1
|
Świerczyńska M, Tronina A, Smędowski A. Understanding cataract development in axial myopia: The contribution of oxidative stress and related pathways. Redox Biol 2025; 80:103495. [PMID: 39813957 PMCID: PMC11782857 DOI: 10.1016/j.redox.2025.103495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/21/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
Myopia is an evolving global health challenge, with estimates suggesting that by 2050 it will affect half of the world's population, becoming the leading cause of irreversible vision loss. Moreover, myopia can lead to various complications, including the earlier onset of cataracts. Given the progressive aging of the population and the increase in life expectancy, this will contribute to a rising demand for cataract surgery, posing an additional challenge for healthcare systems. The pathogenesis of nuclear and posterior subcapsular cataract (PSC) development in axial myopia is complex and primarily involves intensified liquefaction of the vitreous body, excessive production of reactive oxygen species, impaired antioxidant defense, and chronic inflammation in the eyeball. These factors contribute to disruptions in mitochondrial homeostasis, abnormal cell signaling, lipid peroxidation, protein and nucleic acid damage, as well as the induction of adverse epigenetic modifications. Age-related and oxidative processes can cause destabilization of crystallins with subsequent protein accumulation, which finally drives to a lens opacification. Moreover, an altered redox status is one of the major contributors to the pathogenesis of PSC. This review aims to summarize the mechanisms known to be responsible for the accelerated development of cataracts in axial myopia and to enhance understanding of these relationships.
Collapse
Affiliation(s)
- Marta Świerczyńska
- Department of Ophthalmology, Kornel Gibiński University Clinical Center, Medical University of Silesia, Katowice, Poland; Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland.
| | - Agnieszka Tronina
- Department of Pediatric Ophthalmology, Kornel Gibiński University Clinical Center, Medical University of Silesia, Katowice, Poland; Department of Pediatric Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Adrian Smędowski
- Department of Ophthalmology, Kornel Gibiński University Clinical Center, Medical University of Silesia, Katowice, Poland; Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland; GlaucoTech Co, Katowice, Poland
| |
Collapse
|
2
|
Jin L, Bao B, Huang XT, Tao JH, Duan JX, Zhong WJ, Zhang CY, Liu YB, Chen H, Yang NSY, Guan CX, Zhou Y. MEOX1 triggers myofibroblast apoptosis resistance, contributing to pulmonary fibrosis in mice. J Cell Physiol 2024; 239:e31442. [PMID: 39319990 DOI: 10.1002/jcp.31442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/22/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
The apoptosis resistance of myofibroblasts is a hallmark in the irreversible progression of pulmonary fibrosis (PF). While the underlying molecular mechanism remains elusive. In this study, we unveiled a previously unrecognized mechanism underlying myofibroblast apoptosis resistance during PF. Our investigation revealed heightened expression of mesenchyme homeobox 1 (MEOX1) in the lungs of idiopathic pulmonary fibrosis (IPF) patients and bleomycin-induced PF mice. Silencing MEOX1 significantly attenuated PF progression in mice. In vitro, we found a notable increase in MEOX1 expression in transforming growth factor-β1 (TGF-β1)-induced myofibroblasts. Silencing MEOX1 enhanced apoptosis of myofibroblasts. Mechanistically, we identified G-protein signaling pathway regulatory factor 4 (RGS4) as a critical downstream target of MEOX1, as predicted by bioinformatics analysis. MEOX1 enhanced apoptosis resistance by upregulating RGS4 expression in myofibroblasts. In conclusion, our study highlights MEOX1 as a promising therapeutic target for protecting against PF by modulating myofibroblast apoptosis resistance.
Collapse
Affiliation(s)
- Ling Jin
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, China
| | - Bo Bao
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, China
| | - Xiao-Ting Huang
- Xiangya Nursing School, Central South University, Changsha, China
| | - Jia-Hao Tao
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, China
| | - Jia-Xi Duan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, China
| | - Wen-Jin Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, China
| | - Yu-Biao Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, China
| | - Hui Chen
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, China
| | - Nan-Shi-Yu Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, China
| |
Collapse
|
3
|
Liu Y, Liu S, Meng L, Fang L, Yu J, Yue J, Li T, Tu Y, Jiang T, Yu P, Wan YZ, Lu Y, Shi L. The function and mechanism of Human nasal mucosa-derived mesenchymal stem cells in allergic rhinitis in mice. Inflamm Res 2024; 73:1819-1832. [PMID: 39180692 PMCID: PMC11445352 DOI: 10.1007/s00011-024-01933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024] Open
Abstract
PURPOSE To investigate the immunomodulatory effects and potential mechanisms of human nasal mucosa-derived mesenchymal stem cells(hNMSCs) on mouse allergic rhinitis, and to compare them with human umbilical cord-derived mesenchymal stem cells (hUCMSCs). METHOD hNMSCs and hUCMSCs were isolated and cultured for identification from human nasal mucosa and umbilical cord tissues. A co-culture system of LPS-stimulated RAW264.7 cells/mouse peritoneal macrophages and MSCs was employed.Changes in inflammatory factors in RAW264.7 cells and the culture medium as well as the expression of NF-κB signaling pathway in RAW264.7 cells were detected. Forty-eight BALB/c mice were randomly divided into control, OVA, hNMSCs, and hUCMSCs groups. An allergic rhinitis (AR) model was established through ovalbumin (OVA) stimulation and treated with hNMSCs and hUCMSCs. Subsequent assessments included related symptoms, biological changes, and the expression of the NF-κB signaling pathway in the nasal mucosa of mice. RESULTS MSCs can be successfully isolated from human nasal mucosa. Both hNMSCs and hUCMSCs interventions significantly reverseed the inflammation induced by LPS and suppressed the upregulation of the NF-κB signaling pathway in RAW264.7 cells. Treatment with hNMSCs and hUCMSCs alleviated mouse allergic symptoms, reduced levels of total IgE, OVA-specific IgE and IgG1 in mouse serum, TH2-type cytokines and chemokines in mouse nasal mucosa, and TH2-type cytokines in mouse spleen culture medium, while also inhibiting the expression of the NF-κB signaling pathway in the nasal mucosa of mice. moreover, the hNMSCs group showed a more significant reduction in OVA-specific IgG1 in serum and IL-4 expression levels in mouse spleen culture medium compared to the hUCMSCs group. CONCLUSION Our findings suggest that hNMSCs can ameliorate allergic rhinitis in mice, with a certain advantage in anti-inflammatory effects compared to hUCMSCs. The NF-κB pathway is likely involved in the anti-inflammatory regulation process by hNMSCs.Therefore, hNMSCs might represent a novel therapeutic approach for allergic rhinitis.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China
- Department of Otorhinolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, No. 3002 Sungang West Road, Shenzhen, Guangdong Province, 518000, China
| | - Shengyang Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Airway Inflammatory Disease, Jinan, China
| | - Linghui Meng
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Li Fang
- Department of Otorhinolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, No. 3002 Sungang West Road, Shenzhen, Guangdong Province, 518000, China
| | - Jinzhuang Yu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Airway Inflammatory Disease, Jinan, China
| | - Jing Yue
- Department of Traditional Chinese Medicine, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Tao Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Airway Inflammatory Disease, Jinan, China
| | - Yanyi Tu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Airway Inflammatory Disease, Jinan, China
| | - Tianjiao Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Airway Inflammatory Disease, Jinan, China
| | - Peng Yu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Airway Inflammatory Disease, Jinan, China
| | - Yu-Zhu Wan
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Airway Inflammatory Disease, Jinan, China
| | - Yongtian Lu
- Department of Otorhinolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, No. 3002 Sungang West Road, Shenzhen, Guangdong Province, 518000, China.
| | - Li Shi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China.
- Department of Otolaryngology-Head and Neck Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong, China.
- Shandong Provincial Key Medical and Health Laboratory of Airway Inflammatory Disease, Jinan, China.
| |
Collapse
|
4
|
Wang S, Riedstra CP, Zhang Y, Anandh S, Dudley AC. PTEN-restoration abrogates brain colonisation and perivascular niche invasion by melanoma cells. Br J Cancer 2024; 130:555-567. [PMID: 38148377 PMCID: PMC10876963 DOI: 10.1038/s41416-023-02530-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Melanoma brain metastases (MBM) continue to be a significant clinical problem with limited treatment options. Highly invasive melanoma cells migrate along the vasculature and perivascular cells may contribute to residual disease and recurrence. PTEN loss and hyperactivation of AKT occur in MBM; however, a role for PTEN/AKT in perivascular invasion has not been described. METHODS We used in vivo intracranial injections of murine melanoma and bulk RNA sequencing of melanoma cells co-cultured with brain endothelial cells (brECs) to investigate brain colonisation and perivascular invasion. RESULTS We found that PTEN-null melanoma cells were highly efficient at colonising the perivascular niche relative to PTEN-expressing counterparts. PTEN re-expression (PTEN-RE) in melanoma cells significantly reduced brain colonisation and migration along the vasculature. We hypothesised this phenotype was mediated through vascular-induced TGFβ secretion, which drives AKT phosphorylation. Disabling TGFβ signalling in melanoma cells reduced colonisation and perivascular invasion; however, the introduction of constitutively active myristolated-AKT (myrAKT) restored overall tumour size but not perivascular invasion. CONCLUSIONS PTEN loss facilitates perivascular brain colonisation and invasion of melanoma. TGFβ-AKT signalling partially contributes to this phenotype, but further studies are needed to determine the complementary mechanisms that enable melanoma cells to both survive and spread along the brain vasculature.
Collapse
Affiliation(s)
- Sarah Wang
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA
| | - Caroline P Riedstra
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA
| | - Yu Zhang
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA
| | - Swetha Anandh
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA
| | - Andrew C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA.
- The University of Virginia Comprehensive Cancer Center, Charlottesville, VA, USA.
| |
Collapse
|
5
|
Izumov IS, Shitova MS, Sabirov MS, Sheleg SA, Cherkashina OL, Kalabusheva EP, Vorotelyak EA, Morgun EI. RIPK3 Expression in Fibroblasts in an in vivo and in vitro Skin Wound Model: A Controversial Result. Acta Naturae 2023; 15:65-74. [PMID: 38234604 PMCID: PMC10790357 DOI: 10.32607/actanaturae.25452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/25/2023] [Indexed: 01/19/2024] Open
Abstract
One of the major problems of regenerative medicine is the development of hypertrophic scars and keloids. The protein kinase RIPK3 is involved in necroptosis; however, recent evidence indicates that it also has non-canonical functions, including its involvement in the development of renal fibrosis. The aim of our work was to study the expression of RIPK3 in mouse and human skin models of fibrotic processes. A subpopulation of RIPK3+Vim+ cells was found in both human keloid and a mouse wound, with the cell number being significantly greater in the mouse wound bed compared to healthy skin. Real-time polymerase chain reaction (RT-PCR) detected expression of the Ripk3 and fibroblast biomarkers Acta2, Fap, Col1a1, and Fn1 in the cells isolated from the wound bed, indicating that RIPK3 can be expressed by wound bed fibroblasts. An analysis of the human fibroblasts stained with anti-RIPK3 antibodies demonstrated an increase in the fluorescence intensity in the presence of lipopolysaccharide (LPS) at concentrations of 5, 10, 25, 50, and 100 ng/ml and TGF-β at concentrations of 0.1, 1, 2, and 5 ng/ml compared to the control. At the same time, the expression levels of RIPK3 and fibroblast activation markers in the presence of TGF-β and LPS did not differ significantly from the control. It is possible that RIPK3 expression in wound fibroblasts is not directly associated with fibrotic processes, and that kinase plays a different, yet unknown role in wound healing. KEYWORDS scarring, keloid, skin, fibroblasts, cell culture, RIPK3.
