1
|
Vanagas L, Muñoz D, Cristaldi C, Ganuza A, Nájera R, Bonardi MC, Turowski VR, Guzman F, Deng B, Kim K, Sullivan WJ, Angel SO. Histone variant H2B.Z acetylation is necessary for maintenance of Toxoplasma gondii biological fitness. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194943. [PMID: 37217032 PMCID: PMC10524646 DOI: 10.1016/j.bbagrm.2023.194943] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Through regulation of DNA packaging, histone proteins are fundamental to a wide array of biological processes. A variety of post-translational modifications (PTMs), including acetylation, constitute a proposed histone code that is interpreted by "reader" proteins to modulate chromatin structure. Canonical histones can be replaced with variant versions that add an additional layer of regulatory complexity. The protozoan parasite Toxoplasma gondii is unique among eukaryotes in possessing a novel variant of H2B designated H2B.Z. The combination of PTMs and the use of histone variants are important for gene regulation in T. gondii, offering new targets for drug development. In this work, T. gondii parasites were generated in which the 5 N-terminal acetylatable lysines in H2B.Z were mutated to either alanine (c-Myc-A) or arginine (c-Myc-R). The c-Myc-A mutant displayed no phenotype over than a mild defect in its ability to kill mice. The c-Myc-R mutant presented an impaired ability to grow and an increase in differentiation to latent bradyzoites. The c-Myc-R mutant was also more sensitive to DNA damage, displayed no virulence in mice, and provided protective immunity against future infection. While nucleosome composition was unaltered, key genes were abnormally expressed during in vitro bradyzoite differentiation. Our results show that regulation of the N-terminal positive charge patch of H2B.Z is important for these processes. We also show that acetylated N-terminal H2B.Z interacts with some unique proteins compared to its unacetylated counterpart; the acetylated peptide pulled down proteins associated with chromosome maintenance/segregation and cell cycle, suggesting a link between H2B.Z acetylation status and mitosis.
Collapse
Affiliation(s)
- Laura Vanagas
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA, Chascomús, Prov. Buenos Aires, Argentina.
| | - Daniela Muñoz
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA, Chascomús, Prov. Buenos Aires, Argentina
| | - Constanza Cristaldi
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA, Chascomús, Prov. Buenos Aires, Argentina
| | - Agustina Ganuza
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA, Chascomús, Prov. Buenos Aires, Argentina
| | - Rosario Nájera
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA, Chascomús, Prov. Buenos Aires, Argentina
| | - Mabel C Bonardi
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA, Chascomús, Prov. Buenos Aires, Argentina
| | - Valeria R Turowski
- Laboratorio de Bioquímica y Biología Celular de Parásitos, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA Chascomús, Prov. Buenos Aires, Argentina
| | - Fanny Guzman
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaiso, Av. Universidad 330 Curauma, Valparaiso, Chile
| | - Bin Deng
- Department of Biology and VBRN, University of Vermont, VT, USA
| | - Kami Kim
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - William J Sullivan
- Department of Pharmacology and Toxicology, Indiana School of Medicine, Indianapolis, IN 46202, USA
| | - Sergio O Angel
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA, Chascomús, Prov. Buenos Aires, Argentina.
| |
Collapse
|
2
|
Kikuchi M, Morita S, Wakamori M, Sato S, Uchikubo-Kamo T, Suzuki T, Dohmae N, Shirouzu M, Umehara T. Epigenetic mechanisms to propagate histone acetylation by p300/CBP. Nat Commun 2023; 14:4103. [PMID: 37460559 DOI: 10.1038/s41467-023-39735-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
Histone acetylation is important for the activation of gene transcription but little is known about its direct read/write mechanisms. Here, we report cryogenic electron microscopy structures in which a p300/CREB-binding protein (CBP) multidomain monomer recognizes histone H4 N-terminal tail (NT) acetylation (ac) in a nucleosome and acetylates non-H4 histone NTs within the same nucleosome. p300/CBP not only recognized H4NTac via the bromodomain pocket responsible for reading, but also interacted with the DNA minor grooves via the outside of that pocket. This directed the catalytic center of p300/CBP to one of the non-H4 histone NTs. The primary target that p300 writes by reading H4NTac was H2BNT, and H2BNTac promoted H2A-H2B dissociation from the nucleosome. We propose a model in which p300/CBP replicates histone N-terminal tail acetylation within the H3-H4 tetramer to inherit epigenetic storage, and transcribes it from the H3-H4 tetramer to the H2B-H2A dimers to activate context-dependent gene transcription through local nucleosome destabilization.
Collapse
Affiliation(s)
- Masaki Kikuchi
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Satoshi Morita
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Masatoshi Wakamori
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Shin Sato
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Tomomi Uchikubo-Kamo
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.
| |
Collapse
|
3
|
Vanagas L, Muñoz D, Cristaldi C, Ganuza A, Nájera R, Bonardi MC, Turowski VR, Guzman F, Deng B, Kim K, Sullivan WJ, Angel SO. Histone variant H2B.Z acetylation is necessary for maintenance of Toxoplasma gondii biological fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528480. [PMID: 36824796 PMCID: PMC9949044 DOI: 10.1101/2023.02.14.528480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Through regulation of DNA packaging, histone proteins are fundamental to a wide array of biological processes. A variety of post-translational modifications (PTMs), including acetylation, constitute a proposed histone code that is interpreted by "reader" proteins to modulate chromatin structure. Canonical histones can be replaced with variant versions that add an additional layer of regulatory complexity. The protozoan parasite Toxoplasma gondii is unique among eukaryotes in possessing a novel variant of H2B designated H2B.Z. The combination of PTMs and the use of histone variants is important for gene regulation in T. gondii, offering new targets for drug development. In this work, T. gondii parasites were generated in which the 5 N-terminal acetylatable lysines in H2B.Z were mutated to either alanine (c-Myc-A) or arginine (c-Myc-R). c-Myc-A mutant only displayed a mild effect in its ability to kill mice. c-Myc-R mutant presented an impaired ability to grow and an increase in differentiation to latent bradyzoites. This mutant line was also more sensitive to DNA damage, displayed no virulence in mice, and provided protective immunity against future infection. While nucleosome composition was unaltered, key genes were abnormally expressed during in vitro bradyzoite differentiation. Our results show that the N-terminal positive charge patch of H2B.Z is important for these procceses. Pull down assays with acetylated N-terminal H2B.Z peptide and unacetylated one retrieved common and differential interactors. Acetylated peptide pulled down proteins associated with chromosome maintenance/segregation and cell cycle, opening the question of a possible link between H2B.Z acetylation status and mitosis.
