan Abu Khashabeh
- Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman, Jordan
| | - Osama Alsmadi
- Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman, Jordan
| | - Yazan Ahmad
- Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman, Jordan
| | - Iyad Sultan
- Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman, Jordan
| | - Abdelghani Tbakhi
- Department of Pathology and Molecular Medicine, McMaster University, Ontario, Canada
| | - Pramod K Srivastava
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
3
|
Venema WJ, Hiddingh S, van Loosdregt J, Bowes J, Balliu B, de Boer JH, Ossewaarde-van Norel J, Thompson SD, Langefeld CD, de Ligt A, van der Veken LT, Krijger PHL, de Laat W, Kuiper JJW. A cis-regulatory element regulates ERAP2 expression through autoimmune disease risk SNPs. CELL GENOMICS 2024; 4:100460. [PMID: 38190099 PMCID: PMC10794781 DOI: 10.1016/j.xgen.2023.100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 01/09/2024]
Abstract
Single-nucleotide polymorphisms (SNPs) near the ERAP2 gene are associated with various autoimmune conditions, as well as protection against lethal infections. Due to high linkage disequilibrium, numerous trait-associated SNPs are correlated with ERAP2 expression; however, their functional mechanisms remain unidentified. We show by reciprocal allelic replacement that ERAP2 expression is directly controlled by the splice region variant rs2248374. However, disease-associated variants in the downstream LNPEP gene promoter are independently associated with ERAP2 expression. Allele-specific conformation capture assays revealed long-range chromatin contacts between the gene promoters of LNPEP and ERAP2 and showed that interactions were stronger in patients carrying the alleles that increase susceptibility to autoimmune diseases. Replacing the SNPs in the LNPEP promoter by reference sequences lowered ERAP2 expression. These findings show that multiple SNPs act in concert to regulate ERAP2 expression and that disease-associated variants can convert a gene promoter region into a potent enhancer of a distal gene.
Collapse
Affiliation(s)
- Wouter J Venema
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sanne Hiddingh
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - John Bowes
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Brunilda Balliu
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joke H de Boer
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | - Susan D Thompson
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Aafke de Ligt
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lars T van der Veken
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Jonas J W Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Pande S, Guo HC. Structure-guided discovery of aminopeptidase ERAP1 variants capable of processing antigens with novel PC anchor specificities. Immunology 2024; 171:131-145. [PMID: 37858978 PMCID: PMC10841542 DOI: 10.1111/imm.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) belongs to the oxytocinase subfamily of M1 aminopeptidases (M1APs), which are a diverse family of metalloenzymes involved in a wide range of functions and have been implicated in various chronic and infectious diseases of humans. ERAP1 trims antigenic precursors into correct sizes (8-10 residues long) for Major Histocompatibility Complex (MHC) presentation, by a unique molecular ruler mechanism in which it makes concurrent bindings to substrate N- and C-termini. We have previously determined four crystal structures of ERAP1 C-terminal regulatory domain (termed ERAP1_C domain) in complex with peptide carboxyl (PC)-ends that carry various anchor residues, and identified a specificity subsite for recognizing the PC anchor side chain, denoted as the SC subsite to follow the conventional notations: S1 site for P1, S2 site for P2, and so forth. In this study, we report studies on structure-guided mutational and hydrolysis kinetics, and peptide trimming assays to further examine the functional roles of this SC subsite. Most strikingly, a point mutation V737R results in a change of substrate preference from a hydrophobic to a negatively charged PC anchor residue; the latter is presumed to be a poor substrate for WT ERAP1. These studies validate the crystallographic observations that this SC subsite is directly involved in binding and recognition of the substrate PC anchor and presents a potential target to modulate MHC-restricted immunopeptidomes.
Collapse
Affiliation(s)
- Suchita Pande
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
- Present Address: Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Hwai-Chen Guo
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| |
Collapse
|
5
|
Raja A, Kuiper JJW. Evolutionary immuno-genetics of endoplasmic reticulum aminopeptidase II (ERAP2). Genes Immun 2023; 24:295-302. [PMID: 37925533 PMCID: PMC10721543 DOI: 10.1038/s41435-023-00225-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
Endoplasmic reticulum aminopeptidase 2 (ERAP2) is a proteolytic enzyme involved in adaptive immunity. The ERAP2 gene is highly polymorphic and encodes haplotypes that confer resistance against lethal infectious diseases, but also increase the risk for autoimmune disorders. Identifying how ERAP2 influences susceptibility to these traits requires an understanding of the selective pressures that shaped and maintained allelic variation throughout human evolution. Our review discusses the genetic regulation of haplotypes and diversity in naturally occurring ERAP2 allotypes in the global population. We outline how these ERAP2 haplotypes evolved during human history and highlight the presence of Neanderthal DNA sequences in ERAP2 of modern humans. Recent evidence suggests that human adaptation during the last ~10,000 years and historic pandemics left a significant mark on the ERAP2 gene that determines susceptibility to infectious and inflammatory diseases today.
Collapse
Affiliation(s)
- Aroosha Raja
- Department of Ophthalmology, Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Jonas J W Kuiper
- Department of Ophthalmology, Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Pudjihartono N, Ho D, Golovina E, Fadason T, Kempa-Liehr AW, O'Sullivan JM. Juvenile idiopathic arthritis-associated genetic loci exhibit spatially constrained gene regulatory effects across multiple tissues and immune cell types. J Autoimmun 2023; 138:103046. [PMID: 37229810 DOI: 10.1016/j.jaut.2023.103046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 05/27/2023]
Abstract
Juvenile idiopathic arthritis (JIA) is an autoimmune, inflammatory joint disease with complex genetic etiology. Previous GWAS have found many genetic loci associated with JIA. However, the biological mechanism behind JIA remains unknown mainly because most risk loci are located in non-coding genetic regions. Interestingly, increasing evidence has found that regulatory elements in the non-coding regions can regulate the expression of distant target genes through spatial (physical) interactions. Here, we used information on the 3D genome organization (Hi-C data) to identify target genes that physically interact with SNPs within JIA risk loci. Subsequent analysis of these SNP-gene pairs using data from tissue and immune cell type-specific expression quantitative trait loci (eQTL) databases allowed the identification of risk loci that regulate the expression of their target genes. In total, we identified 59 JIA-risk loci that regulate the expression of 210 target genes across diverse tissues and immune cell types. Functional annotation of spatial eQTLs within JIA risk loci identified significant overlap with gene regulatory elements (i.e., enhancers and transcription factor binding sites). We found target genes involved in immune-related pathways such as antigen processing and presentation (e.g., ERAP2, HLA class I and II), the release of pro-inflammatory cytokines (e.g., LTBR, TYK2), proliferation and differentiation of specific immune cell types (e.g., AURKA in Th17 cells), and genes involved in physiological mechanisms related to pathological joint inflammation (e.g., LRG1 in arteries). Notably, many of the tissues where JIA-risk loci act as spatial eQTLs are not classically considered central to JIA pathology. Overall, our findings highlight the potential tissue and immune cell type-specific regulatory changes contributing to JIA pathogenesis. Future integration of our data with clinical studies can contribute to the development of improved JIA therapy.
Collapse
Affiliation(s)
- N Pudjihartono
- The Liggins Institute, The University of Auckland, Auckland, New Zealand.
| | - D Ho
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - E Golovina
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - T Fadason
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - A W Kempa-Liehr
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - J M O'Sullivan
- The Liggins Institute, The University of Auckland, Auckland, New Zealand; The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand; MRC Lifecourse Epidemiology Unit, University of Southampton, United Kingdom; Australian Parkinsons Mission, Garvan Institute of Medical Research, Sydney, New South Wales, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia; A*STAR Singapore Institute for Clinical Sciences, Singapore, Singapore.
| |
Collapse
|
7
|
Evnouchidou I, Koumantou D, Nugue M, Saveanu L. M1-aminopeptidase family - beyond antigen-trimming activities. Curr Opin Immunol 2023; 83:102337. [PMID: 37216842 DOI: 10.1016/j.coi.2023.102337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/24/2023]
Abstract
Antigen (Ag)-trimming aminopeptidases belong to the oxytocinase subfamily of M1 metallopeptidases. In humans, this subfamily contains the endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and 2) and the insulin-responsive aminopeptidase (IRAP, synonym oxytocinase), an endosomal enzyme. The ability of these enzymes to trim antigenic precursors and to generate major histocompatibility class-I ligands has been demonstrated extensively for ERAP1, less for ERAP2, which is absent in rodents, and exclusively in the context of cross-presentation for IRAP. During 20 years of research on these aminopeptidases, their enzymatic function has been very well characterized and their genetic association with autoimmune diseases, cancers, and infections is well established. The mechanisms by which these proteins are associated to human diseases are not always clear. This review discusses the Ag-trimming-independent functions of the oxytocinase subfamily of M1 aminopeptidases and the new questions raised by recent publications on IRAP and ERAP2.
Collapse
Affiliation(s)
- Irini Evnouchidou
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France; CNRS ERL8252, Paris, France; Université de Paris, Site Xavier Bichat, Paris, France; Inflamex Laboratory of Excellence, Paris, France; Inovarion, Paris, France
| | - Despoina Koumantou
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France; CNRS ERL8252, Paris, France; Université de Paris, Site Xavier Bichat, Paris, France; Inflamex Laboratory of Excellence, Paris, France
| | - Mathilde Nugue
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France; CNRS ERL8252, Paris, France; Université de Paris, Site Xavier Bichat, Paris, France; Inflamex Laboratory of Excellence, Paris, France
| | - Loredana Saveanu
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France; CNRS ERL8252, Paris, France; Université de Paris, Site Xavier Bichat, Paris, France; Inflamex Laboratory of Excellence, Paris, France.
| |
Collapse
|
8
|
Limanaqi F, Vicentini C, Saulle I, Clerici M, Biasin M. The role of endoplasmic reticulum aminopeptidases in type 1 diabetes mellitus. Life Sci 2023; 323:121701. [PMID: 37059356 DOI: 10.1016/j.lfs.2023.121701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Type-I diabetes mellitus (T1DM) is generally considered as a chronic, T-cell mediated autoimmune disease. This notwithstanding, both the endogenous characteristics of β-cells, and their response to environmental factors and exogenous inflammatory stimuli are key events in disease progression and exacerbation. As such, T1DM is now recognized as a multifactorial condition, with its onset being influenced by both genetic predisposition and environmental factors, among which, viral infections represent major triggers. In this frame, endoplasmic reticulum aminopeptidase 1 (ERAP1) and 2 (ERAP2) hold center stage. ERAPs represent the main hydrolytic enzymes specialized in trimming of N-terminal antigen peptides to be bound by MHC class I molecules and presented to CD8+ T cells. Thus, abnormalities in ERAPs expression alter the peptide-MHC-I repertoire both quantitatively and qualitatively, fostering both autoimmune and infectious diseases. Although only a few studies succeeded in determining direct associations between ERAPs variants and T1DM susceptibility/outbreak, alterations of ERAPs do impinge on a plethora of biological events which might indeed contribute to the disease development/exacerbation. Beyond abnormal self-antigen peptide trimming, these include preproinsulin processing, nitric oxide (NO) production, ER stress, cytokine responsiveness, and immune cell recruitment/activity. The present review brings together direct and indirect evidence focused on the immunobiological role of ERAPs in T1DM onset and progression, covering both genetic and environmental aspects.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
| | - Chiara Vicentini
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy; Don C. Gnocchi Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation, Via A. Capecelatro 66, 20148 Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy.
| |
Collapse
|
9
|
Babaie F, Mohammadi H, Salimi S, Ghanavatinegad A, Abbasifard M, Yousefi M, Hajaliloo M, Khalili Y, Zamanlou S, Safari R, Hemmatzadeh M, Rezaiemanesh A, Salimi R, Baradaran B, Babaloo Z. Inhibition of ERAP1 represses HLA-B27 free heavy chains expression on polarized macrophages and interrupts NK cells activation and function from ankylosing spondylitis. Clin Immunol 2023; 248:109268. [PMID: 36804470 DOI: 10.1016/j.clim.2023.109268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND We aimed to assess if Endoplasmic reticulum aminopeptidase 1 (ERAP1) polymorphisms might impress Human leukocyte antigen (HLA)-B27-free heavy chains (FHCs) expression on macrophages and eventually NK cell activation in Ankylosing spondylitis (AS). METHODS Blood samples were obtained from 10 HLAB27+ patients with protective and 10 HLAB27+ patients with non-protective genotype. Monocytes were isolated and polarized toward M1 and M2 macrophages. ERAP1 was inhibited in macrophages, which were then co-cultured with autologous NK cells. RESULTS Expression of HLA-B27-FHCs on M1 and M2 macrophages was reduced in patients with protective ERAP1 genotype. Co-culturing ERAP1-inhibited M1 macrophages and NK cells from patients with protective genotype resulted in downmodulation of CD69 and CD107a markers on NK cells and reduced number of IFN-γ+ NK cells compared to that of patients with non-protective genotypes. CONCLUSION Inhibition of ERAP1 activity, by diminishing NK activation, may have therapeutic value in treating AS patients.
