1
|
Zhang X, Chen Y, Liu M, Long X, Guo C. Intervention strategies targeting virus and host factors against porcine reproductive and respiratory syndrome virus: A systematic review. Int J Biol Macromol 2024; 279:135403. [PMID: 39245101 DOI: 10.1016/j.ijbiomac.2024.135403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by porcine reproductive and respiratory syndrome virus (PRRSV) causes considerable economic losses to the global swine industry every year and seriously hinders the healthy development of this industry. Although tremendous efforts have been made over the past 30 years toward the development of prevention and control strategies against PRRSV infection, to date, treatments with proven efficacy have yet to be available due to our incomplete understanding of the molecular basis and complexity of the infection machinery. This review systematically discusses recent advances in the research and development of anti-PRRSV therapies targeting different stages of the viral life cycle. Furthermore, this review puts forward novel intervention targets and research approaches based on our in-depth exploration of virus-host interactions and the latest biological technologies, which have the potential to complement or transform current anti-PRRSV strategies and become breakthrough points for the control of PRRS in the future.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Yongjie Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Min Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Xiaoqin Long
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Chunhe Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
2
|
Zhang C, Jiang Q, Liu Z, Li N, Hao Z, Song G, Li D, Chen M, Lin L, Liu Y, Li X, Shang C, Li Y. SARS-CoV-2 NSP6 reduces autophagosome size and affects viral replication via sigma-1 receptor. J Virol 2024:e0075424. [PMID: 39445785 DOI: 10.1128/jvi.00754-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/29/2024] [Indexed: 10/25/2024] Open
Abstract
Autophagy is a cellular self-defense mechanism by which cells can kill invading pathogenic microorganisms and increase the presentation of components of pathogens as antigens. Contrarily, pathogens can utilize autophagy to enhance their own replication. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) NSP6 can interact with ATPase proton pump component to inhibit lysosomal acidification, which was implicated in the autophagy process. However, research on how SARS-CoV-2 NSP6 affected autophagy, and its impact on virus replication is still lacking. Coronavirus NSP6 has been reported to promote coronavirus replication by limiting autophagosome expansion. However, this finding has not been confirmed in coronavirus disease 2019 (COVID-19). We investigated the effect of NSP6 protein on autophagosomes in different mutant strains of SARS-CoV-2 and revealed that the size of autophagosomes was reduced by NSP6 of the wild-type and Delta variant of SARS-CoV-2. In addition, we found that SARS-CoV-2 NSP6 localized to the lysosome and had an inhibitory effect on the binding of autophagosomes to the lysosome, which blocked the autophagy flux; this may be related to endoplasmic reticulum (ER)-related pathways. We also found that sigma-1 receptor (SIGMAR1) knock out (KO) reversed NSP6-induced autophagosome abnormality and resisted SARS-CoV-2 infection, which responds to the fact that SIGMAR1 is likely to be used as a potential target for the treatment of SARS-CoV-2 infection. In summary, we have provided a preliminary explanation of the effects on autophagy of the SARS-CoV-2 NSP6 protein from the pre-autophagic and late stages, and also found that SIGMAR1 is likely to be used as a potential target for SARS-CoV-2 therapy to develop relevant drugs. IMPORTANCE We have provided a preliminary explanation of the effects on autophagy of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) non-structure protein 6 from the pre-autophagic and late stages, and also found that sigma-1 receptor is likely to be used as a potential target for SARS-CoV-2 therapy to develop relevant drugs.
Collapse
Affiliation(s)
- Cuiling Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Qiwei Jiang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zirui Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhuo Hao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Gaojie Song
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, China
| | - Dapeng Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Minghua Chen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lisen Lin
- Department of Chemistry, Northeastern University, Shenyang, China
| | - Yan Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chao Shang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yiquan Li
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
3
|
Khan A, Ling J, Li J. Is Autophagy a Friend or Foe in SARS-CoV-2 Infection? Viruses 2024; 16:1491. [PMID: 39339967 PMCID: PMC11437447 DOI: 10.3390/v16091491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
As obligate parasites, viruses need to hijack resources from infected cells to complete their lifecycle. The interaction between the virus and host determines the viral infection process, including viral propagation and the disease's outcome. Understanding the interaction between the virus and host factors is a basis for unraveling the intricate biological processes in the infected cells and thereby developing more efficient and targeted antivirals. Among the various fundamental virus-host interactions, autophagy plays vital and also complicated roles by directly engaging in the viral lifecycle and functioning as an anti- and/or pro-viral factor. Autophagy thus becomes a promising target against virus infection. Since the COVID-19 pandemic, there has been an accumulation of studies aiming to investigate the roles of autophagy in SARS-CoV-2 infection by using different models and from distinct angles, providing valuable information for systematically and comprehensively dissecting the interplay between autophagy and SARS-CoV-2. In this review, we summarize the advancements in the studies of the interaction between SARS-CoV-2 and autophagy, as well as detailed molecular mechanisms. We also update the current knowledge on the pharmacological strategies used to suppress SARS-CoV-2 replication through remodeling autophagy. These extensive studies on SARS-CoV-2 and autophagy can advance our understanding of virus-autophagy interaction and provide insights into developing efficient antiviral therapeutics by regulating autophagy.
Collapse
Affiliation(s)
- Asifa Khan
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, P.O. Box 582, 751 23 Uppsala, Sweden
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Jiaxin Ling
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, P.O. Box 582, 751 23 Uppsala, Sweden
- Zoonosis Science Center, Uppsala University, 751 23 Uppsala, Sweden
| | - Jinlin Li
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, P.O. Box 582, 751 23 Uppsala, Sweden
| |
Collapse
|
4
|
Davies JP, Plate L. The glycoprotein quality control factor Malectin promotes coronavirus replication and viral protein biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597051. [PMID: 38895409 PMCID: PMC11185542 DOI: 10.1101/2024.06.02.597051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Coronaviruses (CoV) rewire host protein homeostasis (proteostasis) networks through interactions between viral nonstructural proteins (nsps) and host factors to promote infection. With the emergence of SARS-CoV-2, it is imperative to characterize host interactors shared across nsp homologs. Using quantitative proteomics and functional genetic screening, we identify conserved proteostasis interactors of nsp2 and nsp4 that serve pro-viral roles during infection of murine hepatitis virus - a model betacoronavirus. We uncover a glycoprotein quality control factor, Malectin (MLEC), which significantly reduces infectious titers when knocked down. During infection, nsp2 interacts with MLEC-associated proteins and the MLEC-interactome is drastically altered, stabilizing association with the Oligosaccheryltransferase (OST) complex, a crucial component of viral glycoprotein production. MLEC promotes viral protein levels and genome replication through its quality control activity. Lastly, we show MLEC promotes SARS-CoV-2 replication. Our results reveal a role for MLEC in mediating CoV infection and identify a potential target for pan-CoV antivirals.
Collapse
Affiliation(s)
- Jonathan P. Davies
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235
- Vanderbilt Institute of Infection, Immunology and Inflammation, Nashville, TN, 37235
| | - Lars Plate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235
- Vanderbilt Institute of Infection, Immunology and Inflammation, Nashville, TN, 37235
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37235
| |
Collapse
|
5
|
Combe M, Cherif E, Deremarque T, Rivera-Ingraham G, Seck-Thiam F, Justy F, Doudou JC, Carod JF, Carage T, Procureur A, Gozlan RE. Wastewater sequencing as a powerful tool to reveal SARS-CoV-2 variant introduction and spread in French Guiana, South America. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171645. [PMID: 38479523 DOI: 10.1016/j.scitotenv.2024.171645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/19/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
The origin of introduction of a new pathogen in a country, the evolutionary dynamics of an epidemic within a country, and the role of cross-border areas on pathogen dynamics remain complex to disentangle and are often poorly understood. For instance, cross-border areas represent the ideal location for the sharing of viral variants between countries, with international air travel, land travel and waterways playing an important role in the cross-border spread of infectious diseases. Unfortunately, monitoring the point of entry and the evolutionary dynamics of viruses in space and time within local populations remain challenging. Here we tested the efficiency of wastewater-based epidemiology and genotyping in monitoring Covid-19 epidemiology and SARS-CoV-2 variant dynamics in French Guiana, a tropical country located in South America. Our results suggest that wastewater-based epidemiology and genotyping are powerful tools to monitor variant introduction and disease evolution within a tropical country but the inclusion of both clinical and wastewater samples could still improve our understanding of genetic diversity co-circulating. Wastewater sequencing also revealed the cryptic transmission of SARS-CoV-2 variants within the country. Interestingly, we found some amino acid changes specific to the variants co-circulating in French Guiana, suggesting a local evolution of the SARS-CoV-2 variants after their introduction. More importantly, our results showed that the proximity to bordering countries was not the origin of the emergence of the French Guianese B.1.160.25 variant, but rather that this variant emerged from an ancestor B.1.160 variant introduced by European air plane travelers, suggesting thus that air travel remains a significant risk for cross-border spread of infectious diseases. Overall, we suggest that wastewater-based epidemiology and genotyping provides a cost effective and non-invasive approach for pathogen monitoring and an early-warning tool for disease emergence and spread within a tropical country.
Collapse
Affiliation(s)
- Marine Combe
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France.
| | - Emira Cherif
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
| | | | - Georgina Rivera-Ingraham
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France; Centre IRD de Cayenne, Guyane Française, France
| | | | | | | | - Jean-François Carod
- Laboratoire et Pôle Appui aux Fonctions Cliniques, Centre Hospitalier de l'Ouest Guyanais (CHOG), 97320 Saint-Laurent du Maroni, Guyane Française, France
| | - Thierry Carage
- Laboratoire de Biologie Médicale Carage de Kourou, 6 avenue Leopold Heder, 97310 Kourou, Guyane Française, France
| | - Angélique Procureur
- Laboratoire de Biologie Médicale Carage de Kourou, 6 avenue Leopold Heder, 97310 Kourou, Guyane Française, France
| | | |
Collapse
|
6
|
Tahoun M, Sadaka AS. Deregulated expression of autophagy genes; PIK3C3 and RAB7A in COVID-19 patients. Hum Immunol 2024; 85:110801. [PMID: 38609772 DOI: 10.1016/j.humimm.2024.110801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/20/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND The role of autophagy in coronaviruses infection and replication has a lot of debate. Autophagy involves the catalytic breakdown of intracellular components to be subsequently recycled by the lysosome. The aim of the study was to evaluate autophagy genes; PIK3C3 and RAB7A expressions in COVID-19 patients, and identify if PIK3C3 and RAB7A can be used as markers for monitoring COVID-19 patients. METHODS A case-control study was carried out on 50 patients and 50 healthy controls. Genes expression was performed using quantitative real-time polymerase chain reaction. RESULTS Compared to controls, PIK3C3 and RAB7A gene expression levels were significantly lower in patients (p < 0.001) with approximately with 9.4 and 2.3 decreased fold in PIK3C3 and RAB7A respectively. The ROC curve of PIK3C3 and RAB7A expressions showed sensitivity of 84 % and 74 % and specificity of 98 % and 78 % respectively. There was a positive correlation between PIK3C3 expression and WBCs, absolute neutrophil count, interleukin-6, D-dimer, and ALT among patients and between RAB7A expression and WBCs, CRP, IL-6, D-dimer and ALT in patients. CONCLUSIONS The study showed reduction of PIK3C3 and RAB7A expressions in COVID-19 patients. However, further studies are recommended to clarify their roles in the disease pathogenies as autophagy genes.