Collapse
Affiliation(s)
- Laura Vanagas
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Daniela Muñoz
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Constanza Cristaldi
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Agustina Ganuza
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Rosario Nájera
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Mabel C. Bonardi
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Valeria R. Turowski
- Laboratorio de Bioquímica y Biología Celular de Parásitos, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Fanny Guzman
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaiso. Av. Universidad 330 Curauma, Valparaiso
| | - Bin Deng
- Department of Biology and VBRN, University of Vermont, Vermont, USA
| | - Kami Kim
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - William J. Sullivan
- Department of Pharmacology and Toxicology, Indiana School of Medicine, Indianapolis, Indiana 46202, USA
| | - Sergio O. Angel
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| |
Collapse
|
4
|
Abstract
The chicken model organism has advanced the areas of developmental biology, virology, immunology, oncology, epigenetic regulation of gene expression, conservation biology, and genomics of domestication. Further, the chicken model organism has aided in our understanding of human disease. Through the recent advances in high-throughput sequencing and bioinformatic tools, researchers have successfully identified sequences in the chicken genome that have human orthologs, improving mammalian genome annotation. In this review, we highlight the importance of chicken as an animal model in basic and pre-clinical research. We will present the importance of chicken in poultry epigenetics and in genomic studies that trace back to their ancestor, the last link between human and chicken in the tree of life. There are still many genes of unknown function in the chicken genome yet to be characterized. By taking advantage of recent sequencing technologies, it is possible to gain further insight into the chicken epigenome.
Collapse
Affiliation(s)
- Tasnim H Beacon
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
5
|
Jahan S, Sun JM, He S, Davie JR. Transcription-dependent association of HDAC2 with active chromatin. J Cell Physiol 2017; 233:1650-1657. [PMID: 28671300 DOI: 10.1002/jcp.26078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 11/10/2022]
Abstract
Histone deacetylase 2 (HDAC2) catalyzes deacetylation of histones at the promoter and coding regions of transcribed genes and regulates chromatin structure and transcription. To explore the role of HDAC2 and phosphorylated HDAC2 in gene regulation, we studied the location along transcribed genes, the mode of recruitment and the associated proteins with HDAC2 and HDAC2S394ph in chicken polychromatic erythrocytes. We show that HDAC2 and HDAC2S394ph are associated with transcriptionally active chromatin and located in the interchromatin channels. HDAC2S394ph was present primarly at the upstream promoter region of the transcribed CA2 and GAS41 genes, while total HDAC2 was also found within the coding region of the CA2 gene. Recruitment of HDAC2 to these genes was partially dependent upon on-going transcription. Unmodified HDAC2 was associated with RNA binding proteins and interacted with RNA bound to the initiating and elongating forms of RNA polymerase II. HDAC2S394ph was not associated with RNA polymerase II. These results highlight the differential properties of unmodified and phosphorylated HDAC2 and the organization of acetylated transcriptionally active chromatin in the chicken polychromatic erythrocyte.
Collapse
Affiliation(s)
- Sanzida Jahan
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jian-Min Sun
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shihua He
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James R Davie
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
6
|
Abstract
BACKGROUND Transcriptional regulation is impacted by multiple layers of genome organization. A general feature of transcriptionally active chromatin is sensitivity to DNase I and association with acetylated histones. However, very few of these active DNase I-sensitive domains, such as the chicken erythrocyte β-globin domain, have been identified and characterized. In chicken polychromatic erythrocytes, dynamically acetylated histones associated with DNase I-sensitive, transcriptionally active chromatin prevent histone H1/H5-induced insolubility at physiological ionic strength. RESULTS Here, we identified and mapped out all the transcriptionally active chromosomal domains in the chicken polychromatic erythrocyte genome by combining a powerful chromatin fractionation method with next-generation DNA and RNA sequencing. Two classes of transcribed chromatin organizations were identified on the basis of the extent of solubility at physiological ionic strength. Highly transcribed genes were present in multigenic salt-soluble chromatin domains ranging in length from 30 to over 150 kb. We identified over 100 highly expressed genes that were organized in broad dynamically highly acetylated, salt-soluble chromatin domains. Highly expressed genes were associated with H3K4me3 and H3K27ac and produced discernible antisense transcripts. The moderately- and low-expressing genes had highly acetylated, salt-soluble chromatin regions confined to the 5' end of the gene. CONCLUSIONS Our data provide a genome-wide profile of chromatin signatures in relation to expression levels in chicken polychromatic erythrocytes.
Collapse
|
7
|
Quantitative real-time PCR (qPCR) for Eimeria tenella replication--Implications for experimental refinement and animal welfare. Parasitol Int 2015; 64:464-70. [PMID: 26141544 PMCID: PMC4534708 DOI: 10.1016/j.parint.2015.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 11/21/2022]
Abstract
The Eimeria species are highly pathogenic parasites of chickens. Research aimed at reducing their impact is hindered by a lack of non-subjective, quantitative, tools to measure parasite replication in the host. The time-consuming, and often time-sensitive, nature of existing approaches precludes their use in large-scale genetic, epidemiological, and evolutionary analyses. We have used quantitative real-time PCR (qPCR) to accurately quantify Eimeria tenella in chicken tissue and shown this to be more efficient and sensitive than traditional methodologies. We tested four chicken-specific reference qPCR assays and found beta-actin (actb) to be optimal for sample normalisation. In an experimental setting, chickens were inoculated with 500, 1500, or 4500 E. tenella oocysts and parasite replication and the impact of infection measured by i) qPCR analysis of DNA extracted from caecal tissues collected at five and eight days post-infection (dpi), ii) faecal oocyst counts (FOCs) on samples taken from six to eight dpi, and iii) lesion scoring on caeca collected post-mortem at five and eight dpi. Quantitative real-time PCR test results indicated a significant dose-dependent increase in parasite numbers among study groups for samples collected five dpi (i.e., prior to gametogony) (R2 = 0.994) (p < 0.002) but not in those from day eight (after most oocyst shedding) (R2 = 0.006) (p > 0.379). A strong dose-dependent increase in parasite replication and severity of infection was also revealed by FOC (R2 = 0.997) and lesion scoring. Importantly, qPCR offers substantial improvements for animal welfare via improved statistical power and reduced group sizes in experimental studies. The described qPCR method overcomes subjective limitations of coproscopic quantification, allows reproducible medium- to high-throughput examination of tissues, faeces, and oocysts, and is a valuable tool for determining the impact of Eimeria infections in both experimental and field settings. Quantitative PCR indicates significant dose-dependent increases in parasites. More sensitive measure of parasite replication than faecal oocyst count/lesion score Significant implications for animal welfare and experiment refinement (3R's) Support studies focusing on the genetic basis of resistance/susceptibility Major implications for investigations of key aspects of Eimeria biology and control
Collapse
|
8
|
Genomic cis-acting Sequences Improve Expression and Establishment of a Nonviral Vector. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e118. [PMID: 24002728 PMCID: PMC3759742 DOI: 10.1038/mtna.2013.47] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 06/21/2013] [Indexed: 01/30/2023]
Abstract
The vector pEPI was the first nonviral and episomally replicating vector. Its functional element is an expression unit linked to a chromosomal scaffold/matrix attached region (S/MAR). The vector replicates autonomously with low copy number in various cell lines, is mitotically stable in the absence of selection over hundreds of generations, and was successfully used for the efficient generation of genetically modified pigs. Since it is assumed that establishment of the vector is a stochastic event and strongly depends on the nuclear compartment it reaches after transfection, it is of great interest to identify genomic sequences that guide DNA sequences into certain nuclear compartments. Here we inserted genomic cis-acting sequences into pEPI and examined their impact on transgene expression, long-term stability, and vector establishment. We demonstrated that a ubiquitous chromatin-opening element (UCOE) mediated enhanced transgene expression, while an insulator sequence (cHS4) increased establishment efficiency, presumably via an additional interaction with the nuclear matrix. Thus, besides being a promising alternative to currently used viral vectors in gene therapeutic approaches, pEPI may also serve as a tool to study nuclear compartmentalization; identification of genomic cis-acting sequences that are involved in nuclear organization will contribute to our understanding of the interplay between transgene expression, plasmid establishment, and nuclear architecture.