Collapse
Affiliation(s)
- Farhad Babaie
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Genetic and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sorayya Salimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ghanavatinegad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mehdi Yousefi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrzad Hajaliloo
- Connective Tissue Research Center, Tabriz University of Medical Science, Iran
| | - Younes Khalili
- Iranian Social Security Organization, Emam Reza Hospital, Urmia, Iran
| | - Sajjad Zamanlou
- Iranian Social Security Organization, Emam Reza Hospital, Urmia, Iran
| | - Roghaiyeh Safari
- Department of Infectious Disease, Imperial College London, London, UK
| | - Maryam Hemmatzadeh
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Salimi
- Research and Development (R&D) Department, RS, &RS Scientific, Belgium
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zohreh Babaloo
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Connective Tissue Research Center, Tabriz University of Medical Science, Iran.
| |
Collapse
|
10
|
Tanioka T, Iwamoto S, Nakano Y. Suppression of Lipopolysaccharide-Induced IL-1β Gene Expression by High-Molecular-Weight Adiponectin in RAW264.7 Macrophages. Biol Pharm Bull 2023; 46:1498-1505. [PMID: 37914352 DOI: 10.1248/bpb.b23-00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Adiponectin is an abundant adipocytokine secreted by adipocytes. It exists in the plasma in its trimeric, hexameric, high-molecular-weight (HMW), and globular (a proteolytic product) isoforms. Adiponectin's anti-inflammatory effects on macrophages remain controversial. We have previously reported a simple and effective method for purifying native HMW adiponectin from human plasma. Here, we investigated whether native HMW adiponectin from human plasma has anti-inflammatory effects on macrophages. Pretreatment with human native HMW adiponectin inhibited lipopolysaccharide (LPS)-induced interleukin-1β (IL-1β) gene expression, but not tumor necrosis factor (TNF)-α expression. However, simultaneous treatment with HMW adiponectin and LPS did not inhibit IL-1β expression. Further, HMW adiponectin pretreatment decreases glycogen synthase kinase-3β (GSK-3β) inactivation by abrogating LPS-induced Akt (Ser473) phosphorylation, which subsequently suppresses LPS-induced CCAAT/enhancer binding protein β (C/EBPβ) protein translation and nuclear translocation. However, HMW adiponectin pretreatment did not affect LPS-induced nuclear factor-kappaB (NF-κB) activation. These results suggest that HMW adiponectin mediates potent anti-inflammatory activities in macrophages by inhibiting its Akt-C/EBPβ signaling pathway, thereby suppressing IL-1β gene expression.
Collapse
Affiliation(s)
- Toshihiro Tanioka
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology, and Therapeutics, School of Pharmacy, Showa University
- Division of Pharmacogenomics, Department of Pharmacotherapeutics, School of Pharmacy, Showa University
| | - Sanju Iwamoto
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology, and Therapeutics, School of Pharmacy, Showa University
| | - Yasuko Nakano
- Division of Pharmacogenomics, Department of Pharmacotherapeutics, School of Pharmacy, Showa University
- Department of Clinical Medicine, Laboratory of Pharmacotherapeutics, Yokohama University of Pharmacy
| |
Collapse
|
11
|
Klunk J, Vilgalys TP, Demeure CE, Cheng X, Shiratori M, Madej J, Beau R, Elli D, Patino MI, Redfern R, DeWitte SN, Gamble JA, Boldsen JL, Carmichael A, Varlik N, Eaton K, Grenier JC, Golding GB, Devault A, Rouillard JM, Yotova V, Sindeaux R, Ye CJ, Bikaran M, Dumaine A, Brinkworth JF, Missiakas D, Rouleau GA, Steinrücken M, Pizarro-Cerdá J, Poinar HN, Barreiro LB. Evolution of immune genes is associated with the Black Death. Nature 2022; 611:312-319. [PMID: 36261521 PMCID: PMC9580435 DOI: 10.1038/s41586-022-05349-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/14/2022] [Indexed: 01/10/2023]
Abstract
Infectious diseases are among the strongest selective pressures driving human evolution1,2. This includes the single greatest mortality event in recorded history, the first outbreak of the second pandemic of plague, commonly called the Black Death, which was caused by the bacterium Yersinia pestis3. This pandemic devastated Afro-Eurasia, killing up to 30-50% of the population4. To identify loci that may have been under selection during the Black Death, we characterized genetic variation around immune-related genes from 206 ancient DNA extracts, stemming from two different European populations before, during and after the Black Death. Immune loci are strongly enriched for highly differentiated sites relative to a set of non-immune loci, suggesting positive selection. We identify 245 variants that are highly differentiated within the London dataset, four of which were replicated in an independent cohort from Denmark, and represent the strongest candidates for positive selection. The selected allele for one of these variants, rs2549794, is associated with the production of a full-length (versus truncated) ERAP2 transcript, variation in cytokine response to Y. pestis and increased ability to control intracellular Y. pestis in macrophages. Finally, we show that protective variants overlap with alleles that are today associated with increased susceptibility to autoimmune diseases, providing empirical evidence for the role played by past pandemics in shaping present-day susceptibility to disease.
Collapse
Affiliation(s)
- Jennifer Klunk
- McMaster Ancient DNA Centre, Departments of Anthropology, Biology and Biochemistry, McMaster University, Hamilton, Ontario, Canada
- Daicel Arbor Biosciences, Ann Arbor, MI, USA
| | - Tauras P Vilgalys
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Xiaoheng Cheng
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Mari Shiratori
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Julien Madej
- Yersinia Research Unit, Institut Pasteur, Paris, France
| | - Rémi Beau
- Yersinia Research Unit, Institut Pasteur, Paris, France
| | - Derek Elli
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Lemont, IL, USA
| | - Maria I Patino
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Rebecca Redfern
- Centre for Human Bioarchaeology, Museum of London, London, UK
| | - Sharon N DeWitte
- Department of Anthropology, University of South Carolina, Columbia, SC, USA
| | - Julia A Gamble
- Department of Anthropology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jesper L Boldsen
- Department of Forensic Medicine, Unit of Anthropology (ADBOU), University of Southern Denmark, Odense S, Denmark
| | - Ann Carmichael
- History Department, Indiana University, Bloomington, IN, USA
| | - Nükhet Varlik
- Department of History, Rutgers University, Newark, NJ, USA
| | - Katherine Eaton
- McMaster Ancient DNA Centre, Departments of Anthropology, Biology and Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | - Jean-Christophe Grenier
- Montreal Heart Institute, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - G Brian Golding
- McMaster Ancient DNA Centre, Departments of Anthropology, Biology and Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | | - Jean-Marie Rouillard
- Daicel Arbor Biosciences, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan - Ann Arbor, Ann Arbor, MI, USA
| | - Vania Yotova
- Centre Hospitalier Universitaire Sainte-Justine, Montréal, Quebec, Canada
| | - Renata Sindeaux
- Centre Hospitalier Universitaire Sainte-Justine, Montréal, Quebec, Canada
| | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Matin Bikaran
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Anne Dumaine
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jessica F Brinkworth
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Dominique Missiakas
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Lemont, IL, USA
| | - Guy A Rouleau
- Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Matthias Steinrücken
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | | | - Hendrik N Poinar
- McMaster Ancient DNA Centre, Departments of Anthropology, Biology and Biochemistry, McMaster University, Hamilton, Ontario, Canada.
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada.
| | - Luis B Barreiro
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA.
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Mattorre B, Tedeschi V, Paldino G, Fiorillo MT, Paladini F, Sorrentino R. The emerging multifunctional roles of ERAP1, ERAP2 and IRAP between antigen processing and renin-angiotensin system modulation. Front Immunol 2022; 13:1002375. [PMID: 36203608 PMCID: PMC9531115 DOI: 10.3389/fimmu.2022.1002375] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
The Endoplasmic Reticulum Aminopeptidase 1 and 2 (ERAP1 and ERAP2) and Insulin Regulated Aminopeptidase (IRAP) are three M1 zinc metalloproteases whose role in antigen processing is the refining of peptidome either in the Endoplasmic reticulum (ERAP1 and ERAP2), or in the endosomes (IRAP). However, other novel and distinct functions are emerging. Here, we focus specifically on ERAP2. This gene has a peculiar evolutionary history, being absent in rodents and undergoing in humans to a balanced selection of two haplotypes, one of which not expressing the full length ERAP2. These observations suggest that its role in antigen presentation is not essential. An additional, less investigated role is in the regulation of the Renin Angiotensin System (RAS). ERAP1 and ERAP2 cleave Angiotensin II (Ang II) into Ang III and IV, which counteract the action of Ang II whereas IRAP is itself the receptor for Ang IV. We have recently reported that macrophages, independently from the haplotype, express and release a N-terminus ERAP2 “short” form which directly binds IRAP and the two molecules are co-expressed in the endosomes and on the cell membrane. This new evidence suggests that the maintenance of the ERAP2 gene in humans could be due to its activity in the regulation of the RAS system, possibly as an Ang IV agonist. Its role in the immune-mediated diseases as well as in disorders more specifically related to an imbalance of the RAS system, including hypertension, pre-eclampsia but also viral infections such as COVID-19, is discussed here.
Collapse
|
13
|
Large-Scale Multi-Omics Studies Provide New Insights into Blood Pressure Regulation. Int J Mol Sci 2022; 23:ijms23147557. [PMID: 35886906 PMCID: PMC9323755 DOI: 10.3390/ijms23147557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Recent genome-wide association studies uncovered part of blood pressure’s heritability. However, there is still a vast gap between genetics and biology that needs to be bridged. Here, we followed up blood pressure genome-wide summary statistics of over 750,000 individuals, leveraging comprehensive epigenomic and transcriptomic data from blood with a follow-up in cardiovascular tissues to prioritise likely causal genes and underlying blood pressure mechanisms. We first prioritised genes based on coding consequences, multilayer molecular associations, blood pressure-associated expression levels, and coregulation evidence. Next, we followed up the prioritised genes in multilayer studies of genomics, epigenomics, and transcriptomics, functional enrichment, and their potential suitability as drug targets. Our analyses yielded 1880 likely causal genes for blood pressure, tens of which are targets of the available licensed drugs. We identified 34 novel genes for blood pressure, supported by more than one source of biological evidence. Twenty-eight (82%) of these new genes were successfully replicated by transcriptome-wide association analyses in a large independent cohort (n = ~220,000). We also found a substantial mediating role for epigenetic regulation of the prioritised genes. Our results provide new insights into genetic regulation of blood pressure in terms of likely causal genes and involved biological pathways offering opportunities for future translation into clinical practice.
Collapse
|
14
|
Dobosz P, Stempor PA, Ramírez Moreno M, Bulgakova NA. Transcriptional and post-transcriptional regulation of checkpoint genes on the tumour side of the immunological synapse. Heredity (Edinb) 2022; 129:64-74. [PMID: 35459932 PMCID: PMC9273643 DOI: 10.1038/s41437-022-00533-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is a disease of the genome, therefore, its development has a clear Mendelian component, demonstrated by well-studied genes such as BRCA1 and BRCA2 in breast cancer risk. However, it is known that a single genetic variant is not enough for cancer to develop leading to the theory of multistage carcinogenesis. In many cases, it is a sequence of events, acquired somatic mutations, or simply polygenic components with strong epigenetic effects, such as in the case of brain tumours. The expression of many genes is the product of the complex interplay between several factors, including the organism's genotype (in most cases Mendelian-inherited), genetic instability, epigenetic factors (non-Mendelian-inherited) as well as the immune response of the host, to name just a few. In recent years the importance of the immune system has been elevated, especially in the light of the immune checkpoint genes discovery and the subsequent development of their inhibitors. As the expression of these genes normally suppresses self-immunoreactivity, their expression by tumour cells prevents the elimination of the tumour by the immune system. These discoveries led to the rapid growth of the field of immuno-oncology that offers new possibilities of long-lasting and effective treatment options. Here we discuss the recent advances in the understanding of the key mechanisms controlling the expression of immune checkpoint genes in tumour cells.