Collapse
Affiliation(s)
- I. S. Izumov
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, 119334 Russian Federation
| | - M. S. Shitova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, 119334 Russian Federation
| | - M. S. Sabirov
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, 119334 Russian Federation
| | - S. A. Sheleg
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, 119334 Russian Federation
| | - O. L. Cherkashina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, 119334 Russian Federation
| | - E. P. Kalabusheva
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, 119334 Russian Federation
| | - E. A. Vorotelyak
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, 119334 Russian Federation
- M.V. Lomonosov Moscow State University, Moscow, 119234 Russian Federation
| | - E. I. Morgun
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, 119334 Russian Federation
| |
Collapse
|
6
|
Mebratu YA, Soni S, Rosas L, Rojas M, Horowitz JC, Nho R. The aged extracellular matrix and the profibrotic role of senescence-associated secretory phenotype. Am J Physiol Cell Physiol 2023; 325:C565-C579. [PMID: 37486065 PMCID: PMC10511170 DOI: 10.1152/ajpcell.00124.2023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an irreversible and fatal lung disease that is primarily found in the elderly population, and several studies have demonstrated that aging is the major risk factor for IPF. IPF is characterized by the presence of apoptosis-resistant, senescent fibroblasts that generate an excessively stiff extracellular matrix (ECM). The ECM profoundly affects cellular functions and tissue homeostasis, and an aberrant ECM is closely associated with the development of lung fibrosis. Aging progressively alters ECM components and is associated with the accumulation of senescent cells that promote age-related tissue dysfunction through the expression of factors linked to a senescence-associated secretary phenotype (SASP). There is growing evidence that SASP factors affect various cell behaviors and influence ECM turnover in lung tissue through autocrine and/or paracrine signaling mechanisms. Since life expectancy is increasing worldwide, it is important to elucidate how aging affects ECM dynamics and turnover via SASP and thereby promotes lung fibrosis. In this review, we will focus on the molecular properties of SASP and its regulatory mechanisms. Furthermore, the pathophysiological process of ECM remodeling by SASP factors and the influence of an altered ECM from aged lungs on the development of lung fibrosis will be highlighted. Finally, recent attempts to target ECM alteration and senescent cells to modulate fibrosis will be introduced.NEW & NOTEWORTHY Aging is the most prominent nonmodifiable risk factor for various human diseases including Idiopathic pulmonary fibrosis. Aging progressively alters extracellular matrix components and is associated with the accumulation of senescent cells that promote age-related tissue dysfunction. In this review, we will discuss the pathological impact of aging and senescence on lung fibrosis via senescence-associated secretary phenotype factors and potential therapeutic approaches to limit the progression of lung fibrosis.
Collapse
Affiliation(s)
- Yohannes A Mebratu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Sourabh Soni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Lorena Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Jeffrey C Horowitz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Richard Nho
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
7
|
Rehan M, Deskin B, Kurundkar AR, Yadav S, Matsunaga Y, Manges J, Smith N, Dsouza KG, Burow ME, Thannickal VJ. Nicotinamide N-methyltransferase mediates lipofibroblast-myofibroblast transition and apoptosis resistance. J Biol Chem 2023; 299:105027. [PMID: 37423298 PMCID: PMC10413354 DOI: 10.1016/j.jbc.2023.105027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/01/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023] Open
Abstract
Metabolism controls cellular phenotype and fate. In this report, we demonstrate that nicotinamide N-methyltransferase (NNMT), a metabolic enzyme that regulates developmental stem cell transitions and tumor progression, is highly expressed in human idiopathic pulmonary fibrosis (IPF) lungs, and is induced by the pro-fibrotic cytokine, transforming growth factor-β1 (TGF-β1) in lung fibroblasts. NNMT silencing reduces the expression of extracellular matrix proteins, both constitutively and in response to TGF-β1. Furthermore, NNMT controls the phenotypic transition from homeostatic, pro-regenerative lipofibroblasts to pro-fibrotic myofibroblasts. This effect of NNMT is mediated, in part, by the downregulation of lipogenic transcription factors, TCF21 and PPARγ, and the induction of a less proliferative but more differentiated myofibroblast phenotype. NNMT confers an apoptosis-resistant phenotype to myofibroblasts that is associated with the downregulation of pro-apoptotic members of the Bcl-2 family, including Bim and PUMA. Together, these studies indicate a critical role for NNMT in the metabolic reprogramming of fibroblasts to a pro-fibrotic and apoptosis-resistant phenotype and support the concept that targeting this enzyme may promote regenerative responses in chronic fibrotic disorders such as IPF.
Collapse
Affiliation(s)
- Mohammad Rehan
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA.
| | - Brian Deskin
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA; Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA
| | - Ashish R Kurundkar
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Santosh Yadav
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA; Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA
| | - Yasuka Matsunaga
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Justin Manges
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA; Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA
| | - Nia Smith
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA; Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA
| | - Kevin G Dsouza
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Matthew E Burow
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Victor J Thannickal
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA; Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA.
| |
Collapse
|
8
|
McElhinney K, Irnaten M, O’Brien C. p53 and Myofibroblast Apoptosis in Organ Fibrosis. Int J Mol Sci 2023; 24:ijms24076737. [PMID: 37047710 PMCID: PMC10095465 DOI: 10.3390/ijms24076737] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Organ fibrosis represents a dysregulated, maladaptive wound repair response that results in progressive disruption of normal tissue architecture leading to detrimental deterioration in physiological function, and significant morbidity/mortality. Fibrosis is thought to contribute to nearly 50% of all deaths in the Western world with current treatment modalities effective in slowing disease progression but not effective in restoring organ function or reversing fibrotic changes. When physiological wound repair is complete, myofibroblasts are programmed to undergo cell death and self-clearance, however, in fibrosis there is a characteristic absence of myofibroblast apoptosis. It has been shown that in fibrosis, myofibroblasts adopt an apoptotic-resistant, highly proliferative phenotype leading to persistent myofibroblast activation and perpetuation of the fibrotic disease process. Recently, this pathological adaptation has been linked to dysregulated expression of tumour suppressor gene p53. In this review, we discuss p53 dysregulation and apoptotic failure in myofibroblasts and demonstrate its consistent link to fibrotic disease development in all types of organ fibrosis. An enhanced understanding of the role of p53 dysregulation and myofibroblast apoptosis may aid in future novel therapeutic and/or diagnostic strategies in organ fibrosis.
Collapse
Affiliation(s)
- Kealan McElhinney
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | - Mustapha Irnaten
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | - Colm O’Brien
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| |
Collapse
|
9
|
Sarkar A, Das S, Bone H, DeVengencie I, Prasad J, Farkas D, Londino JD, Nho RS, Rojas M, Horowitz JC. Regulation of Mesenchymal Cell Fate by Transfer of Active Gasdermin-D via Monocyte-Derived Extracellular Vesicles. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:832-841. [PMID: 36688687 PMCID: PMC9998362 DOI: 10.4049/jimmunol.2200511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023]
Abstract
Fibrosis is characterized by inappropriately persistent myofibroblast accumulation and excessive extracellular matrix deposition with the disruption of tissue architecture and organ dysfunction. Regulated death of reparative mesenchymal cells is critical for normal wound repair, but profibrotic signaling promotes myofibroblast resistance to apoptotic stimuli. A complex interplay between immune cells and structural cells underlies lung fibrogenesis. However, there is a paucity of knowledge on how these cell populations interact to orchestrate physiologic and pathologic repair of the injured lung. In this context, gasdermin-D (GsdmD) is a cytoplasmic protein that is activated following cleavage by inflammatory caspases and induces regulated cell death by forming pores in cell membranes. This study was undertaken to evaluate the impact of human (Thp-1) monocyte-derived extracellular vesicles and GsdmD on human lung fibroblast death. Our data show that active GsdmD delivered by monocyte-derived extracellular vesicles induces caspase-independent fibroblast and myofibroblast death. This cell death was partly mediated by GsdmD-independent induction of cellular inhibitor of apoptosis 2 (cIAP-2) in the recipient fibroblast population. Our findings, to our knowledge, define a novel paradigm by which inflammatory monocytes may orchestrate the death of mesenchymal cells in physiologic wound healing, illustrating the potential to leverage this mechanism to eliminate mesenchymal cells and facilitate the resolution of fibrotic repair.
Collapse
Affiliation(s)
- Anasuya Sarkar
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH; and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Srabani Das
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH; and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Hannah Bone
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH; and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Ivana DeVengencie
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH; and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Jayendra Prasad
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH; and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Daniela Farkas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH; and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - James D Londino
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH; and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Richard S Nho
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH; and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH; and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Jeffrey C Horowitz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH; and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| |
Collapse
|
10
|
Nho RS, Ballinger MN, Rojas MM, Ghadiali SN, Horowitz JC. Biomechanical Force and Cellular Stiffness in Lung Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:750-761. [PMID: 35183510 PMCID: PMC9088200 DOI: 10.1016/j.ajpath.2022.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 01/10/2023]
Abstract
Lung fibrosis is characterized by the continuous accumulation of extracellular matrix (ECM) proteins produced by apoptosis-resistant (myo)fibroblasts. Lung epithelial injury promotes the recruitment and activation of fibroblasts, which are necessary for tissue repair and restoration of homeostasis. However, under pathologic conditions, a vicious cycle generated by profibrotic growth factors/cytokines, multicellular interactions, and matrix-associated signaling propagates the wound repair response and promotes lung fibrosis characterized not only by increased quantities of ECM proteins but also by changes in the biomechanical properties of the matrix. Importantly, changes in the biochemical and biomechanical properties of the matrix itself can serve to perpetuate fibroblast activity and propagate fibrosis, even in the absence of the initial stimulus of injury. The development of novel experimental models and methods increasingly facilitates our ability to interrogate fibrotic processes at the cellular and molecular levels. The goal of this review is to discuss the impact of ECM conditions in the development of lung fibrosis and to introduce new approaches to more accurately model the in vivo fibrotic microenvironment. This article highlights the pathologic roles of ECM in terms of mechanical force and the cellular interactions while reviewing in vitro and ex vivo models of lung fibrosis. The improved understanding of the fundamental mechanisms that contribute to lung fibrosis holds promise for identification of new therapeutic targets and improved outcomes.
Collapse
Affiliation(s)
- Richard S Nho
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| | - Megan N Ballinger
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Mauricio M Rojas
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Samir N Ghadiali
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Jeffrey C Horowitz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
11
|
Bale LK, Schafer MJ, Atkinson EJ, Le Brasseur NK, Haak AJ, Oxvig C, Conover CA. Pregnancy‐associated plasma protein‐A (PAPP‐A) is a key component of an interactive cellular mechanism promoting pulmonary fibrosis. J Cell Physiol 2022; 237:2220-2229. [PMID: 35098542 PMCID: PMC9050837 DOI: 10.1002/jcp.30687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/21/2021] [Accepted: 01/10/2022] [Indexed: 12/25/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with few effective treatment options. We found a highly significant correlation between pregnancy-associated plasma protein (PAPP)-A expression in IPF lung tissue and disease severity as measured by various pulmonary and physical function tests. PAPP-A is a metalloproteinase that enhances local insulin-like growth factor (IGF) activity. We used primary cultures of normal adult human lung fibroblasts (NHLF) to test the hypothesis that PAPP-A plays an important role in the development of pulmonary fibrosis. Treatment of NHLF with pro-fibrotic transforming growth factor (TGF)-β stimulated marked increases in IGF-I mRNA expression (>20-fold) and measurable IGF-I levels in 72-h conditioned medium (CM). TGF-β treatment also increased PAPP-A levels in CM fourfold (p = 0.004) and proteolytic activity ~2-fold. There was an indirect effect of TGF-β to stimulate signaling through the PI3K/Akt pathway, which was significantly inhibited by both IGF-I-inactivating and PAPP-A inhibitory antibodies. Induction of senescence in NHLF increased PAPP-A levels in CM 10-fold (p = 0.006) with attendant increased proteolytic activity. Thus, PAPP-A is a novel component of the senescent lung fibroblast secretome. In addition, NHLF secreted extracellular vehicles (EVs) with surface-bound active PAPP-A that were increased fivefold with senescence. Regulation of PAPP-A and IGF signaling by TGF-β and cell senescence suggests an interactive cellular mechanism underlying the resistance to apoptosis and the progression of fibrosis in IPF. Furthermore, PAPP-A-associated EVs may be a means of pro-fibrotic, pro-senescent communication with other cells in the lung and, thus, a potential therapeutic target for IPF.