Collapse
|
9
|
Lopez-Atalaya JP, Ito S, Valor LM, Benito E, Barco A. Genomic targets, and histone acetylation and gene expression profiling of neural HDAC inhibition. Nucleic Acids Res 2013; 41:8072-84. [PMID: 23821663 PMCID: PMC3783173 DOI: 10.1093/nar/gkt590] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histone deacetylase inhibitors (HDACis) have been shown to potentiate hippocampal-dependent memory and synaptic plasticity and to ameliorate cognitive deficits and degeneration in animal models for different neuropsychiatric conditions. However, the impact of these drugs on hippocampal histone acetylation and gene expression profiles at the genomic level, and the molecular mechanisms that underlie their specificity and beneficial effects in neural tissue, remains obscure. Here, we mapped four relevant histone marks (H3K4me3, AcH3K9,14, AcH4K12 and pan-AcH2B) in hippocampal chromatin and investigated at the whole-genome level the impact of HDAC inhibition on acetylation profiles and basal and activity-driven gene expression. HDAC inhibition caused a dramatic histone hyperacetylation that was largely restricted to active loci pre-marked with H3K4me3 and AcH3K9,14. In addition, the comparison of Chromatin immunoprecipitation sequencing and gene expression profiles indicated that Trichostatin A-induced histone hyperacetylation, like histone hypoacetylation induced by histone acetyltransferase deficiency, had a modest impact on hippocampal gene expression and did not affect the transient transcriptional response to novelty exposure. However, HDAC inhibition caused the rapid induction of a homeostatic gene program related to chromatin deacetylation. These results illuminate both the relationship between hippocampal gene expression and histone acetylation and the mechanism of action of these important neuropsychiatric drugs.
Collapse
Affiliation(s)
- Jose P Lopez-Atalaya
- Instituto de Neurociencias de Alicante (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Campus de Sant Joan. Apt. 18. Sant Joan d'Alacant, 03550 Alicante, Spain
| | | | | | | | | |
Collapse
|
10
|
Abstract
Long-term memory formation requires transcription and protein synthesis. Over the past few decades, a great amount of knowledge has been gained regarding the molecular players that regulate the transcriptional program linked to memory consolidation. Epigenetic mechanisms have been shown to be essential for the regulation of neuronal gene expression, and histone acetylation has been one of the most studied and best characterized. In this review, we summarize the lines of evidence that have shown the relevance of histone acetylation in memory in both physiological and pathological conditions. Great advances have been made in identifying the writers and erasers of histone acetylation marks during learning. However, the identities of the upstream regulators and downstream targets that mediate the effect of changes in histone acetylation during memory consolidation remain restricted to a handful of molecules. We outline a general model by which corepressors and coactivators regulate histone acetylation during memory storage and discuss how the recent advances in high-throughput sequencing have the potential to radically change our understanding of how epigenetic control operates in the brain.
Collapse
Affiliation(s)
- Lucia Peixoto
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
11
|
Barkess G, West AG. Chromatin insulator elements: establishing barriers to set heterochromatin boundaries. Epigenomics 2012; 4:67-80. [PMID: 22332659 DOI: 10.2217/epi.11.112] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Epigenomic profiling has revealed that substantial portions of genomes in higher eukaryotes are organized into extensive domains of transcriptionally repressive chromatin. The boundaries of repressive chromatin domains can be fixed by DNA elements known as barrier insulators, to both shield neighboring gene expression and to maintain the integrity of chromosomal silencing. Here, we examine the current progress in identifying vertebrate barrier elements and their binding factors. We overview the design of the reporter assays used to define enhancer-blocking and barrier insulators. We look at the mechanisms vertebrate barrier proteins, such as USF1 and VEZF1, employ to counteract Polycomb- and heterochromatin-associated repression. We also undertake a critical analysis of whether CTCF could also act as a barrier protein. There is good evidence that barrier elements in vertebrates can form repressive chromatin domain boundaries. Future studies will determine whether barriers are frequently used to define repressive domain boundaries in vertebrates.
Collapse
Affiliation(s)
- Gráinne Barkess
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | | |
Collapse
|
12
|
CBP in the nucleus accumbens regulates cocaine-induced histone acetylation and is critical for cocaine-associated behaviors. J Neurosci 2012; 31:16941-8. [PMID: 22114264 DOI: 10.1523/jneurosci.2747-11.2011] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cocaine exposure triggers molecular events that lead to long-lasting changes in brain structure and function. These changes can lead to the development of persistent and robust behavioral adaptations that characterize addiction. Recent evidence suggests the regulation of transcription via chromatin modification, such as histone acetylation, has an important role in the development of addictive behavior. Histone acetylation is regulated by histone acetyltransferases (HATs), which acetylate histones and promote transcription, and histone deacetylases (HDACs), which remove acetyl groups and silence transcription. Studies have demonstrated that HDACs may negatively regulate cocaine-induced behaviors, but very little is known about the role of specific HATs in long-lasting drug-induced plasticity. The histone acetyltransferase CREB-binding protein (CBP) mediates transcriptional activation by recruiting basal transcription machinery and acetylating histones. CBP is a critically important chromatin-modifying enzyme involved in regulating gene expression required for long-term plasticity and memory. However, the role of CBP in cocaine-induced behaviors remains largely unknown. We examined the role of CBP in drug-induced plasticity using CBP-FLOX genetically modified mice in combination with adeno-associated virus expressing Cre-recombinase to generate focal homozygous deletions of Cbp in the nucleus accumbens (NAc). A complete loss of CBP in NAc neurons results in decreased histone acetylation and significantly altered c-fos expression in response to cocaine. Furthermore, the deletion of CBP in the NAc correlates with significant impairments in cocaine sensitivity and context-cocaine associated memory. This is the first study to demonstrate a definitive role for CBP in modulating gene expression that may subserve drug-seeking behaviors.
Collapse
|
13
|
CBP is required for environmental enrichment-induced neurogenesis and cognitive enhancement. EMBO J 2011; 30:4287-98. [PMID: 21847097 DOI: 10.1038/emboj.2011.299] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/25/2011] [Indexed: 12/18/2022] Open
Abstract
The epigenetic changes of the chromatin represent an attractive molecular substrate for adaptation to the environment. We examined here the role of CREB-binding protein (CBP), a histone acetyltransferase involved in mental retardation, in the genesis and maintenance of long-lasting systemic and behavioural adaptations to environmental enrichment (EE). Morphological and behavioural analyses demonstrated that EE ameliorates deficits associated to CBP deficiency. However, CBP-deficient mice also showed a strong defect in environment-induced neurogenesis and impaired EE-mediated enhancement of spatial navigation and pattern separation ability. These defects correlated with an attenuation of the transcriptional programme induced in response to EE and with deficits in histone acetylation at the promoters of EE-regulated, neurogenesis-related genes. Additional experiments in CBP restricted and inducible knockout mice indicated that environment-induced adult neurogenesis is extrinsically regulated by CBP function in mature granule cells. Overall, our experiments demonstrate that the environment alters gene expression by impinging on activities involved in modifying the epigenome and identify CBP-dependent transcriptional neuroadaptation as an important mediator of EE-induced benefits, a finding with important implications for mental retardation therapeutics.