Collapse
Affiliation(s)
- Paula Dobosz
- Central Clinical Hospital of the Ministry of Interior Affairs and Administration in Warsaw, Warsaw, Poland
| | | | - Miguel Ramírez Moreno
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield, UK
| | - Natalia A Bulgakova
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield, UK.
| |
Collapse
|
15
|
Arya R, Maben Z, Rane D, Ali A, Stern LJ. Phenylsulfamoyl Benzoic Acid Inhibitor of ERAP2 with a Novel Mode of Inhibition. ACS Chem Biol 2022; 17:1756-1768. [PMID: 35767698 DOI: 10.1021/acschembio.2c00093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ERAP1 and ERAP2 are endoplasmic reticulum zinc-binding aminopeptidases that play crucial roles in processing peptides for loading onto class I major histocompatibility complex proteins. These enzymes are therapeutic targets in cancer and autoimmune disorders. The discovery of inhibitors specific to ERAP1 or ERAP2 has been challenging due to the similarity in their active site residues and domain architectures. Here, we identify 4-methoxy-3-{[2-piperidin-1-yl-4-(trifluoromethyl) phenyl] sulfamoyl} benzoic acid (compound 61) as a novel inhibitor of ERAP2 and determine the crystal structure of ERAP2 bound to compound 61. Compound 61 binds near the catalytic center of ERAP2, at a distinct site from previously known peptidomimetic inhibitors, and inhibits by an uncompetitive mechanism. Surprisingly, for ERAP1, compound 61 was found to activate model substrate hydrolysis, similarly to the previously characterized 5-trifluoromethyl regioisomer of compound 61, known as compound 3. We characterized the specificity determinants of ERAP1 and ERAP2 that control the binding of compounds 3 and 61. At the active site of ERAP1, Lys380 in the S1' pocket is a key determinant for the binding of both compounds 3 and 61. At the allosteric site, ERAP1 binds either compound, leading to the activation of model substrate hydrolysis. Although ERAP2 substrate hydrolysis is not activated by either compound, the mutation of His904 to alanine reveals a cryptic allosteric site that allows for the activation by compound 3. Thus, we have identified selectivity determinants in the active and allosteric sites of ERAP2 that govern the binding of two similar compounds, which potentially could be exploited to develop more potent and specific inhibitors.
Collapse
Affiliation(s)
- Richa Arya
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, United States
| | - Zachary Maben
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, United States
| | - Digamber Rane
- Kansas University Specialized Chemistry Center, Lawrence, Kansas 66047, United States
| | - Akbar Ali
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, United States
| | - Lawrence J Stern
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, United States.,Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, United States
| |
Collapse
|
16
|
Bai Y, Zhao N, Sun H, Yin L, Chen J, Hu N. Associations between ERAP1 polymorphisms and ankylosing spondylitis susceptibility in HLA-B27 positive population: a Meta-analysis and bioinformatics analysis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:407-418. [PMID: 35139766 DOI: 10.1080/15257770.2022.2036344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Human leukocyte antigen (HLA)-B27 confers a key role in ankylosing spondylitis (AS) susceptibility. Endoplasmic reticulum aminopeptidase 1 (ERAP1) polymorphisms are associated with AS susceptibility in common population. In this study we intended to evaluate the possible association between ERAP1 polymorphisms and AS susceptibility in HLA-27 positive population. Data were collected from Pubmed, Embase, and Cochrane databases. The pooled odds ratios and 95% confidence intervals of the minor allele of each locus were calculated to appraise the associations under ERAP1 polymorphisms and AS in HLA-B27 positive population. Bioinformatics analysis was performed to explore the underlying mechanism. Four studies were included in this meta-analysis. There was a significant association between the minor allele of rs2287987 and reducing the risk of developing AS in HLA-B27 positive population. But there was no significant association between the minor allele of rs30187, rs27044, rs10050860 and rs17482078 and AS susceptibility. According to HaploReg, 5 motifs changed for rs2287987 were found. The eQTL analysis demonstrated that rs2287987 may influence ERAP1 expression. Rs2287987 in ERAP1 may have small influence on AS susceptibility in HLA-B27 positive population. Bioinformatics analysis indicated that the altered motifs and the change of EARP1 expression may influence the AS susceptibility.
Collapse
Affiliation(s)
- Yanyan Bai
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Department of Rheumatology and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Na Zhao
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Department of Rheumatology and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hongsheng Sun
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Department of Rheumatology and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Liguo Yin
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Department of Rheumatology and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jing Chen
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Department of Rheumatology and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Naiwen Hu
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Department of Rheumatology and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
17
|
Xu X, Zhao X, Chen L, Liu M, Hu Z, Ke J, Fu B, Zhou Y, Wei H. CD158a + /CD158b + NK cell imbalance correlates with hypertension in patients with pre-eclampsia. Am J Reprod Immunol 2022; 87:e13532. [PMID: 35253311 DOI: 10.1111/aji.13532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/13/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022] Open
Abstract
PROBLEM Preeclampsia, a pregnancy complication with hypertension and proteinuria, seriously threats the health and lives of the mother and the baby. The pathogenesis of pre-eclampsia remains incompletely understood. The role of peripheral natural killer cells (NK cells) in the pre-eclampsia is unclear. METHOD OF STUDY Flow cytometry was performed to detect the expression of CD158a (KIR2DL1) and CD158b (KIR2DL2/3) in peripheral NK cells of healthy pregnant women (HP) and patients with pre-eclampsia (PE). Differentially expressed genes (DEGs) in CD158a+ and CD158b+ NK cells were identified by RNA-sequencing and real-time PCR. Protein array analysis was used to identify altered protein levels in the serum of study participants. RESULTS CD158a+ NK cell numbers were increased in the peripheral blood of patients while the number of CD158b+ NK cells was reduced. In addition, the percentage of CD158a+ NK cells within the peripheral NK subset was positively correlated with systolic blood pressure while the percentage of CD158b+ NK cells was negatively correlated with systolic blood pressure. RNA-seq and real-time PCR showed that the expression of ERAP2 and GCH1, the genes that regulate blood pressure and angiogenesis, was decreased in CD158a+ compared to CD158b+ NK cells. Consistently, the level of proteins involved in angiogenesis was altered in the serum of pre-eclampsia patients compared to healthy individuals. CONCLUSIONS CD158a+ NK cells increased while CD158b+ NK cells decreased in the peripheral blood of patients with pre-eclampsia compared to healthy individuals. The change in the frequency of CD158a+ /CD158b+ NK cells is related to the increase in blood pressure.
Collapse
Affiliation(s)
- Xiuxiu Xu
- Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China.,Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Xirui Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Ling Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Muziying Liu
- Anhui Institute of Pediatric Research, Anhui Provincial Children's Hospital, Hefei, P.R. China
| | - Ziming Hu
- Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China.,Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Jieqi Ke
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Binqing Fu
- Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China.,Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Yonggang Zhou
- Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China.,Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Haiming Wei
- Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China.,Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, P.R. China
| |
Collapse
|
18
|
Guan W, Nakata K, Sagara A, Iwamoto C, Endo S, Matsuda R, Matsumoto S, Ikenaga N, Shindo K, Moriyama T, Onishi H, Ohuchida K, Oda Y, Nakamura M. ERAP2 is a novel target involved in autophagy and activation of pancreatic stellate cells via UPR signaling pathway. Pancreatology 2022; 22:9-19. [PMID: 34642112 DOI: 10.1016/j.pan.2021.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Pancreatic ductal adenocarcinoma (PDAC) is characterized by excessive desmoplasia and autophagy-dependent tumorigenic growth. Pancreatic stellate cells (PSCs) as a predominant stromal cell type play a critical role in PDAC biology. We have previously reported that autophagy facilitates PSC activation, however, the mechanism remains unknown. We investigated the mechanism of autophagy in PSC activation. METHODS We compared gene expression profiles between patient-derived PSCs from pancreatic cancer and chronic pancreatitis using a microarray. The stromal expression of target gene in specimen of PDAC patients (n = 63) was analyzed. The effect of target gene on autophagy and activation of PSCs was investigated by small interfering RNAs transfection, and the relationship between autophagy and ER stress was investigated. We analyzed the growth and fibrosis of xenografted tumor by orthotopic models. RESULTS In analysis of gene expression microarray, endoplasmic reticulum aminopeptidase 2 (ERAP2) upregulated in cancer-associated PSCs was identified as the target gene. High stromal ERAP2 expression is associated with a poor prognosis of PDAC patients. Knockdown of ERAP2 inhibited unfolded protein response mediated autophagy, and led to inactivation of PSCs, thereby attenuating tumor-stromal interactions by inhibiting production of IL-6 and fibronectin. In vivo, the promoting effect of PSCs on xenografted tumor growth and fibrosis was inhibited by ERAP2 knockdown. CONCLUSIONS Our findings demonstrate a novel mechanism of PSCs activation regulated by autophagy. ERAP2 as a promising therapeutic target may provide a novel strategy for the treatment of PDAC.
Collapse
Affiliation(s)
- Weiyu Guan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Akiko Sagara
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chika Iwamoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sho Endo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryota Matsuda
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sokichi Matsumoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Ikenaga
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taiki Moriyama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
19
|
Piekarska K, Radwan P, Tarnowska A, Wiśniewski A, Radwan M, Wilczyński JR, Malinowski A, Nowak I. ERAP, KIR, and HLA-C Profile in Recurrent Implantation Failure. Front Immunol 2021; 12:755624. [PMID: 34745129 PMCID: PMC8569704 DOI: 10.3389/fimmu.2021.755624] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/04/2021] [Indexed: 01/29/2023] Open
Abstract
The mother's uterine immune system is dominated by uterine natural killer (NK) cells during the first trimester of pregnancy. These cells express killer cell immunoglobulin-like receptors (KIRs) of inhibitory or activating function. Invading extravillous trophoblast cells express HLA-C molecules, and both maternal and paternal HLA-C allotypes are presented to KIRs. Endoplasmic reticulum aminopeptidase 1 (ERAP1) and 2 (ERAP2) shape the HLA class I immunopeptidome. The ERAPs remove N-terminal residues from antigenic precursor peptides and generate optimal-length peptides to fit into the HLA class I groove. The inability to form the correct HLA class I complexes with the appropriate peptides may result in a lack of immune response by NK cells. The aim of this study was to investigate the role of ERAP1 and ERAP2 polymorphisms in the context of KIR and HLA-C genes in recurrent implantation failure (RIF). In addition, for the first time, we showed the results of ERAP1 and ERAP2 secretion into the peripheral blood of patients and fertile women. We tested a total of 881 women. Four hundred ninety-six females were patients who, together with their partners, participated in in vitro fertilization (IVF). A group of 385 fertile women constituted the control group. Women positive for KIR genes in the Tel AA region and HLA-C2C2 were more prevalent in the RIF group than in fertile women (p/pcorr. = 0.004/0.012, OR = 2.321). Of the ERAP polymorphisms studied, two of them (rs26653 and rs26618) appear to affect RIF susceptibility in HLA-C2-positive patients. Moreover, fertile women who gave birth in the past secreted significantly more ERAP1 than IVF women and control pregnant women (p < 0.0001 and p = 0.0005, respectively). In the case of ERAP2, the opposite result was observed; i.e., fertile women secreted far less ERAP2 than IVF patients (p = 0.0098). Patients who became pregnant after in vitro fertilization embryo transfer (IVF-ET) released far less ERAP2 than patients who miscarried (p = 0.0032). Receiver operating characteristic (ROC) analyses indicate a value of about 2.9 ng/ml of ERAP2 as a point of differentiation between patients who miscarried and those who gave birth to a healthy child. Our study indicates that both ERAP1 and ERAP2 may be involved in processes related to reproduction.