Collapse
Affiliation(s)
- Laurie K. Bale
- Division of Endocrinology Metabolism and Nutrition, Endocrine Research Unit Rochester Minnesota USA
| | - Marissa J. Schafer
- Department of Physiology and Biomedical Engineering Rochester Minnesota USA
| | | | | | - Andrew J. Haak
- Department of Physiology and Biomedical Engineering Rochester Minnesota USA
| | - Claus Oxvig
- Department of Molecular Biology and Genetics University of Aarhus Aarhus Denmark
| | - Cheryl A. Conover
- Division of Endocrinology Metabolism and Nutrition, Endocrine Research Unit Rochester Minnesota USA
| |
Collapse
|
12
|
Lu ZN, Shan Q, Hu SJ, Zhao Y, Zhang GN, Zhu M, Yu DK, Wang JX, He HW. Discovery of 1,8-naphthalidine derivatives as potent anti-hepatic fibrosis agents via repressing PI3K/AKT/Smad and JAK2/STAT3 pathways. Bioorg Med Chem 2021; 49:116438. [PMID: 34610571 DOI: 10.1016/j.bmc.2021.116438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Accepted: 09/18/2021] [Indexed: 11/19/2022]
Abstract
Liver fibrosis is one of the most common pathological consequences of chronic liver diseases (CLD). To develop effective antifibrotic strategies, a novel class of 1-(substituted phenyl)-1,8-naphthalidine-3-carboxamide derivatives were designed and synthesized. By means of the collagen type I α 1 (COL1A1)-based screening and cytotoxicity assay in human hepatic stellate cell (HSC) line LX-2, seven compounds were screened out from total 60 derivatives with high inhibitory effect and relatively low cytotoxicity for further COL1A1 mRNA expression analysis. It was found that compound 17f and 19g dose-dependently inhibited the expression of fibrogenic markers, including α-smooth muscle actin (α-SMA), matrix metalloprotein 2 (MMP-2), connective tissue growth factor (CTGF) and transforming growth factor β1 (TGFβ1) on both mRNA and protein levels. Further mechanism studies indicated that they might suppress the hepatic fibrogenesis via inhibiting both PI3K/AKT/Smad and non-Smad JAK2/STAT3 signaling pathways. Furthermore, 19g administration attenuated hepatic histopathological injury and collagen accumulation, and reduced fibrogenesis-associated protein expression in liver tissues of bile duct ligation (BDL) rats, showing significant antifibrotic effect in vivo. These findings identified 1,8-naphthalidine derivatives as potent anti-hepatic fibrosis agents, and provided valuable information for further structure optimization.
Collapse
Affiliation(s)
- Zhen-Ning Lu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qi Shan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shang-Jiu Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yue Zhao
- Beijing Changping Technology Innodevelop Group, Beijing 102200, China
| | - Guo-Ning Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mei Zhu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Dong-Ke Yu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Ju-Xian Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Hong-Wei He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
13
|
Myofibroblast Functions in Tissue Repair and Fibrosis: An Introduction. Methods Mol Biol 2021; 2299:9-15. [PMID: 34028732 DOI: 10.1007/978-1-0716-1382-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Our understanding of myofibroblast biology has advanced over the past two decades, and the seemingly antagonistic roles of these cells in both normal tissue repair and fibrotic diseases are better reconciled. An age-related loss of cellular plasticity that results in impaired capacity for de-differentiation and apoptosis susceptibility may predispose individuals to non-resolving and progressive fibrotic disorders involving diverse organ systems.
Collapse
|
14
|
Zhang Y, Jin D, Kang X, Zhou R, Sun Y, Lian F, Tong X. Signaling Pathways Involved in Diabetic Renal Fibrosis. Front Cell Dev Biol 2021; 9:696542. [PMID: 34327204 PMCID: PMC8314387 DOI: 10.3389/fcell.2021.696542] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetic kidney disease (DKD), as the most common complication of diabetes mellitus (DM), is the major cause of end-stage renal disease (ESRD). Renal interstitial fibrosis is a crucial metabolic change in the late stage of DKD, which is always considered to be complex and irreversible. In this review, we discuss the pathological mechanisms of diabetic renal fibrosis and discussed some signaling pathways that are closely related to it, such as the TGF-β, MAPK, Wnt/β-catenin, PI3K/Akt, JAK/STAT, and Notch pathways. The cross-talks among these pathways were then discussed to elucidate the complicated cascade behind the tubulointerstitial fibrosis. Finally, we summarized the new drugs with potential therapeutic effects on renal fibrosis and listed related clinical trials. The purpose of this review is to elucidate the mechanisms and related pathways of renal fibrosis in DKD and to provide novel therapeutic intervention insights for clinical research to delay the progression of renal fibrosis.
Collapse
Affiliation(s)
- Yuqing Zhang
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Endocrinology Department, Guang'anmen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Rongrong Zhou
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuting Sun
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- Endocrinology Department, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
15
|
Merkt W, Zhou Y, Han H, Lagares D. Myofibroblast fate plasticity in tissue repair and fibrosis: Deactivation, apoptosis, senescence and reprogramming. Wound Repair Regen 2021; 29:678-691. [PMID: 34117675 DOI: 10.1111/wrr.12952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
In response to tissue injury, fibroblasts differentiate into professional repair cells called myofibroblasts, which orchestrate many aspects of the normal tissue repair programme including synthesis, deposition and contraction of extracellular matrix proteins, leading to wound closure. Successful tissue repair responses involve termination of myofibroblast activities in order to prevent pathologic fibrotic scarring. Here, we discuss the cellular and molecular mechanisms limiting myofibroblast activities during physiological tissue repair, including myofibroblast deactivation, apoptosis, reprogramming and immune clearance of senescent myofibroblasts. In addition, we summarize pathological mechanisms leading to myofibroblast persistence and survival, a hallmark of fibrotic diseases. Finally, we discuss emerging anti-fibrotic therapies aimed at targeting myofibroblast fate such as senolytics, gene therapy, cellular immunotherapy and CAR-T cells.
Collapse
Affiliation(s)
- Wolfgang Merkt
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany
| | - Yan Zhou
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Physiology, Xiangya Medical School, Central South University, Changsha, China
| | - Hongwei Han
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David Lagares
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Virk HS, Biddle MS, Smallwood DT, Weston CA, Castells E, Bowman VW, McCarthy J, Amrani Y, Duffy SM, Bradding P, Roach KM. TGFβ1 induces resistance of human lung myofibroblasts to cell death via down-regulation of TRPA1 channels. Br J Pharmacol 2021; 178:2948-2962. [PMID: 33786825 DOI: 10.1111/bph.15467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/06/2021] [Accepted: 03/17/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND PURPOSE TGFβ1-mediated myofibroblast activation contributes to pathological fibrosis in many diseases including idiopathic pulmonary fibrosis (IPF), where myofibroblast resistance to oxidant-mediated apoptosis is also evident. We therefore investigated the involvement of redox-sensitive TRPA1 ion channels on human lung myofibroblasts (HLMFs) cell death and TGFβ1-mediated pro-fibrotic responses. EXPERIMENTAL APPROACH The effects of TGFβ1 stimulation on TRPA1 expression and cell viability was studied in HLMFs derived from IPF patients and non-fibrotic patients. We also examined a model of TGFβ1-dependent fibrogenesis in human lung. We used qRT-PCR, immunofluorescent assays, overexpression with lentiviral vectors and electrophysiological methods. KEY RESULTS TRPA1 mRNA, protein and ion currents were expressed in HLMFs derived from both non-fibrotic patient controls and IPF patients, and expression was reduced by TGFβ1. TRPA1 mRNA was also down-regulated by TGFβ1 in a model of lung fibrogenesis in human lung. TRPA1 over-expression or activation induced HLMF apoptosis, and activation of TRPA1 channel activation by H2 O2 induced necrosis. TRPA1 inhibition following TGFβ1 down-regulation or pharmacological inhibition, protected HLMFs from both apoptosis and necrosis. Lentiviral vector mediated TRPA1 expression was also found to induce sensitivity to H2 O2 induced cell death in a TRPA1-negative HEK293T cell line. CONCLUSION AND IMPLICATIONS TGFβ1 induces resistance of HLMFs to TRPA1 agonist- and H2 O2 -mediated cell death via down-regulation of TRPA1 channels. Our data suggest that therapeutic strategies which prevent TGFβ1-dependent down-regulation of TRPA1 may reduce myofibroblast survival in IPF and therefore improve clinical outcomes.
Collapse
Affiliation(s)
- Harvinder S Virk
- NIHR Respiratory BRC, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Michael S Biddle
- NIHR Respiratory BRC, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Dawn T Smallwood
- School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Cathryn A Weston
- NIHR Respiratory BRC, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Emily Castells
- NIHR Respiratory BRC, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Viona W Bowman
- School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Jamie McCarthy
- NIHR Respiratory BRC, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Yassine Amrani
- NIHR Respiratory BRC, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - S Mark Duffy
- NIHR Respiratory BRC, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Peter Bradding
- NIHR Respiratory BRC, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Katy M Roach
- NIHR Respiratory BRC, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
17
|
Romano E, Rosa I, Fioretto BS, Cerinic MM, Manetti M. The Role of Pro-fibrotic Myofibroblasts in Systemic Sclerosis: from Origin to Therapeutic Targeting. Curr Mol Med 2021; 22:209-239. [PMID: 33823766 DOI: 10.2174/0929867328666210325102749] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 11/22/2022]
Abstract
Systemic sclerosis (SSc, scleroderma) is a complex connective tissue disorder characterized by multisystem clinical manifestations resulting from immune dysregulation/autoimmunity, vasculopathy and, most notably, progressive fibrosis of the skin and internal organs. In recent years, it has emerged that the main drivers of SSc-related tissue fibrosis are myofibroblasts, a type of mesenchymal cells with both the extracellular matrix-synthesizing features of fibroblasts and the cytoskeletal characteristics of contractile smooth muscle cells. The accumulation and persistent activation of pro-fibrotic myofibroblasts during SSc development and progression result into elevated mechanical stress and reduced matrix plasticity within the affected tissues and may be ascribed to a reduced susceptibility of these cells to pro-apoptotic stimuli, as well as their increased formation from tissue-resident fibroblasts or transition from different cell types. Given the crucial role of myofibroblasts in SSc pathogenesis, finding the way to inhibit myofibroblast differentiation and accumulation by targeting their formation, function and survival may represent an effective approach to hamper the fibrotic process or even halt or reverse established fibrosis. In this review, we discuss the role of myofibroblasts in SSc-related fibrosis, with a special focus on their cellular origin and the signaling pathways implicated in their formation and persistent activation. Furthermore, we provide an overview of potential therapeutic strategies targeting myofibroblasts that may be able to counteract fibrosis in this pathological condition.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Marco Matucci Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence. Italy
| |
Collapse
|
18
|
Lin B, Wang Q, Liu K, Dong X, Zhu M, Li M. Alpha-Fetoprotein Binding Mucin and Scavenger Receptors: An Available Bio-Target for Treating Cancer. Front Oncol 2021; 11:625936. [PMID: 33718192 PMCID: PMC7947232 DOI: 10.3389/fonc.2021.625936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/07/2021] [Indexed: 12/26/2022] Open
Abstract
Alpha-fetoprotein (AFP) entrance into cancer cells is mediated by AFP receptors (AFPRs) and exerts malignant effects. Therefore, understanding the structure of AFPRs will facilitate the development of rational approaches for vaccine design, drug delivery, antagonizing immune suppression and diagnostic imaging to treat cancer effectively. Throughout the last three decades, the identification of universal receptors for AFP has failed due to their complex carbohydrate polymer structures. Here, we focused on the two types of binding proteins or receptors that may serve as AFPRs, namely, the A) mucin receptors family, and B) the scavenger family. We presented an informative review with detailed descriptions of the signal transduction, cross-talk, and interplay of various transcription factors which highlight the downstream events following AFP binding to mucin or scavenger receptors. We mainly explored the underlying mechanisms involved mucin or scavenger receptors that interact with AFP, provide more evidence to support these receptors as tumor AFPRs, and establish a theoretical basis for targeting therapy of cancer.