Collapse
|
14
|
Ablation of CBP in forebrain principal neurons causes modest memory and transcriptional defects and a dramatic reduction of histone acetylation but does not affect cell viability. J Neurosci 2011; 31:1652-63. [PMID: 21289174 DOI: 10.1523/jneurosci.4737-10.2011] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Rubinstein-Taybi syndrome (RSTS) is an inheritable disease associated with mutations in the gene encoding the CREB (cAMP response element-binding protein)-binding protein (CBP) and characterized by growth impairment, learning disabilities, and distinctive facial and skeletal features. Studies in mouse models for RSTS first suggested a direct role for CBP and histone acetylation in cognition and memory. Here, we took advantage of the genetic tools for generating mice in which the CBP gene is specifically deleted in postmitotic principal neurons of the forebrain to investigate the consequences of the loss of CBP in the adult brain. In contrast to the conventional CBP knock-out mice, which exhibit very early embryonic lethality, postnatal forebrain-restricted CBP mutants were viable and displayed no overt abnormalities. We identified the dimer of histones H2A and H2B as the preferred substrate of the histone acetyltransferase domain of CBP. Surprisingly, the loss of CBP and subsequent histone hypoacetylation had a very modest impact in the expression of a number of immediate early genes and did not affect neuronal viability. In addition, the behavioral characterization of these mice dissociated embryonic and postnatal deficits caused by impaired CBP function, narrowed down the anatomical substrate of specific behavioral defects, and confirmed the special sensitivity of object recognition memory to CBP deficiency. Overall, our study provides novel insights into RSTS etiology and clarifies some of the standing questions concerning the role of CBP and histone acetylation in activity-driven gene expression, memory formation, and neurodegeneration.
Collapse
|
15
|
Sarkies P, Reams C, Simpson LJ, Sale JE. Epigenetic instability due to defective replication of structured DNA. Mol Cell 2011; 40:703-13. [PMID: 21145480 PMCID: PMC3145961 DOI: 10.1016/j.molcel.2010.11.009] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/30/2010] [Accepted: 09/10/2010] [Indexed: 01/22/2023]
Abstract
The accurate propagation of histone marks during chromosomal replication is proposed to rely on the tight coupling of replication with the recycling of parental histones to the daughter strands. Here, we show in the avian cell line DT40 that REV1, a key regulator of DNA translesion synthesis at the replication fork, is required for the maintenance of repressive chromatin marks and gene silencing in the vicinity of DNA capable of forming G-quadruplex (G4) structures. We demonstrate a previously unappreciated requirement for REV1 in replication of G4 forming sequences and show that transplanting a G4 forming sequence into a silent locus leads to its derepression in REV1-deficient cells. Together, our observations support a model in which failure to maintain processive DNA replication at G4 DNA in REV1-deficient cells leads to uncoupling of DNA synthesis from histone recycling, resulting in localized loss of repressive chromatin through biased incorporation of newly synthesized histones.
Collapse
Affiliation(s)
- Peter Sarkies
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Charlie Reams
- University of Cambridge Computer Laboratory, William Gates Building, 15, J.J. Thomson Avenue, Cambridge CB3 0FD, UK
| | - Laura J. Simpson
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Julian E. Sale
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
- Corresponding author
| |
Collapse
|
16
|
Park KY, Fletcher JR, Raddant AC, Russo AF. Epigenetic regulation of the calcitonin gene-related peptide gene in trigeminal glia. Cephalalgia 2011; 31:614-24. [PMID: 21216873 DOI: 10.1177/0333102410391487] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The neuropeptide calcitonin gene-related peptide (CGRP) plays a key role in migraine. CGRP gene expression involves an enhancer that is active in neurons, yet inactive in glia. In this report, we analyze epigenetic modifications that allow enhancer activation in glia. METHODS DNA methylation and histone acetylation states were measured in rat and human- model cell lines and primary cultures of rat trigeminal ganglia glia. The functional consequence of altering the chromatin state was determined by quantitative measurements of both calcitonin (CT) and CGRP mRNAs. RESULTS A hypermethylated CpG island flanking the enhancer was identified in glia and non-expressing cell lines. In addition, the chromatin was hypoacetylated. Treatment with the DNA methylation inhibitor 5-aza-2'-deoxycytidine induced CT mRNA ~30-fold in glial cultures. Treatment with a histone deacetylase inhibitor alone had little effect; however, the combination of inhibitors yielded a synergistic ~80-fold increase in CT and ~threefold increase in CGRP mRNA. Treated glia contained CT precursor (pro-CT) immunoreactivity. CONCLUSIONS Epigenetic modulation is sufficient to induce the CGRP gene in glia. Because the CGRP gene is systemically activated by inflammatory conditions, this suggests that glial pro-CT may be an unexplored biomarker during migraine.
Collapse
Affiliation(s)
- Ki-Youb Park
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
17
|
Trollope AF, Sapojnikova N, Thorne AW, Crane-Robinson C, Myers FA. Linker histone subtypes are not generalized gene repressors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:642-52. [DOI: 10.1016/j.bbagrm.2010.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/26/2010] [Accepted: 08/20/2010] [Indexed: 01/24/2023]
|
18
|
Maharana C, Sharma K, Sharma S. Depolarization induces acetylation of histone H2B in the hippocampus. Neuroscience 2010; 167:354-60. [DOI: 10.1016/j.neuroscience.2010.02.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 02/06/2010] [Accepted: 02/10/2010] [Indexed: 11/30/2022]
|
19
|
Chiang KP, Jensen MS, McGinty RK, Muir TW. A semisynthetic strategy to generate phosphorylated and acetylated histone H2B. Chembiochem 2009; 10:2182-7. [PMID: 19623598 DOI: 10.1002/cbic.200900238] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Kyle P Chiang
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | |
Collapse
|
20
|
Rao PS, Satelli A, Zhang S, Srivastava SK, Srivenugopal KS, Rao US. RNF2 is the target for phosphorylation by the p38 MAPK and ERK signaling pathways. Proteomics 2009; 9:2776-87. [PMID: 19405034 DOI: 10.1002/pmic.200800847] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNF2, a member of polycomb group (PcG) proteins, is involved in chromatin remodeling. However, mechanisms that regulate RNF2 function are unknown. To identify such mechanisms, RNF2 was expressed in HEK-293 cells and analyzed by 2-D electrophoresis. RNF2 was resolved into at least seven protein spots, migrating toward the lower pI from its expected pI of 6.38, suggesting that RNF2 undergoes post-translational modifications. Western blotting indicated that majority of these RNF2 spots contained phosphoserine(s), which were completely dephosphorylated upon treatment with a phosphatase. SB203580, a specific inhibitor of p38 MAPK, inhibited RNF2 phosphorylation at one site. On the other hand, PD98059, an inhibitor of MEK1/2, inhibited majority of the phosphorylation events in RNF2. Mass spectrometry analysis identified that RNF2 expressed in Sf9 insect cells undergoes co-translational excision of (1)Met coupled to N-acetylation of (2)Ser, and phosphorylation of (41)Ser. Interestingly, (41)Ser is a predicted p38/MAPK phosphorylation site, consistent with the loss of phosphorylation induced by SB203580. Further analysis indicated that RNF2 phosphorylation differentially modulates the expression of transcription factors and histone 2B acetylation. These results provide first evidence for phosphorylation of RNF2, and suggest that the mitogen activated protein kinases including p38 MAPK and ERK1/2 regulate growth, stress response, differentiation and other cellular processes, through phosphorylation of RNF2.
