1
|
Liffner B, Cepeda Diaz AK, Blauwkamp J, Anaguano D, Frolich S, Muralidharan V, Wilson DW, Dvorin JD, Absalon S. Atlas of Plasmodium falciparum intraerythrocytic development using expansion microscopy. eLife 2023; 12:RP88088. [PMID: 38108809 PMCID: PMC10727503 DOI: 10.7554/elife.88088] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Apicomplexan parasites exhibit tremendous diversity in much of their fundamental cell biology, but study of these organisms using light microscopy is often hindered by their small size. Ultrastructural expansion microscopy (U-ExM) is a microscopy preparation method that physically expands the sample by ~4.5×. Here, we apply U-ExM to the human malaria parasite Plasmodium falciparum during the asexual blood stage of its lifecycle to understand how this parasite is organized in three dimensions. Using a combination of dye-conjugated reagents and immunostaining, we have cataloged 13 different P. falciparum structures or organelles across the intraerythrocytic development of this parasite and made multiple observations about fundamental parasite cell biology. We describe that the outer centriolar plaque and its associated proteins anchor the nucleus to the parasite plasma membrane during mitosis. Furthermore, the rhoptries, Golgi, basal complex, and inner membrane complex, which form around this anchoring site while nuclei are still dividing, are concurrently segregated and maintain an association to the outer centriolar plaque until the start of segmentation. We also show that the mitochondrion and apicoplast undergo sequential fission events while maintaining an association with the outer centriolar plaque during cytokinesis. Collectively, this study represents the most detailed ultrastructural analysis of P. falciparum during its intraerythrocytic development to date and sheds light on multiple poorly understood aspects of its organelle biogenesis and fundamental cell biology.
Collapse
Affiliation(s)
- Benjamin Liffner
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
| | - Ana Karla Cepeda Diaz
- Biological and Biomedical Sciences, Harvard Medical SchoolBostonUnited States
- Division of Infectious Diseases, Boston Children’s HospitalBostonUnited States
| | - James Blauwkamp
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
| | - David Anaguano
- Center for Tropical and Emerging Global Diseases, University of GeorgiaAthensUnited States
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of GeorgiaAthensUnited States
| | - Sonja Frolich
- Research Centre for Infectious Diseases, School of Biological Sciences, University of AdelaideAdelaideAustralia
- Institute for Photonics and Advanced Sensing, University of AdelaideAdelaideAustralia
| | - Vasant Muralidharan
- Center for Tropical and Emerging Global Diseases, University of GeorgiaAthensUnited States
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of GeorgiaAthensUnited States
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of AdelaideAdelaideAustralia
- Institute for Photonics and Advanced Sensing, University of AdelaideAdelaideAustralia
- Burnet Institute, 85 Commercial RoadMelbourneAustralia
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children’s HospitalBostonUnited States
- Department of Pediatrics, Harvard Medical SchoolBostonUnited States
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
| |
Collapse
|
2
|
Liffner B, Cepeda Diaz AK, Blauwkamp J, Anaguano D, Frölich S, Muralidharan V, Wilson DW, Dvorin J, Absalon S. Atlas of Plasmodium falciparum intraerythrocytic development using expansion microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533773. [PMID: 36993606 PMCID: PMC10055389 DOI: 10.1101/2023.03.22.533773] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Apicomplexan parasites exhibit tremendous diversity in much of their fundamental cell biology, but study of these organisms using light microscopy is often hindered by their small size. Ultrastructural expansion microscopy (U-ExM) is a microscopy preparation method that physically expands the sample ~4.5x. Here, we apply U-ExM to the human malaria parasite Plasmodium falciparum during the asexual blood stage of its lifecycle to understand how this parasite is organized in three-dimensions. Using a combination of dye-conjugated reagents and immunostaining, we have catalogued 13 different P. falciparum structures or organelles across the intraerythrocytic development of this parasite and made multiple observations about fundamental parasite cell biology. We describe that the outer centriolar plaque and its associated proteins anchor the nucleus to the parasite plasma membrane during mitosis. Furthermore, the rhoptries, Golgi, basal complex, and inner membrane complex, which form around this anchoring site while nuclei are still dividing, are concurrently segregated and maintain an association to the outer centriolar plaque until the start of segmentation. We also show that the mitochondrion and apicoplast undergo sequential fission events while maintaining an association with the outer centriolar plaque during cytokinesis. Collectively, this study represents the most detailed ultrastructural analysis of P. falciparum during its intraerythrocytic development to date, and sheds light on multiple poorly understood aspects of its organelle biogenesis and fundamental cell biology.
Collapse
Affiliation(s)
- Benjamin Liffner
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ana Karla Cepeda Diaz
- Biological and Biomedical Sciences, Harvard Medical School, Boston MA, USA
- Division of Infectious Diseases, Boston Children’s Hospital, Boston MA, USA
| | - James Blauwkamp
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David Anaguano
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Sonja Frölich
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Vasant Muralidharan
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Danny W. Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, SA, Australia
- Burnet Institute, 85 Commercial Road, Melbourne, VIC, Australia
| | - Jeffrey Dvorin
- Division of Infectious Diseases, Boston Children’s Hospital, Boston MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
3
|
Wang QQ, Sun M, Tang T, Lai DH, Liu J, Maity S, He K, Wu XT, Yang J, Li YB, Tang XY, Ding HY, Hide G, Distefano M, Lun ZR, Zhu XQ, Long S. Functional screening reveals Toxoplasma prenylated proteins required for endocytic trafficking and rhoptry protein sorting. mBio 2023; 14:e0130923. [PMID: 37548452 PMCID: PMC10470541 DOI: 10.1128/mbio.01309-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 08/08/2023] Open
Abstract
In the apicomplexans, endocytosed cargos (e.g., hemoglobin) are trafficked to a specialized organelle for digestion. This follows a unique endocytotic process at the micropore/cytostome in these parasites. However, the mechanism underlying endocytic trafficking remains elusive, due to the repurposing of classical endocytic proteins for the biogenesis of apical organelles. To resolve this issue, we have exploited the genetic tractability of the model apicomplexan Toxoplasma gondii, which ingests host cytosolic materials (e.g., green fluorescent protein[GFP]). We determined an association between protein prenylation and endocytic trafficking, and using an alkyne-labeled click chemistry approach, the prenylated proteome was characterized. Genome editing, using clustered regularly interspaced short palindromic repaet/CRISPR-associated nuclease 9 (CRISPR/Cas9), was efficiently utilized to generate genetically modified lines for the functional screening of 23 prenylated candidates. This identified four of these proteins that regulate the trafficking of endocytosed GFP vesicles. Among these proteins, Rab1B and YKT6.1 are highly conserved but are non-classical endocytic proteins in eukaryotes. Confocal imaging analysis showed that Rab1B and Ras are substantially localized to both the trans-Golgi network and the endosome-like compartments in the parasite. Conditional knockdown of Rab1B caused a rapid defect in secretory trafficking to the rhoptry bulb, suggesting a trafficking intersection role for the key regulator Rab1B. Further experiments confirmed a critical role for protein prenylation in regulating the stability/activity of these proteins (i.e., Rab1B and YKT6.1) in the parasite. Our findings define the molecular basis of endocytic trafficking and reveal a potential intersection function of Rab1B on membrane trafficking in T. gondii. This might extend to other related protists, including the malarial parasites. IMPORTANCE The protozoan Toxoplasma gondii establishes a permissive niche, in host cells, that allows parasites to acquire large molecules such as proteins. Numerous studies have demonstrated that the parasite repurposes the classical endocytic components for secretory sorting to the apical organelles, leaving the question of endocytic transport to the lysosome-like compartment unclear. Recent studies indicated that endocytic trafficking is likely to associate with protein prenylation in malarial parasites. This information promoted us to examine this association in the model apicomplexan T. gondii and to identify the key components of the prenylated proteome that are involved. By exploiting the genetic tractability of T. gondii and a host GFP acquisition assay, we reveal four non-classical endocytic proteins that regulate the transport of endocytosed cargos (e.g., GFP) in T. gondii. Thus, we extend the principle that protein prenylation regulates endocytic trafficking and elucidate the process of non-classical endocytosis in T. gondii and potentially in other related protists.