Collapse
Affiliation(s)
- Mona Tahoun
- Clinical and Chemical Pathology Department, Faculty of Medicine, Alexandria University, Egypt.
| | - Ahmed S Sadaka
- Chest Diseases Department, Faculty of Medicine, Alexandria University, Egypt
| |
Collapse
|
7
|
Singh L, Kumar A, Rai M, Basnet B, Rai N, Khanal P, Lai KS, Cheng WH, Asaad AM, Ansari S. Spectrum of COVID-19 induced liver injury: A review report. World J Hepatol 2024; 16:517-536. [PMID: 38689748 PMCID: PMC11056898 DOI: 10.4254/wjh.v16.i4.517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/20/2024] [Accepted: 02/28/2024] [Indexed: 04/24/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused changes in the global health system, causing significant setbacks in healthcare systems worldwide. This pandemic has also shown resilience, flexibility, and creativity in reacting to the tragedy. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection targets most of the respiratory tract, resulting in a severe sickness called acute respiratory distress syndrome that may be fatal in some individuals. Although the lung is the primary organ targeted by COVID-19 viruses, the clinical aspect of the disease is varied and ranges from asymptomatic to respiratory failure. However, due to an unorganized immune response and several affected mechanisms, the liver may also experience liver cell injury, ischemic liver dysfunction, and drug-induced liver injury, which can result in respiratory failure because of the immune system's disordered response and other compromised processes that can end in multisystem organ failure. Patients with liver cirrhosis or those who have impaired immune systems may be more likely than other groups to experience worse results from the SARS-CoV-2 infection. We thus intend to examine the pathogenesis, current therapy, and consequences of liver damage concerning COVID-19.
Collapse
Affiliation(s)
- Lokjan Singh
- Department of Microbiology, Karnali Academy of Health Science, Teaching Hospital, Jumla 21200, Karnali, Nepal
| | - Anil Kumar
- Department of Microbiology, Karnali Academy of Health Science, Teaching Hospital, Jumla 21200, Karnali, Nepal
| | - Maya Rai
- Department of Microbiology, Karnali Academy of Health Science, Teaching Hospital, Jumla 21200, Karnali, Nepal
| | - Bibek Basnet
- Health Sciences, Asian College of Advance Studies, Purbanchal University, Satdobato 24122, Lalitpur, Nepal
| | - Nishant Rai
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Pukar Khanal
- Department of Pharmacology & Toxicology, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, Karnataka, India
| | - Kok-Song Lai
- Division of Health Sciences, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
| | - Ahmed Morad Asaad
- Department of Microbiology, College of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Shamshul Ansari
- Division of Health Sciences, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates.
| |
Collapse
|
8
|
Karim M, Mishra M, Lo CW, Saul S, Cagirici HB, Tran DHN, Agrawal A, Ghita L, Ojha A, East MP, Gammeltoft KA, Sahoo MK, Johnson GL, Das S, Jochmans D, Cohen CA, Gottwein J, Dye J, Neff N, Pinsky BA, Laitinen T, Pantsar T, Poso A, Zanini F, Jonghe SD, Asquith CRM, Einav S. PIP4K2C inhibition reverses autophagic flux impairment induced by SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589676. [PMID: 38659941 PMCID: PMC11042293 DOI: 10.1101/2024.04.15.589676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In search for broad-spectrum antivirals, we discovered a small molecule inhibitor, RMC-113, that potently suppresses the replication of multiple RNA viruses including SARS-CoV-2 in human lung organoids. We demonstrated selective dual inhibition of the lipid kinases PIP4K2C and PIKfyve by RMC-113 and target engagement by its clickable analog. Advanced lipidomics revealed alteration of SARS-CoV-2-induced phosphoinositide signature by RMC-113 and linked its antiviral effect with functional PIP4K2C and PIKfyve inhibition. We discovered PIP4K2C's roles in SARS-CoV-2 entry, RNA replication, and assembly/egress, validating it as a druggable antiviral target. Integrating proteomics, single-cell transcriptomics, and functional assays revealed that PIP4K2C binds SARS-CoV-2 nonstructural protein 6 and regulates virus-induced impairment of autophagic flux. Reversing this autophagic flux impairment is a mechanism of antiviral action of RMC-113. These findings reveal virus-induced autophagy regulation via PIP4K2C, an understudied kinase, and propose dual inhibition of PIP4K2C and PIKfyve as a candidate strategy to combat emerging viruses.
Collapse
Affiliation(s)
- Marwah Karim
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Manjari Mishra
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Chieh-Wen Lo
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Sirle Saul
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Halise Busra Cagirici
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Do Hoang Nhu Tran
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Aditi Agrawal
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Luca Ghita
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Amrita Ojha
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Michael P East
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karen Anbro Gammeltoft
- Department of Infectious Diseases, University of Copenhagen, Denmark. Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen
- University Hospital-Hvidovre, Hvidovre, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Malaya Kumar Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Gary L Johnson
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Soumita Das
- Biomedical & Nutritional Science, Center for Pathogen Research & Training (CPRT), University of Massachusetts-Lowell, USA
| | - Dirk Jochmans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Courtney A Cohen
- US Army Medical Research Institute of Infectious Diseases, Viral Immunology Branch, Frederick, Maryland, USA
| | - Judith Gottwein
- Department of Infectious Diseases, University of Copenhagen, Denmark. Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen
- University Hospital-Hvidovre, Hvidovre, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - John Dye
- US Army Medical Research Institute of Infectious Diseases, Viral Immunology Branch, Frederick, Maryland, USA
| | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Benjamin A Pinsky
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Finland
| | - Tatu Pantsar
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Finland
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Finland
| | - Fabio Zanini
- School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- Cellular Genomics Futures Institute, UNSW Sydney, Sydney, New South Wales, Australia
- Evolution and Ecology Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | | | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
- Department of Microbiology and Immunology, Stanford University, CA, USA
| |
Collapse
|
9
|
Gheitasi H, Sabbaghian M, Fadaee M, Mohammadzadeh N, Shekarchi AA, Poortahmasebi V. The relationship between autophagy and respiratory viruses. Arch Microbiol 2024; 206:136. [PMID: 38436746 DOI: 10.1007/s00203-024-03838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 03/05/2024]
Abstract
Respiratory viruses have caused severe global health problems and posed essential challenges to the medical community. In recent years, the role of autophagy as a critical process in cells in viral respiratory diseases has been noticed. One of the vital catabolic biological processes in the body is autophagy. Autophagy contributes to energy recovery by targeting and selectively directing foreign microorganisms, organelles, and senescent intracellular proteins to the lysosome for degradation and phagocytosis. Activation or suppression of autophagy is often initiated when foreign pathogenic organisms such as viruses infect cells. Because of its antiviral properties, several viruses may escape or resist this process by encoding viral proteins. Viruses can also use autophagy to enhance their replication or prolong the persistence of latent infections. Here, we provide an overview of autophagy and respiratory viruses such as coronavirus, rhinovirus, parainfluenza, influenza, adenovirus, and respiratory syncytial virus, and examine the interactions between them and the role of autophagy in the virus-host interaction process and the resulting virus replication strategy.
Collapse
Affiliation(s)
- Hamidreza Gheitasi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sabbaghian
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Fadaee
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Mohammadzadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Liu C, Huang W, He X, Feng Z, Chen Q. Research Advances on Swine Acute Diarrhea Syndrome Coronavirus. Animals (Basel) 2024; 14:448. [PMID: 38338091 PMCID: PMC10854734 DOI: 10.3390/ani14030448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a virulent pathogen that causes acute diarrhea in piglets. The virus was first discovered in Guangdong Province, China, in 2017 and has since emerged in Jiangxi, Fujian, and Guangxi Provinces. The outbreak exhibited a localized and sporadic pattern, with no discernable temporal continuity. The virus can infect human progenitor cells and demonstrates considerable potential for cross-species transmission, representing a potential risk for zoonotic transmission. Therefore, continuous surveillance of and comprehensive research on SADS-CoV are imperative. This review provides an overview of the temporal and evolutionary features of SADS-CoV outbreaks, focusing on the structural characteristics of the virus, which serve as the basis for discussing its potential for interspecies transmission. Additionally, the review summarizes virus-host interactions, including the effects on host cells, as well as apoptotic and autophagic behaviors, and discusses prevention and treatment modalities for this viral infection.
Collapse
Affiliation(s)
- Chuancheng Liu
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Weili Huang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Xinyan He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Zhihua Feng
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Qi Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
11
|
Song MS, Lee DK, Lee CY, Park SC, Yang J. Host Subcellular Organelles: Targets of Viral Manipulation. Int J Mol Sci 2024; 25:1638. [PMID: 38338917 PMCID: PMC10855258 DOI: 10.3390/ijms25031638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Viruses have evolved sophisticated mechanisms to manipulate host cell processes and utilize intracellular organelles to facilitate their replication. These complex interactions between viruses and cellular organelles allow them to hijack the cellular machinery and impair homeostasis. Moreover, viral infection alters the cell membrane's structure and composition and induces vesicle formation to facilitate intracellular trafficking of viral components. However, the research focus has predominantly been on the immune response elicited by viruses, often overlooking the significant alterations that viruses induce in cellular organelles. Gaining a deeper understanding of these virus-induced cellular changes is crucial for elucidating the full life cycle of viruses and developing potent antiviral therapies. Exploring virus-induced cellular changes could substantially improve our understanding of viral infection mechanisms.
Collapse
Affiliation(s)
- Min Seok Song
- Department of Physiology and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Dong-Kun Lee
- Department of Physiology and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Chung-Young Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sang-Cheol Park
- Artificial Intelligence and Robotics Laboratory, Myongji Hospital, Goyang 10475, Republic of Korea
| | - Jinsung Yang
- Department of Biochemistry and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| |
Collapse
|
12
|
Liao Y, Wang H, Liao H, Sun Y, Tan L, Song C, Qiu X, Ding C. Classification, replication, and transcription of Nidovirales. Front Microbiol 2024; 14:1291761. [PMID: 38328580 PMCID: PMC10847374 DOI: 10.3389/fmicb.2023.1291761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/06/2023] [Indexed: 02/09/2024] Open
Abstract
Nidovirales is one order of RNA virus, with the largest single-stranded positive sense RNA genome enwrapped with membrane envelope. It comprises four families (Arterividae, Mesoniviridae, Roniviridae, and Coronaviridae) and has been circulating in humans and animals for almost one century, posing great threat to livestock and poultry,as well as to public health. Nidovirales shares similar life cycle: attachment to cell surface, entry, primary translation of replicases, viral RNA replication in cytoplasm, translation of viral proteins, virion assembly, budding, and release. The viral RNA synthesis is the critical step during infection, including genomic RNA (gRNA) replication and subgenomic mRNAs (sg mRNAs) transcription. gRNA replication requires the synthesis of a negative sense full-length RNA intermediate, while the sg mRNAs transcription involves the synthesis of a nested set of negative sense subgenomic intermediates by a discontinuous strategy. This RNA synthesis process is mediated by the viral replication/transcription complex (RTC), which consists of several enzymatic replicases derived from the polyprotein 1a and polyprotein 1ab and several cellular proteins. These replicases and host factors represent the optimal potential therapeutic targets. Hereby, we summarize the Nidovirales classification, associated diseases, "replication organelle," replication and transcription mechanisms, as well as related regulatory factors.