Collapse
Affiliation(s)
- Prema S Rao
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter Rd., Amarillo, TX 79106, USA
| | | | | | | | | | | |
Collapse
|
21
|
DNA methylation-histone modification relationships across the desmin locus in human primary cells. BMC Mol Biol 2009; 10:51. [PMID: 19473514 PMCID: PMC2695444 DOI: 10.1186/1471-2199-10-51] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 05/27/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We present here an extensive epigenetic analysis of a 500 kb region, which encompasses the human desmin gene (DES) and its 5' locus control region (LCR), the only muscle-specific transcriptional regulatory element of this type described to date. These data complement and extend Encyclopaedia of DNA Elements (ENCODE) studies on region ENr133. We analysed histone modifications and underlying DNA methylation patterns in physiologically relevant DES expressing (myoblast/myotube) and non-expressing (peripheral blood mononuclear) primary human cells. RESULTS We found that in expressing myoblast/myotube but not peripheral blood mononuclear cell (PBMC) cultures, histone H4 acetylation displays a broadly distributed enrichment across a gene rich 200 kb region whereas H3 acetylation localizes at the transcriptional start site (TSS) of genes. We show that the DES LCR and TSS of DES are enriched with hyperacetylated domains of acetylated histone H3, with H3 lysine 4 di- and tri-methylation (H3K4me2 and me3) exhibiting a different distribution pattern across this locus. The CpG island that extends into the first intron of DES is methylation-free regardless of the gene's expression status and in non-expressing PBMCs is marked with histone H3 lysine 27 tri-methylation (H3K27me3). CONCLUSION Overall, our results constitute the first study correlating patterns of histone modifications and underlying DNA methylation of a muscle-specific LCR and its associated downstream gene region whilst additionally placing this within a much broader genomic context. Our results clearly show that there are distinct patterns of histone H3 and H4 acetylation and H3 methylation at the DES LCR, promoter and intragenic region. In addition, the presence of H3K27me3 at the DES methylation-free CpG only in non-expressing PBMCs may serve to silence this gene in non-muscle tissues. Generally, our work demonstrates the importance of using multiple, physiologically relevant tissue types that represent different expressing/non-expressing states when investigating epigenetic marks and that underlying DNA methylation status should be correlated with histone modification patterns when studying chromatin structure.
Collapse
|
22
|
Abstract
The developmental changes in expression of the beta like genes from embryonic to adult stages of human life are controlled at least partially at the level of the promoter sequences of these genes and their binding factors, and competition for promoter specific interactions with the locus control region (LCR). In recent years, the control of beta globin genes has also been investigated at the level of chromatin structure involving the chemical modification of histones and their remodelling by DNA dependent ATPases (SMARCA) containing protein complexes. The role of intergenic RNA is also being investigated with renewed interest. Although a wealth of information on the structure/function relationship of the LCR and globin promoters has been gathered over more than two decades, the fundamental nature of the control of these genes at the molecular level is still not completely understood. In the following pages, we intend to briefly describe the progress made in the field and discuss future directions.
Collapse
Affiliation(s)
- Milind C Mahajan
- Department of Human Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
23
|
Blake DP, Qin Z, Cai J, Smith AL. Development and validation of real-time polymerase chain reaction assays specific to four species of Eimeria. Avian Pathol 2008; 37:89-94. [DOI: 10.1080/03079450701802248] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Damer P. Blake
- a Enteric Immunology Group , Institute for Animal Health , Compton , Berkshire , RG20 7NN , UK
| | - Zonghua Qin
- b Guangdong Academy of Agricultural Sciences , Institute of Veterinary Medicine , Guangzhou , 510640 , China
| | - Jianping Cai
- b Guangdong Academy of Agricultural Sciences , Institute of Veterinary Medicine , Guangzhou , 510640 , China
| | - Adrian L. Smith
- a Enteric Immunology Group , Institute for Animal Health , Compton , Berkshire , RG20 7NN , UK
| |
Collapse
|
24
|
Sun JM, Chen HY, Espino PS, Davie JR. Phosphorylated serine 28 of histone H3 is associated with destabilized nucleosomes in transcribed chromatin. Nucleic Acids Res 2007; 35:6640-7. [PMID: 17913747 PMCID: PMC2095820 DOI: 10.1093/nar/gkm737] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Histone modifications and variants have key roles in the activation and silencing of genes. Phosphorylation of histone H3 at serine 10 and serine 28 is involved in transcriptional activation of genes responding to stress or mitogen-stimulated signaling pathways. The distribution of H3-modified isoforms in G0 phase chicken erythrocyte chromatin was investigated. H3 phosphorylated at serine 28 was found highly enriched in the active/competent gene fractions, as was H3 di- and trimethylated at lysine 4. The H3 variant H3.3 in this chromatin fraction was preferentially phosphorylated at serine 28. Conversely, H3 phosphorylated at serine 10 was present in all chromatin fractions, while H3 dimethylated at lysine 9 was associated with the chromatin-containing repressed genes. H3 phosphorylated at serine 28 was located at the promoter region of the transcriptionally active, but not competent, histone H5 and β-globin genes. We provide evidence that H3.3 phosphorylated at serine 28 was present in labile nucleosomes. We propose that destabilized nucleosomes containing H3.3 phosphorylated at serine 28 aid in the dynamic disassembly–assembly of nucleosomes in active promoters.
Collapse
Affiliation(s)
| | | | | | - James R. Davie
- *To whom correspondence should be addressed. +204 787 2391+204 787 2190
| |
Collapse
|
25
|
Barco A. The Rubinstein?Taybi syndrome: modeling mental impairment in the mouse. GENES BRAIN AND BEHAVIOR 2007; 6 Suppl 1:32-9. [PMID: 17543037 DOI: 10.1111/j.1601-183x.2007.00320.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mental impairment syndromes are diagnosed based on below-average general intellectual function originated during developmental periods. Intellectual abilities rely on the capability of our brain to obtain, process, store and retrieve information. Advances in the past decade on the molecular basis of memory have led to a better understanding of how a normal brain works but also have shed new light on our understanding of many pathologies of the nervous system, including diverse syndromes involving mental impairment. The recent multidisciplinary analysis of various mouse models for Rubinstein-Taybi syndrome has shown the power of animal models to produce an important leap forward in our understanding of a complex mental disease while simultaneously opening new avenues for its treatment. These studies also suggest that some of the cognitive and physiological deficits observed in mental impairment syndromes may not simply be caused by defects originated during development but may result from the continued requirement of specific enzymatic activities throughout life.