Collapse
Affiliation(s)
- Qiang-Qiang Wang
- National Key Laboratory of Veterinary Public Health Security and College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ming Sun
- National Key Laboratory of Veterinary Public Health Security and College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tao Tang
- National Key Laboratory of Veterinary Public Health Security and College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural University, Beijing, China
| | - De-Hua Lai
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Liu
- National Key Laboratory of Veterinary Public Health Security and College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sanjay Maity
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kai He
- National Key Laboratory of Veterinary Public Health Security and College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xi-Ting Wu
- National Key Laboratory of Veterinary Public Health Security and College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiong Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yue-Bao Li
- National Key Laboratory of Veterinary Public Health Security and College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Yan Tang
- National Key Laboratory of Veterinary Public Health Security and College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hui-Yong Ding
- National Key Laboratory of Veterinary Public Health Security and College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Geoff Hide
- Biomedical Research and Innovation Centre and Environmental Research and Innovation Centre, School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom
| | - Mark Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Zhao-Rong Lun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi Province, China
| | - Shaojun Long
- National Key Laboratory of Veterinary Public Health Security and College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Ge J, Wang Q, Chen G, Kassegne K, Zhang H, Yu J, Tang J, Wang B, Lu F, Cao J, Han ET, Cheng Y. Immunogenicity and antigenicity of a conserved fragment of the rhoptry-associated membrane antigen of Plasmodium vivax. Parasit Vectors 2022; 15:428. [PMID: 36380374 PMCID: PMC9664424 DOI: 10.1186/s13071-022-05561-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background Plasmodium vivax rhoptry-associated membrane antigen (RAMA) is a glycophosphatidylinositol-anchored membrane protein currently under consideration as a malaria vaccine candidate. Immunoglobulin G (IgG) antibodies induced by P. vivax RAMA (PvRAMA) have been proved to persist over 12 months in the sera of people infected with P. vivax. It has also been shown that through stimulation of peripheral blood mononuclear cells with PvRAMA in vitro, the antigen can induce CD4+ T cells to produce interleukin-10. However, the genetic diversity of the RAMA gene in isolates of P. vivax (pvrama) and the immunogenicity of PvRAMA in animals remain unclear. Methods Genomic DNA was extracted from blood samples (n = 25) of patients in Jiangsu Province, China with imported infections of P. vivax from endemic countries in South and Southeast Asia. The extract genomic DNA was used as templates to amplify the P. vivax rama gene (pvrama) by PCR, and the PCR products were then sequenced and analyzed by the DnaSP, MEGA, and GeneDoc software packages. Recombinant PvRAMA (rPvRAMA) protein was expressed and purified, and then used to immunize mice. Levels of total IgG and different IgG subclasses of rPvRAMA-immunized mice were evaluated by enzyme-linked immunosorbent assay. Also, spleen cells of rPvRAMA-immunized mice were stimulated with rPvRAMA in vitro and levels of T cells were measured by flow cytometry. Results The average pairwise nucleotide diversity (π) of the pvrama gene was 0.00190, and the haplotype diversity (Hd) was 0.982. The C-terminal of PvRAMA showed lower haplotype diversity compared to the N-terminal and was completely conserved at amino acid sites related to erythrocyte binding. To further characterize immunogenicity of the C-terminal of PvRAMA, mice were immunized with rPvRAMA antigen. The rPvRAMA protein induced antibody responses, with the end-point titer ranging from 1:10,000 to 1:5,120,000. IgG1 was the predominant IgG subclass in rPvRAMA-immunized mice, followed by IgG2b. In addition, levels of CD4+ and CD8+ T cells in the rPvRAMA-stimulated group were significantly higher than those in the phosphate-buffered saline-stimulated group (normal control group). Conclusions The high conservation at specific amino acid sites and the high immunogenicity of the C-terminal of PvRAMA indicate the presence of conserved epitopes able to generate broadly reactive humoral and cellular immune responses. These findings support the potential of PvRAMA to serve as a vaccine candidate against P. vivax infection. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05561-8.
Collapse
|
5
|
Knudsen AS, Walker MR, Agullet JP, Björnsson KH, Bassi MR, Barfod L. Enhancing neutralization of Plasmodium falciparum using a novel monoclonal antibody against the rhoptry-associated membrane antigen. Sci Rep 2022; 12:3040. [PMID: 35197516 PMCID: PMC8866459 DOI: 10.1038/s41598-022-06921-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/31/2022] [Indexed: 11/09/2022] Open
Abstract
The pathogenesis of malaria is associated with blood-stage infection and there is strong evidence that antibodies specific to parasite blood-stage antigens can control parasitemia. This provides a strong rational for applying blood-stage antigen components in a multivalent vaccine, as the induced antibodies in combination can enhance protection. The Plasmodium falciparum rhoptry-associated membrane antigen (PfRAMA) is a promising vaccine target, due to its fundamental role in merozoite invasion and low level of polymorphism. Polyclonal antibodies against PfRAMA are able to inhibit P. falciparum growth and interact synergistically when combined with antibodies against P. falciparum reticulocyte-binding protein 5 (PfRh5) or cysteine-rich protective antigen (PfCyRPA). In this study, we identified a novel PfRAMA-specific mAb with neutralizing activity, which in combination with PfRh5- or PfCyRPA-specific mAbs potentiated the neutralizing effect. By applying phage display technology, we mapped the protective epitope to be in the C-terminal region of PfRAMA. Our results confirmed previous finding of synergy between PfRAMA-, PfRh5- and PfCyRPA-specific antibodies, thereby paving the way of testing these antigens (or fragments of these antigens) in combination to improve the efficacy of blood-stage malaria vaccines. The results emphasize the importance of directing antibody responses towards protective epitopes, as the majority of anti-PfRAMA mAbs were unable to inhibit merozoite invasion of erythrocytes.
Collapse
Affiliation(s)
- Anne S Knudsen
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Melanie R Walker
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Judit P Agullet
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper H Björnsson
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria R Bassi
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lea Barfod
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Ben Chaabene R, Lentini G, Soldati-Favre D. Biogenesis and discharge of the rhoptries: Key organelles for entry and hijack of host cells by the Apicomplexa. Mol Microbiol 2021; 115:453-465. [PMID: 33368727 DOI: 10.1111/mmi.14674] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022]
Abstract
Rhoptries are specialized secretory organelles found in the Apicomplexa phylum, playing a central role in the establishment of parasitism. The rhoptry content includes membranous as well as proteinaceous materials that are discharged into the host cell in a regulated fashion during parasite entry. A set of rhoptry neck proteins form a RON complex that critically participates in the moving junction formation during invasion. Some of the rhoptry bulb proteins are associated with the membranous materials and contribute to the formation of the parasitophorous vacuole membrane while others are targeted into the host cell including the nucleus to subvert cellular functions. Here, we review the recent studies on Toxoplasma and Plasmodium parasites that shed light on the key steps leading to rhoptry biogenesis, trafficking, and discharge.
Collapse
Affiliation(s)
- Rouaa Ben Chaabene
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gaëlle Lentini
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Ito D, Chen JH, Takashima E, Hasegawa T, Otsuki H, Takeo S, Thongkukiatkul A, Han ET, Tsuboi T. Identification of a Novel RAMA/RON3 Rhoptry Protein Complex in Plasmodium falciparum Merozoites. Front Cell Infect Microbiol 2021; 10:605367. [PMID: 33537242 PMCID: PMC7848174 DOI: 10.3389/fcimb.2020.605367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/27/2020] [Indexed: 01/08/2023] Open
Abstract
Malaria causes a half a million deaths annually. The parasite intraerythrocytic lifecycle in the human bloodstream is the major cause of morbidity and mortality. Apical organelles of merozoite stage parasites are involved in the invasion of erythrocytes. A limited number of apical organellar proteins have been identified and characterized for their roles during erythrocyte invasion or subsequent intraerythrocytic parasite development. To expand the repertoire of identified apical organellar proteins we generated a panel of monoclonal antibodies against Plasmodium falciparum schizont-rich parasites and screened the antibodies using immunofluorescence assays. Out of 164 hybridoma lines, 12 clones produced monoclonal antibodies yielding punctate immunofluorescence staining patterns in individual merozoites in late schizonts, suggesting recognition of merozoite apical organelles. Five of the monoclonal antibodies were used to immuno-affinity purify their target antigens and these antigens were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Two known apical organelle protein complexes were identified, the high-molecular mass rhoptry protein complex (PfRhopH1/Clags, PfRhopH2, and PfRhopH3) and the low-molecular mass rhoptry protein complex (rhoptry-associated proteins complex, PfRAP1, and PfRAP2). A novel complex was additionally identified by immunoprecipitation, composed of rhoptry-associated membrane antigen (PfRAMA) and rhoptry neck protein 3 (PfRON3) of P. falciparum. We further identified a region spanning amino acids Q221-E481 within the PfRAMA that may associate with PfRON3 in immature schizonts. Further investigation will be required as to whether PfRAMA and PfRON3 interact directly or indirectly.