Collapse
Affiliation(s)
- Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Qiujiao Wang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Kun Liu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Xu Dong
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China.,Institution of Tumor, Hainan Medical College, Haikou, China
| |
Collapse
|
19
|
Bharadwaj S, Singh M, Kirtipal N, Kang SG. SARS-CoV-2 and Glutamine: SARS-CoV-2 Triggered Pathogenesis via Metabolic Reprograming of Glutamine in Host Cells. Front Mol Biosci 2021; 7:627842. [PMID: 33585567 PMCID: PMC7873863 DOI: 10.3389/fmolb.2020.627842] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as coronavirus disease 2019 (COVID-19) pandemic, has killed more than a million people worldwide, and researchers are constantly working to develop therapeutics in the treatment and prevention of this new viral infection. To infect and induced pathogenesis as observed in other viral infections, we postulated that SARS-CoV-2 may also require an escalation in the anabolic metabolism, such as glucose and glutamine, to support its energy and biosynthetic requirements during the infection cycle. Recently, the requirement of altered glucose metabolism in SARS-CoV-2 pathogenesis was demonstrated, but the role of dysregulated glutamine metabolism is not yet mentioned for its infection. In this perspective, we have attempted to provide a summary of possible biochemical events on putative metabolic reprograming of glutamine in host cells upon SARS-CoV-2 infection by comparison to other viral infections/cancer metabolism and available clinical data or research on SARS-CoV-2 pathogenesis. This systematic hypothesis concluded the vital role of glutaminase-1 (GLS1), phosphoserine aminotransferase (PSAT1), hypoxia-inducible factor-1 alpha (HIF-1α), mammalian target of rapamycin complex 1 (mTORC1), glutamine-fructose amidotransferase 1/2 (GFAT1/2), and transcription factor Myc as key cellular factors to mediate and promote the glutamine metabolic reprogramming in SARS-CoV-2 infected cells. In absence of concrete data available for SARS-CoV-2 induced metabolic reprogramming of glutamine, this study efforts to connect the gaps with available clinical shreds of evidence in SARS-CoV-2 infection with altered glutamine metabolism and hopefully could be beneficial in the designing of strategic methods for therapeutic development with elucidation using in vitro or in vivo approaches.
Collapse
Affiliation(s)
- Shiv Bharadwaj
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Mahendra Singh
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Nikhil Kirtipal
- Department of Science, Modern Institute of Technology, Rishikesh, India
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
20
|
Abstract
Significance: Fibrosis is a stereotypic, multicellular tissue response to diverse types of injuries that fundamentally result from a failure of cell/tissue regeneration. This complex tissue remodeling response disrupts cellular/matrix composition and homeostatic cell-cell interactions, leading to loss of normal tissue architecture and progressive loss of organ structure/function. Fibrosis is a common feature of chronic diseases that may affect the lung, kidney, liver, and heart. Recent Advances: There is emerging evidence to support a combination of genetic, environmental, and age-related risk factors contributing to susceptibility and/or progression of fibrosis in different organ systems. A core pathway in fibrogenesis involving these organs is the induction and activation of nicotinamide adenine dinucleotide phosphate oxidase (NOX) family enzymes. Critical Issues: We explore current pharmaceutical approaches to targeting NOX enzymes, including repurposing of currently U.S. Food and Drug Administration (FDA)-approved drugs. Specific inhibitors of various NOX homologs will aid establishing roles of NOXs in the various organ fibroses and potential efficacy to impede/halt disease progression. Future Directions: The discovery of novel and highly specific NOX inhibitors will provide opportunities to develop NOX inhibitors for treatment of fibrotic pathologies.
Collapse
Affiliation(s)
- Karen Bernard
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
21
|
Hinz B, Lagares D. Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat Rev Rheumatol 2020; 16:11-31. [PMID: 31792399 PMCID: PMC7913072 DOI: 10.1038/s41584-019-0324-5] [Citation(s) in RCA: 363] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
Organ fibrosis is a lethal outcome of autoimmune rheumatic diseases such as systemic sclerosis. Myofibroblasts are scar-forming cells that are ultimately responsible for the excessive synthesis, deposition and remodelling of extracellular matrix proteins in fibrosis. Advances have been made in our understanding of the mechanisms that keep myofibroblasts in an activated state and control myofibroblast functions. However, the mechanisms that help myofibroblasts to persist in fibrotic tissues remain poorly understood. Myofibroblasts evade apoptosis by activating molecular mechanisms in response to pro-survival biomechanical and growth factor signals from the fibrotic microenvironment, which can ultimately lead to the acquisition of a senescent phenotype. Growing evidence suggests that myofibroblasts and senescent myofibroblasts, rather than being resistant to apoptosis, are actually primed for apoptosis owing to concomitant activation of cell death signalling pathways; these cells are poised to apoptose when survival pathways are inhibited. This knowledge of apoptotic priming has paved the way for new therapies that trigger apoptosis in myofibroblasts by blocking pro-survival mechanisms, target senescent myofibroblast for apoptosis or promote the reprogramming of myofibroblasts into scar-resolving cells. These novel strategies are not only poised to prevent progressive tissue scarring, but also have the potential to reverse established fibrosis and to regenerate chronically injured tissues.
Collapse
Affiliation(s)
- Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - David Lagares
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Lingzhi Z, Meirong L, Xiaobing F. Biological approaches for hypertrophic scars. Int Wound J 2019; 17:405-418. [PMID: 31860941 DOI: 10.1111/iwj.13286] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/01/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Scar formation is usually the pathological consequence of skin trauma. And hypertrophic scars (HSs) frequently occur in people after being injured deeply. HSs are unusually considered as the result of tissue contraction and excessive extracellular matrix component deposition. Myofibroblasts, as the effector cells, mainly differentiated from fibroblasts, play the crucial role in the pathophysiology of HSs. A number of growth factors, inflammatory cytokines involved in the process of HS occurrence. Currently, with in-depth exploration and clinical research of HSs, various creative and effective treatments budded. In here, we summarize the progress in the molecular mechanism of HSs, and review the available biotherapeutic methods for their pathophysiological characteristics. Additionally, we further prospected that the comprehensive therapy may be more suitable for HS treatment.
Collapse
Affiliation(s)
- Zhong Lingzhi
- Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| | - Li Meirong
- Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China.,Central Laboratory, Trauma Treatment Center, Chinese PLA General Hospital Hainan Branch, Sanya, China
| | - Fu Xiaobing
- Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
23
|
Gordeeva O. TGFβ Family Signaling Pathways in Pluripotent and Teratocarcinoma Stem Cells' Fate Decisions: Balancing Between Self-Renewal, Differentiation, and Cancer. Cells 2019; 8:cells8121500. [PMID: 31771212 PMCID: PMC6953027 DOI: 10.3390/cells8121500] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
The transforming growth factor-β (TGFβ) family factors induce pleiotropic effects and are involved in the regulation of most normal and pathological cellular processes. The activity of different branches of the TGFβ family signaling pathways and their interplay with other signaling pathways govern the fine regulation of the self-renewal, differentiation onset and specialization of pluripotent stem cells in various cell derivatives. TGFβ family signaling pathways play a pivotal role in balancing basic cellular processes in pluripotent stem cells and their derivatives, although disturbances in their genome integrity induce the rearrangements of signaling pathways and lead to functional impairments and malignant transformation into cancer stem cells. Therefore, the identification of critical nodes and targets in the regulatory cascades of TGFβ family factors and other signaling pathways, and analysis of the rearrangements of the signal regulatory network during stem cell state transitions and interconversions, are key issues for understanding the fundamental mechanisms of both stem cell biology and cancer initiation and progression, as well as for clinical applications. This review summarizes recent advances in our understanding of TGFβ family functions in naїve and primed pluripotent stem cells and discusses how these pathways are involved in perturbations in the signaling network of malignant teratocarcinoma stem cells with impaired differentiation potential.
Collapse
Affiliation(s)
- Olga Gordeeva
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov str., 119334 Moscow, Russia
| |
Collapse
|
24
|
Penke LR, Peters-Golden M. Molecular determinants of mesenchymal cell activation in fibroproliferative diseases. Cell Mol Life Sci 2019; 76:4179-4201. [PMID: 31563998 PMCID: PMC6858579 DOI: 10.1007/s00018-019-03212-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/01/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Uncontrolled scarring, or fibrosis, can interfere with the normal function of virtually all tissues of the body, ultimately leading to organ failure and death. Fibrotic diseases represent a major cause of death in industrialized countries. Unfortunately, no curative treatments for these conditions are yet available, highlighting the critical need for a better fundamental understanding of molecular mechanisms that may be therapeutically tractable. The ultimate indispensable effector cells responsible for deposition of extracellular matrix proteins that comprise scars are mesenchymal cells, namely fibroblasts and myofibroblasts. In this review, we focus on the biology of these cells and the molecular mechanisms that regulate their pertinent functions. We discuss key pro-fibrotic mediators, signaling pathways, and transcription factors that dictate their activation and persistence. Because of their possible clinical and therapeutic relevance, we also consider potential brakes on mesenchymal cell activation and cellular processes that may facilitate myofibroblast clearance from fibrotic tissue-topics that have in general been understudied.
Collapse
Affiliation(s)
- Loka R Penke
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA.
| |
Collapse
|
25
|
Yang DC, Li JM, Xu J, Oldham J, Phan SH, Last JA, Wu R, Chen CH. Tackling MARCKS-PIP3 circuit attenuates fibroblast activation and fibrosis progression. FASEB J 2019; 33:14354-14369. [PMID: 31661644 DOI: 10.1096/fj.201901705r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Targeting activated fibroblasts, including myofibroblast differentiation, has emerged as a key therapeutic strategy in patients with idiopathic pulmonary fibrosis (IPF). However, there is no available therapy capable of selectively eradicating myofibroblasts or limiting their genesis. Through an integrative analysis of the regulator genes that are responsible for the activation of IPF fibroblasts, we noticed the phosphatidylinositol 4,5-bisphosphate (PIP2)-binding protein, myristoylated alanine-rich C-kinase substrate (MARCKS), as a potential target molecule for IPF. Herein, we have employed a 25-mer novel peptide, MARCKS phosphorylation site domain sequence (MPS), to determine if MARCKS inhibition reduces pulmonary fibrosis through the inactivation of PI3K/protein kinase B (AKT) signaling in fibroblast cells. We first observed that higher levels of MARCKS phosphorylation and the myofibroblast marker α-smooth muscle actin (α-SMA) were notably overexpressed in all tested IPF lung tissues and fibroblast cells. Treatment with the MPS peptide suppressed levels of MARCKS phosphorylation in primary IPF fibroblasts. A kinetic assay confirmed that this peptide binds to phospholipids, particularly PIP2, with a dissociation constant of 17.64 nM. As expected, a decrease of phosphatidylinositol (3,4,5)-trisphosphate pools and AKT activity occurred in MPS-treated IPF fibroblast cells. MPS peptide was demonstrated to impair cell proliferation, invasion, and migration in multiple IPF fibroblast cells in vitro as well as to reduce pulmonary fibrosis in bleomycin-treated mice in vivo. Surprisingly, we found that MPS peptide decreases α-SMA expression and synergistically interacts with nintedanib treatment in IPF fibroblasts. Our data suggest MARCKS as a druggable target in pulmonary fibrosis and also provide a promising antifibrotic agent that may lead to effective IPF treatments.-Yang, D. C., Li, J.-M., Xu, J., Oldham, J., Phan, S. H., Last, J. A., Wu, R., Chen, C.-H. Tackling MARCKS-PIP3 circuit attenuates fibroblast activation and fibrosis progression.