Collapse
Affiliation(s)
- A Barco
- Instituto de Neurociencias de Alicante (UMH-CSIC), Campus de Sant Joan, Sant Joan d'Alacant, Spain.
| |
Collapse
|
26
|
Myers FA, Lefevre P, Mantouvalou E, Bruce K, Lacroix C, Bonifer C, Thorne AW, Crane-Robinson C. Developmental activation of the lysozyme gene in chicken macrophage cells is linked to core histone acetylation at its enhancer elements. Nucleic Acids Res 2006; 34:4025-35. [PMID: 16914441 PMCID: PMC1557816 DOI: 10.1093/nar/gkl543] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Native chromatin IP assays were used to define changes in core histone acetylation at the lysozyme locus during developmental maturation of chicken macrophages and stimulation to high-level expression by lipo-polysaccharide. In pluripotent precursors the lysozyme gene (Lys) is inactive and there is no acetylation of core histones at the gene, its promoter or at the upstream cis-control elements. In myeloblasts, where there is a very low level of Lys expression, H4 acetylation appears at the cis-control elements but not at the Lys gene or its promoter: neither H3 nor H2B become significantly acetylated in myeloblasts. In mature macrophages, Lys expression increases 5-fold: H4, H2B and H2A.Z are all acetylated at the cis-control elements but H3 remains unacetylated except at the −2.4 S silencer. Stimulation with LPS increases Lys expression a further 10-fold: this is accompanied by a rise in H3 acetylation throughout the cis-control elements; H4 and H2B acetylation remain substantial but acetylation at the Lys gene and its promoter remains low. Acetylation is thus concentrated at the cis-control elements, not at the Lys gene or its immediate promoter. H4 acetylation precedes H3 acetylation during development and H3 acetylation is most directly linked to high-level Lys expression.
Collapse
Affiliation(s)
| | - Pascal Lefevre
- Molecular Medicine Unit, St James's University Hospital, University of LeedsLeeds LS9 7TF, UK
| | | | | | - Claire Lacroix
- Molecular Medicine Unit, St James's University Hospital, University of LeedsLeeds LS9 7TF, UK
| | - Constanze Bonifer
- Molecular Medicine Unit, St James's University Hospital, University of LeedsLeeds LS9 7TF, UK
| | | | - Colyn Crane-Robinson
- To whom correspondence should be addressed. Tel: +44 23 92842055; Fax: +44 23 92842053;
| |
Collapse
|
27
|
Calestagne-Morelli A, Ausió J. Long-range histone acetylation: biological significance, structural implications, and mechanismsThis paper is one of a selection of papers published in this Special Issue, entitled 27th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process. Biochem Cell Biol 2006; 84:518-27. [PMID: 16936824 DOI: 10.1139/o06-067] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genomic characterization of various euchromatic regions in higher eukaryotes has revealed that domain-wide hyperacetylation (over several kb) occurs at a range of loci, including individual genes, gene family clusters, compound clusters, and more general clusters of unrelated genes. Patterns of long-range histone hyperacetylation are strictly conserved within each unique cellular system studied and they reflect biological variability in gene regulation. Domain-wide histone acetylation consists generally of nonuniform peaks of enriched hyperacetylation of specific core histones, histone isoforms, and (or) histone variants against a backdrop of nonspecific acetylation across the domain in question. Here we review the characteristics of long-range histone acetylation in some higher eukaryotes and draw special attention to recent literature on the multiple effects that histone hyperacetylation has on chromatin’s structural integrity and how they affect transcription. These include the thermal, ionic, cumulative, and isoform-specific (H4 K16) consequences of acetylation that result in a more dynamic core complex and chromatin fiber.
Collapse
Affiliation(s)
- Alison Calestagne-Morelli
- Department of Biochemistry and Microbiology, University of Victoria, Petch building, 220, Victoria, BC V8W 3P6, Canada
| | | |
Collapse
|
28
|
Thambirajah AA, Dryhurst D, Ishibashi T, Li A, Maffey AH, Ausió J. H2A.Z Stabilizes Chromatin in a Way That Is Dependent on Core Histone Acetylation. J Biol Chem 2006; 281:20036-44. [PMID: 16707487 DOI: 10.1074/jbc.m601975200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The functional and structural chromatin roles of H2A.Z are still controversial. This work represents a further attempt to resolve the current functional and structural dichotomy by characterizing chromatin structures containing native H2A.Z. We have analyzed the role of this variant in mediating the stability of the histone octamer in solution using gel-filtration chromatography at different pH. It was found that decreasing the pH from neutral to acidic conditions destabilized the histone complex. Furthermore, it was shown that the H2A.Z-H2B dimer had a reduced stability. Sedimentation velocity analysis of nucleosome core particles (NCPs) reconstituted from native H2A.Z-containing octamers indicated that these particles exhibit a very similar behavior to that of native NCPs consisting of canonical H2A. Sucrose gradient fractionation of native NCPs under different ionic strengths indicated that H2A.Z had a subtle tendency to fractionate with more stabilized populations. An extensive analysis of the salt-dependent dissociation of histones from hydroxyapatite-adsorbed chromatin revealed that, whereas H2A.Z co-elutes with H3-H4, hyperacetylation of histones (by treatment of chicken MSB cells with sodium butyrate) resulted in a significant fraction of this variant eluting with the canonical H2A. These studies also showed that the late elution of this variant (correlated to enhanced binding stability) was independent of the chromatin size and of the presence or absence of linker histones.
Collapse
Affiliation(s)
- Anita A Thambirajah
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Dazy S, Gandrillon O, Hyrien O, Prioleau MN. Broadening of DNA replication origin usage during metazoan cell differentiation. EMBO Rep 2006; 7:806-11. [PMID: 16799461 PMCID: PMC1525144 DOI: 10.1038/sj.embor.7400736] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 05/15/2006] [Accepted: 05/15/2006] [Indexed: 01/11/2023] Open
Abstract
We have examined whether replication of the chicken beta-globin locus changes during differentiation of primary erythroid progenitors into erythrocytes. In undifferentiated progenitors, four principal initiation sites and a replication fork pausing region (RFP) were observed. Forty-eight hours after induction of differentiation, the principal sites were maintained, even in the activated beta(A)-globin gene, some minor sites were enhanced, three new sites appeared and the RFP disappeared. One of the activated origins showed increased histone H3 K9K14 diacetylation, but the others did not. These results demonstrate a broadening of DNA replication origin usage during differentiation of untransformed metazoan cells and indicate that histone H3 diacetylation, other histone modifications so far reported and transcription are not crucial determinants of origin selection in this system.