Collapse
Affiliation(s)
- Daisuke Ito
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan.,Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Tomoyuki Hasegawa
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Hitoshi Otsuki
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Satoru Takeo
- Division of Tropical Diseases and Parasitology, Department of Infectious Diseases, Faculty of Medicine, Kyorin University, Mitaka, Japan
| | | | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| |
Collapse
|
8
|
Wang J, Jiang N, Sang X, Yang N, Feng Y, Chen R, Wang X, Chen Q. Protein Modification Characteristics of the Malaria Parasite Plasmodium falciparum and the Infected Erythrocytes. Mol Cell Proteomics 2020; 20:100001. [PMID: 33517144 PMCID: PMC7857547 DOI: 10.1074/mcp.ra120.002375] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Malaria elimination is still pending on the development of novel tools that rely on a deep understanding of parasite biology. Proteins of all living cells undergo myriad posttranslational modifications (PTMs) that are critical to multifarious life processes. An extensive proteome-wide dissection revealed a fine PTM map of most proteins in both Plasmodium falciparum, the causative agent of severe malaria, and the infected red blood cells. More than two-thirds of proteins of the parasite and its host cell underwent extensive and dynamic modification throughout the erythrocytic developmental stage. PTMs critically modulate the virulence factors involved in the host-parasite interaction and pathogenesis. Furthermore, P. falciparum stabilized the supporting proteins of erythrocyte origin by selective demodification. Collectively, our multiple omic analyses, apart from having furthered a deep understanding of the systems biology of P. falciparum and malaria pathogenesis, provide a valuable resource for mining new antimalarial targets.
Collapse
Affiliation(s)
- Jianhua Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China; College of Food Science, Shenyang Agricultural Sciences, Shenyang, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Na Yang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xinyi Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; College of Basic Sciences, Shenyang Agricultural University, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China.
| |
Collapse
|
9
|
Live-Cell FRET Reveals that Malaria Nutrient Channel Proteins CLAG3 and RhopH2 Remain Associated throughout Their Tortuous Trafficking. mBio 2020; 11:mBio.01354-20. [PMID: 32900800 PMCID: PMC7482060 DOI: 10.1128/mbio.01354-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Malaria parasites increase their host erythrocyte's permeability to various nutrients, fueling intracellular pathogen development and replication. The plasmodial surface anion channel (PSAC) mediates this uptake and is linked to the parasite-encoded RhopH complex, consisting of CLAG3, RhopH2, and RhopH3. While interactions between these subunits are well established, it is not clear whether they remain associated from their synthesis in developing merozoites through erythrocyte invasion and trafficking to the host membrane. Here, we explored protein-protein interactions between RhopH subunits using live-cell imaging and Förster resonance energy transfer (FRET) experiments. Using the green fluorescent protein (GFP) derivatives mCerulean and mVenus, we generated single- and double-tagged parasite lines for fluorescence measurements. While CLAG3-mCerulean served as an efficient FRET donor for RhopH2-mVenus within rhoptry organelles, mCerulean targeted to this organelle via a short signal sequence produced negligible FRET. Upon merozoite egress and reinvasion, these tagged RhopH subunits were deposited into the new host cell's parasitophorous vacuole; these proteins were then exported and trafficked to the erythrocyte membrane, where CLAG3 and RhopH2 remained fully associated. Fluorescence intensity measurements identified stoichiometric increases in exported RhopH protein when erythrocytes are infected with two parasites; whole-cell patch-clamp revealed a concomitant increase in PSAC functional copy number and a dose effect for RhopH contribution to ion and nutrient permeability. These studies establish live-cell FRET imaging in human malaria parasites, reveal that RhopH subunits traffic to their host membrane destination without dissociation, and suggest quantitative contribution to PSAC formation.IMPORTANCE Malaria parasites grow within circulating red blood cells and uptake nutrients through a pore on their host membrane. Here, we used gene editing to tag CLAG3 and RhopH2, two proteins linked to the nutrient pore, with fluorescent markers and tracked these proteins in living infected cells. After their synthesis in mature parasites, imaging showed that both proteins are packaged into membrane-bound rhoptries. When parasites ruptured their host cells and invaded new red blood cells, these proteins were detected within a vacuole around the parasite before they migrated and inserted in the surface membrane of the host cell. Using simultaneous labeling of CLAG3 and RhopH2, we determined that these proteins interact tightly during migration and after surface membrane insertion. Red blood cells infected with two parasites had twice the protein at their surface and a parallel increase in the number of nutrient pores. Our work suggests that these proteins directly facilitate parasite nutrient uptake from human plasma.
Collapse
|
10
|
Florentin A, Cobb DW, Kudyba HM, Muralidharan V. Directing traffic: Chaperone-mediated protein transport in malaria parasites. Cell Microbiol 2020; 22:e13215. [PMID: 32388921 PMCID: PMC7282954 DOI: 10.1111/cmi.13215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
The ability of eukaryotic parasites from the phylum Apicomplexa to cause devastating diseases is predicated upon their ability to maintain faithful and precise protein trafficking mechanisms. Their parasitic life cycle depends on the trafficking of effector proteins to the infected host cell, transport of proteins to several critical organelles required for survival, as well as transport of parasite and host proteins to the digestive organelles to generate the building blocks for parasite growth. Several recent studies have shed light on the molecular mechanisms parasites utilise to transform the infected host cells, transport proteins to essential metabolic organelles and for biogenesis of organelles required for continuation of their life cycle. Here, we review key pathways of protein transport originating and branching from the endoplasmic reticulum, focusing on the essential roles of chaperones in these processes. Further, we highlight key gaps in our knowledge that prevents us from building a holistic view of protein trafficking in these deadly human pathogens.
Collapse
Affiliation(s)
- Anat Florentin
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - David W Cobb
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Heather M Kudyba
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Vasant Muralidharan
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
11
|
PfCERLI1 is a conserved rhoptry associated protein essential for Plasmodium falciparum merozoite invasion of erythrocytes. Nat Commun 2020; 11:1411. [PMID: 32179747 PMCID: PMC7075938 DOI: 10.1038/s41467-020-15127-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 02/15/2020] [Indexed: 12/01/2022] Open
Abstract
The disease-causing blood-stage of the Plasmodium falciparum lifecycle begins with invasion of human erythrocytes by merozoites. Many vaccine candidates with key roles in binding to the erythrocyte surface and entry are secreted from the large bulb-like rhoptry organelles at the apical tip of the merozoite. Here we identify an essential role for the conserved protein P. falciparum Cytosolically Exposed Rhoptry Leaflet Interacting protein 1 (PfCERLI1) in rhoptry function. We show that PfCERLI1 localises to the cytosolic face of the rhoptry bulb membrane and knockdown of PfCERLI1 inhibits merozoite invasion. While schizogony and merozoite organelle biogenesis appear normal, biochemical techniques and semi-quantitative super-resolution microscopy show that PfCERLI1 knockdown prevents secretion of key rhoptry antigens that coordinate merozoite invasion. PfCERLI1 is a rhoptry associated protein identified to have a direct role in function of this essential merozoite invasion organelle, which has broader implications for understanding apicomplexan invasion biology. Rhoptries are essential organelles for invasion of erythrocytes by Plasmodium. Here, the authors characterize the rhoptry-associated protein CERLI1 using quantitative super-resolution microscopy, showing that it is important for parasite invasion and secretion of rhoptry proteins including vaccine antigens.