Collapse
Affiliation(s)
- David C Yang
- Division of Pulmonary and Critical Care Medicine, University of California-Davis, Davis, California, USA.,Department of Internal Medicine, Center for Comparative Respiratory Biology and Medicine, University of California-Davis, Davis, California, USA.,Division of Nephrology, Department of Internal Medicine, University of California-Davis, Davis, California, USA
| | - Ji-Min Li
- Division of Nephrology, Department of Internal Medicine, University of California-Davis, Davis, California, USA
| | - Jihao Xu
- Division of Nephrology, Department of Internal Medicine, University of California-Davis, Davis, California, USA
| | - Justin Oldham
- Division of Pulmonary and Critical Care Medicine, University of California-Davis, Davis, California, USA.,Department of Internal Medicine, Center for Comparative Respiratory Biology and Medicine, University of California-Davis, Davis, California, USA
| | - Sem H Phan
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Jerold A Last
- Division of Pulmonary and Critical Care Medicine, University of California-Davis, Davis, California, USA.,Department of Internal Medicine, Center for Comparative Respiratory Biology and Medicine, University of California-Davis, Davis, California, USA
| | - Reen Wu
- Division of Pulmonary and Critical Care Medicine, University of California-Davis, Davis, California, USA.,Department of Internal Medicine, Center for Comparative Respiratory Biology and Medicine, University of California-Davis, Davis, California, USA
| | - Ching-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, University of California-Davis, Davis, California, USA
| |
Collapse
|
26
|
Barnes JW, Duncan D, Helton S, Hutcheson S, Kurundkar D, Logsdon NJ, Locy M, Garth J, Denson R, Farver C, Vo HT, King G, Kentrup D, Faul C, Kulkarni T, De Andrade JA, Yu Z, Matalon S, Thannickal VJ, Krick S. Role of fibroblast growth factor 23 and klotho cross talk in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2019; 317:L141-L154. [PMID: 31042083 PMCID: PMC6689746 DOI: 10.1152/ajplung.00246.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 04/10/2019] [Accepted: 04/28/2019] [Indexed: 01/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrosing interstitial pneumonia that mainly affects the elderly. Several reports have demonstrated that aging is involved in the underlying pathogenic mechanisms of IPF. α-Klotho (KL) has been well characterized as an "age-suppressing" hormone and can provide protection against cellular senescence and oxidative stress. In this study, KL levels were assessed in human plasma and primary lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF-FB) and in lung tissue from mice exposed to bleomycin, which showed significant downregulation when compared with controls. Conversely, transgenic mice overexpressing KL were protected against bleomycin-induced lung fibrosis. Treatment of human lung fibroblasts with recombinant KL alone was not sufficient to inhibit transforming growth factor-β (TGF-β)-induced collagen deposition and inflammatory marker expression. Interestingly, fibroblast growth factor 23 (FGF23), a proinflammatory circulating protein for which KL is a coreceptor, was upregulated in IPF and bleomycin lungs. To our surprise, FGF23 and KL coadministration led to a significant reduction in fibrosis and inflammation in IPF-FB; FGF23 administration alone or in combination with KL stimulated KL upregulation. We conclude that in IPF downregulation of KL may contribute to fibrosis and inflammation and FGF23 may act as a compensatory antifibrotic and anti-inflammatory mediator via inhibition of TGF-β signaling. Upon restoration of KL levels, the combination of FGF23 and KL leads to resolution of inflammation and fibrosis. Altogether, these data provide novel insight into the FGF23/KL axis and its antifibrotic/anti-inflammatory properties, which opens new avenues for potential therapies in aging-related diseases like IPF.
Collapse
Affiliation(s)
- Jarrod W Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Dawn Duncan
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Scott Helton
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Samuel Hutcheson
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Deepali Kurundkar
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Naomi J Logsdon
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Morgan Locy
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Jaleesa Garth
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Rebecca Denson
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Carol Farver
- Department of Pathology, Cleveland Clinic , Cleveland, Ohio
| | - Hai T Vo
- Department of Neurobiology, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Gwendalyn King
- Department of Neurobiology, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Dominik Kentrup
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Christian Faul
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Tejaswini Kulkarni
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Joao A De Andrade
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
- Birmingham VA Medical Center , Birmingham, Alabama
| | - Zhihong Yu
- Department of Anesthesiology and Perioperative Medicine (Molecular and Translational Biomedicine), University of Alabama , Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine (Molecular and Translational Biomedicine), University of Alabama , Birmingham, Alabama
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| |
Collapse
|
27
|
Zhang L. Linking metabolic and epigenetic regulation in the development of lung cancer driven by TGFβ signaling. AIMS GENETICS 2019; 6:11-13. [PMID: 31435524 PMCID: PMC6690243 DOI: 10.3934/genet.2019.2.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Liyi Zhang
- Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, P. R. China
| |
Collapse
|
28
|
Piechowski J. Plausibility of trophoblastic-like regulation of cancer tissue. Cancer Manag Res 2019; 11:5033-5046. [PMID: 31213916 PMCID: PMC6549421 DOI: 10.2147/cmar.s190932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/30/2019] [Indexed: 01/15/2023] Open
Abstract
Background: Thus far, a well-established logical pattern of malignancy does not exist. The current approach to cancer properties is primarily descriptive with usually, for each of them, extensive analyses of the underlying associated biomolecular mechanisms. However, this remains a catalog and it would be valuable to determine the organizational chart that could account for their implementation, hierarchical links and input into tumor regulation. Hypothesis: Striking phenotypic similarities exist between trophoblast (invasive and expanding early placenta) and cancer regarding cell functions, logistics of development, means of protection and capacity to hold sway over the host organism. The concept of cancer cell trophoblastic-like transdifferentiation appears to be a rational proposal in an attempt to explain this analogy and provide a consistent insight into how cancer cells are functioning. Should this concept be validated, it could pave the way to promising research and therapeutic perspectives given that the trophoblastic properties are vital for the tumor while they are permanently epigenetically turned off in normal cells. Specifically targeting expression of the trophoblastic master genes could thereby be envisaged to jeopardize the tumor and its metastases without, in principle, inducing adverse side effects in the healthy tissues. Conclusion: A wide set of functional features of cancer tissue regulation, including some apparently paradoxical facts, was reviewed. Cancer cell misuse of physiological trophoblastic functions can clearly account for them, which identifies trophoblastic-like transdifferentiation as a likely key component of malignancy and makes it a potential relevant anticancer target.
Collapse
|
29
|
Du Y, Liu P, Chen Z, He Y, Zhang B, Dai G, Xia W, Liu Y, Chen X. PTEN improve renal fibrosis in vitro and in vivo through inhibiting FAK/AKT signaling pathway. J Cell Biochem 2019; 120:17887-17897. [PMID: 31144376 DOI: 10.1002/jcb.29057] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Yongchao Du
- Department of Urology, Xiangya Hospital Central South University Changsha Hunan PR China
| | - Peihua Liu
- Department of Urology, Xiangya Hospital Central South University Changsha Hunan PR China
| | - Zhi Chen
- Department of Urology, Xiangya Hospital Central South University Changsha Hunan PR China
| | - Yao He
- Department of Urology, Xiangya Hospital Central South University Changsha Hunan PR China
| | - Bo Zhang
- Department of Urology, Xiangya Hospital Central South University Changsha Hunan PR China
| | - Guoyu Dai
- Department of Urology, Xiangya Hospital Central South University Changsha Hunan PR China
| | - Weiping Xia
- Department of Urology, Xiangya Hospital Central South University Changsha Hunan PR China
| | - Yuhang Liu
- Department of Urology, Xiangya Hospital Central South University Changsha Hunan PR China
| | - Xiang Chen
- Department of Urology, Xiangya Hospital Central South University Changsha Hunan PR China
| |
Collapse
|
30
|
Abstract
Fibrosis is a dynamic process with the potential for reversibility and restoration of near-normal tissue architecture and organ function. Herein, we review mechanisms for resolution of organ fibrosis, in particular that involving the lung, with an emphasis on the critical roles of myofibroblast apoptosis and clearance of deposited matrix.
Collapse
Affiliation(s)
- Jeffrey C Horowitz
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School , Ann Arbor, Michigan
| | - Victor J Thannickal
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
31
|
Ballester B, Milara J, Cortijo J. Idiopathic Pulmonary Fibrosis and Lung Cancer: Mechanisms and Molecular Targets. Int J Mol Sci 2019; 20:ijms20030593. [PMID: 30704051 PMCID: PMC6387034 DOI: 10.3390/ijms20030593] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial pulmonary disease with a median survival of 2–4 years after diagnosis. A significant number of IPF patients have risk factors, such as a history of smoking or concomitant emphysema, both of which can predispose the patient to lung cancer (LC) (mostly non-small cell lung cancer (NSCLC)). In fact, IPF itself increases the risk of LC development by 7% to 20%. In this regard, there are multiple common genetic, molecular, and cellular processes that connect lung fibrosis with LC, such as myofibroblast/mesenchymal transition, myofibroblast activation and uncontrolled proliferation, endoplasmic reticulum stress, alterations of growth factors expression, oxidative stress, and large genetic and epigenetic variations that can predispose the patient to develop IPF and LC. The current approved IPF therapies, pirfenidone and nintedanib, are also active in LC. In fact, nintedanib is approved as a second line treatment in NSCLC, and pirfenidone has shown anti-neoplastic effects in preclinical studies. In this review, we focus on the current knowledge on the mechanisms implicated in the development of LC in patients with IPF as well as in current IPF and LC-IPF candidate therapies based on novel molecular advances.
Collapse
Affiliation(s)
- Beatriz Ballester
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain.
- CIBERES, Health Institute Carlos III, 28029 Valencia, Spain.
| | - Javier Milara
- CIBERES, Health Institute Carlos III, 28029 Valencia, Spain.
- Pharmacy Unit, University Clinic Hospital of Valencia, 46010 Valencia, Spain.
- Institute of Health Research-INCLIVA, 46010 Valencia, Spain.
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain.
- CIBERES, Health Institute Carlos III, 28029 Valencia, Spain.
- Research and teaching Unit, University General Hospital Consortium, 46014 Valencia, Spain.
| |
Collapse
|
32
|
Chen T, Wang T, Liang W, Zhao Q, Yu Q, Ma CM, Zhuo L, Guo D, Zheng K, Zhou C, Wei S, Huang W, Jiang J, Liu J, Li S, He J, Jiang Y, Zhong N. PAK4 Phosphorylates Fumarase and Blocks TGFβ-Induced Cell Growth Arrest in Lung Cancer Cells. Cancer Res 2019; 79:1383-1397. [PMID: 30683654 DOI: 10.1158/0008-5472.can-18-2575] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/06/2018] [Accepted: 01/23/2019] [Indexed: 11/16/2022]
Affiliation(s)
- Tao Chen
- State Key Laboratory of Respiratory Diseases; National Clinical Research Center of Respiratory Diseases; Guangzhou Institute of Respiratory Health; First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Ting Wang
- The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
- Department of Pharmacology, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wenhua Liang
- State Key Laboratory of Respiratory Diseases; National Clinical Research Center of Respiratory Diseases; Guangzhou Institute of Respiratory Health; First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Qin Zhao
- The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Qiujing Yu
- The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Chun-Min Ma
- The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Lingang Zhuo
- The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Dong Guo
- The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Ke Zheng
- The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Diseases; National Clinical Research Center of Respiratory Diseases; Guangzhou Institute of Respiratory Health; First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Shupei Wei
- State Key Laboratory of Respiratory Diseases; National Clinical Research Center of Respiratory Diseases; Guangzhou Institute of Respiratory Health; First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Wenhua Huang
- State Key Laboratory of Respiratory Diseases; National Clinical Research Center of Respiratory Diseases; Guangzhou Institute of Respiratory Health; First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Juhong Jiang
- State Key Laboratory of Respiratory Diseases; National Clinical Research Center of Respiratory Diseases; Guangzhou Institute of Respiratory Health; First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Jing Liu
- State Key Laboratory of Respiratory Diseases; National Clinical Research Center of Respiratory Diseases; Guangzhou Institute of Respiratory Health; First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Shiyue Li
- State Key Laboratory of Respiratory Diseases; National Clinical Research Center of Respiratory Diseases; Guangzhou Institute of Respiratory Health; First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Jianxing He
- State Key Laboratory of Respiratory Diseases; National Clinical Research Center of Respiratory Diseases; Guangzhou Institute of Respiratory Health; First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China.
| | - Yuhui Jiang
- The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China.