Collapse
Affiliation(s)
- Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huan Wang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huiyu Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
13
|
Fu Z, Xiang Y, Fu Y, Su Z, Tan Y, Yang M, Yan Y, Baghaei Daemi H, Shi Y, Xie S, Sun L, Peng G. DYRK1A is a multifunctional host factor that regulates coronavirus replication in a kinase-independent manner. J Virol 2024; 98:e0123923. [PMID: 38099687 PMCID: PMC10805018 DOI: 10.1128/jvi.01239-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2024] Open
Abstract
Coronaviruses (CoVs) pose a major threat to human and animal health worldwide, which complete viral replication by hijacking host factors. Identifying host factors essential for the viral life cycle can deepen our understanding of the mechanisms of virus-host interactions. Based on our previous genome-wide CRISPR screen of α-CoV transmissible gastroenteritis virus (TGEV), we identified the host factor dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A), but not DYRK1B, as a critical factor in TGEV replication. Rescue assays and kinase inhibitor experiments revealed that the effect of DYRK1A on viral replication is independent of its kinase activity. Nuclear localization signal modification experiments showed that nuclear DYRK1A facilitated virus replication. Furthermore, DYRK1A knockout significantly downregulated the expression of the TGEV receptor aminopeptidase N (ANPEP) and inhibited viral entry. Notably, we also demonstrated that DYRK1A is essential for the early stage of TGEV replication. Transmission electron microscopy results indicated that DYRK1A contributes to the formation of double-membrane vesicles in a kinase-independent manner. Finally, we validated that DYRK1A is also a proviral factor for mouse hepatitis virus, porcine deltacoronavirus, and porcine sapelovirus. In conclusion, our work demonstrated that DYRK1A is an essential host factor for the replication of multiple viruses, providing new insights into the mechanism of virus-host interactions and facilitating the development of new broad-spectrum antiviral drugs.IMPORTANCECoronaviruses, like other positive-sense RNA viruses, can remodel the host membrane to form double-membrane vesicles (DMVs) as their replication organelles. Currently, host factors involved in DMV formation are not well defined. In this study, we used transmissible gastroenteritis virus (TGEV) as a virus model to investigate the regulatory mechanism of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) on coronavirus. Results showed that DYRK1A significantly inhibited TGEV replication in a kinase-independent manner. DYRK1A knockout (KO) can regulate the expression of receptor aminopeptidase N (ANPEP) and endocytic-related genes to inhibit virus entry. More importantly, our results revealed that DYRK1A KO notably inhibited the formation of DMV to regulate the virus replication. Further data proved that DYRK1A is also essential in the replication of mouse hepatitis virus, porcine deltacoronavirus, and porcine sapelovirus. Taken together, our findings demonstrated that DYRK1A is a conserved factor for positive-sense RNA viruses and provided new insights into its transcriptional regulation activity, revealing its potential as a candidate target for therapeutic design.
Collapse
Affiliation(s)
- Zhen Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yixin Xiang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yanan Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhelin Su
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yubei Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Mengfang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuanyuan Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hakimeh Baghaei Daemi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuejun Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Limeng Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| |
Collapse
|
14
|
Prieto K, Arévalo C, Lasso P, Carlosama C, Urueña C, Fiorentino S, Barreto A. Plant extracts modulate cellular stress to inhibit replication of mouse Coronavirus MHV-A59. Heliyon 2024; 10:e23403. [PMID: 38169850 PMCID: PMC10758815 DOI: 10.1016/j.heliyon.2023.e23403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The Covid-19 infection outbreak led to a global epidemic, and although several vaccines have been developed, the appearance of mutations has allowed the virus to evade the immune response. Added to this is the existing risk of the appearance of new emerging viruses. Therefore, it is necessary to explore novel antiviral therapies. Here, we investigate the potential in vitro of plant extracts to modulate cellular stress and inhibit murine hepatitis virus (MHV)-A59 replication. L929 cells were treated with P2Et (Caesalpinia spinosa) and Anamu SC (Petiveria alliacea) plant extracts during infection and virus production, ROS (reactive oxygen species), UPR (unfolded protein response), and autophagy were assessed. P2Et inhibited virus replication and attenuated both ROS production and UPR activation induced during infection. In contrast, the sustained presence of Anamu SC during viral adsorption and replication was required to inhibit viral infection, tending to induce pro-oxidant effects, and increasing UPR gene expression. Notably, the loss of the PERK protein resulted in a slight decrease in virus yield, suggesting a potential involvement of this UPR pathway during replication. Intriguingly, both extracts either maintained or increased the calreticulin surface exposure induced during infection. In conclusion, our findings highlight the development of antiviral natural plant extracts that differentially modulate cellular stress.
Collapse
Affiliation(s)
| | | | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Departamento de Microbiología, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Carolina Carlosama
- Grupo de Inmunobiología y Biología Celular, Departamento de Microbiología, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Claudia Urueña
- Grupo de Inmunobiología y Biología Celular, Departamento de Microbiología, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Departamento de Microbiología, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Departamento de Microbiología, Pontificia Universidad Javeriana. Bogotá, Colombia
| |
Collapse
|
15
|
Gavilán E, Medina-Guzman R, Bahatyrevich-Kharitonik B, Ruano D. Protein Quality Control Systems and ER Stress as Key Players in SARS-CoV-2-Induced Neurodegeneration. Cells 2024; 13:123. [PMID: 38247815 PMCID: PMC10814689 DOI: 10.3390/cells13020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The COVID-19 pandemic has brought to the forefront the intricate relationship between SARS-CoV-2 and its impact on neurological complications, including potential links to neurodegenerative processes, characterized by a dysfunction of the protein quality control systems and ER stress. This review article explores the role of protein quality control systems, such as the Unfolded Protein Response (UPR), the Endoplasmic Reticulum-Associated Degradation (ERAD), the Ubiquitin-Proteasome System (UPS), autophagy and the molecular chaperones, in SARS-CoV-2 infection. Our hypothesis suggests that SARS-CoV-2 produces ER stress and exploits the protein quality control systems, leading to a disruption in proteostasis that cannot be solved by the host cell. This disruption culminates in cell death and may represent a link between SARS-CoV-2 and neurodegeneration.
Collapse
Affiliation(s)
- Elena Gavilán
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| | - Rafael Medina-Guzman
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
| | - Bazhena Bahatyrevich-Kharitonik
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| | - Diego Ruano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| |
Collapse
|
16
|
Aguilera MO, Delgui LR, Reggiori F, Romano PS, Colombo MI. Autophagy as an innate immunity response against pathogens: a Tango dance. FEBS Lett 2024; 598:140-166. [PMID: 38101809 DOI: 10.1002/1873-3468.14788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 12/17/2023]
Abstract
Intracellular infections as well as changes in the cell nutritional environment are main events that trigger cellular stress responses. One crucial cell response to stress conditions is autophagy. During the last 30 years, several scenarios involving autophagy induction or inhibition over the course of an intracellular invasion by pathogens have been uncovered. In this review, we will present how this knowledge was gained by studying different microorganisms. We intend to discuss how the cell, via autophagy, tries to repel these attacks with the objective of destroying the intruder, but also how some pathogens have developed strategies to subvert this. These two fates can be compared with a Tango, a dance originated in Buenos Aires, Argentina, in which the partner dancers are in close connection. One of them is the leader, embracing and involving the partner, but the follower may respond escaping from the leader. This joint dance is indeed highly synchronized and controlled, perfectly reflecting the interaction between autophagy and microorganism.
Collapse
Affiliation(s)
- Milton O Aguilera
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia-Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Facultad de Odontología, Microbiología, Parasitología e Inmunología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Laura R Delgui
- Instituto de Histología y Embriología de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Denmark
| | - Patricia S Romano
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Médicas, Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - María I Colombo
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia-Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Facultad de Ciencias Médicas, Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| |
Collapse
|
17
|
Daskou M, Fotooh Abadi L, Gain C, Wong M, Sharma E, Kombe Kombe AJ, Nanduri R, Kelesidis T. The Role of the NRF2 Pathway in the Pathogenesis of Viral Respiratory Infections. Pathogens 2023; 13:39. [PMID: 38251346 PMCID: PMC10819673 DOI: 10.3390/pathogens13010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
In humans, acute and chronic respiratory infections caused by viruses are associated with considerable morbidity and mortality. Respiratory viruses infect airway epithelial cells and induce oxidative stress, yet the exact pathogenesis remains unclear. Oxidative stress activates the transcription factor NRF2, which plays a key role in alleviating redox-induced cellular injury. The transcriptional activation of NRF2 has been reported to affect both viral replication and associated inflammation pathways. There is complex bidirectional crosstalk between virus replication and the NRF2 pathway because virus replication directly or indirectly regulates NRF2 expression, and NRF2 activation can reversely hamper viral replication and viral spread across cells and tissues. In this review, we discuss the complex role of the NRF2 pathway in the regulation of the pathogenesis of the main respiratory viruses, including coronaviruses, influenza viruses, respiratory syncytial virus (RSV), and rhinoviruses. We also summarize the scientific evidence regarding the effects of the known NRF2 agonists that can be utilized to alter the NRF2 pathway.
Collapse
Affiliation(s)
- Maria Daskou
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Leila Fotooh Abadi
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Chandrima Gain
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Wong
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Eashan Sharma
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Arnaud John Kombe Kombe
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Ravikanth Nanduri
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| |
Collapse
|
18
|
Cesar-Silva D, Pereira-Dutra FS, Giannini ALM, Maya-Monteiro CM, de Almeida CJG. Lipid compartments and lipid metabolism as therapeutic targets against coronavirus. Front Immunol 2023; 14:1268854. [PMID: 38106410 PMCID: PMC10722172 DOI: 10.3389/fimmu.2023.1268854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/24/2023] [Indexed: 12/19/2023] Open
Abstract
Lipids perform a series of cellular functions, establishing cell and organelles' boundaries, organizing signaling platforms, and creating compartments where specific reactions occur. Moreover, lipids store energy and act as secondary messengers whose distribution is tightly regulated. Disruption of lipid metabolism is associated with many diseases, including those caused by viruses. In this scenario, lipids can favor virus replication and are not solely used as pathogens' energy source. In contrast, cells can counteract viruses using lipids as weapons. In this review, we discuss the available data on how coronaviruses profit from cellular lipid compartments and why targeting lipid metabolism may be a powerful strategy to fight these cellular parasites. We also provide a formidable collection of data on the pharmacological approaches targeting lipid metabolism to impair and treat coronavirus infection.
Collapse
Affiliation(s)
- Daniella Cesar-Silva
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Filipe S. Pereira-Dutra
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Lucia Moraes Giannini
- Laboratory of Functional Genomics and Signal Transduction, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarissa M. Maya-Monteiro
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Laboratory of Endocrinology and Department of Endocrinology and Metabolism, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Cecília Jacques G. de Almeida
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Dasgupta A, Gangai S, Narayan R, Kapoor S. Mapping the Lipid Signatures in COVID-19 Infection: Diagnostic and Therapeutic Solutions. J Med Chem 2023; 66:14411-14433. [PMID: 37899546 DOI: 10.1021/acs.jmedchem.3c01238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The COVID-19 pandemic ignited research centered around the identification of robust biomarkers and therapeutic targets. SARS-CoV-2, the virus responsible, hijacks the metabolic machinery of the host cells. It relies on lipids and lipoproteins of host cells for entry, trafficking, immune evasion, viral replication, and exocytosis. The infection causes host cell lipid metabolic remodelling. Targeting lipid-based processes is thus a promising strategy for countering COVID-19. Here, we review the role of lipids in the different steps of the SARS-CoV-2 pathogenesis and identify lipid-centric targetable avenues. We discuss lipidome changes in infected patients and their relevance as potential clinical diagnostic or prognostic biomarkers. We summarize the emerging direct and indirect therapeutic approaches for targeting COVID-19 using lipid-inspired approaches. Given that viral protein-targeted therapies may become less effective due to mutations in emerging SARS-CoV-2 variants, lipid-inspired interventions may provide additional and perhaps better means of combating this and future pandemics.