Collapse
|
12
|
Siddiqui G, Proellochs NI, Cooke BM. Identification of essential exported
Plasmodium falciparum
protein kinases in malaria‐infected red blood cells. Br J Haematol 2019; 188:774-783. [DOI: 10.1111/bjh.16219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/31/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Ghizal Siddiqui
- Department of Microbiology Biomedicine Discovery Institute Monash University Clayton Victoria Australia
- Drug Delivery, Disposition and Dynamics Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria Australia
| | - Nicholas I. Proellochs
- Department of Microbiology Biomedicine Discovery Institute Monash University Clayton Victoria Australia
- Department of Medical Microbiology Radboud University Medical Center Nijmegen the Netherlands
| | - Brian M. Cooke
- Department of Microbiology Biomedicine Discovery Institute Monash University Clayton Victoria Australia
- Australian Institute of Tropical Health and Medicine James Cook University Cairns Queensland Australia
| |
Collapse
|
13
|
Tokunaga N, Nozaki M, Tachibana M, Baba M, Matsuoka K, Tsuboi T, Torii M, Ishino T. Expression and Localization Profiles of Rhoptry Proteins in Plasmodium berghei Sporozoites. Front Cell Infect Microbiol 2019; 9:316. [PMID: 31552198 PMCID: PMC6746830 DOI: 10.3389/fcimb.2019.00316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/22/2019] [Indexed: 02/04/2023] Open
Abstract
In the Plasmodium lifecycle two infectious stages of parasites, merozoites, and sporozoites, efficiently infect mammalian host cells, erythrocytes, and hepatocytes, respectively. The apical structure of merozoites and sporozoites contains rhoptry and microneme secretory organelles, which are conserved with other infective forms of apicomplexan parasites. During merozoite invasion of erythrocytes, some rhoptry proteins are secreted to form a tight junction between the parasite and target cell, while others are discharged to maintain subsequent infection inside the parasitophorous vacuole. It has been questioned whether the invasion mechanisms mediated by rhoptry proteins are also involved in sporozoite invasion of two distinct target cells, mosquito salivary glands and mammalian hepatocytes. Recently we demonstrated that rhoptry neck protein 2 (RON2), which is crucial for tight junction formation in merozoites, is also important for sporozoite invasion of both target cells. With the aim of comprehensively describing the mechanisms of sporozoite invasion, the expression and localization profiles of rhoptry proteins were investigated in Plasmodium berghei sporozoites. Of 12 genes representing merozoite rhoptry molecules, nine are transcribed in oocyst-derived sporozoites at a similar or higher level compared to those in blood-stage schizonts. Immuno-electron microscopy demonstrates that eight proteins, namely RON2, RON4, RON5, ASP/RON1, RALP1, RON3, RAP1, and RAMA, localize to rhoptries in sporozoites. It is noteworthy that most rhoptry neck proteins in merozoites are localized throughout rhoptries in sporozoites. This study demonstrates that most rhoptry proteins, except components of the high-molecular mass rhoptry protein complex, are commonly expressed in merozoites and sporozoites in Plasmodium spp., which suggests that components of the invasion mechanisms are basically conserved between infective forms independently of their target cells. Combined with sporozoite-stage specific gene silencing strategies, the contribution of rhoptry proteins in invasion mechanisms can be described.
Collapse
Affiliation(s)
- Naohito Tokunaga
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Mamoru Nozaki
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Minami Baba
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Kazuhiro Matsuoka
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Motomi Torii
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Tomoko Ishino
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| |
Collapse
|
14
|
Sherling ES, Perrin AJ, Knuepfer E, Russell MRG, Collinson LM, Miller LH, Blackman MJ. The Plasmodium falciparum rhoptry bulb protein RAMA plays an essential role in rhoptry neck morphogenesis and host red blood cell invasion. PLoS Pathog 2019; 15:e1008049. [PMID: 31491036 PMCID: PMC6750612 DOI: 10.1371/journal.ppat.1008049] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/18/2019] [Accepted: 08/27/2019] [Indexed: 01/08/2023] Open
Abstract
The malaria parasite Plasmodium falciparum invades, replicates within and destroys red blood cells in an asexual blood stage life cycle that is responsible for clinical disease and crucial for parasite propagation. Invasive malaria merozoites possess a characteristic apical complex of secretory organelles that are discharged in a tightly controlled and highly regulated order during merozoite egress and host cell invasion. The most prominent of these organelles, the rhoptries, are twinned, club-shaped structures with a body or bulb region that tapers to a narrow neck as it meets the apical prominence of the merozoite. Different protein populations localise to the rhoptry bulb and neck, but the function of many of these proteins and how they are spatially segregated within the rhoptries is unknown. Using conditional disruption of the gene encoding the only known glycolipid-anchored malarial rhoptry bulb protein, rhoptry-associated membrane antigen (RAMA), we demonstrate that RAMA is indispensable for blood stage parasite survival. Contrary to previous suggestions, RAMA is not required for trafficking of all rhoptry bulb proteins. Instead, RAMA-null parasites display selective mislocalisation of a subset of rhoptry bulb and neck proteins (RONs) and produce dysmorphic rhoptries that lack a distinct neck region. The mutant parasites undergo normal intracellular development and egress but display a fatal defect in invasion and do not induce echinocytosis in target red blood cells. Our results indicate that distinct pathways regulate biogenesis of the two main rhoptry sub-compartments in the malaria parasite. Despite improved control measures over recent decades, malaria is still a considerable health burden across much of the globe. The disease is caused by a single-celled parasite that invades and replicates within host cells. During invasion, the parasite discharges a set of flask-shaped secretory organelles called rhoptries, the contents of which are crucial for invasion as well as for modifications to the host cell that are important for parasite survival. Rhoptry discharge occurs through fusion of the relatively elongated rhoptry neck to the apical surface of the parasite. Different proteins reside within the bulbous rhoptry body and the neck regions, but how these proteins are selectively sent to their correct sub-compartments within the rhoptries and how the rhoptries are formed, is poorly understood. Here we show that a malaria parasite rhoptry bulb protein called rhoptry-associated membrane antigen (RAMA) plays an essential role in rhoptry neck formation and correct trafficking of certain rhoptry neck and bulb proteins. Parasites deficient in RAMA produce malformed rhoptries and–probably as a result—cannot invade host red blood cells. Our work sheds new light on how rhoptries are formed and reveals insights into the mechanism by which the correct sorting of proteins to distinct regions of the rhoptry is regulated.
Collapse
Affiliation(s)
- Emma S. Sherling
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Abigail J. Perrin
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ellen Knuepfer
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Matthew R. G. Russell
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Lucy M. Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Louis H. Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Michael J. Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
γδ-T cells promote IFN-γ-dependent Plasmodium pathogenesis upon liver-stage infection. Proc Natl Acad Sci U S A 2019; 116:9979-9988. [PMID: 31028144 DOI: 10.1073/pnas.1814440116] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cerebral malaria (CM) is a major cause of death due to Plasmodium infection. Both parasite and host factors contribute to the onset of CM, but the precise cellular and molecular mechanisms that contribute to its pathogenesis remain poorly characterized. Unlike conventional αβ-T cells, previous studies on murine γδ-T cells failed to identify a nonredundant role for this T cell subset in experimental cerebral malaria (ECM). Here we show that mice lacking γδ-T cells are resistant to ECM when infected with Plasmodium berghei ANKA sporozoites, the liver-infective form of the parasite and the natural route of infection, in contrast with their susceptible phenotype if challenged with P. berghei ANKA-infected red blood cells that bypass the liver stage of infection. Strikingly, the presence of γδ-T cells enhanced the expression of Plasmodium immunogenic factors and exacerbated subsequent systemic and brain-infiltrating inflammatory αβ-T cell responses. These phenomena were dependent on the proinflammatory cytokine IFN-γ, which was required during liver stage for modulation of the parasite transcriptome, as well as for downstream immune-mediated pathology. Our work reveals an unanticipated critical role of γδ-T cells in the development of ECM upon Plasmodium liver-stage infection.