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Diseases; National Clinical Research Center of Respiratory Diseases; Guangzhou Institute of Respiratory Health; First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
33
|
Wang Y, Chen S, Yan Z, Pei M. A prospect of cell immortalization combined with matrix microenvironmental optimization strategy for tissue engineering and regeneration. Cell Biosci 2019; 9:7. [PMID: 30627420 PMCID: PMC6321683 DOI: 10.1186/s13578-018-0264-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Cellular senescence is a major hurdle for primary cell-based tissue engineering and regenerative medicine. Telomere erosion, oxidative stress, the expression of oncogenes and the loss of tumor suppressor genes all may account for the cellular senescence process with the involvement of various signaling pathways. To establish immortalized cell lines for research and clinical use, strategies have been applied including internal genomic or external matrix microenvironment modification. Considering the potential risks of malignant transformation and tumorigenesis of genetic manipulation, environmental modification methods, especially the decellularized cell-deposited extracellular matrix (dECM)-based preconditioning strategy, appear to be promising for tissue engineering-aimed cell immortalization. Due to few review articles focusing on this topic, this review provides a summary of cell senescence and immortalization and discusses advantages and limitations of tissue engineering and regeneration with the use of immortalized cells as well as a potential rejuvenation strategy through combination with the dECM approach.
Collapse
Affiliation(s)
- Yiming Wang
- 1Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196 USA.,2Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Song Chen
- 3Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, 610083 Sichuan China
| | - Zuoqin Yan
- 2Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Ming Pei
- 1Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196 USA.,4WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
34
|
Woodcock HV, Eley JD, Guillotin D, Platé M, Nanthakumar CB, Martufi M, Peace S, Joberty G, Poeckel D, Good RB, Taylor AR, Zinn N, Redding M, Forty EJ, Hynds RE, Swanton C, Karsdal M, Maher TM, Fisher A, Bergamini G, Marshall RP, Blanchard AD, Mercer PF, Chambers RC. The mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis. Nat Commun 2019; 10:6. [PMID: 30602778 PMCID: PMC6315032 DOI: 10.1038/s41467-018-07858-8] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 11/29/2018] [Indexed: 01/06/2023] Open
Abstract
Myofibroblasts are the key effector cells responsible for excessive extracellular matrix deposition in multiple fibrotic conditions, including idiopathic pulmonary fibrosis (IPF). The PI3K/Akt/mTOR axis has been implicated in fibrosis, with pan-PI3K/mTOR inhibition currently under clinical evaluation in IPF. Here we demonstrate that rapamycin-insensitive mTORC1 signaling via 4E-BP1 is a critical pathway for TGF-β1 stimulated collagen synthesis in human lung fibroblasts, whereas canonical PI3K/Akt signaling is not required. The importance of mTORC1 signaling was confirmed by CRISPR-Cas9 gene editing in normal and IPF fibroblasts, as well as in lung cancer-associated fibroblasts, dermal fibroblasts and hepatic stellate cells. The inhibitory effect of ATP-competitive mTOR inhibition extended to other matrisome proteins implicated in the development of fibrosis and human disease relevance was demonstrated in live precision-cut IPF lung slices. Our data demonstrate that the mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis with potential implications for the development of novel anti-fibrotic strategies.
Collapse
Affiliation(s)
- Hannah V Woodcock
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London, WC1E 6JF, UK
| | - Jessica D Eley
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London, WC1E 6JF, UK
| | - Delphine Guillotin
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London, WC1E 6JF, UK
| | - Manuela Platé
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London, WC1E 6JF, UK
| | - Carmel B Nanthakumar
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Matteo Martufi
- Target Sciences, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Simon Peace
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Gerard Joberty
- Cellzome, a GSK Company, Meyershofstrasse 1, 69117, Heidelberg, Germany
| | - Daniel Poeckel
- Cellzome, a GSK Company, Meyershofstrasse 1, 69117, Heidelberg, Germany
| | - Robert B Good
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Adam R Taylor
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Nico Zinn
- Cellzome, a GSK Company, Meyershofstrasse 1, 69117, Heidelberg, Germany
| | - Matthew Redding
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London, WC1E 6JF, UK
| | - Ellen J Forty
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London, WC1E 6JF, UK
| | - Robert E Hynds
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Charles Swanton
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | | | - Toby M Maher
- Fibrosis Research Group, Inflammation, Repair & Development Section, NHLI, Imperial College, London, SW3 6LY, UK
| | - Andrew Fisher
- Newcastle Fibrosis Research Group, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | | | - Richard P Marshall
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Andy D Blanchard
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Paul F Mercer
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London, WC1E 6JF, UK
| | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London, WC1E 6JF, UK.
| |
Collapse
|
35
|
Sandbo N. Mechanisms of Fibrosis in IPF. Respir Med 2019. [DOI: 10.1007/978-3-319-99975-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
van Caam A, Vonk M, van den Hoogen F, van Lent P, van der Kraan P. Unraveling SSc Pathophysiology; The Myofibroblast. Front Immunol 2018; 9:2452. [PMID: 30483246 PMCID: PMC6242950 DOI: 10.3389/fimmu.2018.02452] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022] Open
Abstract
Systemic sclerosis (SSc) is a severe auto-immune disease, characterized by vasculopathy and fibrosis of connective tissues. SSc has a high morbidity and mortality and unfortunately no disease modifying therapy is currently available. A key cell in the pathophysiology of SSc is the myofibroblast. Myofibroblasts are fibroblasts with contractile properties that produce a large amount of pro-fibrotic extracellular matrix molecules such as collagen type I. In this narrative review we will discuss the presence, formation, and role of myofibroblasts in SSc, and how these processes are stimulated and mediated by cells of the (innate) immune system such as mast cells and T helper 2 lymphocytes. Furthermore, current novel therapeutic approaches to target myofibroblasts will be highlighted for future perspective.
Collapse
Affiliation(s)
- Arjan van Caam
- Experimental Rheumatology, Radboudumc, Nijmegen, Netherlands
| | - Madelon Vonk
- Department of Rheumatology, Radboudumc, Nijmegen, Netherlands
| | | | - Peter van Lent
- Experimental Rheumatology, Radboudumc, Nijmegen, Netherlands
| | | |
Collapse
|
37
|
Matsuno Y, Kiwamoto T, Morishima Y, Ishii Y, Hizawa N, Hogaboam CM. Notch signaling regulates cell density-dependent apoptosis of NIH 3T3 through an IL-6/STAT3 dependent mechanism. Eur J Cell Biol 2018; 97:512-522. [PMID: 30249464 DOI: 10.1016/j.ejcb.2018.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 01/05/2023] Open
Abstract
Apoptosis is a physiological process that plays a critical maintenance role in cellular homeostasis. Previous reports have demonstrated that cells undergo apoptosis in a cell density-dependent manner, which is regulated, in part, by signal transducers and activators of transcription (STAT) 3. The molecular mechanisms regulating cell density-dependent apoptosis, however, has not been thoroughly investigated to date. Since Notch signaling is activated via direct cell-to-cell contact and plays a pivotal role in cell fate decisions, we examined the role of Notch signaling in cell density-dependent apoptosis of mouse embryonic fibroblasts NIH 3T3 cells. With the increase in cell density, IL-6 expression was induced, which was necessary for STAT3 activation as well as apoptosis regulation. Notch signaling was also activated in a cell-density dependent manner. Blocking Notch signaling either through siRNA-mediated targeting of Jagged1 expression or γ-secretase inhibitor treatment demonstrated that Notch signaling activation was necessary for IL-6 induction. Constitutive activation of Notch signaling via the overexpression of Notch1 intracellular domain was sufficient for the induction of IL-6, which was mediated via direct transcriptional activation. Taken together, our study indicates that Notch signaling regulates cell density-dependent apoptosis through IL-6/STAT3-dependent mechanism. Consequently, Notch signaling might represent a novel therapeutic target in diseases characterized by dysregulated apoptosis.
Collapse
Affiliation(s)
- Yosuke Matsuno
- Department of Respiratory Medicine, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Takumi Kiwamoto
- Department of Respiratory Medicine, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuko Morishima
- Department of Respiratory Medicine, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yukio Ishii
- Department of Respiratory Medicine, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Nobuyuki Hizawa
- Department of Respiratory Medicine, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Cory M Hogaboam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| |
Collapse
|
38
|
Rivera-Mulia JC, Schwerer H, Besnard E, Desprat R, Trevilla-Garcia C, Sima J, Bensadoun P, Zouaoui A, Gilbert DM, Lemaitre JM. Cellular senescence induces replication stress with almost no affect on DNA replication timing. Cell Cycle 2018; 17:1667-1681. [PMID: 29963964 DOI: 10.1080/15384101.2018.1491235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Organismal aging entails a gradual decline of normal physiological functions and a major contributor to this decline is withdrawal of the cell cycle, known as senescence. Senescence can result from telomere diminution leading to a finite number of population doublings, known as replicative senescence (RS), or from oncogene overexpression, as a protective mechanism against cancer. Senescence is associated with large-scale chromatin re-organization and changes in gene expression. Replication stress is a complex phenomenon, defined as the slowing or stalling of replication fork progression and/or DNA synthesis, which has serious implications for genome stability, and consequently in human diseases. Aberrant replication fork structures activate the replication stress response leading to the activation of dormant origins, which is thought to be a safeguard mechanism to complete DNA replication on time. However, the relationship between replicative stress and the changes in the spatiotemporal program of DNA replication in senescence progression remains unclear. Here, we studied the DNA replication program during senescence progression in proliferative and pre-senescent cells from donors of various ages by single DNA fiber combing of replicated DNA, origin mapping by sequencing short nascent strands and genome-wide profiling of replication timing (TRT). We demonstrate that, progression into RS leads to reduced replication fork rates and activation of dormant origins, which are the hallmarks of replication stress. However, with the exception of a delay in RT of the CREB5 gene in all pre-senescent cells, RT was globally unaffected by replication stress during entry into either oncogene-induced or RS. Consequently, we conclude that RT alterations associated with physiological and accelerated aging, do not result from senescence progression. Our results clarify the interplay between senescence, aging and replication programs and demonstrate that RT is largely resistant to replication stress.
Collapse
Affiliation(s)
| | - Hélène Schwerer
- b Laboratory of Genome and Stem Cell Plasticity in Development and Aging , Institute of Regenerative Medicine, U1183, Université de Montpellier , Montpellier Cedex , France
| | - Emilie Besnard
- b Laboratory of Genome and Stem Cell Plasticity in Development and Aging , Institute of Regenerative Medicine, U1183, Université de Montpellier , Montpellier Cedex , France
| | - Romain Desprat
- c Stem cell Core Facility SAFE-iPS INGESTEM , CHU Montpellier, Saint Eloi Hospital , Montpellier Cedex , France
| | | | - Jiao Sima
- a Department of Biological Science , Florida State University , Tallahassee , FL , USA
| | - Paul Bensadoun
- b Laboratory of Genome and Stem Cell Plasticity in Development and Aging , Institute of Regenerative Medicine, U1183, Université de Montpellier , Montpellier Cedex , France
| | - Anissa Zouaoui
- c Stem cell Core Facility SAFE-iPS INGESTEM , CHU Montpellier, Saint Eloi Hospital , Montpellier Cedex , France
| | - David M Gilbert
- a Department of Biological Science , Florida State University , Tallahassee , FL , USA.,d Center for Genomics and Personalized Medicine , Florida State University , Tallahassee , FL , USA
| | - Jean-Marc Lemaitre
- b Laboratory of Genome and Stem Cell Plasticity in Development and Aging , Institute of Regenerative Medicine, U1183, Université de Montpellier , Montpellier Cedex , France.,c Stem cell Core Facility SAFE-iPS INGESTEM , CHU Montpellier, Saint Eloi Hospital , Montpellier Cedex , France
| |
Collapse
|
39
|
Weder B, Mamie C, Rogler G, Clarke S, McRae B, Ruiz PA, Hausmann M. BCL2 Regulates Differentiation of Intestinal Fibroblasts. Inflamm Bowel Dis 2018; 24:1953-1966. [PMID: 29796658 DOI: 10.1093/ibd/izy147] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fibrosis in patients with Crohn's disease (CD) results from an imbalance toward excessive fibrous tissue formation driven by fibroblasts. Activation of fibroblasts is linked to the B-cell lymphoma 2 (BCL2) family, which is involved in the induction of apoptosis. We investigated the impact of BCL2 repression on fibrogenesis. METHODS The model of dextran sodium sulfate (DSS)-induced chronic colitis and the heterotopic transplantation model of fibrosis were used. Following the administration of the BCL2 antagonist (ABT-737, 50 mg/kg/d), collagen layer thickness and hydroxyproline (HYP) content were determined. Fibroblasts were stimulated with the BCL2 antagonist (0.01-100 µM). BCL2, alpha smooth muscle actin (αSMA), and collagen I (COL1A1) were determined by quantitative polymerase chain reaction (qPCR), immunofluorescence microscopy (IF), and western blot (WB). mRNA expression pattern was determined by next-generation sequencing (NGS). RESULTS Collagen layer thickness was significantly decreased in both DSS-induced chronic colitis and the transplantation model of fibrosis upon BCL2 antagonist administration compared with vehicle. Decreased HYP content confirmed the preventive effects of the BCL2 antagonist on fibrosis. In vitro, a significant increase in PI+/annexin V+ human colonic fibroblasts was determined by fluorescence-activated cell sorting upon treatment with high-dose BCL2 antagonist; at a lower dose, αSMA, COL1A1, and TGF were decreased. NGS, IF, and qPCR revealed decreased expression and nuclear translocation of GATA6 and SOX9, known for reprogramming fibroblasts. CONCLUSION BCL2 antagonist administration partially prevented fibrogenesis in both fibrosis models. The BCL2 antagonist reduced the expression of TGFβ-induced factors involved in differentiation of myofibroblasts, and therefore might represent a potential treatment option against CD-associated fibrosis.