Collapse
Affiliation(s)
- Sébastien Dazy
- Centre de Génétique Moléculaire et Cellulaire, Université Claude Bernard-Lyon I, 16 rue Dubois, 69622 Villeurbanne Cedex, France
| | - Olivier Gandrillon
- Centre de Génétique Moléculaire et Cellulaire, Université Claude Bernard-Lyon I, 16 rue Dubois, 69622 Villeurbanne Cedex, France
| | - Olivier Hyrien
- Laboratoire de Génétique Moléculaire, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | - Marie-Noëlle Prioleau
- Laboratoire de Génétique Moléculaire, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
- Laboratoire de Biologie des génomes, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 05, France
- Tel: +33 (1) 44 27 40 93; Fax: +33 (1) 44 27 57 16; E-mail:
| |
Collapse
|
30
|
Bonenfant D, Coulot M, Towbin H, Schindler P, van Oostrum J. Characterization of Histone H2A and H2B Variants and Their Post-translational Modifications by Mass Spectrometry. Mol Cell Proteomics 2006; 5:541-52. [PMID: 16319397 DOI: 10.1074/mcp.m500288-mcp200] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The nucleosome, the fundamental structural unit of chromatin, contains an octamer of core histones H3, H4, H2A, and H2B. Incorporation of histone variants alters the functional properties of chromatin. To understand the global dynamics of chromatin structure and function, analysis of histone variants incorporated into the nucleosome and their covalent modifications is required. Here we report the first global mass spectrometric analysis of histone H2A and H2B variants derived from Jurkat cells. A combination of mass spectrometric techniques, HPLC separations, and enzymatic digestions using endoproteinase Glu-C, endoproteinase Arg-C, and trypsin were used to identify histone H2A and H2B subtypes and their modifications. We identified nine histone H2A and 11 histone H2B subtypes, among them proteins that only had been postulated at the gene level. The two main H2A variants, H2AO and H2AC, as well as H2AL were either acetylated at Lys-5 or phosphorylated at Ser-1. For the replacement histone H2AZ, acetylation at Lys-4 and Lys-7 was found. The main histone H2B variant, H2BA, was acetylated at Lys-12, -15, and -20. The analysis of core histone subtypes with their modifications provides a first step toward an understanding of the functional significance of the diversity of histone structures.
Collapse
Affiliation(s)
- Débora Bonenfant
- Genome and Proteome Sciences, Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
31
|
Blake DP, Hesketh P, Archer A, Shirley MW, Smith AL. Eimeria maxima: The influence of host genotype on parasite reproduction as revealed by quantitative real-time PCR. Int J Parasitol 2006; 36:97-105. [PMID: 16300767 DOI: 10.1016/j.ijpara.2005.09.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 09/13/2005] [Accepted: 09/16/2005] [Indexed: 11/26/2022]
Abstract
The influence of host genotype on susceptibility to infection with Eimeria species has long been recognised, but beyond monitoring pathological severity or magnitude of oocyst excretion attempts to quantify fluctuations in parasite reproduction within the host have previously relied upon labour-intensive microscopic analysis. The development and application of a quantitative real-time PCR assay has opened this biological 'black box', permitting the sensitive and reproducible enumeration of parasite genomes throughout the course of infection. Generic and species-specific quantitative PCR methods are described, based upon the conserved 5S ribosomal RNA coding sequence of nine avian and murine Eimeria species and the Eimeria maxima MIC1 gene, respectively. These complementary assays have been applied to study the influence of host genotype on resistance to infection with E. maxima, revealing significant differences in parasite load between 'resistant' Line C and 'susceptible' Line 15I inbred chickens 5 days after infection. Parasite DNA remained detectable up to 20 days post-infection; 11 days after the last oocysts had been detected leaving the host.
Collapse
Affiliation(s)
- Damer P Blake
- Enteric Immunology Group, Institute for Animal Health, Compton, Nr. Newbury, Berkshire RG20 7NN, UK
| | | | | | | | | |
Collapse
|
32
|
Golebiowski F, Kasprzak KS. Inhibition of core histones acetylation by carcinogenic nickel(II). Mol Cell Biochem 2005; 279:133-9. [PMID: 16283522 DOI: 10.1007/s11010-005-8285-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nickel, a well-established human carcinogen, was shown to decrease acetylation of histones H4 and H3 in cultured cells. Such a decrease is expected to suppress gene expression. However, nickel is known to not only suppress but also enhance the expression of many genes. So, perhaps, nickel can alter histone acetylation in a more complex way? In a first step of testing this presumption, we examined acetylation status of histones H2A, H2B, H3 and H4, in human (HAE) and rat (NRK) cells exposed to nickel(II) under various conditions. In both cell lines, acetylation of all four histones was down-regulated by nickel(II) in a concentration- and time-dependent manner. Acetylation of histone H2B was suppressed to greater extent than that of the others, with histone H3 being relatively least affected. The analysis of acetylation status of each of the four lysine sites at the N-terminal tail of histone H2B revealed decreases consistent with those observed in the total acetylation patterns, with the K12 and K20 residues being markedly more affected than K5 and K15 residues. Thus, the decrease in acetylation was to some degree site specific. In NRK cells, the observed uniform down-regulation of histone acetylation was consistent with a marked suppression of global gene transcription measured as [3H]-uridine incorporation into mRNA. However, in HAE cells, global RNA expression was transiently increased (in 24 h) before dropping below control after longer exposure (3 days). In conclusion, the effects of Ni(II) on histone acetylation are inhibitory, with their extent depending on the dose and exposure time. This uniform inhibition, however, is not consistently reflected in global RNA expression that in HAE cells may include both increase and decrease of the expression, clearly indicating the involvement of factors other than histone acetylation. The observed effects may contribute to neoplastic transformation of Ni(II)-exposed cells.
Collapse
Affiliation(s)
- Filip Golebiowski
- Laboratory of Comparative Carcinogenesis, NCI at Frederick, Frederick, MD, 21702-1201, USA.
| | | |
Collapse
|
33
|
Bruce K, Myers FA, Mantouvalou E, Lefevre P, Greaves I, Bonifer C, Tremethick DJ, Thorne AW, Crane-Robinson C. The replacement histone H2A.Z in a hyperacetylated form is a feature of active genes in the chicken. Nucleic Acids Res 2005; 33:5633-9. [PMID: 16204459 PMCID: PMC1243646 DOI: 10.1093/nar/gki874] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The replacement histone H2A.Z is variously reported as being linked to gene expression and preventing the spread of heterochromatin in yeast, or concentrated at heterochromatin in mammals. To resolve this apparent dichotomy, affinity-purified antibodies against the N-terminal region of H2A.Z, in both a triacetylated and non-acetylated state, are used in native chromatin immmuno-precipitation experiments with mononucleosomes from three chicken cell types. The hyperacetylated species concentrates at the 5′ end of active genes, both tissue specific and housekeeping but is absent from inactive genes, while the unacetylated form is absent from both active and inactive genes. A concentration of H2A.Z is also found at insulators under circumstances implying a link to barrier activity but not to enhancer blocking. Although acetylated H2A.Z is widespread throughout the interphase genome, at mitosis its acetylation is erased, the unmodified form remaining. Thus, although H2A.Z may operate as an epigenetic marker for active genes, its N-terminal acetylation does not.