Collapse
|
16
|
Oda-Yokouchi Y, Tachibana M, Iriko H, Torii M, Ishino T, Tsuboi T. Plasmodium RON12 localizes to the rhoptry body in sporozoites. Parasitol Int 2018; 68:17-23. [PMID: 30290224 DOI: 10.1016/j.parint.2018.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/18/2018] [Accepted: 10/01/2018] [Indexed: 11/25/2022]
Abstract
Invasion of host cells by apicomplexan parasites is mediated by proteins released from microneme, rhoptry, and dense granule secretory organelles located at the apical end of parasite invasive forms. Microneme secreted proteins establish interactions with host cell receptors and induce exocytosis of the rhoptry organelle. Rhoptry proteins are involved in target cell invasion as well as the formation of the parasitophorous vacuole in which parasites reside during development within the host cell. In Plasmodium merozoites, the rhoptry neck protein (RON) complex consists of RON2, RON4, and RON5, and interacts with apical membrane antigen 1 (AMA1) as a critical structure of the invasion moving junction. PfRON12 is known to localize to the rhoptry neck of merozoites, but its function remains obscure. The roles of RON proteins are largely unknown in sporozoites, the second invasive form of Plasmodium which possesses a conserved apical end secretory structure. Here, we confirm that RON12 is expressed in the rhoptry neck of merozoites in rodent malaria parasites, whereas in contrast we show that RON12 is localized to the rhoptry body in sporozoites. Phenotypic analysis of Plasmodium berghei ron12-disrupted mutants revealed that RON12 is dispensable for sporogony, invasion of mosquito salivary glands and mouse hepatocytes, and development in hepatocytes.
Collapse
Affiliation(s)
- Yuki Oda-Yokouchi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan; Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon Ehime 791-0295, Japan
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon Ehime 791-0295, Japan
| | - Hideyuki Iriko
- Division of Global Infectious Diseases, Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo 654-0142, Japan
| | - Motomi Torii
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon Ehime 791-0295, Japan
| | - Tomoko Ishino
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon Ehime 791-0295, Japan.
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
17
|
Consistent signatures of selection from genomic analysis of pairs of temporal and spatial Plasmodium falciparum populations from The Gambia. Sci Rep 2018; 8:9687. [PMID: 29946063 PMCID: PMC6018809 DOI: 10.1038/s41598-018-28017-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022] Open
Abstract
Genome sequences of 247 Plasmodium falciparum isolates collected in The Gambia in 2008 and 2014 were analysed to identify changes possibly related to the scale-up of antimalarial interventions that occurred during this period. Overall, there were 15 regions across the genomes with signatures of positive selection. Five of these were sweeps around known drug resistance and antigenic loci. Signatures at antigenic loci such as thrombospodin related adhesive protein (Pftrap) were most frequent in eastern Gambia, where parasite prevalence and transmission remain high. There was a strong temporal differentiation at a non-synonymous SNP in a cysteine desulfarase (Pfnfs) involved in iron-sulphur complex biogenesis. During the 7-year period, the frequency of the lysine variant at codon 65 (Pfnfs-Q65K) increased by 22% (10% to 32%) in the Greater Banjul area. Between 2014 and 2015, the frequency of this variant increased by 6% (20% to 26%) in eastern Gambia. IC50 for lumefantrine was significantly higher in Pfnfs-65K isolates. This is probably the first evidence of directional selection on Pfnfs or linked loci by lumefantrine. Given the declining malaria transmission, the consequent loss of population immunity, and sustained drug pressure, it is important to monitor Gambian P. falciparum populations for further signs of adaptation.
Collapse
|
18
|
McGovern OL, Rivera-Cuevas Y, Kannan G, Narwold AJ, Carruthers VB. Intersection of endocytic and exocytic systems in Toxoplasma gondii. Traffic 2018; 19:336-353. [PMID: 29437275 DOI: 10.1111/tra.12556] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 12/12/2022]
Abstract
Host cytosolic proteins are endocytosed by Toxoplasma gondii and degraded in its lysosome-like compartment, the vacuolar compartment (VAC), but the dynamics and route of endocytic trafficking remain undefined. Conserved endocytic components and plant-like features suggest T. gondii endocytic trafficking involves transit through early and late endosome-like compartments (ELCs) and potentially the trans-Golgi network (TGN) as in plants. However, exocytic trafficking to regulated secretory organelles, micronemes and rhoptries, also proceeds through ELCs and requires classical endocytic components, including a dynamin-related protein, DrpB. Here, we show that host cytosolic proteins are endocytosed within 7 minutes post-invasion, trafficked through ELCs en route to the VAC, and degraded within 30 minutes. We could not definitively interpret if ingested protein is trafficked through the TGN. We also found that parasites ingest material from the host cytosol throughout the parasite cell cycle. Ingested host proteins colocalize with immature microneme proteins, proM2AP and proMIC5, in transit to the micronemes, but not with the immature rhoptry protein proRON4, indicating that endocytic trafficking of ingested protein intersects with exocytic trafficking of microneme proteins. Finally, we show that conditional expression of a DrpB dominant negative mutant increases T. gondii ingestion of host-derived proteins, suggesting that DrpB is not required for parasite endocytosis.
Collapse
Affiliation(s)
- Olivia L McGovern
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Yolanda Rivera-Cuevas
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Geetha Kannan
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Andrew J Narwold
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan
| |
Collapse
|
19
|
Ghosh S, Chisholm SA, Dans M, Lakkavaram A, Kennedy K, Ralph SA, Counihan NA, de Koning-Ward TF. The cysteine protease dipeptidyl aminopeptidase 3 does not contribute to egress of Plasmodium falciparum from host red blood cells. PLoS One 2018; 13:e0193538. [PMID: 29509772 PMCID: PMC5839547 DOI: 10.1371/journal.pone.0193538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/13/2018] [Indexed: 01/27/2023] Open
Abstract
The ability of Plasmodium parasites to egress from their host red blood cell is critical for the amplification of these parasites in the blood. Previous forward chemical genetic approaches have implicated the subtilisin-like protease (SUB1) and the cysteine protease dipeptidyl aminopeptidase 3 (DPAP3) as key players in egress, with the final step of SUB1 maturation thought to be due to the activity of DPAP3. In this study, we have utilized a reverse genetics approach to engineer transgenic Plasmodium falciparum parasites in which dpap3 expression can be conditionally regulated using the glmS ribozyme based RNA-degrading system. We show that DPAP3, which is expressed in schizont stages and merozoites and localizes to organelles distinct from the micronemes, rhoptries and dense granules, is not required for the trafficking of apical proteins or processing of SUB1 substrates, nor for parasite maturation and egress from red blood cells. Thus, our findings argue against a role for DPAP3 in parasite egress and indicate that the phenotypes observed with DPAP3 inhibitors are due to off-target effects.
Collapse
Affiliation(s)
- Sreejoyee Ghosh
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Scott A. Chisholm
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Madeline Dans
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Asha Lakkavaram
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Kit Kennedy
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart A. Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
20
|
Evidence that the Plasmodium falciparum Protein Sortilin Potentially Acts as an Escorter for the Trafficking of the Rhoptry-Associated Membrane Antigen to the Rhoptries. mSphere 2018; 3:mSphere00551-17. [PMID: 29299530 PMCID: PMC5750388 DOI: 10.1128/msphere.00551-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/06/2017] [Indexed: 12/11/2022] Open
Abstract
The rhoptry organelle is critical for the invasion of an erythrocyte by the malaria parasite Plasmodium falciparum. Despite their critical roles, the mechanisms behind their biogenesis are still poorly defined. Our earlier work had suggested that the interaction between the glycosylphosphatidylinositol (GPI)-anchored rhoptry-associated membrane antigen (RAMA) and the soluble rhoptry-associated protein 1 was involved in the transport of the latter from the Golgi apparatus to the rhoptry. However, how this protein complex could interact with the intracellular trafficking machinery was unknown at this stage. Here we show that the P. falciparum homologue of the transmembrane protein sortilin-VPS10 interacts with regions of RAMA that are sufficient to target a fluorescent reporter to the rhoptries. These results suggest that P. falciparum sortilin (PfSortilin) could potentially act as the escorter for the transport of rhoptry-destined cargo. IMPORTANCE The malaria parasite is a massive burden in several parts of the world. Worryingly, the parasite has become resistant to several of the drugs commonly used to treat the disease, and at this time, there is no commercial vaccine. It is therefore critical to identify new targets for the development of antimalarials. To survive in the human body, the malaria parasite needs to invade red blood cells. For this, it uses a variety of effectors stored in organelles forming a structure called the apical complex. The mechanisms behind how the parasite generates the apical complex are poorly understood. In this study, we present evidence that a transmembrane protein called sortilin potentially acts as an escorter to transport proteins from the Golgi apparatus to the rhoptries, a component of the apical complex. Our study provides new insight into the biogenesis of a critical structure of the malaria parasite.