Collapse
Affiliation(s)
- Aishi Dasgupta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IIT-Bombay Monash Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shon Gangai
- School of Chemical and Materials Sciences (SCMS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences (SCMS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
- School of Interdisciplinary Life Sciences (SILS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IIT-Bombay Monash Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|
20
|
Zhang K, Huang L, Cai Y, Zhong Y, Chen N, Gao F, Zhang L, Li Q, Liu Z, Zhang R, Zhang L, Yue J. Identification of a small chemical as a lysosomal calcium mobilizer and characterization of its ability to inhibit autophagy and viral infection. FEBS J 2023; 290:5353-5372. [PMID: 37528513 DOI: 10.1111/febs.16920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/10/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
We previously identified glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as one of the cyclic adenosine diphosphoribose (cADPR)'s binding proteins and found that GAPDH participates in cADPR-mediated Ca2+ release from endoplasmic reticulum via ryanodine receptors (RyRs). Here, we aimed to chemically synthesise and pharmacologically characterise novel cADPR analogues. Based on the simulated cADPR-GAPDH complex structure, we performed the structure-based drug screening, identified several small chemicals with high docking scores to cADPR's binding pocket in GAPDH and showed that two of these compounds, C244 and C346, are potential cADPR antagonists. We further synthesised several analogues of C346 and found that its analogue, G42, also mobilised Ca2+ release from lysosomes. G42 alkalised lysosomal pH and inhibited autophagosome-lysosome fusion. Moreover, G42 markedly inhibited Zika virus (ZIKV, a flavivirus) or murine hepatitis virus (MHV, a β-coronavirus) infections of host cells. These results suggest that G42 inhibits virus infection, likely by triggering lysosomal Ca2+ mobilisation and inhibiting autophagy.
Collapse
Affiliation(s)
- Kehui Zhang
- State Key Laboratory of Bioactive Substance and Function of Natual Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lihong Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Yang Cai
- Department of Biomedical Sciences, City University of Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, China
| | - Yi Zhong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Nanjun Chen
- Department of Computer Science, City University of Hong Kong, China
| | - Fei Gao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Liang Zhang
- Department of Biomedical Sciences, City University of Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, China
| | - Qi Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, Institute of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jianbo Yue
- City University of Hong Kong Shenzhen Research Institute, China
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, China
| |
Collapse
|
21
|
Jang M, Park R, Yamamoto A, Park YI, Park Y, Lee S, Park J. AMPK inhibitor, compound C, inhibits coronavirus replication in vitro. PLoS One 2023; 18:e0292309. [PMID: 37788269 PMCID: PMC10547180 DOI: 10.1371/journal.pone.0292309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 09/18/2023] [Indexed: 10/05/2023] Open
Abstract
The coronavirus disease (COVID-19) pandemic has resulted in more than six million deaths by October 2022. Vaccines and antivirals for severe acute respiratory syndrome coronavirus 2 are now available; however, more effective antiviral drugs are required for effective treatment. Here, we report that a potent AMP-activated protein kinase (AMPK) inhibitor, compound C/dorsomorphin, inhibits the replication of the human coronavirus OC43 strain (HCoV-OC43). We examined HCoV-OC43 replication in control and AMPK-knockout (KO) cells and found that the virus replication decreased in AMPK-KO cells. Next, we examined the effect of the AMPK inhibitor, compound C on coronavirus replication. Compound C treatment efficiently inhibited the replication and decreased the coronavirus-induced cytotoxicity, further inhibiting autophagy. In addition, treatment with compound C in combination with chloroquine synergistically inhibited coronavirus replication. These results suggest that compound C can be considered as a potential drug candidate for COVID-19.
Collapse
Affiliation(s)
- Minsu Jang
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Rackhyun Park
- Department of Life Science, Yong-In University, Yongin, Republic of Korea
| | - Ayane Yamamoto
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Yea-In Park
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Yeonjeong Park
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Siyun Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
22
|
Zhang J, Zhu Y, Wang X, Wang J. 25-hydroxycholesterol: an integrator of antiviral ability and signaling. Front Immunol 2023; 14:1268104. [PMID: 37781400 PMCID: PMC10533924 DOI: 10.3389/fimmu.2023.1268104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Cholesterol, as an important component in mammalian cells, is efficient for viral entry, replication, and assembly. Oxysterols especially hydroxylated cholesterols are recognized as novel regulators of the innate immune response. The antiviral ability of 25HC (25-Hydroxycholesterol) is uncovered due to its role as a metabolic product of the interferon-stimulated gene CH25H (cholesterol-25-hydroxylase). With the advancement of research, the biological functions of 25HC and its structural functions have been interpreted gradually. Furthermore, the underlying mechanisms of antiviral effect of 25HC are not only limited to interferon regulation. Taken up by the special biosynthetic ways and structure, 25HC contributes to modulate not only the cholesterol metabolism but also autophagy and inflammation by regulating signaling pathways. The outcome of modulation by 25HC seems to be largely dependent on the cell types, viruses and context of cell microenvironments. In this paper, we review the recent proceedings on the regulatory effect of 25HC on interferon-independent signaling pathways related to its antiviral capacity and its putative underlying mechanisms.
Collapse
Affiliation(s)
- Jialu Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, China
| | - Yaohong Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, China
| | - Xiaojia Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, China
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, China
| |
Collapse
|
23
|
Fu Y, Fu Z, Su Z, Li L, Yang Y, Tan Y, Xiang Y, Shi Y, Xie S, Sun L, Peng G. mLST8 is essential for coronavirus replication and regulates its replication through the mTORC1 pathway. mBio 2023; 14:e0089923. [PMID: 37377422 PMCID: PMC10470783 DOI: 10.1128/mbio.00899-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/11/2023] [Indexed: 06/29/2023] Open
Abstract
Coronaviruses (CoVs), which pose a serious threat to human and animal health worldwide, need to hijack host factors to complete their replicative cycles. However, the current study of host factors involved in CoV replication remains unknown. Here, we identified a novel host factor, mammalian lethal with sec-13 protein 8 (mLST8), which is a common subunit of mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), and is critical for CoV replication. Inhibitor and knockout (KO) experiments revealed that mTORC1, but not mTORC2, is essential for transmissible gastroenteritis virus replication. Furthermore, mLST8 KO reduced the phosphorylation of unc-51-like kinase 1 (ULK1), a factor downstream of the mTORC1 signaling pathway, and mechanistic studies revealed that decreased phosphorylation of the mTORC1 downstream factor ULK1 promoted the activation of autophagy, which is responsible for antiviral replication in mLST8 KO cells. Then, transmission electron microscopy indicated that both mLST8 KO and autophagy activator inhibited the formation of double-membrane vesicles in early viral replication. Finally, mLST8 KO and autophagy activator treatment could also inhibit the replication of other CoVs, indicating a conserved relationship between autophagy activation and CoV replication. In summary, our work reveals that mLST8 is a novel host regulator of CoV replication, which provides new insights into the mechanism of CoV replication and can facilitate the development of broad-spectrum antiviral drugs. IMPORTANCE CoVs are highly variable, and existing CoV vaccines are still limited in their ability to address mutations in CoVs. Therefore, the need to improve our understanding of the interaction of CoVs with the host during viral replication and to find targets for drugs against CoVs is urgent. Here, we found that a novel host factor, mLST8, is critical for CoV infection. Further studies showed that mLST8 KO inhibited the mTORC1 signaling pathway, and we found that autophagy activation downstream of mTORC1 was the main cause of antiviral replication in mLST8 KO cells. Autophagy activation impaired the formation of DMVs and inhibited early viral replication. These findings deepen our understanding of the CoV replication process and provide insights into potential therapeutic applications.
Collapse
Affiliation(s)
- Yanan Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhen Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhelin Su
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lisha Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yilin Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yubei Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yixin Xiang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuejun Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Limeng Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| |
Collapse
|
24
|
Salukhe I, Choi R, Van Voorhis W, Barrett L, Hyde J. Regulation of coronavirus nsp15 cleavage specificity by RNA structure. PLoS One 2023; 18:e0290675. [PMID: 37616296 PMCID: PMC10449227 DOI: 10.1371/journal.pone.0290675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
SARS-CoV-2, the etiologic agent of the COVID-19 pandemic, has had an enduring impact on global public health. However, SARS-CoV-2 is only one of multiple pathogenic human coronaviruses (CoVs) to have emerged since the turn of the century. CoVs encode for several nonstructural proteins (nsps) that are essential for viral replication and pathogenesis. Among them is nsp15, a uridine-specific viral endonuclease that is important in evading the host immune response and promoting viral replication. Despite the established endonuclease function of nsp15, little is known about other determinants of its cleavage specificity. In this study we investigate the role of RNA secondary structure in SARS-CoV-2 nsp15 endonuclease activity. Using a series of in vitro endonuclease assays, we observed that thermodynamically stable RNA structures were protected from nsp15 cleavage relative to RNAs lacking stable structure. We leveraged the s2m RNA from the SARS-CoV-1 3'UTR as a model for our structural studies as it adopts a well-defined structure with several uridines, two of which are unpaired and thus highly probable targets for nsp15 cleavage. We found that SARS-CoV-2 nsp15 specifically cleaves s2m at the unpaired uridine within the GNRNA pentaloop of the RNA. Further investigation revealed that the position of uridine within the pentaloop also impacted nsp15 cleavage efficiency suggesting that positioning within the pentaloop is necessary for optimal presentation of the scissile uridine and alignment within the nsp15 catalytic pocket. Our findings indicate that RNA secondary structure is an important determinant of nsp15 cleavage and provides insight into the molecular mechanisms of RNA recognition by nsp15.
Collapse
Affiliation(s)
- Indraneel Salukhe
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Ryan Choi
- Division of Allergy and Infectious Diseases, Department of Medicine, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington School of Medicine, Seattle, WA, United States of America
| | - Wesley Van Voorhis
- Division of Allergy and Infectious Diseases, Department of Medicine, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington School of Medicine, Seattle, WA, United States of America
| | - Lynn Barrett
- Division of Allergy and Infectious Diseases, Department of Medicine, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington School of Medicine, Seattle, WA, United States of America
| | - Jennifer Hyde
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| |
Collapse
|
25
|
Shan T, Li LY, Yang JM, Cheng Y. Role and clinical implication of autophagy in COVID-19. Virol J 2023; 20:125. [PMID: 37328875 PMCID: PMC10276507 DOI: 10.1186/s12985-023-02069-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/10/2023] [Indexed: 06/18/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic constitutes a serious public health concern worldwide. Currently, more than 6 million deaths have occurred despite drastic containment measures, and this number is still increasing. Currently, no standard therapies for COVID-19 are available, which necessitates identifying effective preventive and therapeutic agents against COVID-19. However, developing new drugs and vaccines is a time-consuming process, and therefore, repurposing the existing drugs or redeveloping related targets seems to be the best strategy to develop effective therapeutics against COVID-19. Autophagy, a multistep lysosomal degradation pathway contributing to nutrient recycling and metabolic adaptation, is involved in the initiation and progression of numerous diseases as a part of an immune response. The key role of autophagy in antiviral immunity has been extensively studied. Moreover, autophagy can directly eliminate intracellular microorganisms by selective autophagy, that is, "xenophagy." However, viruses have acquired diverse strategies to exploit autophagy for their infection and replication. This review aims to trigger the interest in the field of autophagy as an antiviral target for viral pathogens (with an emphasis on COVID-19). We base this hypothesis on summarizing the classification and structure of coronaviruses as well as the process of SARS-CoV-2 infection and replication; providing the common understanding of autophagy; reviewing interactions between the mechanisms of viral entry/replication and the autophagy pathways; and discussing the current state of clinical trials of autophagy-modifying drugs in the treatment of SARS-CoV-2 infection. We anticipate that this review will contribute to the rapid development of therapeutics and vaccines against COVID-19.
Collapse
Affiliation(s)
- Tianjiao Shan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, China
| | - Lan-Ya Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, China
| | - Jin-Ming Yang
- Department of Toxicology and Cancer Biology, Department of Pharmacology, and Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA.