Collapse
Affiliation(s)
- Bruce Weder
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Céline Mamie
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Stephen Clarke
- AbbVie Bioresearch Center, AbbVie, Worcester, Massachusetts
| | - Bradford McRae
- AbbVie Bioresearch Center, AbbVie, Worcester, Massachusetts
| | - Pedro A Ruiz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Rangarajan S, Bone NB, Zmijewska AA, Jiang S, Park DW, Bernard K, Locy ML, Ravi S, Deshane J, Mannon RB, Abraham E, Darley-Usmar V, Thannickal VJ, Zmijewski JW. Metformin reverses established lung fibrosis in a bleomycin model. Nat Med 2018; 24:1121-1127. [PMID: 29967351 PMCID: PMC6081262 DOI: 10.1038/s41591-018-0087-6] [Citation(s) in RCA: 399] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 05/14/2018] [Indexed: 12/18/2022]
Abstract
Fibrosis is a pathological result of a dysfunctional repair response to tissue injury and occurs in a number of organs, including the lungs1. Cellular metabolism regulates tissue repair and remodelling responses to injury2-4. AMPK is a critical sensor of cellular bioenergetics and controls the switch from anabolic to catabolic metabolism5. However, the role of AMPK in fibrosis is not well understood. Here, we demonstrate that in humans with idiopathic pulmonary fibrosis (IPF) and in an experimental mouse model of lung fibrosis, AMPK activity is lower in fibrotic regions associated with metabolically active and apoptosis-resistant myofibroblasts. Pharmacological activation of AMPK in myofibroblasts from lungs of humans with IPF display lower fibrotic activity, along with enhanced mitochondrial biogenesis and normalization of sensitivity to apoptosis. In a bleomycin model of lung fibrosis in mice, metformin therapeutically accelerates the resolution of well-established fibrosis in an AMPK-dependent manner. These studies implicate deficient AMPK activation in non-resolving, pathologic fibrotic processes, and support a role for metformin (or other AMPK activators) to reverse established fibrosis by facilitating deactivation and apoptosis of myofibroblasts.
Collapse
Affiliation(s)
- Sunad Rangarajan
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nathaniel B Bone
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anna A Zmijewska
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shaoning Jiang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dae Won Park
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Infectious Diseases, Korea University Ansan Hospital, Ansan, South Korea
| | - Karen Bernard
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Morgan L Locy
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Saranya Ravi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessy Deshane
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Roslyn B Mannon
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Edward Abraham
- Office of the Dean, School of Medicine, University of Miami, Miami, FL, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor J Thannickal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Jaroslaw W Zmijewski
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
41
|
Wang S, Zhong J, Li L. Protective effect of skin-derived precursors on photoaging in nude mice. Australas J Dermatol 2018; 60:e20-e28. [PMID: 29943461 DOI: 10.1111/ajd.12867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 04/20/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Currently, innovative methods to prevent photoaging are needed. Skin-derived precursors (SKP) have been shown to play a crucial role in resisting UVB-induced apoptosis in vitro. The objective of this study was to explore the effect of SKP on preventing skin photoaging in vivo. METHODS Skin-derived precursors from neonatal BALB/c mice were isolated, identified and intradermally transplanted with a PKH26 label to track their survival. These were then injected at different concentrations into the buttock dermis of nude mice at 2-weekly intervals before UV irradiation. Photographs, assessment of live skin surface, histology with quantitative real-time polymerase chain reaction and immunohistochemistry were used to evaluate the impact of SKP on wrinkles and other relevant indicators of skin photoaging. RESULTS SKP exhibited a sphere-like structure and could survive for at least 2 weeks after intradermal transplantation. A large dose of SKP transplantation (105 SKP +UV) at 2-weekly intervals were able to ameliorate coarse UV-induced wrinkles. Moreover, the skin smoothness value, dermal thickness and collagen percentage were significantly increased in mice that received a large dose of SKP (105 SKP +UV). UV radiation induced the mRNA expression of MMP-13 and decreased the mRNA and protein expression of TβRII, but these effects were diminished by SKP transplantation. The transplantation of SKP could increase the mRNA of TIMP-1. CONCLUSIONS We found that transplanted SKP exert a beneficial impact on preventing UV-induced wrinkles in vivo, suggesting that SKP transplantation is a promising candidate for preventing photoaging.
Collapse
Affiliation(s)
- Siyu Wang
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China.,Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Jianqiao Zhong
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China.,Department of Dermatovenereology, Southwest Medical University, Luzhou, China
| | - Li Li
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Ayala P, Torres J, Vivar R, Meneses M, Olmos P, San Martin T, Borzone GR. Acute lung injury by gastric fluid instillation: activation of myofibroblast apoptosis during injury resolution. Respir Res 2018; 19:57. [PMID: 29631627 PMCID: PMC5891902 DOI: 10.1186/s12931-018-0763-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/23/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gastric contents aspiration in humans has variable consequences depending on the volume of aspirate, ranging from subclinical pneumonitis to respiratory failure with up to 70% mortality. Several experimental approaches have been used to study this condition. In a model of single orotracheal instillation of gastric fluid we have shown that severe acute lung injury evolves from a pattern of diffuse alveolar damage to one of organizing pneumonia (OP), that later resolves leaving normal lung architecture. Little is known about mechanisms of injury resolution after a single aspiration that could be dysregulated with repetitive aspirations. We hypothesized that, in a similar way to cutaneous wound healing, apoptosis may participate in lung injury resolution by reducing the number of myofibroblasts and by affecting the balance between proteases and antiproteases. Our aim was to study activation of apoptosis as well as MMP-2/TIMP-2 balance in the sub-acute phase (4-14 days) of gastric fluid-induced lung injury. METHODS Anesthesized Sprague-Dawley rats received a single orotracheal instillation of gastric fluid and were euthanized 4, 7 and 14 days later (n = 6/group). In lung tissue we studied caspase-3 activation and its location by double immunofluorescence for cleaved caspase-3 or TUNEL and alpha-SMA. MMP-2/TIMP-2 balance was studied by zymography and Western blot. BALF levels of TGF-β1 were measured by ELISA. RESULTS An OP pattern with Masson bodies and granulomas was seen at days 4 and 7 that was no longer present at day 14. Cleaved caspase-3 increased at day 7 and was detected by immunofluorescence in Masson body-alpha-SMA-positive and -negative cells. TUNEL-positive cells at days 4 and 7 were located mainly in Masson bodies. Distribution of cleaved caspase-3 and TUNEL-positive cells at day 14 was similar to that in controls. At the peak of apoptosis (day 7), an imbalance between MMP-2 activity and TIMP-2 expression was produced by reduction in TIMP-2 expression. CONCLUSIONS Apoptosis is activated in Masson body-alpha-SMA-positive and -negative cells during the sub-acute phase of gastric fluid-induced lung injury. This mechanism likely contributes to OP resolution, by reducing myofibroblast number and new collagen production. In addition, pre-formed collagen degradation is favored by an associated MMP-2/TIMP-2 imbalance.
Collapse
Affiliation(s)
- Pedro Ayala
- Department of Respiratory Diseases and Medical Research Center, Pontificia Universidad Católica de Chile, Marcoleta 350, piso 1, Santiago, Chile
| | - Jorge Torres
- Department of Respiratory Diseases and Medical Research Center, Pontificia Universidad Católica de Chile, Marcoleta 350, piso 1, Santiago, Chile
| | - Raúl Vivar
- Department of Respiratory Diseases and Medical Research Center, Pontificia Universidad Católica de Chile, Marcoleta 350, piso 1, Santiago, Chile
| | - Manuel Meneses
- Pathology Unit, Instituto Nacional del Tórax, Santiago, Chile
| | - Pablo Olmos
- Department of Diabetes and Nutrition, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tamara San Martin
- Department of Respiratory Diseases and Medical Research Center, Pontificia Universidad Católica de Chile, Marcoleta 350, piso 1, Santiago, Chile
| | - Gisella R Borzone
- Department of Respiratory Diseases and Medical Research Center, Pontificia Universidad Católica de Chile, Marcoleta 350, piso 1, Santiago, Chile.
| |
Collapse
|
43
|
Zhou Y, Horowitz JC, Naba A, Ambalavanan N, Atabai K, Balestrini J, Bitterman PB, Corley RA, Ding BS, Engler AJ, Hansen KC, Hagood JS, Kheradmand F, Lin QS, Neptune E, Niklason L, Ortiz LA, Parks WC, Tschumperlin DJ, White ES, Chapman HA, Thannickal VJ. Extracellular matrix in lung development, homeostasis and disease. Matrix Biol 2018. [PMID: 29524630 DOI: 10.1016/j.matbio.2018.03.005] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this review, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECM in normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.
Collapse
Affiliation(s)
- Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, United States.
| | - Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine, University of Michigan, United States.
| | - Alexandra Naba
- Department of Physiology & Biophysics, University of Illinois at Chicago, United States.
| | | | - Kamran Atabai
- Lung Biology Center, University of California, San Francisco, United States.
| | | | | | - Richard A Corley
- Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, United States.
| | - Bi-Sen Ding
- Weill Cornell Medical College, United States.
| | - Adam J Engler
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, United States.
| | - Kirk C Hansen
- Biochemistry & Molecular Genetics, University of Colorado Denver, United States.
| | - James S Hagood
- Pediatric Respiratory Medicine, University of California San Diego, United States.
| | - Farrah Kheradmand
- Division of Pulmonary and Critical Care, Baylor College of Medicine, United States.
| | - Qing S Lin
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, United States.
| | - Enid Neptune
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, United States.
| | - Laura Niklason
- Department of Anesthesiology, Yale University, United States.
| | - Luis A Ortiz
- Division of Environmental and Occupational Health, University of Pittsburgh, United States.
| | - William C Parks
- Department of Medicine, Cedars-Sinai Medical Center, United States.
| | - Daniel J Tschumperlin
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, United States.
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, University of Michigan, United States.
| | - Harold A Chapman
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, United States.
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, United States.
| |
Collapse
|
44
|
Imamura M, Moon JS, Chung KP, Nakahira K, Muthukumar T, Shingarev R, Ryter SW, Choi AM, Choi ME. RIPK3 promotes kidney fibrosis via AKT-dependent ATP citrate lyase. JCI Insight 2018; 3:94979. [PMID: 29415885 DOI: 10.1172/jci.insight.94979] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 12/27/2017] [Indexed: 01/17/2023] Open
Abstract
Renal fibrosis is a common pathogenic response to injury in chronic kidney disease (CKD). The receptor-interacting protein kinase-3 (RIPK3), a regulator of necroptosis, has been implicated in disease pathogenesis. In mice subjected to unilateral ureteral obstruction-induced (UUO-induced) or adenine diet-induced (AD-induced) renal fibrosis, models of progressive kidney fibrosis, we demonstrate increased kidney expression of RIPK3. Mice genetically deficient in RIPK3 displayed decreased kidney fibrosis and improved kidney function relative to WT mice when challenged with UUO or AD. In contrast, mice genetically deficient in mixed-lineage kinase domain-like protein (MLKL), a downstream RIPK3 target, were not protected from UUO-induced kidney fibrosis. We demonstrate a pathway by which RIPK3 promotes fibrogenesis through the AKT-dependent activation of ATP citrate lyase (ACL). Genetic or chemical inhibition of RIPK3 suppressed the phosphorylation of AKT and ACL in response to TGF-β1 in fibroblasts. Inhibition of AKT or ACL suppressed TGF-β1-dependent extracellular matrix production and myofibroblast differentiation in fibroblasts. Pharmacological inhibition of ACL suppressed UUO-induced kidney fibrosis. RIPK3 expression was highly regulated in human CKD kidney. In conclusion, we identify a pathway by which RIPK3 promotes kidney fibrosis independently of MLKL-dependent necroptosis as a promising therapeutic target in CKD.