Collapse
Affiliation(s)
- Karolina Piekarska
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Paweł Radwan
- Department of Reproductive Medicine, Gameta Hospital, Rzgów, Poland
| | - Agnieszka Tarnowska
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Wiśniewski
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Michał Radwan
- Department of Reproductive Medicine, Gameta Hospital, Rzgów, Poland
- Faculty of Health Sciences, The Mazovian State University in Płock, Płock, Poland
| | - Jacek R. Wilczyński
- Department of Surgical and Oncological Gynecology, Medical University of Łódź, Łódź, Poland
| | - Andrzej Malinowski
- Department of Surgical, Endoscopic and Oncologic Gynecology, Polish Mothers’ Memorial Hospital—Research Institute, Łódź, Poland
- Medical Centre Gynemed, Łódź, Poland
| | - Izabela Nowak
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
20
|
Acid Stripping after Infection Improves the Detection of Viral HLA Class I Natural Ligands Identified by Mass Spectrometry. Int J Mol Sci 2021; 22:ijms221910503. [PMID: 34638844 PMCID: PMC8508920 DOI: 10.3390/ijms221910503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/26/2022] Open
Abstract
Identification of a natural human leukocyte antigen (HLA) ligandome is a key element to understand the cellular immune response. Advanced high throughput mass spectrometry analyses identify a relevant, but not complete, fraction of the many tens of thousands of self-peptides generated by antigen processing in live cells. In infected cells, in addition to this complex HLA ligandome, a minority of peptides from degradation of the few proteins encoded by the viral genome are also bound to HLA class I molecules. In this study, the standard immunopeptidomics strategy was modified to include the classical acid stripping treatment after virus infection to enrich the HLA ligandome in virus ligands. Complexes of HLA-B*27:05-bound peptide pools were isolated from vaccinia virus (VACV)-infected cells treated with acid stripping after virus infection. The HLA class I ligandome was identified using high throughput mass spectrometry analyses, yielding 37 and 51 natural peptides processed and presented untreated and after acid stripping treatment VACV-infected human cells, respectively. Most of these virus ligands were identified in both conditions, but exclusive VACV ligands detected by mass spectrometry detected on acid stripping treatment doubled the number of those identified in the untreated VACV-infected condition. Theoretical binding affinity prediction of the VACV HLA-B*27:05 ligands and acute antiviral T cell response characterization in the HLA transgenic mice model showed no differences between HLA ligands identified under the two conditions: untreated and under acid stripping condition. These findings indicated that acid stripping treatment could be useful to identify HLA class I ligands from virus-infected cells.
Collapse
|
21
|
The association of HLA-C and ERAP1 polymorphisms in early and late onset psoriasis and psoriatic arthritis patients of Hungary. Postepy Dermatol Alergol 2021; 38:43-51. [PMID: 34408565 PMCID: PMC8362786 DOI: 10.5114/ada.2021.104277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/28/2019] [Indexed: 11/17/2022] Open
Abstract
Introduction Single nucleotide polymorphisms (SNPs) of the HLA-C and ERAP1 genes were recently determined to contribute to psoriasis susceptibility. However, data regarding the association of these genes with specific subgroups of psoriasis are scarce. Aim To examine the possible association of the HLA-C and ERAP-1 polymorphisms with early and late onset psoriasis and psoriatic arthritis. Material and methods Five ERAP1 SNPs and two HLA-C SNPs were genotyped in 105 psoriatic arthritis patients, 214 cutaneous psoriasis patients and 200 healthy individuals. Haplotypes were constructed for three ERAP1 SNPs (rs17482078, rs10050860, rs30187), and interaction between HLA-Cw*0602 and ERAP1 was also analysed. Results The HLA-Cw*0602 rs10484554 SNP was found to be a strong susceptibility factor for early onset cutaneous psoriasis and early onset psoriatic arthritis. ERAP1 SNPs (rs10050860, rs17482078, rs27525) appear to have a protective function for early onset psoriatic arthritis. The haplotype B was identified as a susceptibility factor for late onset psoriatic arthritis. In HLA-C positive individuals the rs27524 ERAP1 SNP was associated with a significantly increased risk of psoriatic arthritis development, whereas the rs27525 ERAP1 SNP had the opposite effect. Conclusions These results suggest that the HLA-C and ERAP1 genes contribute to the pathogenesis of psoriasis and psoriatic arthritis in an age-dependent manner.
Collapse
|
22
|
Saulle I, Vicentini C, Clerici M, Biasin M. Antigen presentation in SARS-CoV-2 infection: the role of class I HLA and ERAP polymorphisms. Hum Immunol 2021; 82:551-560. [PMID: 34116863 PMCID: PMC8108382 DOI: 10.1016/j.humimm.2021.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/22/2022]
Abstract
Given the highly polymorphic nature of Human Leukocyte Antigen (HLA) molecules, it is not surprising that they function as key regulators of the host immune response to almost all invading pathogens, including SARS-CoV-2, the etiological agent responsible for the recent COVID-19 pandemic. Several correlations have already been established between the expression of a specific HLA allele/haplotype and susceptibility/progression of SARS-CoV-2 infection and new ones are continuously emerging. Protective and harmful HLA variants have been described in both mild and severe forms of the disease, but considering the huge amount of existing variants, the data gathered in such a brief span of time are to some extent confusing and contradictory. The aim of this mini-review is to provide a snap-shot of the main findings so far collected on the HLA-SARS-CoV-2 interaction, so as to partially untangle this intricate yarn. As key factors in the generation of antigenic peptides to be presented by HLA molecules, ERAP1 and ERAP2 role in SARS-CoV-2 infection will be revised as well.
Collapse
Affiliation(s)
- Irma Saulle
- Department of Biomedical and Clinical Sciences- L. Sacco, University of Milan, Italy; Department of Pathophysiology and Transplantation, Milan, Italy.
| | - Chiara Vicentini
- Department of Biomedical and Clinical Sciences- L. Sacco, University of Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, Milan, Italy; SM Nascente Scientific Institute, IRCCS, Don C Gnocchi Foundation, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences- L. Sacco, University of Milan, Italy
| |
Collapse
|
23
|
Tsujimoto M, Aoki K, Goto Y, Ohnishi A. Molecular and functional diversity of the oxytocinase subfamily of M1 aminopeptidases. J Biochem 2021; 169:409-420. [PMID: 33481005 DOI: 10.1093/jb/mvab009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/11/2021] [Indexed: 02/04/2023] Open
Abstract
The placental leucine aminopeptidase/insulin-regulated aminopeptidase, endoplasmic reticulum aminopeptidase 1 and endoplasmic reticulum aminopeptidase 2 are part of a distinct subfamily of M1 aminopeptidases termed the 'oxytocinase subfamily'. The subfamily members show molecular diversity due to differential usage of translation initiation sites, alternative splicing and multiple single nucleotide polymorphisms. It is becoming evident that, depending on their intracellular or extracellular location, members of the oxytocinase subfamily play important roles in the maintenance of homeostasis, including the regulation of blood pressure, maintenance of normal pregnancy, retention of memory and trimming of antigenic peptides presented to major histocompatibility complex class I molecules, by acting as either aminopeptidases or binding partners of specific functional proteins in the cells. Based on their molecular diversity and moonlighting protein-like properties, it is conceivable that the subfamily members exert pleiotropic effects during evolution, to become important players in the regulation of homeostasis.
Collapse
Affiliation(s)
- Masafumi Tsujimoto
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo 164-8530, Japan
| | - Kazuma Aoki
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo 164-8530, Japan
| | - Yoshikuni Goto
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo 164-8530, Japan
| | - Atsushi Ohnishi
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo 164-8530, Japan
| |
Collapse
|
24
|
Kitagawa Y, Tanaka S, Kamiya M, Kuriki Y, Yamamoto K, Shimizu T, Nejo T, Hana T, Matsuura R, Koike T, Yamazawa E, Kushihara Y, Takahashi S, Nomura M, Takami H, Takayanagi S, Mukasa A, Urano Y, Saito N. A Novel Topical Fluorescent Probe for Detection of Glioblastoma. Clin Cancer Res 2021; 27:3936-3947. [PMID: 34031057 DOI: 10.1158/1078-0432.ccr-20-4518] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/12/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Five-aminolevulinic acid (5-ALA) is widely used as an intraoperative fluorescent probe for radical resection of high-grade glioma, and thus aids in extending progression-free survival of patients. However, there exist some cases where 5-ALA fails to fluoresce. In some other cases, it may undergo fluorescence quenching but cannot be orally readministered during surgery. This study aimed to develop a novel hydroxymethyl rhodamine green (HMRG)-based fluorescence labeling system that can be repeatedly administered as a topical spray during surgery for the detection of glioblastoma. EXPERIMENTAL DESIGN We performed a three-stage probe screening using tumor lysates and fresh tumor tissues with our probe library consisting of a variety of HMRG probes with different dipeptides. We then performed proteome and transcript expression analyses to detect candidate enzymes responsible for cleaving the probe. Moreover, in vitro and ex vivo studies using U87 glioblastoma cell line were conducted to validate the findings. RESULTS The probe screening identified proline-arginine-HMRG (PR-HMRG) as the optimal probe that distinguished tumors from peritumoral tissues. Proteome analysis identified calpain-1 (CAPN1) to be responsible for cleaving the probe. CAPN1 was highly expressed in tumor tissues which reacted to the PR-HMRG probe. Knockdown of this enzyme suppressed fluorescence intensity in U87 glioblastoma cells. In situ assay using a mouse U87 xenograft model demonstrated marked contrast of fluorescence with the probe between the tumor and peritumoral tissues. CONCLUSIONS The novel fluorescent probe PR-HMRG is effective in detecting glioblastoma when applied topically. Further investigations are warranted to assess the efficacy and safety of its clinical use.
Collapse
Affiliation(s)
- Yosuke Kitagawa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Mako Kamiya
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yugo Kuriki
- Laboratory of Chemistry and Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kyoko Yamamoto
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takenori Shimizu
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahide Nejo
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taijun Hana
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Reiko Matsuura
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsukasa Koike
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Erika Yamazawa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Kushihara
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Takahashi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Nomura
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirokazu Takami
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shunsaku Takayanagi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuteru Urano
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,Laboratory of Chemistry and Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
ERAP1 and ERAP2 Enzymes: A Protective Shield for RAS against COVID-19? Int J Mol Sci 2021; 22:ijms22041705. [PMID: 33567739 PMCID: PMC7914632 DOI: 10.3390/ijms22041705] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with coronavirus disease 2019 (COVID-19) have a wide variety of clinical outcomes ranging from asymptomatic to severe respiratory syndrome that can progress to life-threatening lung lesions. The identification of prognostic factors can help to improve the risk stratification of patients by promptly defining for each the most effective therapy to resolve the disease. The etiological agent causing COVID-19 is a new coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that enters cells via the ACE2 receptor. SARS-CoV-2 infection causes a reduction in ACE2 levels, leading to an imbalance in the renin-angiotensin system (RAS), and consequently, in blood pressure and systemic vascular resistance. ERAP1 and ERAP2 are two RAS regulators and key components of MHC class I antigen processing. Their polymorphisms have been associated with autoimmune and inflammatory conditions, hypertension, and cancer. Based on their involvement in the RAS, we believe that the dysfunctional status of ERAP1 and ERAP2 enzymes may exacerbate the effect of SARS-CoV-2 infection, aggravating the symptomatology and clinical outcome of the disease. In this review, we discuss this hypothesis.
Collapse
|
26
|
Kuiper JJW, Venema WJ. HLA-A29 and Birdshot Uveitis: Further Down the Rabbit Hole. Front Immunol 2020; 11:599558. [PMID: 33262772 PMCID: PMC7687429 DOI: 10.3389/fimmu.2020.599558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/16/2020] [Indexed: 12/26/2022] Open
Abstract
HLA class I alleles constitute established risk factors for non-infectious uveitis and preemptive genotyping of HLA class I alleles is standard practice in the diagnostic work-up. The HLA-A29 serotype is indispensable to Birdshot Uveitis (BU) and renders this enigmatic eye condition a unique model to better understand how the antigen processing and presentation machinery contributes to non-infectious uveitis or chronic inflammatory conditions in general. This review will discuss salient points regarding the protein structure of HLA-A29 and how key amino acid positions impact the peptide binding preference and interaction with T cells. We discuss to what extent the risk genes ERAP1 and ERAP2 uniquely affect HLA-A29 and how the discovery of a HLA-A29-specific submotif may impact autoantigen discovery. We further provide a compelling argument to solve the long-standing question why BU only affects HLA-A29-positive individuals from Western-European ancestry by exploiting data from the 1000 Genomes Project. We combine novel insights from structural and immunopeptidomic studies and discuss the functional implications of genetic associations across the HLA class I antigen presentation pathway to refine the etiological basis of Birdshot Uveitis.