Collapse
Affiliation(s)
| | | | | | - Pascal Lefevre
- Molecular Medicine Unit, St James's University Hospital, University of LeedsLeeds, LS9 7TF, UK
| | - Ian Greaves
- The John Curtin School of Medical Research, The Australian National UniversityPO Box 334, Canberra, Australian Capital Territory 2601
| | - Constanze Bonifer
- Molecular Medicine Unit, St James's University Hospital, University of LeedsLeeds, LS9 7TF, UK
| | - David J. Tremethick
- The John Curtin School of Medical Research, The Australian National UniversityPO Box 334, Canberra, Australian Capital Territory 2601
| | | | - Colyn Crane-Robinson
- To whom correspondence should be addressed. Tel: +44 2392842055; Fax: +44 2392842053;
| |
Collapse
|
34
|
Sapojnikova N, Maman J, Myers FA, Thorne AW, Vorobyev VI, Crane-Robinson C. Biochemical observation of the rapid mobility of nuclear HMGB1. ACTA ACUST UNITED AC 2005; 1729:57-63. [PMID: 15823506 DOI: 10.1016/j.bbaexp.2005.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 03/03/2005] [Accepted: 03/03/2005] [Indexed: 11/17/2022]
Abstract
Formaldehyde-crosslinked and sonicated chromatin fragments were obtained from 15-day chicken embryo erythrocytes and purified on caesium chloride gradients. Polyclonal antibodies raised against chicken HMGB1 were used to immuno-precipitate fragments carrying HMGB1 in two protocols: (1) affinity purified antibodies covalently coupled to agarose beads and (2) diluted antiserum. The DNA of the antibody-bound chromatin was quantified and its sequence content assessed by quantitative real-time PCR to give values of the absolute enrichments generated. Amplicons were monitored within the active beta-globin locus, in the adjacent heterochromatin, in the lysozyme locus (containing an active housekeeping gene and the inactive lysozyme gene) and at the promoter of the inactive ovalbumin gene. For all amplicons the Bound/Input ratio was close to unity, implying no preferential location of HMGB1 on the chromatin. This initially unexpected result can now be understood in the light of the exceptional mobility of HMGB1 revealed by FLIP experiments showing that only 1-2 s are needed for HMGB1 to cross the nucleus: crosslinking times of 1 min were used in the present experiments.
Collapse
Affiliation(s)
- Nelly Sapojnikova
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, Faculty of Science, University of Portsmouth, Portsmouth PO1 2DT, UK
| | | | | | | | | | | |
Collapse
|
35
|
Fu Q, McKnight RA, Yu X, Wang L, Callaway CW, Lane RH. Uteroplacental insufficiency induces site-specific changes in histone H3 covalent modifications and affects DNA-histone H3 positioning in day 0 IUGR rat liver. Physiol Genomics 2004; 20:108-16. [PMID: 15494474 DOI: 10.1152/physiolgenomics.00175.2004] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Uteroplacental insufficiency and subsequent intrauterine growth retardation (IUGR) increase the risk of adult onset insulin resistance and dyslipidemia in humans and rats. IUGR rats are further characterized by postnatal alterations in hepatic PPAR-γ coactivator (PGC-1) and carnitine-palmitoyl-transferase I (CPTI) expression, as well as overall hyperacetylation of histone H3. However, it is unknown whether the histone H3 hyperacetylation is site specific or relates to the changes in gene expression previously described in IUGR rats. We therefore hypothesized that uteroplacental insufficiency causes site-specific modifications in hepatic H3 acetylation and affects the association of acetylated histone H3 with PGC-1 and CPTI promoter sequences. Uteroplacental insufficiency was used to produce asymmetrical IUGR rats. IUGR significantly increased acetylation of H3 lysine-9 (H3/K9), lysine-14 (H3/K14), and lysine-18 (H3/K18) at day 0 of life, and these changes occurred in association with decreased nuclear protein levels of histone deacetylase 1 (HDAC1) and HDAC activity. Chromatin immunoprecipitation using acetyl-H3/K9 antibody and day 0 chromatin revealed that uteroplacental insufficiency affected the association between acetylated H3/K9 and the promoters of PGC-1 and CPTI, respectively, in IUGR liver. At day 21 of life, the neonatal pattern of H3 hyperacetylation persisted only in the IUGR males. We conclude that uteroplacental insufficiency increases H3 acetylation in a site-specific manner in IUGR liver and that these changes persist in male IUGR animals. The altered association of the PGC-1 and CPTI promoters with acetylated H3/K9 correlates with previous reports of IUGR altering the expression of these genes. We speculate that in utero alterations of chromatin structure contribute to fetal programming.
Collapse
Affiliation(s)
- Qi Fu
- University of Utah School of Medicine, Department of Pediatrics, Division of Neonatology, Salt Lake City 84132-2202, USA
| | | | | | | | | | | |
Collapse
|
36
|
Alarcón JM, Malleret G, Touzani K, Vronskaya S, Ishii S, Kandel ER, Barco A. Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 2004; 42:947-59. [PMID: 15207239 DOI: 10.1016/j.neuron.2004.05.021] [Citation(s) in RCA: 666] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 03/16/2004] [Accepted: 04/08/2004] [Indexed: 12/15/2022]
Abstract
We studied a mouse model of the haploinsufficiency form of Rubinstein-Taybi syndrome (RTS), an inheritable disorder caused by mutations in the gene encoding the CREB binding protein (CBP) and characterized by mental retardation and skeletal abnormalities. In these mice, chromatin acetylation, some forms of long-term memory, and the late phase of hippocampal long-term potentiation (L-LTP) were impaired. We ameliorated the L-LTP deficit in two ways: (1) by enhancing the expression of CREB-dependent genes, and (2) by inhibiting histone deacetyltransferase activity (HDAC), the molecular counterpart of the histone acetylation function of CBP. Inhibition of HDAC also reversed the memory defect observed in fear conditioning. These findings suggest that some of the cognitive and physiological deficits observed on RTS are not simply due to the reduction of CBP during development but may also result from the continued requirement throughout life for both the CREB co-activation and the histone acetylation function of CBP.
Collapse
Affiliation(s)
- Juan M Alarcón
- Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Schneider R, Bannister AJ, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol 2003; 6:73-7. [PMID: 14661024 DOI: 10.1038/ncb1076] [Citation(s) in RCA: 588] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Accepted: 10/27/2003] [Indexed: 12/17/2022]
Abstract
Lysine residues within histones can be mono-, di - or tri-methylated. In Saccharomyces cerevisiae tri-methylation of Lys 4 of histone H3 (K4/H3) correlates with transcriptional activity, but little is known about this methylation state in higher eukaryotes. Here, we examine the K4/H3 methylation pattern at the promoter and transcribed region of metazoan genes. We analysed chicken genes that are developmentally regulated, constitutively active or inactive. We found that the pattern of K4/H3 methylation shows similarities to S. cerevisiae. Tri-methyl K4/H3 peaks in the 5' transcribed region and active genes can be discriminated by high levels of tri-methyl K4/H3 compared with inactive genes. However, our results also identify clear differences compared to yeast, as significant levels of K4/H3 methylation are present on inactive genes within the beta-globin locus, implicating this modification in maintaining a 'poised' chromatin state. In addition, K4/H3 di-methylation is not genome-wide and di-methylation is not uniformly distributed throughout the transcribed region. These results indicate that in metazoa, di- and tri-methylation of K4/H3 is linked to active transcription and that significant differences exist in the genome-wide methylation pattern as compared with S. cerevisiae.
Collapse
Affiliation(s)
- Robert Schneider
- Wellcome/CR UK Institute and Department of Pathology, Tennis Court Road, Cambridge, CB2 1QR, UK
| | | | | | | | | | | |
Collapse
|