Collapse
Affiliation(s)
- Mitsuru Imamura
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Jong-Seok Moon
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA.,Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, Republic of Korea
| | - Kuei-Pin Chung
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Kiichi Nakahira
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Thangamani Muthukumar
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA.,Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, New York, USA
| | - Roman Shingarev
- Renal Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Stefan W Ryter
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Augustine Mk Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA.,Department of Medicine, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, New York, USA
| | - Mary E Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA.,Department of Medicine, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, New York, USA
| |
Collapse
|
45
|
Dhanisha SS, Guruvayoorappan C, Drishya S, Abeesh P. Mucins: Structural diversity, biosynthesis, its role in pathogenesis and as possible therapeutic targets. Crit Rev Oncol Hematol 2017; 122:98-122. [PMID: 29458795 DOI: 10.1016/j.critrevonc.2017.12.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/28/2017] [Accepted: 12/12/2017] [Indexed: 12/25/2022] Open
Abstract
Mucins are the main structural components of mucus that create a selective protective barrier for epithelial surface and also execute wide range of other physiological functions. Mucins can be classified into two types, namely secreted mucins and membrane bounded mucins. Alterations in mucin expression or glycosylation and mislocalization have been seen in various types of pathological conditions such as cancers, inflammatory bowel disease and ocular disease, which highlight the importance of mucin in maintaining homeostasis. Hence mucins can be used as attractive target for therapeutic intervention. In this review, we discuss in detail about the structural diversity of mucins; their biosynthesis; its role in pathogenesis; regulation and as possible therapeutic targets.
Collapse
Affiliation(s)
- Suresh Sulekha Dhanisha
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| | - Chandrasekharan Guruvayoorappan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India.
| | - Sudarsanan Drishya
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| | - Prathapan Abeesh
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| |
Collapse
|
46
|
Bernard K, Logsdon NJ, Benavides GA, Sanders Y, Zhang J, Darley-Usmar VM, Thannickal VJ. Glutaminolysis is required for transforming growth factor-β1-induced myofibroblast differentiation and activation. J Biol Chem 2017; 293:1218-1228. [PMID: 29222329 DOI: 10.1074/jbc.ra117.000444] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/27/2017] [Indexed: 01/28/2023] Open
Abstract
Myofibroblasts participate in physiological wound healing and pathological fibrosis. Myofibroblast differentiation is characterized by the expression of α-smooth muscle actin and extracellular matrix proteins and is dependent on metabolic reprogramming. In this study, we explored the role of glutaminolysis and metabolites of TCA in supporting myofibroblast differentiation. Glutaminolysis converts Gln into α-ketoglutarate (α-KG), a critical intermediate in the TCA cycle. Increases in the steady-state concentrations of TCA cycle metabolites including α-KG, succinate, fumarate, malate, and citrate were observed in TGF-β1-differentiated myofibroblasts. The concentration of glutamate was also increased in TGF-β1-differentiated myofibroblasts compared with controls, whereas glutamine levels were decreased, suggesting enhanced glutaminolysis. This was associated with TGF-β1-induced expression of the glutaminase (GLS) isoform, GLS1, which converts Gln into glutamate, at both the mRNA and protein levels. The stimulation of GLS1 expression by TGF-β1 was dependent on both SMAD3 and p38 mitogen-activated protein kinase activation. Depletion of extracellular Gln prevented TGF-β1-induced myofibroblast differentiation. The removal of extracellular Gln postmyofibroblast differentiation decreased the expression of the profibrotic markers fibronectin and hypoxia-inducible factor-1α and reversed TGF-β1-induced metabolic reprogramming. Silencing of GLS1 expression, in the presence of Gln, abrogated TGF-β1-induced expression of profibrotic markers. Treatment of GLS1-deficient myofibroblasts with exogenous glutamate or α-KG restored TGF-β1-induced expression of profibrotic markers in GLS1-deficient myofibroblasts. Together, these data demonstrate that glutaminolysis is a critical component of myofibroblast metabolic reprogramming that regulates myofibroblast differentiation.
Collapse
Affiliation(s)
- Karen Bernard
- From the Division of Pulmonary, Allergy and Critical Care Medicine,
| | - Naomi J Logsdon
- From the Division of Pulmonary, Allergy and Critical Care Medicine
| | - Gloria A Benavides
- Department of Pathology, and.,Center for Free Radical Biology and Medicine of the University of Alabama at Birmingham, Birmingham, Alabama 35294 and
| | - Yan Sanders
- From the Division of Pulmonary, Allergy and Critical Care Medicine
| | - Jianhua Zhang
- Department of Pathology, and.,Center for Free Radical Biology and Medicine of the University of Alabama at Birmingham, Birmingham, Alabama 35294 and
| | - Victor M Darley-Usmar
- Department of Pathology, and.,Center for Free Radical Biology and Medicine of the University of Alabama at Birmingham, Birmingham, Alabama 35294 and
| | - Victor J Thannickal
- From the Division of Pulmonary, Allergy and Critical Care Medicine.,the Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35294
| |
Collapse
|
47
|
Li Y, Liu C, Tang K, Chen Y, Tian K, Feng Z, Chen J. Novel multi‑kinase inhibitor, T03 inhibits Taxol‑resistant breast cancer. Mol Med Rep 2017; 17:2373-2383. [PMID: 29207185 PMCID: PMC5783483 DOI: 10.3892/mmr.2017.8179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 07/26/2017] [Indexed: 11/06/2022] Open
Abstract
Activation of kinase-associated signaling pathways is one of the leading causes of various malignant phenotypes in breast tumors. Strategies of drug discovery and development have investigated approaches to target the inhibition of protein kinase signaling. In the current study, the anti‑tumor activities of a novel multi‑kinase inhibitor, T03 were evaluated in breast cancer. T03 inhibited Taxol‑resistant breast cancer cell proliferation and induced cell cycle arrest and apoptosis in vitro and in vivo. The current results demonstrated that T03 downregulated c‑Raf, platelet‑derived growth factor receptor‑β and other kinases, thus inhibited Raf/mitogen‑activated protein kinase kinase/extracellular signal‑regulated kinase and Akt/mechanistic target of rapamycin survival pathways in MCF‑7 and MCF‑7/Taxol xenograft tumors. At a dose of 100 mg/kg, T03 inhibited tumor growth by 62.90 and 59.98% in tumor weight in MX‑1 and MX‑1/T xenograft models, respectively and by 62.60 and 60.22% in MCF‑7 and MCF‑7/T tumors, respectively. These data indicate that the novel multi‑kinase inhibitor, T03, may present as a potential compound to develop novel treatments against breast cancer and Taxol‑resistant breast tumors.
Collapse
Affiliation(s)
- Yan Li
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Chunxia Liu
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Ke Tang
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Yan Chen
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Kang Tian
- Department of Synthetic Medicinal Chemistry, Beijing Key Laboratory of Active Substance Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Zhiqiang Feng
- Department of Synthetic Medicinal Chemistry, Beijing Key Laboratory of Active Substance Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Jindong Chen
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
48
|
Rodríguez-García A, Samsó P, Fontova P, Simon-Molas H, Manzano A, Castaño E, Rosa JL, Martinez-Outshoorn U, Ventura F, Navarro-Sabaté À, Bartrons R. TGF-β1 targets Smad, p38 MAPK, and PI3K/Akt signaling pathways to induce PFKFB3 gene expression and glycolysis in glioblastoma cells. FEBS J 2017; 284:3437-3454. [DOI: 10.1111/febs.14201] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/25/2017] [Accepted: 08/16/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Ana Rodríguez-García
- Unitat de Bioquímica; Departament de Ciències Fisiològiques; IDIBELL; Universitat de Barcelona; Spain
| | - Paula Samsó
- Unitat de Bioquímica; Departament de Ciències Fisiològiques; IDIBELL; Universitat de Barcelona; Spain
| | - Pere Fontova
- Unitat de Bioquímica; Departament de Ciències Fisiològiques; IDIBELL; Universitat de Barcelona; Spain
| | - Helga Simon-Molas
- Unitat de Bioquímica; Departament de Ciències Fisiològiques; IDIBELL; Universitat de Barcelona; Spain
| | - Anna Manzano
- Unitat de Bioquímica; Departament de Ciències Fisiològiques; IDIBELL; Universitat de Barcelona; Spain
| | - Esther Castaño
- Centres Científics i Tecnològics; Universitat de Barcelona; Spain
| | - Jose Luis Rosa
- Unitat de Bioquímica; Departament de Ciències Fisiològiques; IDIBELL; Universitat de Barcelona; Spain
| | - Ubaldo Martinez-Outshoorn
- Department of Medical Oncology; Sidney Kimmel Cancer Center; Thomas Jefferson University; Philadelphia PA USA
| | - Francesc Ventura
- Unitat de Bioquímica; Departament de Ciències Fisiològiques; IDIBELL; Universitat de Barcelona; Spain
| | - Àurea Navarro-Sabaté
- Unitat de Bioquímica; Departament de Ciències Fisiològiques; IDIBELL; Universitat de Barcelona; Spain
- Centres Científics i Tecnològics; Universitat de Barcelona; Spain
| | - Ramon Bartrons
- Unitat de Bioquímica; Departament de Ciències Fisiològiques; IDIBELL; Universitat de Barcelona; Spain
| |
Collapse
|
49
|
Zhang X, Hu M, Lyu X, Li C, Thannickal VJ, Sanders YY. DNA methylation regulated gene expression in organ fibrosis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2389-2397. [PMID: 28501566 PMCID: PMC5567836 DOI: 10.1016/j.bbadis.2017.05.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 01/05/2023]
Abstract
DNA methylation is a major epigenetic mechanism to regulate gene expression. Epigenetic regulation, including DNA methylation, histone modifications and RNA interference, results in heritable changes in gene expression independent of alterations in DNA sequence. Epigenetic regulation often occurs in response to aging and environment stimuli, including exposures and diet. Studies have shown that DNA methylation is critical in the pathogenesis of fibrosis involving multiple organ systems, contributing to significant morbidity and mortality. Aberrant DNA methylation can silence or activate gene expression patterns that drive the fibrosis process. Fibrosis is a pathological wound healing process in response to chronic injury. It is characterized by excessive extracellular matrix production and accumulation, which eventually affects organ architecture and results in organ failure. Fibrosis can affect a wide range of organs, including the heart and lungs, and have limited therapeutic options. DNA methylation, like other epigenetic process, is reversible, therefore regarded as attractive therapeutic interventions. Although epigenetic mechanisms are highly interactive and often reinforcing, this review discusses DNA methylation-dependent mechanisms in the pathogenesis of organ fibrosis, with focus on cardiac and pulmonary fibrosis. We discuss specific pro- and anti-fibrotic genes and pathways regulated by DNA methylation in organ fibrosis; we further highlight the potential benefits and side-effects of epigenetic therapies in fibrotic disorders.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Min Hu
- Laboratory of Clinical Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xing Lyu
- Laboratory of Clinical Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chun Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yan Y Sanders
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
50
|
Kotnala S, Tyagi A, Muyal JP. rHuKGF ameliorates protease/anti-protease imbalance in emphysematous mice. Pulm Pharmacol Ther 2017; 45:124-135. [DOI: 10.1016/j.pupt.2017.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/02/2017] [Accepted: 05/24/2017] [Indexed: 10/19/2022]
|