Collapse
Affiliation(s)
- Jonas J. W. Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Wouter J. Venema
- Department of Ophthalmology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| |
Collapse
|
27
|
Vargas F, Wangesteen R, Rodríguez-Gómez I, García-Estañ J. Aminopeptidases in Cardiovascular and Renal Function. Role as Predictive Renal Injury Biomarkers. Int J Mol Sci 2020; 21:E5615. [PMID: 32764495 PMCID: PMC7460675 DOI: 10.3390/ijms21165615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 01/08/2023] Open
Abstract
Aminopeptidases (APs) are metalloenzymes that hydrolyze peptides and polypeptides by scission of the N-terminus amino acid and that also participate in the intracellular final digestion of proteins. APs play an important role in protein maturation, signal transduction, and cell-cycle control, among other processes. These enzymes are especially relevant in the control of cardiovascular and renal functions. APs participate in the regulation of the systemic and local renin-angiotensin system and also modulate the activity of neuropeptides, kinins, immunomodulatory peptides, and cytokines, even contributing to cholesterol uptake and angiogenesis. This review focuses on the role of four key APs, aspartyl-, alanyl-, glutamyl-, and leucyl-cystinyl-aminopeptidases, in the control of blood pressure (BP) and renal function and on their association with different cardiovascular and renal diseases. In this context, the effects of AP inhibitors are analyzed as therapeutic tools for BP control and renal diseases. Their role as urinary biomarkers of renal injury is also explored. The enzymatic activities of urinary APs, which act as hydrolyzing peptides on the luminal surface of the renal tubule, have emerged as early predictive renal injury biomarkers in both acute and chronic renal nephropathies, including those induced by nephrotoxic agents, obesity, hypertension, or diabetes. Hence, the analysis of urinary AP appears to be a promising diagnostic and prognostic approach to renal disease in both research and clinical settings.
Collapse
Affiliation(s)
- Félix Vargas
- Depto. Fisiologia, Fac. Medicina, Universidad de Granada, 18071 Granada, Spain
| | | | | | - Joaquín García-Estañ
- Depto. Fisiologia, Fac. Medicina, IMIB, Universidad de Murcia, 30120 Murcia, Spain
| |
Collapse
|
28
|
Lorente E, Fontela MG, Barnea E, Martín-Galiano AJ, Mir C, Galocha B, Admon A, Lauzurica P, López D. Modulation of Natural HLA-B*27:05 Ligandome by Ankylosing Spondylitis-associated Endoplasmic Reticulum Aminopeptidase 2 (ERAP2). Mol Cell Proteomics 2020; 19:994-1004. [PMID: 32265295 PMCID: PMC7261815 DOI: 10.1074/mcp.ra120.002014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
The HLA-B*27:05 allele and the endoplasmic reticulum-resident aminopeptidases are strongly associated with AS, a chronic inflammatory spondyloarthropathy. This study examined the effect of ERAP2 in the generation of the natural HLA-B*27:05 ligandome in live cells. Complexes of HLA-B*27:05-bound peptide pools were isolated from human ERAP2-edited cell clones, and the peptides were identified using high-throughput mass spectrometry analyses. The relative abundance of a thousand ligands was established by quantitative tandem mass spectrometry and bioinformatics analysis. The residue frequencies at different peptide position, identified in the presence or absence of ERAP2, determined structural features of ligands and their interactions with specific pockets of the antigen-binding site of the HLA-B*27:05 molecule. Sequence alignment of ligands identified with species of bacteria associated with HLA-B*27-dependent reactive arthritis was performed. In the absence of ERAP2, peptides with N-terminal basic residues and minority canonical P2 residues are enriched in the natural ligandome. Further, alterations of residue frequencies and hydrophobicity profile at P3, P7, and PΩ positions were detected. In addition, several ERAP2-dependent cellular peptides were highly similar to protein sequences of arthritogenic bacteria, including one human HLA-B*27:05 ligand fully conserved in a protein from Campylobacter jejuni These findings highlight the pathogenic role of this aminopeptidase in the triggering of AS autoimmune disease.
Collapse
Affiliation(s)
- Elena Lorente
- Unidad de Presentación y Regulación Inmunes, 28220 Majadahonda (Madrid), Spain
| | - Miguel G Fontela
- Unidad de Presentación y Regulación Inmunes, 28220 Majadahonda (Madrid), Spain
| | - Eilon Barnea
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | | | - Carmen Mir
- Unidad de Presentación y Regulación Inmunes, 28220 Majadahonda (Madrid), Spain
| | - Begoña Galocha
- Unidad de Presentación y Regulación Inmunes, 28220 Majadahonda (Madrid), Spain
| | - Arie Admon
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Pilar Lauzurica
- Unidad de Presentación y Regulación Inmunes, 28220 Majadahonda (Madrid), Spain
| | - Daniel López
- Unidad de Presentación y Regulación Inmunes, 28220 Majadahonda (Madrid), Spain.
| |
Collapse
|
29
|
Reeves E, Islam Y, James E. ERAP1: a potential therapeutic target for a myriad of diseases. Expert Opin Ther Targets 2020; 24:535-544. [PMID: 32249641 DOI: 10.1080/14728222.2020.1751821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Endoplasmic Reticulum Aminopeptidase 1 (ERAP1) is a key regulator of the peptide repertoire displayed by Major Histocompatibility Complex I (MHC I) to circulating CD8 + T cells and NK cells. Studies have highlighted the essential requirement for the generation of stable peptide MHC I in regulating both innate and adaptive immune responses in health and disease.Areas covered: We review the role of ERAP1 in peptide trimming of N-terminally extended precursors that enter the ER, before loading on to MHC I, and the consequence of loss or downregulation of this activity. Polymorphisms in ERAP1 form multiple combinations (allotypes) within the population, and we discuss the contribution of this ERAP1 variation, and expression, on disease pathogenesis, including the resulting effect on both innate and adaptive immunity. We consider the current efforts to design inhibitors based on approaches using rational design and small molecule screening, and the potential effect of pharmacological modulation on the treatment of autoimmunity and cancer.Expert opinion: ERAP1 is fundamental for the regulation of immune responses, through generation of the presented peptide repertoire at the cell surface. Modulation of ERAP1 function, through design of inhibitors, may serve as a vital tool for changing immune responses in disease.
Collapse
Affiliation(s)
- Emma Reeves
- Centre for Cancer Immunology, Faculty of Medicine, University Hospital Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Yasmin Islam
- Centre for Cancer Immunology, Faculty of Medicine, University Hospital Southampton, Southampton, UK
| | - Edward James
- Centre for Cancer Immunology, Faculty of Medicine, University Hospital Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
30
|
Affiliation(s)
- Yanyan Xu
- Department of Obstetrics-gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Junjiao Wu
- Department of Obstetrics-gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jianbo Wu
- Department of Obstetrics-gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
31
|
Saulle I, Vicentini C, Clerici M, Biasin M. An Overview on ERAP Roles in Infectious Diseases. Cells 2020; 9:E720. [PMID: 32183384 PMCID: PMC7140696 DOI: 10.3390/cells9030720] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) aminopeptidases ERAP1 and ERAP2 (ERAPs) are crucial enzymes shaping the major histocompatibility complex I (MHC I) immunopeptidome. In the ER, these enzymes cooperate in trimming the N-terminal residues from precursors peptides, so as to generate optimal-length antigens to fit into the MHC class I groove. Alteration or loss of ERAPs function significantly modify the repertoire of antigens presented by MHC I molecules, severely affecting the activation of both NK and CD8+ T cells. It is, therefore, conceivable that variations affecting the presentation of pathogen-derived antigens might result in an inadequate immune response and onset of disease. After the first evidence showing that ERAP1-deficient mice are not able to control Toxoplasma gondii infection, a number of studies have demonstrated that ERAPs are control factors for several infectious organisms. In this review we describe how susceptibility, development, and progression of some infectious diseases may be affected by different ERAPs variants, whose mechanism of action could be exploited for the setting of specific therapeutic approaches.
Collapse
Affiliation(s)
- Irma Saulle
- Cattedra di Immunologia, Dipartimento di Scienze Biomediche e Cliniche L. Sacco”, Università degli Studi di Milano, 20157 Milan, Italy; (C.V.); (M.B.)
- Cattedra di Immunologia, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti Università degli Studi di Milano, 20122 Milan, Italy;
| | - Chiara Vicentini
- Cattedra di Immunologia, Dipartimento di Scienze Biomediche e Cliniche L. Sacco”, Università degli Studi di Milano, 20157 Milan, Italy; (C.V.); (M.B.)
| | - Mario Clerici
- Cattedra di Immunologia, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti Università degli Studi di Milano, 20122 Milan, Italy;
- IRCCS Fondazione Don Carlo Gnocchi, 20157 Milan, Italy
| | - Mara Biasin
- Cattedra di Immunologia, Dipartimento di Scienze Biomediche e Cliniche L. Sacco”, Università degli Studi di Milano, 20157 Milan, Italy; (C.V.); (M.B.)
| |
Collapse
|
32
|
Babaie F, Hosseinzadeh R, Ebrazeh M, Seyfizadeh N, Aslani S, Salimi S, Hemmatzadeh M, Azizi G, Jadidi-Niaragh F, Mohammadi H. The roles of ERAP1 and ERAP2 in autoimmunity and cancer immunity: New insights and perspective. Mol Immunol 2020; 121:7-19. [PMID: 32135401 DOI: 10.1016/j.molimm.2020.02.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
Autoimmunity and cancer affect millions worldwide and both, in principal, result from dysregulated immune responses. There are many well-known molecules involved in immunological process playing as a double-edged sword, by which associating autoimmune diseases and cancer. In this regard, Endoplasmic reticulum aminopeptidases (ERAP) 1, which belongs to the M1 family of aminopeptidases, plays a central role as a "molecular ruler", proteolyzing of N-terminal of the antigenic peptides before their loading onto HLA-I molecules for antigen presentation in the Endoplasmic Reticulum (ER). Several genome-wide association studies (GWAS) highlighted the significance of ERAP1 and ERAP2 in autoimmune diseases, including Ankylosing spondylitis, Psoriasis, Bechet's disease, and Birdshot chorioretinopathy, as well as in cancers. The expression of ERAP1/2 is mostly altered in different cancers compared to normal cells, but how this affects anti-cancer immune responses and cancer growth has been little explored. Recent studies on the immunological outcomes and the catalytic functions of ERAP1 and ERAP2 have provided a better understanding of their potential pathogenetic role in autoimmunity and cancer. In this review, we summarize the role of ERAP1 and ERAP2 in the autoimmune diseases and cancer immunity based on the recent advances in GWAS studies.
Collapse
Affiliation(s)
- Farhad Babaie
- Department of Immunology and Genetic, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Ramin Hosseinzadeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Ebrazeh
- Department of Biology, Bonab Branch, Islamic Azad University, Bonab, Iran
| | - Narges Seyfizadeh
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soraya Salimi
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
33
|
Textoris-Taube K, Cammann C, Henklein P, Topfstedt E, Ebstein F, Henze S, Liepe J, Zhao F, Schadendorf D, Dahlmann B, Uckert W, Paschen A, Mishto M, Seifert U. ER-aminopeptidase 1 determines the processing and presentation of an immunotherapy-relevant melanoma epitope. Eur J Immunol 2019; 50:270-283. [PMID: 31729751 DOI: 10.1002/eji.201948116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 08/19/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023]
Abstract
Dissecting the different steps of the processing and presentation of tumor-associated antigens is a key aspect of immunotherapies enabling to tackle the immune response evasion attempts of cancer cells. The immunodominant glycoprotein gp100209-217 epitope, which is liberated from the melanoma differentiation antigen gp100PMEL17 , is part of immunotherapy trials. By analyzing different human melanoma cell lines, we here demonstrate that a pool of N-terminal extended peptides sharing the common minimal epitope is generated by melanoma proteasome subtypes. In vitro and in cellulo experiments indicate that ER-resident aminopeptidase 1 (ERAP1)-but not ERAP2-defines the processing of this peptide pool thereby modulating the T-cell recognition of melanoma cells. By combining the outcomes of our studies and others, we can sketch the complex processing and endogenous presentation pathway of the gp100209-217 -containing epitope/peptides, which are produced by proteasomes and are translocated to the vesicular compartment through different pathways, where the precursor peptides that reach the endoplasmic reticulum are further processed by ERAP1. The latter step enhances the activation of epitope-specific T lymphocytes, which might be a target to improve the efficiency of anti-melanoma immunotherapy.