Collapse
|
21
|
Thériault C, Richard D. Characterization of a putative Plasmodium falciparum SAC1 phosphoinositide-phosphatase homologue potentially required for survival during the asexual erythrocytic stages. Sci Rep 2017; 7:12710. [PMID: 28983103 PMCID: PMC5629215 DOI: 10.1038/s41598-017-12762-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022] Open
Abstract
Despite marked reductions in morbidity and mortality in the last ten years, malaria still takes a tremendous toll on human populations throughout tropical and sub-tropical regions of the world. The absence of an effective vaccine and resistance to most antimalarial drugs available demonstrate the urgent need for new intervention strategies. Phosphoinositides are a class of lipids with critical roles in numerous processes and their specific subcellular distribution, generated through the action of kinases and phosphatases, define organelle identity in a wide range of eukaryotic cells. Recent studies have highlighted important functions of phosphoinositide kinases in several parts of the Plasmodium lifecycle such as hemoglobin endocytosis and cytokinesis during the erythrocytic stage however, nothing is known with regards to the parasite's putative phosphoinositide phosphatases. We present the identification and initial characterization of a putative homologue of the SAC1 phosphoinositide phosphatase family. Our results show that the protein is expressed throughout the asexual blood stages and that it localises to the endoplasmic reticulum and potentially to the Golgi apparatus. Furthermore, conditional knockdown and knockout studies suggest that a minimal amount of the protein are likely required for survival during the erythrocytic cycle.
Collapse
Affiliation(s)
- Catherine Thériault
- Centre de recherche en infectiologie du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Dave Richard
- Centre de recherche en infectiologie du CHU de Québec-Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
22
|
Ghosh S, Kennedy K, Sanders P, Matthews K, Ralph SA, Counihan NA, de Koning-Ward TF. ThePlasmodiumrhoptry associated protein complex is important for parasitophorous vacuole membrane structure and intraerythrocytic parasite growth. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12733] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/13/2017] [Accepted: 02/09/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Sreejoyee Ghosh
- School of Medicine; Deakin University; Waurn Ponds Victoria Australia
| | - Kit Kennedy
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; Melbourne Victoria Australia
| | - Paul Sanders
- The Burnet Institute; Melbourne Victoria Australia
| | - Kathryn Matthews
- School of Medicine; Deakin University; Waurn Ponds Victoria Australia
| | - Stuart A. Ralph
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; Melbourne Victoria Australia
| | | | | |
Collapse
|
23
|
Tyagi K, Hossain ME, Thakur V, Aggarwal P, Malhotra P, Mohmmed A, Sharma YD. Plasmodium vivax Tryptophan Rich Antigen PvTRAg36.6 Interacts with PvETRAMP and PvTRAg56.6 Interacts with PvMSP7 during Erythrocytic Stages of the Parasite. PLoS One 2016; 11:e0151065. [PMID: 26954579 PMCID: PMC4783080 DOI: 10.1371/journal.pone.0151065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/09/2016] [Indexed: 01/09/2023] Open
Abstract
Plasmodium vivax is most wide spread and a neglected malaria parasite. There is a lack of information on parasite biology of this species. Genome of this parasite encodes for the largest number of tryptophan-rich proteins belonging to ‘Pv-fam-a’ family and some of them are potential drug/vaccine targets but their functional role(s) largely remains unexplored. Using bacterial and yeast two hybrid systems, we have identified the interacting partners for two of the P. vivax tryptophan-rich antigens called PvTRAg36.6 and PvTRAg56.2. The PvTRAg36.6 interacts with early transcribed membrane protein (ETRAMP) of P.vivax. It is apically localized in merozoites but in early stages it is seen in parasite periphery suggesting its likely involvement in parasitophorous vacuole membrane (PVM) development or maintenance. On the other hand, PvTRAg56.2 interacts with P.vivax merozoite surface protein7 (PvMSP7) and is localized on merozoite surface. Co-localization of PvTRAg56.2 with PvMSP1 and its molecular interaction with PvMSP7 probably suggest that, PvTRAg56.2 is part of MSP-complex, and might assist or stabilize the protein complex at the merozoite surface. In conclusion, the PvTRAg proteins have different sub cellular localizations and specific associated functions during intra-erythrocytic developmental cycle.
Collapse
Affiliation(s)
- Kriti Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Mohammad Enayet Hossain
- Malaria group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Vandana Thakur
- Malaria group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Praveen Aggarwal
- Department of Emergency Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Pawan Malhotra
- Malaria group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Asif Mohmmed
- Malaria group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- * E-mail: (YDS); (AM)
| | - Yagya Dutta Sharma
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
- * E-mail: (YDS); (AM)
| |
Collapse
|
24
|
Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev 2016; 40:343-72. [PMID: 26833236 PMCID: PMC4852283 DOI: 10.1093/femsre/fuw001] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2016] [Indexed: 01/11/2023] Open
Abstract
Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities. The authors summarize current knowledge of merozoite surface proteins of malaria parasites; their function in invasion, processing of surface proteins before, during and after invasion, their importance as targets of immunity, and the current status of malaria vaccines that target merozoite surface proteins.
Collapse
Affiliation(s)
- James G Beeson
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Damien R Drew
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Michelle J Boyle
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Gaoqian Feng
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Epidemiology and Preventive Medicine, Monash University, Clayton, Victoria, Australia School of Population Health, University of Melbourne, Parkville, Victoria, Australia
| | - Jack S Richards
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
25
|
Kono M, Heincke D, Wilcke L, Wong TWY, Bruns C, Herrmann S, Spielmann T, Gilberger TW. Pellicle formation in the malaria parasite. J Cell Sci 2016; 129:673-80. [PMID: 26763910 PMCID: PMC4760376 DOI: 10.1242/jcs.181230] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/31/2015] [Indexed: 12/20/2022] Open
Abstract
The intraerythrocytic developmental cycle of Plasmodium falciparum is completed with the release of up to 32 invasive daughter cells, the merozoites, into the blood stream. Before release, the final step of merozoite development is the assembly of the cortical pellicle, a multi-layered membrane structure. This unique apicomplexan feature includes the inner membrane complex (IMC) and the parasite's plasma membrane. A dynamic ring structure, referred to as the basal complex, is part of the IMC and helps to divide organelles and abscises in the maturing daughter cells. Here, we analyze the dynamics of the basal complex of P. falciparum. We report on a novel transmembrane protein of the basal complex termed BTP1, which is specific to the genus Plasmodium. It colocalizes with the known basal complex marker protein MORN1 and shows distinct dynamics as well as localization when compared to other IMC proteins during schizogony. Using a parasite plasma membrane marker cell line, we correlate dynamics of the basal complex with the acquisition of the maternal membrane. We show that plasma membrane invagination and IMC propagation are interlinked during the final steps of cell division.