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, China.
| |
Collapse
|
26
|
De La Cruz-Montoya AH, Díaz Velásquez CE, Martínez-Gregorio H, Ruiz-De La Cruz M, Bustos-Arriaga J, Castro-Jiménez TK, Olguín-Hernández JE, Rodríguez-Sosa M, Terrazas-Valdes LI, Jiménez-Alvarez LA, Regino-Zamarripa NE, Ramírez-Martínez G, Cruz-Lagunas A, Peralta-Arrieta I, Armas-López L, Contreras-Garza BM, Palma-Cortés G, Cabello-Gutierrez C, Báez-Saldaña R, Zúñiga J, Ávila-Moreno F, Vaca-Paniagua F. Molecular transition of SARS-CoV-2 from critical patients during the first year of the COVID-19 pandemic in Mexico City. Front Cell Infect Microbiol 2023; 13:1155938. [PMID: 37260697 PMCID: PMC10227454 DOI: 10.3389/fcimb.2023.1155938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
Background The SARS-CoV-2 virus has caused unprecedented mortality since its emergence in late 2019. The continuous evolution of the viral genome through the concerted action of mutational forces has produced distinct variants that became dominant, challenging human immunity and vaccine development. Aim and methods In this work, through an integrative genomic approach, we describe the molecular transition of SARS-CoV-2 by analyzing the viral whole genome sequences from 50 critical COVID-19 patients recruited during the first year of the pandemic in Mexico City. Results Our results revealed differential levels of the evolutionary forces across the genome and specific mutational processes that have shaped the first two epidemiological waves of the pandemic in Mexico. Through phylogenetic analyses, we observed a genomic transition in the circulating SARS-CoV-2 genomes from several lineages prevalent in the first wave to a dominance of the B.1.1.519 variant (defined by T478K, P681H, and T732A mutations in the spike protein) in the second wave. Conclusion This work contributes to a better understanding of the evolutionary dynamics and selective pressures that act at the genomic level, the prediction of more accurate variants of clinical significance, and a better comprehension of the molecular mechanisms driving the evolution of SARS-CoV-2 to improve vaccine and drug development.
Collapse
Affiliation(s)
- Aldo Hugo De La Cruz-Montoya
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Clara Estela Díaz Velásquez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Héctor Martínez-Gregorio
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Miguel Ruiz-De La Cruz
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, Mexico
| | - José Bustos-Arriaga
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Tannya Karen Castro-Jiménez
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Jonadab Efraín Olguín-Hernández
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
| | - Miriam Rodríguez-Sosa
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Luis Ignacio Terrazas-Valdes
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Luis Armando Jiménez-Alvarez
- Laboratorio de Inmunobiología y Genética y Departamento de Virología, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Nora Elemi Regino-Zamarripa
- Laboratorio de Inmunobiología y Genética y Departamento de Virología, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ciudad de México, Mexico
| | - Gustavo Ramírez-Martínez
- Laboratorio de Inmunobiología y Genética y Departamento de Virología, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Alfredo Cruz-Lagunas
- Laboratorio de Inmunobiología y Genética y Departamento de Virología, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Irlanda Peralta-Arrieta
- Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Leonel Armas-López
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | | | - Gabriel Palma-Cortés
- Department of Research in Virology and Mycology, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Carlos Cabello-Gutierrez
- Department of Research in Virology and Mycology, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Renata Báez-Saldaña
- Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Joaquín Zúñiga
- Laboratorio de Inmunobiología y Genética y Departamento de Virología, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ciudad de México, Mexico
- Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Federico Ávila-Moreno
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
- Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
- Laboratorio 12 de Enfermedades Pulmonares y Epigenómica del Cáncer, Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Felipe Vaca-Paniagua
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| |
Collapse
|
27
|
Kakavandi S, Zare I, VaezJalali M, Dadashi M, Azarian M, Akbari A, Ramezani Farani M, Zalpoor H, Hajikhani B. Structural and non-structural proteins in SARS-CoV-2: potential aspects to COVID-19 treatment or prevention of progression of related diseases. Cell Commun Signal 2023; 21:110. [PMID: 37189112 PMCID: PMC10183699 DOI: 10.1186/s12964-023-01104-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/15/2023] [Indexed: 05/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by a new member of the Coronaviridae family known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are structural and non-structural proteins (NSPs) in the genome of this virus. S, M, H, and E proteins are structural proteins, and NSPs include accessory and replicase proteins. The structural and NSP components of SARS-CoV-2 play an important role in its infectivity, and some of them may be important in the pathogenesis of chronic diseases, including cancer, coagulation disorders, neurodegenerative disorders, and cardiovascular diseases. The SARS-CoV-2 proteins interact with targets such as angiotensin-converting enzyme 2 (ACE2) receptor. In addition, SARS-CoV-2 can stimulate pathological intracellular signaling pathways by triggering transcription factor hypoxia-inducible factor-1 (HIF-1), neuropilin-1 (NRP-1), CD147, and Eph receptors, which play important roles in the progression of neurodegenerative diseases like Alzheimer's disease, epilepsy, and multiple sclerosis, and multiple cancers such as glioblastoma, lung malignancies, and leukemias. Several compounds such as polyphenols, doxazosin, baricitinib, and ruxolitinib could inhibit these interactions. It has been demonstrated that the SARS-CoV-2 spike protein has a stronger affinity for human ACE2 than the spike protein of SARS-CoV, leading the current study to hypothesize that the newly produced variant Omicron receptor-binding domain (RBD) binds to human ACE2 more strongly than the primary strain. SARS and Middle East respiratory syndrome (MERS) viruses against structural and NSPs have become resistant to previous vaccines. Therefore, the review of recent studies and the performance of current vaccines and their effects on COVID-19 and related diseases has become a vital need to deal with the current conditions. This review examines the potential role of these SARS-CoV-2 proteins in the initiation of chronic diseases, and it is anticipated that these proteins could serve as components of an effective vaccine or treatment for COVID-19 and related diseases. Video Abstract.
Collapse
Affiliation(s)
- Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz, 7178795844, Iran
| | - Maryam VaezJalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Azarian
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Abdullatif Akbari
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Sun Q, Li X, Kuang E. Subversion of autophagy machinery and organelle-specific autophagy by SARS-CoV-2 and coronaviruses. Autophagy 2023; 19:1055-1069. [PMID: 36005882 PMCID: PMC10012907 DOI: 10.1080/15548627.2022.2116677] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/09/2022] Open
Abstract
As a new emerging severe coronavirus, the knowledge on the SARS-CoV-2 and COVID-19 remains very limited, whereas many concepts can be learned from the homologous coronaviruses. Macroautophagy/autophagy is finely regulated by SARS-CoV-2 infection and plays important roles in SARS-CoV-2 infection and pathogenesis. This review will explore the subversion and mechanism of the autophagy-related machinery, vacuoles and organelle-specific autophagy during infection of SARS-CoV-2 and coronaviruses to provide meaningful insights into the autophagy-related therapeutic strategies for infectious diseases of SARS-CoV-2 and coronaviruses.
Collapse
Affiliation(s)
- Qinqin Sun
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaojuan Li
- College of Clinic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Ministry of Education, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Severe acute respiratory syndrome coronaviruses contributing to mitochondrial dysfunction: Implications for post-COVID complications. Mitochondrion 2023; 69:43-56. [PMID: 36690315 PMCID: PMC9854144 DOI: 10.1016/j.mito.2023.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
Mitochondria play a central role in oxidative phosphorylation (OXPHOS), bioenergetics linked with ATP production, fatty acids biosynthesis, calcium signaling, cell cycle regulation, apoptosis, and innate immune response. Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infection manipulates the host cellular machinery for its survival and replication in the host cell. The infectiaon causes perturbed the cellular metabolism that favours viral replication leading to mitochondrial dysfunction and chronic inflammation. By localizing to the mitochondria, SARS CoV proteins increase reactive oxygen species (ROS) levels, perturbation of Ca2+ signaling, changes in mtDNA copy number, mitochondrial membrane potential (MMP), mitochondrial mass, and induction of mitophagy. These proteins also influence the fusion and fission kinetics, size, structure, and distribution of mitochondria in the infected host cells. This results in compromised bioenergetics, altered metabolism, and innate immune signaling, and hence can be a key player in determining the outcome of SARS-CoV infection. SARS-CoV infection contributes to stress and activates apoptotic pathways. This review summarizes how mitochondrial function and dynamics are affected by SARS-CoV and how the mitochondria-SARS-CoV interaction benefits viral survival and growth by evading innate host immunity. We also highlight how the SARS-CoV-mediated mitochondrial dysfunction contributes to post-COVID complications. Besides, a discussion on targeting virus-mitochondria interactions as a therapeutic strategy is presented.
Collapse
|
30
|
Shi D, Zhou L, Shi H, Zhang J, Zhang J, Zhang L, Liu D, Feng T, Zeng M, Chen J, Zhang X, Xue M, Jing Z, Liu J, Ji Z, He H, Guo L, Wu Y, Ma J, Feng L. Autophagy is induced by swine acute diarrhea syndrome coronavirus through the cellular IRE1-JNK-Beclin 1 signaling pathway after an interaction of viral membrane-associated papain-like protease and GRP78. PLoS Pathog 2023; 19:e1011201. [PMID: 36888569 PMCID: PMC9994726 DOI: 10.1371/journal.ppat.1011201] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
Autophagy plays an important role in the infectious processes of diverse pathogens. For instance, cellular autophagy could be harnessed by viruses to facilitate replication. However, it is still uncertain about the interplay of autophagy and swine acute diarrhea syndrome coronavirus (SADS-CoV) in cells. In this study, we reported that SADS-CoV infection could induce a complete autophagy process both in vitro and in vivo, and an inhibition of autophagy significantly decreased SADS-CoV production, thus suggesting that autophagy facilitated the replication of SADS-CoV. We found that ER stress and its downstream IRE1 pathway were indispensable in the processes of SADS-CoV-induced autophagy. We also demonstrated that IRE1-JNK-Beclin 1 signaling pathway, neither PERK-EIF2S1 nor ATF6 pathways, was essential during SADS-CoV-induced autophagy. Importantly, our work provided the first evidence that expression of SADS-CoV PLP2-TM protein induced autophagy through the IRE1-JNK-Beclin 1 signaling pathway. Furthermore, the interaction of viral PLP2-TMF451-L490 domain and substrate-binding domain of GRP78 was identified to activate the IRE1-JNK-Beclin 1 signaling pathway, and thus resulting in autophagy, and in turn, enhancing SADS-CoV replication. Collectively, these results not only showed that autophagy promoted SADS-CoV replication in cultured cells, but also revealed that the molecular mechanism underlying SADS-CoV-induced autophagy in cells.
Collapse
Affiliation(s)
- Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Ling Zhou
- College of Animal Science, South China Agricultural University, Tianhe District, China
| | - Hongyan Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Jiyu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Jialin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Liaoyuan Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Dakai Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Tingshuai Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Miaomiao Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Jianfei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Xin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Mei Xue
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Zhaoyang Jing
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Jianbo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Zhaoyang Ji
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Haojie He
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Longjun Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Yang Wu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Tianhe District, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| |
Collapse
|
31
|
Srivastava M, Bhukya PL, Barman MK, Bhise N, Lole KS. Modulation of cellular autophagy by genotype 1 hepatitis E virus ORF3 protein. J Gen Virol 2023; 104. [PMID: 36809248 DOI: 10.1099/jgv.0.001824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Hepatitis E virus (HEV) egresses from infected hepatocytes as quasienveloped particles containing open reading frame 3 (ORF3) protein. HEV ORF3 (small phosphoprotein) interacts with host proteins to establish a favourable environment for virus replication. It is a functional viroporin that plays an important role during virus release. Our study provides evidence that pORF3 plays a pivotal role in inducing Beclin1-mediated autophagy that helps HEV-1 replication as well as its exit from cells. The ORF3 interacts with host proteins involved in regulation of transcriptional activity, immune response, cellular and molecular processes, and modulation of autophagy, by interacting with proteins, DAPK1, ATG2B, ATG16L2 and also several histone deacetylases (HDACs). For autophagy induction, the ORF3 utilizes non-canonical NF-κB2 pathway and sequesters p52NF-κB and HDAC2 to upregulate DAPK1 expression, leading to enhanced Beclin1 phosphorylation. By sequestering several HDACs, HEV may prevent histone deacetylation to maintain overall cellular transcription intact to promote cell survival. Our findings highlight a novel crosstalk between cell survival pathways participating in ORF3-mediated autophagy.