Collapse
Affiliation(s)
- Kathrin Textoris-Taube
- Shared Facility for Mass Spectrometry, Berlin Institute of Health, Institut für Biochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clemens Cammann
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Petra Henklein
- Berlin Institute of Health, Institut für Biochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eylin Topfstedt
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Frédéric Ebstein
- Berlin Institute of Health, Institut für Biochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sarah Henze
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Juliane Liepe
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Fang Zhao
- Klinik für Dermatologie, Universitätsklinikum Essen, Essen and German Cancer Consortium (DKTK), Universität Duisburg-Essen, Essen, Germany
| | - Dirk Schadendorf
- Klinik für Dermatologie, Universitätsklinikum Essen, Essen and German Cancer Consortium (DKTK), Universität Duisburg-Essen, Essen, Germany
| | - Burkhardt Dahlmann
- Berlin Institute of Health, Institut für Biochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Wolfgang Uckert
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz Gemeinschaft, Berlin, Germany
| | - Annette Paschen
- Klinik für Dermatologie, Universitätsklinikum Essen, Essen and German Cancer Consortium (DKTK), Universität Duisburg-Essen, Essen, Germany
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom.,Centro Interdipartimentale di Ricerca sul Cancro "Giorgio Prodi", University of Bologna, Bologna, Italy
| | - Ulrike Seifert
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
34
|
Babaie F, Mohammadi H, Hemmatzadeh M, Ebrazeh M, Torkamandi S, Yousefi M, Hajaliloo M, Rezaiemanesh A, Salimi S, Salimi R, Safarzadeh E, Baradaran B, Babaloo Z. Evaluation of ERAP1 gene single nucleotide polymorphisms in immunomodulation of pro-inflammatory and anti-inflammatory cytokines profile in ankylosing spondylitis. Immunol Lett 2019; 217:31-38. [PMID: 31711818 DOI: 10.1016/j.imlet.2019.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ankylosing spondylitis (AS) is a prototype of chronic inflammatory arthritis termed seronegative spondyloarthropathies that typically affects the joints. Among the non-Human leukocyte antigen (HLA) loci, the strongest association has been observed with Endoplasmic reticulum aminopeptidase 1 (ERAP1) gene single nucleotide polymorphisms (SNPs). Moreover, the effect of ERAP1 gene SNPs on the pro-inflammatory and anti-inflammatory cytokines in AS disease has still been poorly elucidated. In this study, we aimed to determine the association of ERAP1 gene SNPs (rs30187 and rs2287987) with AS risk as well as their effect on the mRNA expression of pro-inflammatory and anti-inflammatory cytokines, with emphasis on the immunoregulation of the IL-17/IL-23 pathway, in an Iranian population. METHODS We performed Single specific primer (SSP)-PCR for genotyping of 160 AS patients and 160 healthy controls. After isolation of peripheral blood mononuclear cells (PBMCs), total RNA of PBMCs was isolated, complementary DNA (cDNA) was synthesized, and quantitative analyses of mRNA expression of cytokines were performed by Real-time PCR for 40 HLA-B27 positive AS patients and 40 healthy individuals as controls. RESULTS It was seen that T allele of rs30187 (OR = 1.54, 95% CI = 1.07-2.22, P = 0.017) and C allele of rs2287987 (OR 1.50, 95% CI 1.05-2.14, P = 0.024) were associated with the risk of AS. Both of these alleles were associated more strongly in the HLA-B27 positive AS patients. There was a significant overexpression of mRNAs of pro-inflammatory (IL-17A, IL-17F, IL-23, TNF-α and IFN-γ), while downregulation of anti-inflammatory cytokines (IL-10 and TGF-β) in PBMCs from 40 HLA-B27 positive AS patients in comparison to controls. AS patients with rs30187 SNP TT genotype expressed mRNA of IL-17A, IL-17F, and IL-23 significantly higher than patents with CT and CC genotypes for this SNP. CONCLUSIONS This study represented the association of ERAP1 gene rs30187 and rs2287987 polymorphism with the risk of AS. Additionally, it appears that rs30187 polymorphism may be involved in the immunomodulation of the IL-17/IL-23 pathway in the AS disease.
Collapse
Affiliation(s)
- Farhad Babaie
- Department of Immunology and Genetic, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Ebrazeh
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahram Torkamandi
- Department of Immunology and Genetic, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mehdi Yousefi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrzad Hajaliloo
- Connective Tissue Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sorayya Salimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Salimi
- Human Molecular Genetics, De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Elham Safarzadeh
- Department of Microbiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zohreh Babaloo
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Connective Tissue Research Center, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
35
|
Guasp P, Lorente E, Martín-Esteban A, Barnea E, Romania P, Fruci D, Kuiper JW, Admon A, López de Castro JA. Redundancy and Complementarity between ERAP1 and ERAP2 Revealed by their Effects on the Behcet's Disease-associated HLA-B*51 Peptidome. Mol Cell Proteomics 2019; 18:1491-1510. [PMID: 31092671 PMCID: PMC6682995 DOI: 10.1074/mcp.ra119.001515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum aminopeptidases ERAP1 and ERAP2 trim peptides to be loaded onto HLA molecules, including the main risk factor for Behçet's disease HLA-B*51. ERAP1 is also a risk factor among HLA-B*51-positive individuals, whereas no association is known with ERAP2. This study addressed the mutual relationships between both enzymes in the processing of an HLA-bound peptidome, interrogating their differential association with Behçet's disease. CRISPR/Cas9 was used to generate knock outs of ERAP1, ERAP2 or both from transfectant 721.221-HLA-B*51:01 cells. The surface expression of HLA-B*51 was reduced in all cases. The effects of depleting each or both enzymes on the B*51:01 peptidome were analyzed by quantitative label-free mass spectrometry. Substantial quantitative alterations of peptide length, subpeptidome balance, N-terminal residue usage, affinity and presentation of noncanonical ligands were observed. These effects were often different in the presence or absence of the other enzyme, revealing their mutual dependence. In the absence of ERAP1, ERAP2 showed similar and significant processing of B*51:01 ligands, indicating functional redundancy. The high overlap between the peptidomes of wildtype and double KO cells indicates that a large majority of B*51:01 ligands are present in the ER even in the absence of ERAP1/ERAP2. These results indicate that both enzymes have distinct, but complementary and partially redundant effects on the B*51:01 peptidome, leading to its optimization and maximal surface expression. The distinct effects of both enzymes on the HLA-B*51 peptidome provide a basis for their differential association with Behçet's disease and suggest a pathogenetic role of the B*51:01 peptidome.
Collapse
Affiliation(s)
- Pablo Guasp
- ‡Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | - Elena Lorente
- ‡Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | | | - Eilon Barnea
- §Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Paolo Romania
- ¶Immuno-Oncology Laboratory, Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Doriana Fruci
- ¶Immuno-Oncology Laboratory, Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - JonasJ W Kuiper
- ‖Department of Ophthalmology, Laboratory of Translational Immunology, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Arie Admon
- §Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
36
|
Saulle I, Ibba SV, Torretta E, Vittori C, Fenizia C, Piancone F, Minisci D, Lori EM, Trabattoni D, Gelfi C, Clerici M, Biasin M. Endoplasmic Reticulum Associated Aminopeptidase 2 (ERAP2) Is Released in the Secretome of Activated MDMs and Reduces in vitro HIV-1 Infection. Front Immunol 2019; 10:1648. [PMID: 31379846 PMCID: PMC6646713 DOI: 10.3389/fimmu.2019.01648] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022] Open
Abstract
Background: Haplotype-specific alternative splicing of the endoplasmic reticulum (ER) aminopeptidase type 2 (ERAP2) gene results in either full-length (FL, haplotype A) or alternatively spliced (AS, haplotype B) mRNA. HapA/HapA homozygous (HomoA) subjects show a reduced susceptibility to HIV-1 infection, probably secondary to the modulation of the antigen processing/presenting machinery. ERAP1 was recently shown to be secreted from the plasma membrane in response to activation; we investigated whether ERAP2 can be released as well and if the secreted form of this enzyme retains its antiviral function. Methods: Human monocyte derived macrophages (MDMs) were differentiated from peripheral blood mononuclear cells (PBMCs) isolated from 6 HomoA healthy controls and stimulated with IFNγ and LPS. ERAP2-FL secretion was evaluated by mass spectrometry. PBMCs (14 HomoA and 16 HomoB) and CD8-depleted PBMCs (CD8−PBMCs) (4 HomoA and 4 HomoB) were in vitro HIV-infected in the absence/presence of recombinant human ERAP2-FL (rhERAP2) protein; p24 viral antigen quantification was used to assess viral replication. IFNγ and CD69 mRNA expression, as well as the percentage of perforin-producing CD8+ T Lymphocytes, were analyzed 3 and 7-days post in vitro HIV-1-infection, respectively. The effect of rhERAP2 addition in cell cultures on T cell apoptosis, proliferation, activation, and maturation was evaluated as well on 24 h-stimulated PBMCs. Results: ERAP2 can be secreted from human MDMs in response to IFNγ/LPS stimulation. Notably, the addition of rhERAP2 to PBMC and CD8−PBMC cultures resulted in the reduction of viral replication, though these differences were statistically significant only in PBMCs (p < 0.05 in both HomoA and HomoB). This protective effect was associated with an increase in IFNγ and CD69 mRNA expression and in the percentage of perforin-expressing CD107+CD8+ cells. RhERAP2 addition also resulted in an increase in CD8+ activated lymphocyte (CD25+HLA−DRII+) and Effector Memory/Terminally differentiated CD8+ T cells ratio. Conclusions: This is the first report providing evidence for the release of ERAP2 in the secretome of immunocompetent cells. Data herein also indicate that exogenous ERAP2-FL exerts its protective function against HIV-1 infection, even in HomoB subjects who do not genetically produce it. Presumably, this defensive extracellular feature is only partially dependent on immune system modulation.
Collapse
Affiliation(s)
- Irma Saulle
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Salomè Valentina Ibba
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Enrica Torretta
- Department of Biomedical Science for Health, University of Milan, Milan, Italy
| | - Cecilia Vittori
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Claudio Fenizia
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | | - Davide Minisci
- Department of Infectious Disease, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Elisa Maria Lori
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Cecilia Gelfi
- Department of Biomedical Science for Health, University of Milan, Milan, Italy.,I.R.C.C.S Orthopaedic Institute Galeazzi, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Don C. Gnocchi Foundation IRCCS, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| |
Collapse
|
37
|
Warthan MD, Washington SL, Franzese SE, Ramus RM, Kim KR, York TP, Stratikos E, Strauss JF, Lee ED. The role of endoplasmic reticulum aminopeptidase 2 in modulating immune detection of choriocarcinoma. Biol Reprod 2019; 98:309-322. [PMID: 29324974 PMCID: PMC5939618 DOI: 10.1093/biolre/ioy001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 01/05/2018] [Indexed: 12/21/2022] Open
Abstract
Gestational choriocarcinomas are derived from placental trophoblast cells, with HLA-C being the only class I polymorphic molecule expressed. However, choriocarcinomas have not been profiled for endoplasmic reticulum aminopeptidase 2 (ERAP2) expression. ERAP2 trims peptides presented by human leukocyte antigens (HLA) that have shown to modulate immune response. Over 50% of choriocarcinomas we screened lack ERAP2 expression, which suggests that the absence of ERAP2 expression allows immune evasion of choriocarcinoma cells. We demonstrate that the ability of choriocarcinoma cells to activate lymphocytes was lowest with cells lacking ERAP2 (JEG-3) or HLA-C (JAr). This observation suggests that activation is dependent on expression of both ERAP2 and HLA-C molecules. In addition, an ERAP2 variant in which lysine is changed to asparagine (K392N) results in increased trimming activity (165-fold) for hydrophobic peptides and biologically never been detected. We hypothesize that homozygosity for the N392 ERAP2 variant is prohibited because it modulates the immune recognition of placental trophoblasts. We demonstrate that NK-cell activation and killing were significantly dependent on forced expression of the N392 ERAP2 isoform in JEG-3 cells. Cytotoxicity was confirmed by 7AAD killing assays showing that N392 ERAP2-isoform expressing JEG-3 cells had the highest percentage of apoptotic cells independent of the expression level of CD11a on lymphocytes. This is the first report showing that N392 ERAP2 promotes an immune clearance pathway for choriocarcinoma cells, and provides an explanation for why embryonic homozygosity for the N392 ERAP2 variant is not detected in any population.