Collapse
Affiliation(s)
- Maya Kono
- Department of Cellular Parasitology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg 20359, Germany
| | - Dorothee Heincke
- Department of Cellular Parasitology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg 20359, Germany M.G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Louisa Wilcke
- Department of Cellular Parasitology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg 20359, Germany M.G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Tatianna Wai Ying Wong
- Department of Cellular Parasitology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg 20359, Germany M.G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Caroline Bruns
- Department of Cellular Parasitology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg 20359, Germany
| | - Susann Herrmann
- Department of Cellular Parasitology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg 20359, Germany M.G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Tobias Spielmann
- Department of Cellular Parasitology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg 20359, Germany
| | - Tim W Gilberger
- Department of Cellular Parasitology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg 20359, Germany M.G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada Center for Structural Systems Biology, Hamburg 22607, Germany
| |
Collapse
|
26
|
Hallée S, Richard D. Evidence that the Malaria Parasite Plasmodium falciparum Putative Rhoptry Protein 2 Localizes to the Golgi Apparatus throughout the Erythrocytic Cycle. PLoS One 2015; 10:e0138626. [PMID: 26375591 PMCID: PMC4574476 DOI: 10.1371/journal.pone.0138626] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/31/2015] [Indexed: 11/28/2022] Open
Abstract
Invasion of a red blood cell by Plasmodium falciparum merozoites is an essential step in the malaria lifecycle. Several of the proteins involved in this process are stored in the apical complex of the merozoite, a structure containing secretory organelles that are released at specific times during invasion. The molecular players involved in erythrocyte invasion thus represent potential key targets for both therapeutic and vaccine-based strategies to block parasite development. In our quest to identify and characterize new effectors of invasion, we investigated the P. falciparum homologue of a P. berghei protein putatively localized to the rhoptries, the Putative rhoptry protein 2 (PbPRP2). We show that in P. falciparum, the protein colocalizes extensively with the Golgi apparatus across the asexual erythrocytic cycle. Furthermore, imaging of merozoites caught at different times during invasion show that PfPRP2 is not secreted during the process instead staying associated with the Golgi apparatus. Our evidence therefore suggests that PfPRP2 is a Golgi protein and that it is likely not a direct effector in the process of merozoite invasion.
Collapse
Affiliation(s)
- Stéphanie Hallée
- Centre de recherche en infectiologie, CHU-Université Laval, Quebec City, Quebec, Canada
| | - Dave Richard
- Centre de recherche en infectiologie, CHU-Université Laval, Quebec City, Quebec, Canada
- * E-mail:
| |
Collapse
|
27
|
Lu F, Li J, Wang B, Cheng Y, Kong DH, Cui L, Ha KS, Sattabongkot J, Tsuboi T, Han ET. Profiling the humoral immune responses to Plasmodium vivax infection and identification of candidate immunogenic rhoptry-associated membrane antigen (RAMA). J Proteomics 2014; 102:66-82. [PMID: 24607491 DOI: 10.1016/j.jprot.2014.02.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/05/2014] [Accepted: 02/23/2014] [Indexed: 11/17/2022]
Abstract
UNLABELLED Completion of sequencing of the Plasmodium vivax genome and transcriptome offers the chance to identify antigens among >5000 candidate proteins. To identify those P. vivax proteins that are immunogenic, a total of 152 candidate proteins (160 fragments) were expressed using a wheat germ cell-free system. The results of Western blot analysis showed that 92.5% (148/160) of the targets were expressed, and 96.6% (143/148) were in a soluble form with 67.7% of solubility rate. The proteins were screened by protein arrays with sera from 22 vivax malaria patients and 10 healthy individuals to confirm their immune profile, and 44 (27.5%, 44/160) highly reactive P. vivax antigens were identified. Overall, 5 candidates (rhoptry-associated membrane antigen [RAMA], Pv-fam-a and -b, EXP-1 and hypothetical protein PVX_084775) showed a positive reaction with >80% of patient sera, and 21 candidates with 50% to 80%. More than 23% of the highly immunoreactive proteins were hypothetical proteins, described for the first time in this study. One of the top immunogenic proteins, RAMA, was characterized and confirmed to be a serological marker of recent exposure to P. vivax infection. These novel immunoproteomes should greatly facilitate the identification of promising novel malaria antigens and may warrant further study. BIOLOGICAL SIGNIFICANCE The establishment of high-throughput cloning and expression systems has permitted the construction of protein arrays for proteome-wide study of Plasmodium vivax. In this study, high-throughput screening assays have been applied to investigate blood stage-specific immune proteomes from P. vivax. We identified 44 antigenic proteins from the 152 putative candidates, more than 23% of which were hypothetical proteins described for the first time in this study. In addition, PvRAMA was characterized further and confirmed to be a serological marker of exposure to infections. The expression of one-third of the selected antigenic genes were shifted between P. vivax and Plasmodium falciparum, suggesting that these genes may represent important factors associated with P. vivax selectivity for young erythrocytes and/or with immune evasion. These novel immune proteomes of the P. vivax blood stage provide a baseline for further prospective serological marker studies in malaria. These methods could be used to determine immunodominant candidate antigens from the P. vivax genome.
Collapse
Affiliation(s)
- Feng Lu
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chunchon, Gangwon-do, Republic of Korea; Jiangsu Institute of Parasitic Diseases, Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health, Wuxi, Jiangsu, People's Republic of China
| | - Jian Li
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chunchon, Gangwon-do, Republic of Korea; Jiangsu Institute of Parasitic Diseases, Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health, Wuxi, Jiangsu, People's Republic of China
| | - Bo Wang
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chunchon, Gangwon-do, Republic of Korea
| | - Yang Cheng
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chunchon, Gangwon-do, Republic of Korea
| | - Deok-Hoon Kong
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chunchon, Gangwon-do, Republic of Korea
| | - Liwang Cui
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chunchon, Gangwon-do, Republic of Korea
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan.
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chunchon, Gangwon-do, Republic of Korea.
| |
Collapse
|
28
|
Canonical WNT signaling inhibits follicle stimulating hormone mediated steroidogenesis in primary cultures of rat granulosa cells. PLoS One 2014; 9:e86432. [PMID: 24466091 PMCID: PMC3895028 DOI: 10.1371/journal.pone.0086432] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/10/2013] [Indexed: 12/31/2022] Open
Abstract
Beta-catenin (CTNNB1), a key component of wingless-type mouse mammary tumor virus integration site family (WNT) signaling, participates in follicle stimulated hormone-mediated regulation of estrogen (E2) production. The purpose of these studies was to determine if CTNNB1's contribution to FSH-mediated steroidogenesis in primary rat granulosa cells was due in part to extracellular stimulation of the canonical WNT signaling pathway. To achieve this purpose, primary cultures of rat granulosa cells were exposed to vehicle or a canonical member of the WNT signaling pathway, WNT3A, before co-culture and in the presence or absence of FSH for 24 h. Activation of the canonical WNT signaling pathway was determined by dose-dependent induction of Axin2 mRNA expression and stimulation of the CTNNB1/T cell factor promoter-reporter TOPflash. WNT pathway induction was demonstrated at doses of 50 and 500 ng/mL of WNT3A. Granulosa cells treated with WNT3A in combination with FSH had enhanced CTNNB1/T cell factor transcriptional activity above cells treated with WNT3A alone. Steroidogenic enzymes and ovarian differentiation factor mRNAs were quantified via quantitative PCR. Expression of steroidogenic enzyme mRNAs aromatase (Cyp19a1), P450 side chain cleavage (Cyp11a1), and steroidogenic acute regulatory protein (Star) were increased following FSH treatment. Co-incubation of WNT3A and FSH reduced the ability of FSH to stimulate steroidogenic enzymes and subsequent E2 and progesterone (P4) production. Concomitant activation of FSH and WNT pathways results in marked reduction of ovarian differentiation factors, LH receptor (Lhcgr) and inhibin-alpha (Inha). Therefore, WNT inhibits FSH target genes and steroid production associated with maturation and differentiation of the ovarian follicle.