Collapse
Affiliation(s)
| | - Prudhvi Lal Bhukya
- Division of Hepatitis, National Institute of Virology, Pune, India
- ICMR-National Animal Resource Facility for Biomedical Research, Hyderabad, India
| | | | - Neha Bhise
- Division of Hepatitis, National Institute of Virology, Pune, India
| | - Kavita S Lole
- Division of Hepatitis, National Institute of Virology, Pune, India
| |
Collapse
|
32
|
Chen T, Tu S, Ding L, Jin M, Chen H, Zhou H. The role of autophagy in viral infections. J Biomed Sci 2023; 30:5. [PMID: 36653801 PMCID: PMC9846652 DOI: 10.1186/s12929-023-00899-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Autophagy is an evolutionarily conserved catabolic cellular process that exerts antiviral functions during a viral invasion. However, co-evolution and co-adaptation between viruses and autophagy have armed viruses with multiple strategies to subvert the autophagic machinery and counteract cellular antiviral responses. Specifically, the host cell quickly initiates the autophagy to degrade virus particles or virus components upon a viral infection, while cooperating with anti-viral interferon response to inhibit the virus replication. Degraded virus-derived antigens can be presented to T lymphocytes to orchestrate the adaptive immune response. Nevertheless, some viruses have evolved the ability to inhibit autophagy in order to evade degradation and immune responses. Others induce autophagy, but then hijack autophagosomes as a replication site, or hijack the secretion autophagy pathway to promote maturation and egress of virus particles, thereby increasing replication and transmission efficiency. Interestingly, different viruses have unique strategies to counteract different types of selective autophagy, such as exploiting autophagy to regulate organelle degradation, metabolic processes, and immune responses. In short, this review focuses on the interaction between autophagy and viruses, explaining how autophagy serves multiple roles in viral infection, with either proviral or antiviral functions.
Collapse
Affiliation(s)
- Tong Chen
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Shaoyu Tu
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Ling Ding
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Meilin Jin
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Huanchun Chen
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Hongbo Zhou
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| |
Collapse
|
33
|
Hurtado-Tamayo J, Requena-Platek R, Enjuanes L, Bello-Perez M, Sola I. Contribution to pathogenesis of accessory proteins of deadly human coronaviruses. Front Cell Infect Microbiol 2023; 13:1166839. [PMID: 37197199 PMCID: PMC10183600 DOI: 10.3389/fcimb.2023.1166839] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/11/2023] [Indexed: 05/19/2023] Open
Abstract
Coronaviruses (CoVs) are enveloped and positive-stranded RNA viruses with a large genome (∼ 30kb). CoVs include essential genes, such as the replicase and four genes coding for structural proteins (S, M, N and E), and genes encoding accessory proteins, which are variable in number, sequence and function among different CoVs. Accessory proteins are non-essential for virus replication, but are frequently involved in virus-host interactions associated with virulence. The scientific literature on CoV accessory proteins includes information analyzing the effect of deleting or mutating accessory genes in the context of viral infection, which requires the engineering of CoV genomes using reverse genetics systems. However, a considerable number of publications analyze gene function by overexpressing the protein in the absence of other viral proteins. This ectopic expression provides relevant information, although does not acknowledge the complex interplay of proteins during virus infection. A critical review of the literature may be helpful to interpret apparent discrepancies in the conclusions obtained by different experimental approaches. This review summarizes the current knowledge on human CoV accessory proteins, with an emphasis on their contribution to virus-host interactions and pathogenesis. This knowledge may help the search for antiviral drugs and vaccine development, still needed for some highly pathogenic human CoVs.
Collapse
Affiliation(s)
| | | | | | | | - Isabel Sola
- *Correspondence: Melissa Bello-Perez, ; Isabel Sola,
| |
Collapse
|
34
|
Li M, Guo L, Feng L. Interplay between swine enteric coronaviruses and host innate immune. Front Vet Sci 2022; 9:1083605. [PMID: 36619958 PMCID: PMC9814124 DOI: 10.3389/fvets.2022.1083605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Swine enteric coronavirus (SeCoV) causes acute diarrhea, vomiting, dehydration, and high mortality in neonatal piglets, causing severe losses worldwide. SeCoV includes the following four members: transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine delta coronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV). Clinically, mixed infections with several SeCoVs, which are more common in global farms, cause widespread infections. It is worth noting that PDCoV has a broader host range, suggesting the risk of PDCoV transmission across species, posing a serious threat to public health and global security. Studies have begun to focus on investigating the interaction between SeCoV and its host. Here, we summarize the effects of viral proteins on apoptosis, autophagy, and innate immunity induced by SeCoV, providing a theoretical basis for an in-depth understanding of the pathogenic mechanism of coronavirus.
Collapse
|
35
|
Zhang X, Yang Z, Pan T, Long X, Sun Q, Wang PH, Li X, Kuang E. SARS-CoV-2 ORF3a induces RETREG1/FAM134B-dependent reticulophagy and triggers sequential ER stress and inflammatory responses during SARS-CoV-2 infection. Autophagy 2022; 18:2576-2592. [PMID: 35239449 PMCID: PMC9629087 DOI: 10.1080/15548627.2022.2039992] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2 infections have resulted in a very large number of severe cases of COVID-19 and deaths worldwide. However, knowledge of SARS-CoV-2 infection, pathogenesis and therapy remains limited, emphasizing the urgent need for fundamental studies and drug development. Studies have shown that induction of macroautophagy/autophagy and hijacking of the autophagic machinery are essential for the infection and replication of SARS-CoV-2; however, the mechanism of this manipulation and the function of autophagy during SARS-CoV-2 infection remain unclear. In the present study, we identified ORF3a as an inducer of autophagy (in particular reticulophagy) and revealed that ORF3a localizes to the ER and induces RETREG1/FAM134B-related reticulophagy through the HMGB1-BECN1 (beclin 1) pathway. As a consequence, ORF3a induces ER stress and inflammatory responses through reticulophagy and then sensitizes cells to the acquisition of an ER stress-related early apoptotic phenotype and facilitates SARS-CoV-2 infection, suggesting that SARS-CoV-2 ORF3a hijacks reticulophagy and then disrupts ER homeostasis to induce ER stress and inflammatory responses during SARS-CoV-2 infection. These findings reveal the sequential induction of reticulophagy, ER stress and acute inflammatory responses during SARS-CoV-2 infection and imply the therapeutic potential of reticulophagy and ER stress-related drugs for COVID-19.Abbreviations: CQ: chloroquine; DEGs: differentially expressed genes; ER: endoplasmic reticulum; GSEA: gene set enrichment analysis; HMGB1: high mobility group box 1; HMOX1: heme oxygenase 1; MERS-CoV: Middle East respiratory syndrome coronavirus; RETREG1/FAM134B: reticulophagy regulator 1; RTN4: reticulon 4; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TN: tunicamycin.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, Guangzhou, China,Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Ziwei Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, Guangzhou, China,Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Ting Pan
- Center for Infection and Immunity Studies, School of Medicine, Sun Yat-Sen University, Guangdong, Shenzhen, China
| | - Xubing Long
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, Guangzhou, China,Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Qinqin Sun
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, Guangzhou, China,Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Pei-Hui Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Shandong, Jinan, China
| | - Xiaojuan Li
- College of Clinic Medicine, Hubei University of Chinese Medicine, Hubei, Wuhan, China,CONTACT Xiaojuan Li College of Clinic Medicine, Hubei University of Chinese Medicine, Hubei, Wuhan430061, China
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, Guangzhou, China,Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China,Ersheng Kuang Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, Guangzhou, 510080, China
| |
Collapse
|
36
|
Upadhyay M, Gupta S. Endoplasmic reticulum secretory pathway: Potential target against SARS-CoV-2. Virus Res 2022; 320:198897. [PMID: 35988898 PMCID: PMC9387115 DOI: 10.1016/j.virusres.2022.198897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has recently emerged throughout the world, resulting in more than 400 million cases and over 6 million deaths worldwide as of January 2022. Coronaviruses subvert or use certain aspects of the unfolded protein response in the endoplasmic reticulum to overcome protein translation shutdown to benefit their replication. New virions use the ER-Golgi intermediate compartment to assemble and gain transportation to the cell membrane. Extensive remodeling of the ER has been demonstrated during SARS-CoV-2 infection. In this review article, we discuss the role of the endoplasmic reticulum secretory pathway in the replication cycle of SARS-CoV-2. Currently, there is a dearth of therapeutic options for intervening with SARS-CoV-2 infection. To accelerate drug development, efforts around the globe have been focusing on repurposing drugs that have already been approved for clinical use by regulatory agencies. Targeting the ERS pathway is reasonable, as prior work has shown that SARS-CoV-2 egress is dependent on this pathway. Here we discuss the feasibility of off-patent, FDA-approved, pharmacological inhibitors of the ERS pathway to suppress the SARS-CoV-2 replication cycle, a promising approach that warrants investigation.
Collapse
Affiliation(s)
- Maarisha Upadhyay
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, National University of Ireland-Galway, Galway, Ireland
| | - Sanjeev Gupta
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, National University of Ireland-Galway, Galway, Ireland.
| |
Collapse
|
37
|
Anwar MM, Sah R, Shrestha S, Ozaki A, Roy N, Fathah Z, Rodriguez-Morales AJ. Disengaging the COVID-19 Clutch as a Discerning Eye Over the Inflammatory Circuit During SARS-CoV-2 Infection. Inflammation 2022; 45:1875-1894. [PMID: 35639261 PMCID: PMC9153229 DOI: 10.1007/s10753-022-01674-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the cytokine release syndrome (CRS) and leads to multiorgan dysfunction. Mitochondrial dynamics are fundamental to protect against environmental insults, but they are highly susceptible to viral infections. Defective mitochondria are potential sources of reactive oxygen species (ROS). Infection with SARS-CoV-2 damages mitochondria, alters autophagy, reduces nitric oxide (NO), and increases both nicotinamide adenine dinucleotide phosphate oxidases (NOX) and ROS. Patients with coronavirus disease 2019 (COVID-19) exhibited activated toll-like receptors (TLRs) and the Nucleotide-binding and oligomerization domain (NOD-), leucine-rich repeat (LRR-), pyrin domain-containing protein 3 (NLRP3) inflammasome. The activation of TLRs and NLRP3 by SARS-CoV-2 induces interleukin 6 (IL-6), IL-1β, IL-18, and lactate dehydrogenase (LDH). Herein, we outline the inflammatory circuit of COVID-19 and what occurs behind the scene, the interplay of NOX/ROS and their role in hypoxia and thrombosis, and the important role of ROS scavengers to reduce COVID-19-related inflammation.
Collapse
Affiliation(s)
- Mohammed Moustapha Anwar
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt.
| | - Ranjit Sah
- Tribhuvan University Institute of Medicine, Kathmandu, Nepal
| | - Sunil Shrestha
- Department of Pharmaceutical and Health Service Research, Nepal Health Research and Innovation Foundation, Lalitpur, Nepal
| | - Akihiko Ozaki
- Department of Breast Surgery, Jyoban Hospital of Tokiwa Foundation, Iwaki, Japan
- Medical Governance Research Institute, Tokyo, Japan
| | - Namrata Roy
- SRM University, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Zareena Fathah
- Kings College London, London, UK
- College of Medicine and Health Sciences, United Arab University, Abu Dhabi, United Arab Emirates
| | - Alfonso J Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de Las Americas, Pereira, Risaralda, Colombia.
- Institución Universitaria Visión de Las Americas, Pereira, Risaralda, Colombia.