Collapse
Affiliation(s)
- Michelle D Warthan
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sonya L Washington
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Samone E Franzese
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ronald M Ramus
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kyu-Rae Kim
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Timothy P York
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Jerome F Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Eun D Lee
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
38
|
Zhang P, Moye LS, Southey BR, Dripps I, Sweedler JV, Pradhan A, Rodriguez-Zas SL. Opioid-Induced Hyperalgesia Is Associated with Dysregulation of Circadian Rhythm and Adaptive Immune Pathways in the Mouse Trigeminal Ganglia and Nucleus Accumbens. Mol Neurobiol 2019; 56:7929-7949. [PMID: 31129808 DOI: 10.1007/s12035-019-01650-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
The benefits of opioid-based treatments to mitigate chronic pain can be hindered by the side effects of opioid-induced hyperalgesia (OIH) that can lead to higher consumption and risk of addiction. The present study advances the understanding of the molecular mechanisms associated with OIH by comparing mice presenting OIH symptoms in response to chronic morphine exposure (OIH treatment) relative to control mice (CON treatment). Using RNA-Seq profiles, gene networks were inferred in the trigeminal ganglia (TG), a central nervous system region associated with pain signaling, and in the nucleus accumbens (NAc), a region associated with reward dependency. The biological process of nucleic acid processing was over-represented among the 122 genes that exhibited a region-dependent treatment effect. Within the 187 genes that exhibited a region-independent treatment effect, circadian rhythm processes were enriched among the genes over-expressed in OIH relative to CON mice. This enrichment was supported by the differential expression of the period circadian clock 2 and 3 genes (Per2 and Per3). Transcriptional regulators in the PAR bZip family that are influenced by the circadian clock and that modulate neurotransmission associated with pain and drug addiction were also over-expressed in OIH relative to CON mice. Also notable was the under-expression in OIH relative to CON mice of the Toll-like receptor, nuclear factor-kappa beta, and interferon gamma genes and enrichment of the adaptive immune processes. The results from the present study offer insights to advance the effective use of opioids for pain management while minimizing hyperalgesia.
Collapse
Affiliation(s)
- Pan Zhang
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Laura S Moye
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Isaac Dripps
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Amynah Pradhan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Sandra L Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
39
|
Soltani S, Nasiri M. Association of ERAP2 gene variants with risk of pre-eclampsia among Iranian women. Int J Gynaecol Obstet 2019; 145:337-342. [PMID: 30933316 DOI: 10.1002/ijgo.12816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/21/2018] [Accepted: 03/29/2019] [Indexed: 11/09/2022]
Abstract
OBJECTIVES To determine the association between ERAP2 rs2549782 and rs17408150 polymorphisms and pre-eclampsia among Iranian women. METHODS A retrospective case-control study comparing 319 women with pre-eclampsia and 291 normotensive pregnant Iranian women between January and August 2016. Pre-eclampsia was diagnosed by the International Society for the Study of Hypertension in Pregnancy's criteria. Demographic data were collected by oral interview. Genotyping was done by allele-specific PCR. Data were analyzed using SPSS v. 16. RESULTS The frequency of the rs2549782TT genotype was 31.0% and 27.5% among cases and controls, respectively (P=0.006). There was no difference in the frequency of the T allele between groups (P>0.05). Regarding the rs17408150 polymorphism, a high portion of women with pre-eclampsia was homozygous for the AA genotype (P<0.001). The frequency of the A allele was 32.5% and 25.05% among cases and controls, respectively (P=0.004). The combined haplotype of the rs2549782A and rs17408150G alleles was associated with increased risk of pre-eclampsia (P=0.031). CONCLUSION ERAP2 gene polymorphisms were associated with the risk of pre-eclampsia in an Iranian population. The results provide further evidence of the role of ERAP2 in the pathophysiology of this disease.
Collapse
Affiliation(s)
- Sareh Soltani
- Department of Biology, Islamic Azad University, Arsanjan Branch, Arsanjan, Iran
| | - Mahboobeh Nasiri
- Department of Biology, Islamic Azad University, Arsanjan Branch, Arsanjan, Iran
| |
Collapse
|
40
|
Kuśnierczyk P, Stratikos E. Endoplasmic reticulum aminopeptidases as a double-faced tool to increase or decrease efficiency of antigen presentation in health and disease. Hum Immunol 2019; 80:277-280. [PMID: 30928619 DOI: 10.1016/j.humimm.2019.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, The Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Agia Paraskevi, Athens, Greece
| |
Collapse
|
41
|
Yao Y, Liu N, Zhou Z, Shi L. Influence of ERAP1 and ERAP2 gene polymorphisms on disease susceptibility in different populations. Hum Immunol 2019; 80:325-334. [PMID: 30797823 DOI: 10.1016/j.humimm.2019.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 02/07/2023]
Abstract
The endoplasmic reticulum aminopeptidases (ERAPs), ERAP1 and ERAP2, makes a role in shaping the HLA class I peptidome by trimming peptides to the optimal size in MHC-class I-mediated antigen presentation and educating the immune system to differentiate between self-derived and foreign antigens. Association studies have shown that genetic variations in ERAP1 and ERAP2 genes increase susceptibility to autoimmune diseases, infectious diseases, and cancers. Both ERAP1 and ERAP2 genes exhibit diverse polymorphisms in different populations, which may influence their susceptibly to the aforementioned diseases. In this article, we review the distribution of ERAP1 and ERAP2 gene polymorphisms in various populations; discuss the risk or protective influence of these gene polymorphisms in autoimmune diseases, infectious diseases, and cancers; and highlight how ERAP genetic variations can influence disease associations.
Collapse
Affiliation(s)
- Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming 650118, China
| | - Nannan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Ziyun Zhou
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming 650118, China.
| |
Collapse
|
42
|
Lim YW, Chen-Harris H, Mayba O, Lianoglou S, Wuster A, Bhangale T, Khan Z, Mariathasan S, Daemen A, Reeder J, Haverty PM, Forrest WF, Brauer M, Mellman I, Albert ML. Germline genetic polymorphisms influence tumor gene expression and immune cell infiltration. Proc Natl Acad Sci U S A 2018; 115:E11701-E11710. [PMID: 30463956 PMCID: PMC6294879 DOI: 10.1073/pnas.1804506115] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cancer immunotherapy has emerged as an effective therapy in a variety of cancers. However, a key challenge in the field is that only a subset of patients who receive immunotherapy exhibit durable response. It has been hypothesized that host genetics influences the inherent immune profiles of patients and may underlie their differential response to immunotherapy. Herein, we systematically determined the association of common germline genetic variants with gene expression and immune cell infiltration of the tumor. We identified 64,094 expression quantitative trait loci (eQTLs) that associated with 18,210 genes (eGenes) across 24 human cancers. Overall, eGenes were enriched for their being involved in immune processes, suggesting that expression of immune genes can be shaped by hereditary genetic variants. We identified the endoplasmic reticulum aminopeptidase 2 (ERAP2) gene as a pan-cancer type eGene whose expression levels stratified overall survival in a subset of patients with bladder cancer receiving anti-PD-L1 (atezolizumab) therapy. Finally, we identified 103 gene signature QTLs (gsQTLs) that were associated with predicted immune cell abundance within the tumor microenvironment. Our findings highlight the impact of germline SNPs on cancer-immune phenotypes and response to therapy; and these analyses provide a resource for integration of germline genetics as a component of personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Yoong Wearn Lim
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080
| | - Haiyin Chen-Harris
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080
| | - Oleg Mayba
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080
| | - Steve Lianoglou
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080
| | - Arthur Wuster
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080
- Department of Human Genetics, Genentech, South San Francisco, CA 94080
| | - Tushar Bhangale
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080
- Department of Human Genetics, Genentech, South San Francisco, CA 94080
| | - Zia Khan
- Department of Human Genetics, Genentech, South San Francisco, CA 94080
| | | | - Anneleen Daemen
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080
| | - Jens Reeder
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080
| | - Peter M Haverty
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080
| | - William F Forrest
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080
| | - Matthew Brauer
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080
| | - Ira Mellman
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080
| | - Matthew L Albert
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080;
| |
Collapse
|
43
|
de Castro JAL, Stratikos E. Intracellular antigen processing by ERAP2: Molecular mechanism and roles in health and disease. Hum Immunol 2018; 80:310-317. [PMID: 30414458 DOI: 10.1016/j.humimm.2018.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/19/2018] [Accepted: 11/05/2018] [Indexed: 02/05/2023]
Abstract
Endoplasmic Reticulum Aminopeptidase 2 (ERAP2) is an intracellular enzyme localized in the ER that has been shown to play roles in the generation of peptides that serve as ligands for MHC class I (MHC-1) molecules. Although ERAP2 has been primarily described as an accessory and complementary enzyme to the homologous ERAP1, several lines of evidence during the last few years suggest that it can play distinct and important roles in processing antigenic peptides and influencing cellular cytotoxic immune responses. Such emerging evidence has been shaping ERAP2 as a potentially tractable target for regulating select autoimmune and anti-cancer responses for therapeutic purposes. Here, we review the state-of-the-art knowledge on the role of ERAP2 in antigen processing, its structure and molecular mechanism, influence on shaping MHC-I-bound immunopeptidomes and its involvement in disease pathogenesis.
Collapse
Affiliation(s)
- José A López de Castro
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma), Madrid, Spain.
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Agia Paraskevi, Athens, Greece.
| |
Collapse
|
44
|
López de Castro JA. How ERAP1 and ERAP2 Shape the Peptidomes of Disease-Associated MHC-I Proteins. Front Immunol 2018; 9:2463. [PMID: 30425713 PMCID: PMC6219399 DOI: 10.3389/fimmu.2018.02463] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/04/2018] [Indexed: 12/28/2022] Open
Abstract
Four inflammatory diseases are strongly associated with Major Histocompatibility Complex class I (MHC-I) molecules: birdshot chorioretinopathy (HLA-A*29:02), ankylosing spondylitis (HLA-B*27), Behçet's disease (HLA-B*51), and psoriasis (HLA-C*06:02). The endoplasmic reticulum aminopeptidases (ERAP) 1 and 2 are also risk factors for these diseases. Since both enzymes are involved in the final processing steps of MHC-I ligands it is reasonable to assume that MHC-I-bound peptides play a significant pathogenetic role. This review will mainly focus on recent studies concerning the effects of ERAP1 and ERAP2 polymorphism and expression on shaping the peptidome of disease-associated MHC-I molecules in live cells. These studies will be discussed in the context of the distinct mechanisms and substrate preferences of both enzymes, their different patterns of genetic association with various diseases, the role of polymorphisms determining changes in enzymatic activity or expression levels, and the distinct peptidomes of disease-associated MHC-I allotypes. ERAP1 and ERAP2 polymorphism and expression induce significant changes in multiple MHC-I-bound peptidomes. These changes are MHC allotype-specific and, without excluding a degree of functional inter-dependence between both enzymes, reflect largely separate roles in their processing of MHC-I ligands. The studies reviewed here provide a molecular basis for the distinct patterns of genetic association of ERAP1 and ERAP2 with disease and for the pathogenetic role of peptides. The allotype-dependent alterations induced on distinct peptidomes may explain that the joint association of both enzymes and unrelated MHC-I alleles influence different pathological outcomes.
Collapse
|
45
|
Sanz-Bravo A, Martín-Esteban A, Kuiper JJW, García-Peydró M, Barnea E, Admon A, López de Castro JA. Allele-specific Alterations in the Peptidome Underlie the Joint Association of HLA-A*29:02 and Endoplasmic Reticulum Aminopeptidase 2 (ERAP2) with Birdshot Chorioretinopathy. Mol Cell Proteomics 2018; 17:1564-1577. [PMID: 29769354 DOI: 10.1074/mcp.ra118.000778] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 11/06/2022] Open
Abstract
Virtually all patients of the rare inflammatory eye disease birdshot chorioretinopathy (BSCR) carry the HLA-A*29:02 allele. BSCR is also associated with endoplasmic reticulum aminopeptidase 2 (ERAP2), an enzyme involved in processing HLA class I ligands, thus implicating the A*29:02 peptidome in this disease. To investigate the relationship between both risk factors we employed label-free quantitative mass spectrometry to characterize the effects of ERAP2 on the A*29:02-bound peptidome. An ERAP2-negative cell line was transduced with lentiviral constructs containing GFP-ERAP2 or GFP alone, and the A*29:02 peptidomes from both transduced cells were compared. A similar analysis was performed with two additional A*29:02-positive, ERAP1-concordant, cell lines expressing or not ERAP2. In both comparisons the presence of ERAP2 affected the following features of the A*29:02 peptidome: 1) Length, with increased amounts of peptides >9-mers, and 2) N-terminal residues, with less ERAP2-susceptible and more hydrophobic ones. The paradoxical effects on peptide length suggest that unproductive binding to ERAP2 might protect some peptides from ERAP1 over-trimming. The influence on N-terminal residues can be explained by a direct effect of ERAP2 on trimming, without ruling out and improved processing in concert with ERAP1. The alterations in the A*29:02 peptidome suggest that the association of ERAP2 with BSCR is through its effects on peptide processing. These differ from those on the ankylosing spondylitis-associated HLA-B*27. Thus, ERAP2 alters the peptidome of distinct HLA molecules as a function of their specific binding preferences, influencing different pathological outcomes in an allele-dependent way.