- Faculty of Health Sciences, Universidad Cientifica del Sur, Lima, Peru.
- School of Medicine, Universidad Privada Franz Tamayo (UNIFRANZ), Cochabamba, Bolivia.
| |
Collapse
|
38
|
ACE2-containing defensosomes serve as decoys to inhibit SARS-CoV-2 infection. PLoS Biol 2022; 20:e3001754. [PMID: 36099266 PMCID: PMC9469972 DOI: 10.1371/journal.pbio.3001754] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 07/12/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles of endosomal origin, exosomes, mediate intercellular communication by transporting substrates with a variety of functions related to tissue homeostasis and disease. Their diagnostic and therapeutic potential has been recognized for diseases such as cancer in which signaling defects are prominent. However, it is unclear to what extent exosomes and their cargo inform the progression of infectious diseases. We recently defined a subset of exosomes termed defensosomes that are mobilized during bacterial infection in a manner dependent on autophagy proteins. Through incorporating protein receptors on their surface, defensosomes mediated host defense by binding and inhibiting pore-forming toxins secreted by bacterial pathogens. Given this capacity to serve as decoys that interfere with surface protein interactions, we investigated the role of defensosomes during infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of Coronavirus Disease 2019 (COVID-19). Consistent with a protective function, exosomes containing high levels of the viral receptor ACE2 in bronchoalveolar lavage fluid (BALF) from critically ill COVID-19 patients was associated with reduced intensive care unit (ICU) and hospitalization times. We found ACE2+ exosomes were induced by SARS-CoV-2 infection and activation of viral sensors in cell culture, which required the autophagy protein ATG16L1, defining these as defensosomes. We further demonstrate that ACE2+ defensosomes directly bind and block viral entry. These findings suggest that defensosomes may contribute to the antiviral response against SARS-CoV-2 and expand our knowledge on the regulation and effects of extracellular vesicles during infection. Autophagy proteins mediate the production of extracellular vesicles termed defensosomes in response to innate immune ligands. This study reveals that ACE2-containing defensosomes bind and inhibit SARS-CoV-2 infection, and are associated with reduced length of hospital stay for patients with COVID-19.
Collapse
|
39
|
Bello-Perez M, Hurtado-Tamayo J, Requena-Platek R, Canton J, Sánchez-Cordón PJ, Fernandez-Delgado R, Enjuanes L, Sola I. MERS-CoV ORF4b is a virulence factor involved in the inflammatory pathology induced in the lungs of mice. PLoS Pathog 2022; 18:e1010834. [PMID: 36129908 PMCID: PMC9491562 DOI: 10.1371/journal.ppat.1010834] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/26/2022] [Indexed: 01/18/2023] Open
Abstract
No vaccines or specific antiviral drugs are authorized against Middle East respiratory syndrome coronavirus (MERS-CoV) despite its high mortality rate and prevalence in dromedary camels. Since 2012, MERS-CoV has been causing sporadic zoonotic infections in humans, which poses a risk of genetic evolution to become a pandemic virus. MERS-CoV genome encodes five accessory proteins, 3, 4a, 4b, 5 and 8b for which limited information is available in the context of infection. This work describes 4b as a virulence factor in vivo, since the deletion mutant of a mouse-adapted MERS-CoV-Δ4b (MERS-CoV-MA-Δ4b) was completely attenuated in a humanized DPP4 knock-in mouse model, resulting in no mortality. Attenuation in the absence of 4b was associated with a significant reduction in lung pathology and chemokine expression levels at 4 and 6 days post-infection, suggesting that 4b contributed to the induction of lung inflammatory pathology. The accumulation of 4b in the nucleus in vivo was not relevant to virulence, since deletion of its nuclear localization signal led to 100% mortality. Interestingly, the presence of 4b protein was found to regulate autophagy in the lungs of mice, leading to upregulation of BECN1, ATG3 and LC3A mRNA. Further analysis in MRC-5 cell line showed that, in the context of infection, MERS-CoV-MA 4b inhibited autophagy, as confirmed by the increase of p62 and the decrease of ULK1 protein levels, either by direct or indirect mechanisms. Together, these results correlated autophagy activation in the absence of 4b with downregulation of a pathogenic inflammatory response, thus contributing to attenuation of MERS-CoV-MA-Δ4b.
Collapse
Affiliation(s)
- Melissa Bello-Perez
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Jesús Hurtado-Tamayo
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Ricardo Requena-Platek
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Javier Canton
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Pedro José Sánchez-Cordón
- Veterinary Pathology Department, Animal Health Research Center (CISA), National Institute of Research, Agricultural and Food Technology (INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Raúl Fernandez-Delgado
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin, Madrid, Spain
| |
Collapse
|
40
|
Chen YM, Burrough E. The Effects of Swine Coronaviruses on ER Stress, Autophagy, Apoptosis, and Alterations in Cell Morphology. Pathogens 2022; 11:pathogens11080940. [PMID: 36015060 PMCID: PMC9416022 DOI: 10.3390/pathogens11080940] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Swine coronaviruses include the following six members, namely porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine delta coronavirus (PDCoV), swine acute diarrhea syndrome coronavirus (SADS-CoV), porcine hemagglutinating encephalomyelitis virus (PHEV), and porcine respiratory coronavirus (PRCV). Clinically, PEDV, TGEV, PDCoV, and SADS-CoV cause enteritis, whereas PHEV induces encephalomyelitis, and PRCV causes respiratory disease. Years of studies reveal that swine coronaviruses replicate in the cellular cytoplasm exerting a wide variety of effects on cells. Some of these effects are particularly pertinent to cell pathology, including endoplasmic reticulum (ER) stress, unfolded protein response (UPR), autophagy, and apoptosis. In addition, swine coronaviruses are able to induce cellular changes, such as cytoskeletal rearrangement, alterations of junctional complexes, and epithelial-mesenchymal transition (EMT), that render enterocytes unable to absorb nutrients normally, resulting in the loss of water, ions, and protein into the intestinal lumen. This review aims to describe the cellular changes in swine coronavirus-infected cells and to aid in understanding the pathogenesis of swine coronavirus infections. This review also explores how the virus exerted subcellular and molecular changes culminating in the clinical and pathological findings observed in the field.
Collapse
Affiliation(s)
- Ya-Mei Chen
- College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung County 912301, Taiwan
- Correspondence:
| | - Eric Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
41
|
Roingeard P, Eymieux S, Burlaud-Gaillard J, Hourioux C, Patient R, Blanchard E. The double-membrane vesicle (DMV): a virus-induced organelle dedicated to the replication of SARS-CoV-2 and other positive-sense single-stranded RNA viruses. Cell Mol Life Sci 2022; 79:425. [PMID: 35841484 PMCID: PMC9287701 DOI: 10.1007/s00018-022-04469-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/16/2022] [Accepted: 06/30/2022] [Indexed: 12/18/2022]
Abstract
Positive single-strand RNA (+ RNA) viruses can remodel host cell membranes to induce a replication organelle (RO) isolating the replication of their genome from innate immunity mechanisms. Some of these viruses, including severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), induce double-membrane vesicles (DMVs) for this purpose. Viral non-structural proteins are essential for DMV biogenesis, but they cannot form without an original membrane from a host cell organelle and a significant supply of lipids. The endoplasmic reticulum (ER) and the initial mechanisms of autophagic processes have been shown to be essential for the biogenesis of SARS-CoV-2 DMVs. However, by analogy with other DMV-inducing viruses, it seems likely that the Golgi apparatus, mitochondria and lipid droplets are also involved. As for hepatitis C virus (HCV), pores crossing both membranes of SARS-CoV-2-induced DMVs have been identified. These pores presumably allow the supply of metabolites essential for viral replication within the DMV, together with the export of the newly synthesized viral RNA to form the genome of future virions. It remains unknown whether, as for HCV, DMVs with open pores can coexist with the fully sealed DMVs required for the storage of large amounts of viral RNA. Interestingly, recent studies have revealed many similarities in the mechanisms of DMV biogenesis and morphology between these two phylogenetically distant viruses. An understanding of the mechanisms of DMV formation and their role in the infectious cycle of SARS-CoV-2 may be essential for the development of new antiviral approaches against this pathogen or other coronaviruses that may emerge in the future.
Collapse
Affiliation(s)
- Philippe Roingeard
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France. .,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France.
| | - Sébastien Eymieux
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Julien Burlaud-Gaillard
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Christophe Hourioux
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Romuald Patient
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Emmanuelle Blanchard
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| |
Collapse
|
42
|
Deretic V, Lazarou M. A guide to membrane atg8ylation and autophagy with reflections on immunity. J Cell Biol 2022; 221:e202203083. [PMID: 35699692 PMCID: PMC9202678 DOI: 10.1083/jcb.202203083] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 12/11/2022] Open
Abstract
The process of membrane atg8ylation, defined herein as the conjugation of the ATG8 family of ubiquitin-like proteins to membrane lipids, is beginning to be appreciated in its broader manifestations, mechanisms, and functions. Classically, membrane atg8ylation with LC3B, one of six mammalian ATG8 family proteins, has been viewed as the hallmark of canonical autophagy, entailing the formation of characteristic double membranes in the cytoplasm. However, ATG8s are now well described as being conjugated to single membranes and, most recently, proteins. Here we propose that the atg8ylation is coopted by multiple downstream processes, one of which is canonical autophagy. We elaborate on these biological outputs, which impact metabolism, quality control, and immunity, emphasizing the context of inflammation and immunological effects. In conclusion, we propose that atg8ylation is a modification akin to ubiquitylation, and that it is utilized by different systems participating in membrane stress responses and membrane remodeling activities encompassing autophagy and beyond.
Collapse
Affiliation(s)
- Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Michael Lazarou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
43
|
Behrouj H, Vakili O, Sadeghdoust A, Aligolighasemabadi N, Khalili P, Zamani M, Mokarram P. Epigenetic regulation of autophagy in coronavirus disease 2019 (COVID-19). Biochem Biophys Rep 2022; 30:101264. [PMID: 35469237 PMCID: PMC9021360 DOI: 10.1016/j.bbrep.2022.101264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has become the most serious global public health issue in the past two years, requiring effective therapeutic strategies. This viral infection is a contagious disease caused by new coronaviruses (nCoVs), also called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Autophagy, as a highly conserved catabolic recycling process, plays a significant role in the growth and replication of coronaviruses (CoVs). Therefore, there is great interest in understanding the mechanisms that underlie autophagy modulation. The modulation of autophagy is a very complex and multifactorial process, which includes different epigenetic alterations, such as histone modifications and DNA methylation. These mechanisms are also known to be involved in SARS-CoV-2 replication. Thus, molecular understanding of the epigenetic pathways linked with autophagy and COVID-19, could provide novel therapeutic targets for COVID-19 eradication. In this context, the current review highlights the role of epigenetic regulation of autophagy in controlling COVID-19, focusing on the potential therapeutic implications.