Collapse
Affiliation(s)
- Alejandro Sanz-Bravo
- From the ‡Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | | | - Jonas J W Kuiper
- §Department of Ophthalmology, University Medical Center Utrecht, The Netherlands
| | - Marina García-Peydró
- From the ‡Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | - Eilon Barnea
- ¶Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Arie Admon
- ¶Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
46
|
Zee RYL, Rivera A, Inostroza Y, Ridker PM, Chasman DI, Romero JR. Gene Variation of Endoplasmic Reticulum Aminopeptidases 1 and 2, and Risk of Blood Pressure Progression and Incident Hypertension among 17,255 Initially Healthy Women. Int J Genomics 2018; 2018:2308585. [PMID: 29850473 PMCID: PMC5933071 DOI: 10.1155/2018/2308585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/14/2018] [Indexed: 02/07/2023] Open
Abstract
Recent studies have demonstrated the importance of endoplasmic reticulum aminopeptidase (ERAP) in blood pressure (BP) homeostasis. To date, no large prospective, genetic-epidemiological data are available on genetic variation within ERAP and hypertension risk. The association of 45 genetic variants of ERAP1 and ERAP2 was investigated in 17,255 Caucasian female participants from the Women's Genome Health Study. All subjects were free of hypertension at baseline. During an 18-year follow-up period, 10,216 incident hypertensive cases were identified. Multivariable linear, logistic, and Cox regression analyses were performed to assess the relationship of genotypes with baseline BP levels, BP progression at 48 months, and incident hypertension assuming an additive genetic model. Linear regression analyses showed associations of four tSNPs (ERAP1: rs27524; ERAP2: rs3733904, rs4869315, and rs2549782; all p < 0.05) with baseline systolic BP levels. Three tSNPs (ERAP1: rs27851, rs27429, and rs34736, all p < 0.05) were associated with baseline diastolic BP levels. Multivariable logistic regression analysis showed that ERAP1 rs27772 was associated with BP progression at 48 months (p = 0.0366). Multivariable Cox regression analysis showed an association of three tSNPs (ERAP1: rs469783 and rs10050860; ERAP2: rs2927615; all p < 0.05) with risk of incident hypertension. Analyses of dbGaP for genotype-phenotype association and GTEx Portal for gene expression quantitative trait loci revealed five tSNPs with differential association of BP and nine tSNPs with lower ERAP1 and ERAP2 mRNA expression levels, respectively. The present study suggests that ERAP1 and ERAP2 gene variation may be useful for risk assessment of BP progression and the development of hypertension.
Collapse
Affiliation(s)
- Robert Y. L. Zee
- Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Dentistry, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Alicia Rivera
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Nephrology, Vascular Biology Research Center, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02111, USA
| | - Yaritza Inostroza
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Paul M. Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Daniel I. Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jose R. Romero
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
47
|
Park E, Pan Z, Zhang Z, Lin L, Xing Y. The Expanding Landscape of Alternative Splicing Variation in Human Populations. Am J Hum Genet 2018; 102:11-26. [PMID: 29304370 PMCID: PMC5777382 DOI: 10.1016/j.ajhg.2017.11.002] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/03/2017] [Indexed: 12/16/2022] Open
Abstract
Alternative splicing is a tightly regulated biological process by which the number of gene products for any given gene can be greatly expanded. Genomic variants in splicing regulatory sequences can disrupt splicing and cause disease. Recent developments in sequencing technologies and computational biology have allowed researchers to investigate alternative splicing at an unprecedented scale and resolution. Population-scale transcriptome studies have revealed many naturally occurring genetic variants that modulate alternative splicing and consequently influence phenotypic variability and disease susceptibility in human populations. Innovations in experimental and computational tools such as massively parallel reporter assays and deep learning have enabled the rapid screening of genomic variants for their causal impacts on splicing. In this review, we describe technological advances that have greatly increased the speed and scale at which discoveries are made about the genetic variation of alternative splicing. We summarize major findings from population transcriptomic studies of alternative splicing and discuss the implications of these findings for human genetics and medicine.
Collapse
Affiliation(s)
- Eddie Park
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhicheng Pan
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zijun Zhang
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lan Lin
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Xing
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
48
|
Kopf PG, Park SK, Herrnreiter A, Krause C, Roques BP, Campbell WB. Obligatory Metabolism of Angiotensin II to Angiotensin III for Zona Glomerulosa Cell-Mediated Relaxations of Bovine Adrenal Cortical Arteries. Endocrinology 2018; 159:238-247. [PMID: 29088382 PMCID: PMC5761603 DOI: 10.1210/en.2017-00759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022]
Abstract
Hyperaldosteronism is associated with hypertension, cardiac hypertrophy, and congestive heart failure. Steroidogenic factors facilitate aldosterone secretion by increasing adrenal blood flow. Angiotensin (Ang) II decreases adrenal vascular tone through release of zona glomerulosa (ZG) cell-derived vasodilatory eicosanoids. However, ZG cell-mediated relaxation of bovine adrenal cortical arteries to Ang II is not altered by angiotensin type 1 or 2 receptor antagonists. Because traditional Ang II receptors do not mediate these vasorelaxations to Ang II, we investigated the role of Ang II metabolites. Ang III was identified by liquid chromatography-mass spectrometry as the primary ZG cell metabolite of Ang II. Ang III stimulated ZG cell-mediated relaxation of adrenal arteries with greater potency than did Ang II. Furthermore, ZG cell-mediated relaxations of adrenal arteries by Ang II were attenuated by aminopeptidase inhibition, and Ang III-stimulated relaxations persisted. Ang IV had little effect compared with Ang II. Moreover, ZG cell-mediated relaxations of adrenal arteries by Ang II were attenuated by an Ang III antagonist but not by an Ang (1-7) antagonist. In contrast, Ang II and Ang III were equipotent in stimulating aldosterone secretion from ZG cells and were unaffected by aminopeptidase inhibition. Additionally, aspartyl and leucyl aminopeptidases, which convert Ang II to Ang III, are the primary peptidase expressed in ZG cells. This was confirmed by enzyme activity. These data indicate that intra-adrenal metabolism of Ang II to Ang III is required for ZG cell-mediated relaxations of adrenal arteries but not aldosterone secretion. These studies have defined an important role of Ang III in the adrenal gland.
Collapse
MESH Headings
- Abattoirs
- Adrenal Cortex/blood supply
- Adrenal Cortex/drug effects
- Adrenal Cortex/metabolism
- Aldosterone/metabolism
- Aminopeptidases/antagonists & inhibitors
- Aminopeptidases/genetics
- Aminopeptidases/metabolism
- Angiotensin I/antagonists & inhibitors
- Angiotensin I/metabolism
- Angiotensin II/analogs & derivatives
- Angiotensin II/chemistry
- Angiotensin II/metabolism
- Angiotensin II/pharmacology
- Angiotensin III/metabolism
- Animals
- Arterioles/cytology
- Arterioles/drug effects
- Arterioles/metabolism
- Cattle
- Cells, Cultured
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Gene Expression Regulation, Enzymologic/drug effects
- In Vitro Techniques
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Peptide Fragments/antagonists & inhibitors
- Peptide Fragments/metabolism
- Peptide Fragments/pharmacology
- Protease Inhibitors/pharmacology
- Vasodilation/drug effects
- Zona Glomerulosa/cytology
- Zona Glomerulosa/drug effects
- Zona Glomerulosa/metabolism
Collapse
Affiliation(s)
- Phillip G. Kopf
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois 60515
| | - Sang-Kyu Park
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Anja Herrnreiter
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Christian Krause
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Bernard P. Roques
- Unité de Technologies Chimiques et Biologiques pour la Santé (U1022 INSERM, UMR8258 CNRS), Université Paris Descartes, 75006 Paris, France
| | - William B. Campbell
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
49
|
Sullivan KD, Evans D, Pandey A, Hraha TH, Smith KP, Markham N, Rachubinski AL, Wolter-Warmerdam K, Hickey F, Espinosa JM, Blumenthal T. Trisomy 21 causes changes in the circulating proteome indicative of chronic autoinflammation. Sci Rep 2017; 7:14818. [PMID: 29093484 PMCID: PMC5665944 DOI: 10.1038/s41598-017-13858-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022] Open
Abstract
Trisomy 21 (T21) causes Down syndrome (DS), but the mechanisms by which T21 produces the different disease spectrum observed in people with DS are unknown. We recently identified an activated interferon response associated with T21 in human cells of different origins, consistent with overexpression of the four interferon receptors encoded on chromosome 21, and proposed that DS could be understood partially as an interferonopathy. However, the impact of T21 on systemic signaling cascades in living individuals with DS is undefined. To address this knowledge gap, we employed proteomics approaches to analyze blood samples from 263 individuals, 165 of them with DS, leading to the identification of dozens of proteins that are consistently deregulated by T21. Most prominent among these proteins are numerous factors involved in immune control, the complement cascade, and growth factor signaling. Importantly, people with DS display higher levels of many pro-inflammatory cytokines (e.g. IL-6, MCP-1, IL-22, TNF-α) and pronounced complement consumption, resembling changes seen in type I interferonopathies and other autoinflammatory conditions. Therefore, these results are consistent with the hypothesis that increased interferon signaling caused by T21 leads to chronic immune dysregulation, and justify investigations to define the therapeutic value of immune-modulatory strategies in DS.
Collapse
Affiliation(s)
- Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA.,Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Donald Evans
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Ahwan Pandey
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA.,Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | | | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Neil Markham
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Angela L Rachubinski
- JFK Partners/Developmental Pediatrics, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Kristine Wolter-Warmerdam
- Anna and John J. Sie Center for Down Syndrome, Children's Hospital Colorado, Aurora, Colorado, 80045, USA
| | - Francis Hickey
- Anna and John J. Sie Center for Down Syndrome, Children's Hospital Colorado, Aurora, Colorado, 80045, USA
| | - Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA. .,Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA. .,Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, 80203, USA.
| | - Thomas Blumenthal
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA. .,Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, 80203, USA. .,Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA.
| |
Collapse
|
50
|
Martín-Esteban A, Guasp P, Barnea E, Admon A, López de Castro JA. Functional Interaction of the Ankylosing Spondylitis-Associated Endoplasmic Reticulum Aminopeptidase 2 With the HLA-B*27 Peptidome in Human Cells. Arthritis Rheumatol 2017; 68:2466-75. [PMID: 27110896 DOI: 10.1002/art.39734] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/21/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To determine the influence of endoplasmic reticulum aminopeptidase 2 (ERAP-2) expression on the HLA-B*27 peptidome in live cells. METHODS Using immunoaffinity chromatography and acid extraction, HLA-B*27:05-bound peptides were isolated from 2 ERAP-2-negative lymphoblastoid cell lines and 1 ERAP-2-positive lymphoblastoid cell line expressing functionally indistinguishable ERAP-1 variants. More than 2,000-4,000 B*27:05 ligands were identified from each cell line, and their relative abundance was established by quantitative tandem mass spectrometry and MaxQuant-based peptide analyses. Pairwise comparisons were used to determine the structural features of peptides whose relative abundance was dependent on the presence of ERAP-2. Synthetic peptide digestions were performed with recombinant ERAP-1 and ERAP-2. Peptide affinity was estimated with standard algorithms. RESULTS The B*27:05 peptidome from ERAP-2-positive cells showed 3-4% fewer peptides with N-terminal basic residues than did the peptidome from ERAP-2-negative cells. Among the shared peptides, those most abundant in the presence of ERAP-2 included more nonamers, fewer decamers, and fewer N-terminal basic residues than the peptides predominant in ERAP-2-negative cells. These ERAP-2-dependent changes did not alter the global affinity of the B*27:05 peptidome. CONCLUSION ERAP-2 significantly influences the B*27:05-bound peptidome by destroying some ligands and decreasing the abundance of many more ligands with N-terminal basic residues, while increasing the abundance of nonamers. The former effects are best explained by direct ERAP-2 trimming. The effects on peptide length might be attributed to ERAP-2-induced activation of ERAP-1 trimming. These data support the notion of a peptide-mediated mechanism as the basis for the association of ERAP-2 with ankylosing spondylitis. Analogous effects on other major histocompatibility complex class I peptidomes might explain the involvement of ERAP-2 in HLA-B27-negative spondyloarthritis.
Collapse
Affiliation(s)
- Adrian Martín-Esteban
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma), Madrid, Spain
| | - Pablo Guasp
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma), Madrid, Spain
| | - Eilon Barnea
- Technion-Israel Institute of Technology, Haifa, Israel
| | - Arie Admon
- Technion-Israel Institute of Technology, Haifa, Israel
| | - José A López de Castro
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma), Madrid, Spain.
| |
Collapse
|