Collapse
Affiliation(s)
- Hamid Behrouj
- Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Adel Sadeghdoust
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Aligolighasemabadi
- Department of Internal Medicine, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parnian Khalili
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Iran
| |
Collapse
|
44
|
Barrantes FJ. The constellation of cholesterol-dependent processes associated with SARS-CoV-2 infection. Prog Lipid Res 2022; 87:101166. [PMID: 35513161 PMCID: PMC9059347 DOI: 10.1016/j.plipres.2022.101166] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 01/11/2023]
Abstract
The role of cholesterol in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronavirus-host cell interactions is currently being discussed in the context of two main scenarios: i) the presence of the neutral lipid in cholesterol-rich lipid domains involved in different steps of the viral infection and ii) the alteration of metabolic pathways by the virus over the course of infection. Cholesterol-enriched lipid domains have been reported to occur in the lipid envelope membrane of the virus, in the host-cell plasma membrane, as well as in endosomal and other intracellular membrane cellular compartments. These membrane subdomains, whose chemical and physical properties distinguish them from the bulk lipid bilayer, have been purported to participate in diverse phenomena, from virus-host cell fusion to intracellular trafficking and exit of the virions from the infected cell. SARS-CoV-2 recruits many key proteins that participate under physiological conditions in cholesterol and lipid metabolism in general. This review analyses the status of cholesterol and lipidome proteins in SARS-CoV-2 infection and the new horizons they open for therapeutic intervention.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research (BIOMED), Faculty of Medical Sciences, UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina.
| |
Collapse
|
45
|
SARS-CoV-2 non-structural protein 6 triggers NLRP3-dependent pyroptosis by targeting ATP6AP1. Cell Death Differ 2022; 29:1240-1254. [PMID: 34997207 PMCID: PMC9177730 DOI: 10.1038/s41418-021-00916-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 01/18/2023] Open
Abstract
A recent mutation analysis suggested that Non-Structural Protein 6 (NSP6) of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a key determinant of the viral pathogenicity. Here, by transcriptome analysis, we demonstrated that the inflammasome-related NOD-like receptor signaling was activated in SARS-CoV-2-infected lung epithelial cells and Coronavirus Disease 2019 (COVID-19) patients' lung tissues. The induction of inflammasomes/pyroptosis in patients with severe COVID-19 was confirmed by serological markers. Overexpression of NSP6 triggered NLRP3/ASC-dependent caspase-1 activation, interleukin-1β/18 maturation, and pyroptosis of lung epithelial cells. Upstream, NSP6 impaired lysosome acidification to inhibit autophagic flux, whose restoration by 1α,25-dihydroxyvitamin D3, metformin or polydatin abrogated NSP6-induced pyroptosis. NSP6 directly interacted with ATP6AP1, a vacuolar ATPase proton pump component, and inhibited its cleavage-mediated activation. L37F NSP6 variant, which was associated with asymptomatic COVID-19, exhibited reduced binding to ATP6AP1 and weakened ability to impair lysosome acidification to induce pyroptosis. Consistently, infection of cultured lung epithelial cells with live SARS-CoV-2 resulted in autophagic flux stagnation, inflammasome activation, and pyroptosis. Overall, this work supports that NSP6 of SARS-CoV-2 could induce inflammatory cell death in lung epithelial cells, through which pharmacological rectification of autophagic flux might be therapeutically exploited.
Collapse
|
46
|
Chen D, Zhao YG, Zhang H. Endomembrane remodeling in SARS-CoV-2 infection. CELL INSIGHT 2022; 1:100031. [PMID: 37193051 PMCID: PMC9112566 DOI: 10.1016/j.cellin.2022.100031] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/18/2022]
Abstract
During severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the viral proteins intimately interact with host factors to remodel the endomembrane system at various steps of the viral lifecycle. The entry of SARS-CoV-2 can be mediated by endocytosis-mediated internalization. Virus-containing endosomes then fuse with lysosomes, in which the viral S protein is cleaved to trigger membrane fusion. Double-membrane vesicles generated from the ER serve as platforms for viral replication and transcription. Virions are assembled at the ER-Golgi intermediate compartment and released through the secretory pathway and/or lysosome-mediated exocytosis. In this review, we will focus on how SARS-CoV-2 viral proteins collaborate with host factors to remodel the endomembrane system for viral entry, replication, assembly and egress. We will also describe how viral proteins hijack the host cell surveillance system-the autophagic degradation pathway-to evade destruction and benefit virus production. Finally, potential antiviral therapies targeting the host cell endomembrane system will be discussed.
Collapse
Affiliation(s)
- Di Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan G. Zhao
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
47
|
Sonnleitner ST, Prelog M, Sonnleitner S, Hinterbichler E, Halbfurter H, Kopecky DBC, Almanzar G, Koblmüller S, Sturmbauer C, Feist L, Horres R, Posch W, Walder G. Cumulative SARS-CoV-2 mutations and corresponding changes in immunity in an immunocompromised patient indicate viral evolution within the host. Nat Commun 2022; 13:2560. [PMID: 35538074 PMCID: PMC9090742 DOI: 10.1038/s41467-022-30163-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/19/2022] [Indexed: 01/07/2023] Open
Abstract
Different scenarios explaining the emergence of novel variants of concern (VOC) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported, including their evolution in scarcely monitored populations, in animals as alternative hosts, or in immunocompromised individuals. Here we report SARS-CoV-2 immune escape mutations over a period of seven months in an immunocompromised patient with prolonged viral shedding. Signs of infection, viral shedding and mutation events are periodically analyzed using RT-PCR and next-generation sequencing based on naso-pharyngeal swabs, with the results complemented by immunological diagnostics to determine humoral and T cell immune responses. Throughout the infection course, 17 non-synonymous intra-host mutations are noted, with 15 (88.2%) having been previously described as prominent immune escape mutations (S:E484K, S:D950N, S:P681H, S:N501Y, S:del(9), N:S235F and S:H655Y) in VOCs. The high frequency of these non-synonymous mutations is consistent with multiple events of convergent evolution. Thus, our results suggest that specific mutations in the SARS-CoV-2 genome may represent positions with a fitness advantage, and may serve as targets in future vaccine and therapeutics development for COVID-19.
Collapse
Affiliation(s)
- Sissy Therese Sonnleitner
- Infektiologie Tirol, Department of Virology, 9931, Unterwalden 30, Außervillgraten, Austria.
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020, Innsbruck, Austria.
| | - Martina Prelog
- Pediatric Rheumatology/Special Immunology, Department of Pediatrics, University Hospital Wuerzburg, Josef-Schneider-Str. 2, Wuerzburg, Germany
| | - Stefanie Sonnleitner
- Infektiologie Tirol, Department of Virology, 9931, Unterwalden 30, Außervillgraten, Austria
| | - Eva Hinterbichler
- Infektiologie Tirol, Department of Virology, 9931, Unterwalden 30, Außervillgraten, Austria
| | - Hannah Halbfurter
- Infektiologie Tirol, Department of Virology, 9931, Unterwalden 30, Außervillgraten, Austria
| | - Dominik B C Kopecky
- Infektiologie Tirol, Department of Virology, 9931, Unterwalden 30, Außervillgraten, Austria
| | - Giovanni Almanzar
- Pediatric Rheumatology/Special Immunology, Department of Pediatrics, University Hospital Wuerzburg, Josef-Schneider-Str. 2, Wuerzburg, Germany
| | - Stephan Koblmüller
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Leonard Feist
- GenXPro GmbH, Altenhoeferallee 3, 60438, Frankfurt am Main, Germany
| | - Ralf Horres
- GenXPro GmbH, Altenhoeferallee 3, 60438, Frankfurt am Main, Germany
| | - Wilfried Posch
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Gernot Walder
- Infektiologie Tirol, Department of Virology, 9931, Unterwalden 30, Außervillgraten, Austria
| |
Collapse
|
48
|
Zhao M, Tian C, Cong S, Di X, Wang K. From COVID-19 to Sarcoidosis: How Similar Are These Two Diseases? Front Immunol 2022; 13:877303. [PMID: 35615369 PMCID: PMC9124764 DOI: 10.3389/fimmu.2022.877303] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/12/2022] [Indexed: 12/21/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), leads to the dysregulation of the immune system, exacerbates inflammatory responses, and even causes multiple organ dysfunction syndrome in patients with severe disease. Sarcoidosis is an idiopathic granulomatous multisystem disease characterized by dense epithelioid non-necrotizing lesions with varying degrees of lymphocytic inflammation. These two diseases have similar clinical manifestations and may also influence each other and affect their clinical courses. In this study, we analyzed some possible connections between sarcoidosis and COVID-19, including the role of the renin–angiotensin system in the respiratory system, immune response, and cell death pathways, to understand the underlying mechanisms of SARS-CoV-2 infection, predisposing patients to severe forms of COVID-19. This review will provide a new prospect for the treatment of COVID-19 and an opportunity to explore the pathogenesis and development of sarcoidosis.
Collapse
|
49
|
Tse LV, Meganck RM, Araba KC, Yount BL, Shaffer KM, Hou YJ, Munt JE, Adams LE, Wykoff JA, Morowitz JM, Dong S, Magness ST, Marzluff WF, Gonzalez LM, Ehre C, Baric RS. Genomewide CRISPR knockout screen identified PLAC8 as an essential factor for SADS-CoVs infection. Proc Natl Acad Sci U S A 2022; 119:e2118126119. [PMID: 35476513 PMCID: PMC9170153 DOI: 10.1073/pnas.2118126119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/16/2022] [Indexed: 01/27/2023] Open
Abstract
Zoonotic transmission of coronaviruses poses an ongoing threat to human populations. Endemic outbreaks of swine acute diarrhea syndrome coronavirus (SADS-CoV) have caused severe economic losses in the pig industry and have the potential to cause human outbreaks. Currently, there are no vaccines or specific antivirals against SADS-CoV, and our limited understanding of SADS-CoV host entry factors could hinder prompt responses to a potential human outbreak. Using a genomewide CRISPR knockout screen, we identified placenta-associated 8 protein (PLAC8) as an essential host factor for SADS-CoV infection. Knockout of PLAC8 abolished SADS-CoV infection, which was restored by complementing PLAC8 from multiple species, including human, rhesus macaques, mouse, pig, pangolin, and bat, suggesting a conserved infection pathway and susceptibility of SADS-CoV among mammals. Mechanistically, PLAC8 knockout does not affect viral entry; rather, knockout cells displayed a delay and reduction in viral subgenomic RNA expression. In a swine primary intestinal epithelial culture (IEC) infection model, differentiated cultures have high levels of PLAC8 expression and support SADS-CoV replication. In contrast, expanding IECs have low levels of PLAC8 expression and are resistant to SADS-CoV infection. PLAC8 expression patterns translate in vivo; the immunohistochemistry of swine ileal tissue revealed high levels of PLAC8 protein in neonatal compared to adult tissue, mirroring the known SADS-CoV pathogenesis in neonatal piglets. Overall, PLAC8 is an essential factor for SADS-CoV infection and may serve as a promising target for antiviral development for potential pandemic SADS-CoV.
Collapse
Affiliation(s)
- Longping V. Tse
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Rita M. Meganck
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Kenza C. Araba
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Boyd L. Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Kendall M. Shaffer
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Yixuan J. Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Jennifer E. Munt
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Lily E. Adams
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Jason A. Wykoff
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Jeremy M. Morowitz
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Stephanie Dong
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Scott T. Magness
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, NC 27514
| | - William F. Marzluff
- Integrated Program for Biological and Genome Sciences, Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Liara M. Gonzalez
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606
| | - Camille Ehre
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| |
Collapse
|
50
|
Yan Q, Liu X, Sun Y, Zeng W, Li Y, Zhao F, Wu K, Fan S, Zhao M, Chen J, Yi L. Swine Enteric Coronavirus: Diverse Pathogen–Host Interactions. Int J Mol Sci 2022; 23:ijms23073953. [PMID: 35409315 PMCID: PMC8999375 DOI: 10.3390/ijms23073953] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/23/2022] Open
Abstract
Swine enteric coronavirus (SeCoV) causes acute gastroenteritis and high mortality in newborn piglets. Since the last century, porcine transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) have swept farms all over the world and caused substantial economic losses. In recent years, porcine delta coronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV) have been emerging SeCoVs. Some of them even spread across species, which made the epidemic situation of SeCoV more complex and changeable. Recent studies have begun to reveal the complex SeCoV–host interaction mechanism in detail. This review summarizes the current advances in autophagy, apoptosis, and innate immunity induced by SeCoV infection. These complex interactions may be directly involved in viral replication or the alteration of some signal pathways.
Collapse
Affiliation(s)
- Quanhui Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yawei Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Weijun Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C. & L.Y.)
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C. & L.Y.)
| |
Collapse
|