Collapse
|
29
|
Zhang W, Blackman LM, Hardham AR. Transient fusion and selective secretion of vesicle proteins in Phytophthora nicotianae zoospores. PeerJ 2013; 1:e221. [PMID: 24392285 PMCID: PMC3869178 DOI: 10.7717/peerj.221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/13/2013] [Indexed: 12/25/2022] Open
Abstract
Secretion of pathogen proteins is crucial for the establishment of disease in animals and plants. Typically, early interactions between host and pathogen trigger regulated secretion of pathogenicity factors that function in pathogen adhesion and host penetration. During the onset of plant infection by spores of the Oomycete, Phytophthora nicotianae, proteins are secreted from three types of cortical vesicles. Following induction of spore encystment, two vesicle types undergo full fusion, releasing their entire contents onto the cell surface. However, the third vesicle type, so-called large peripheral vesicles, selectively secretes a small Sushi domain-containing protein, PnCcp, while retaining a large glycoprotein, PnLpv, before moving away from the plasma membrane. Selective secretion of PnCcp is associated with its compartmentalization within the vesicle periphery. Pharmacological inhibition of dynamin function, purportedly in vesicle fission, by dynasore treatment provides evidence that selective secretion of PnCcp requires transient fusion of the large peripheral vesicles. This is the first report of selective protein secretion via transient fusion outside mammalian cells. Selective secretion is likely to be an important aspect of plant infection by this destructive pathogen.
Collapse
Affiliation(s)
- Weiwei Zhang
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University , Canberra, ACT , Australia
| | - Leila M Blackman
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University , Canberra, ACT , Australia
| | - Adrienne R Hardham
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University , Canberra, ACT , Australia
| |
Collapse
|
30
|
Cervantes S, Bunnik EM, Saraf A, Conner CM, Escalante A, Sardiu ME, Ponts N, Prudhomme J, Florens L, Le Roch KG. The multifunctional autophagy pathway in the human malaria parasite, Plasmodium falciparum. Autophagy 2013; 10:80-92. [PMID: 24275162 PMCID: PMC4028325 DOI: 10.4161/auto.26743] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autophagy is a catabolic pathway typically induced by nutrient starvation to recycle amino acids, but can also function in removing damaged organelles. In addition, this pathway plays a key role in eukaryotic development. To date, not much is known about the role of autophagy in apicomplexan parasites and more specifically in the human malaria parasite Plasmodium falciparum. Comparative genomic analysis has uncovered some, but not all, orthologs of autophagy-related (ATG) genes in the malaria parasite genome. Here, using a genome-wide in silico analysis, we confirmed that ATG genes whose products are required for vesicle expansion and completion are present, while genes involved in induction of autophagy and cargo packaging are mostly absent. We subsequently focused on the molecular and cellular function of P. falciparum ATG8 (PfATG8), an autophagosome membrane marker and key component of the autophagy pathway, throughout the parasite asexual and sexual erythrocytic stages. In this context, we showed that PfATG8 has a distinct and atypical role in parasite development. PfATG8 localized in the apicoplast and in vesicles throughout the cytosol during parasite development. Immunofluorescence assays of PfATG8 in apicoplast-minus parasites suggest that PfATG8 is involved in apicoplast biogenesis. Furthermore, treatment of parasite cultures with bafilomycin A 1 and chloroquine, both lysosomotropic agents that inhibit autophagosome and lysosome fusion, resulted in dramatic morphological changes of the apicoplast, and parasite death. Furthermore, deep proteomic analysis of components associated with PfATG8 indicated that it may possibly be involved in ribophagy and piecemeal microautophagy of the nucleus. Collectively, our data revealed the importance and specificity of the autophagy pathway in the malaria parasite and offer potential novel therapeutic strategies.
Collapse
Affiliation(s)
- Serena Cervantes
- Graduate Program in Cell, Molecular, and Developmental Biology; University of California, Riverside; Riverside, CA USA; Department of Cell Biology and Neuroscience; University of California, Riverside; Riverside, CA USA
| | - Evelien M Bunnik
- Department of Cell Biology and Neuroscience; University of California, Riverside; Riverside, CA USA
| | - Anita Saraf
- Stowers Institute for Medical Research; Kansas City, MO USA
| | - Christopher M Conner
- Department of Cell Biology and Neuroscience; University of California, Riverside; Riverside, CA USA
| | - Aster Escalante
- Department of Cell Biology and Neuroscience; University of California, Riverside; Riverside, CA USA
| | | | - Nadia Ponts
- Department of Cell Biology and Neuroscience; University of California, Riverside; Riverside, CA USA
| | - Jacques Prudhomme
- Department of Cell Biology and Neuroscience; University of California, Riverside; Riverside, CA USA
| | | | - Karine G Le Roch
- Department of Cell Biology and Neuroscience; University of California, Riverside; Riverside, CA USA
| |
Collapse
|
31
|
Tomavo S, Slomianny C, Meissner M, Carruthers VB. Protein trafficking through the endosomal system prepares intracellular parasites for a home invasion. PLoS Pathog 2013; 9:e1003629. [PMID: 24204248 PMCID: PMC3812028 DOI: 10.1371/journal.ppat.1003629] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Toxoplasma (toxoplasmosis) and Plasmodium (malaria) use unique secretory organelles for migration, cell invasion, manipulation of host cell functions, and cell egress. In particular, the apical secretory micronemes and rhoptries of apicomplexan parasites are essential for successful host infection. New findings reveal that the contents of these organelles, which are transported through the endoplasmic reticulum (ER) and Golgi, also require the parasite endosome-like system to access their respective organelles. In this review, we discuss recent findings that demonstrate that these parasites reduced their endosomal system and modified classical regulators of this pathway for the biogenesis of apical organelles.
Collapse
Affiliation(s)
- Stanislas Tomavo
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
- * E-mail:
| | - Christian Slomianny
- Laboratory of Cell Physiology, INSERM U 1003, Université Lille Nord de France, Villeneuve d'Ascq, Lille, France
| | - Markus Meissner
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
32
|
Yam XY, Birago C, Fratini F, Di Girolamo F, Raggi C, Sargiacomo M, Bachi A, Berry L, Fall G, Currà C, Pizzi E, Breton CB, Ponzi M. Proteomic analysis of detergent-resistant membrane microdomains in trophozoite blood stage of the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics 2013; 12:3948-61. [PMID: 24045696 DOI: 10.1074/mcp.m113.029272] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intracellular pathogens contribute to a significant proportion of infectious diseases worldwide. The successful strategy of evading the immune system by hiding inside host cells is common to all the microorganism classes, which exploit membrane microdomains, enriched in cholesterol and sphingolipids, to invade and colonize the host cell. These assemblies, with distinct biochemical properties, can be isolated by means of flotation in sucrose density gradient centrifugation because they are insoluble in nonionic detergents at low temperature. We analyzed the protein and lipid contents of detergent-resistant membranes from erythrocytes infected by Plasmodium falciparum, the most deadly human malaria parasite. Proteins associated with membrane microdomains of trophic parasite blood stages (trophozoites) include an abundance of chaperones, molecules involved in vesicular trafficking, and enzymes implicated in host hemoglobin degradation. About 60% of the identified proteins contain a predicted localization signal suggesting a role of membrane microdomains in protein sorting/trafficking. To validate our proteomic data, we raised antibodies against six Plasmodium proteins not characterized previously. All the selected candidates were recovered in floating low-density fractions after density gradient centrifugation. The analyzed proteins localized either to internal organelles, such as the mitochondrion and the endoplasmic reticulum, or to exported membrane structures, the parasitophorous vacuole membrane and Maurer's clefts, implicated in targeting parasite proteins to the host erythrocyte cytosol or surface. The relative abundance of cholesterol and phospholipid species varies in gradient fractions containing detergent-resistant membranes, suggesting heterogeneity in the lipid composition of the isolated microdomain population. This study is the first report showing the presence of cholesterol-rich microdomains with distinct properties and subcellular localization in trophic stages of Plasmodium falciparum.
Collapse
Affiliation(s)
- Xue Yan Yam
- University Montpellier II, CNRS UMR 5235, 34095 Montpellier, Cedex 5, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Crosnier C, Wanaguru M, McDade B, Osier FH, Marsh K, Rayner JC, Wright GJ. A library of functional recombinant cell-surface and secreted P. falciparum merozoite proteins. Mol Cell Proteomics 2013; 12:3976-86. [PMID: 24043421 PMCID: PMC3861738 DOI: 10.1074/mcp.o113.028357] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Malaria, an infectious disease caused by parasites of the Plasmodium genus, is one of the world's major public health concerns causing up to a million deaths annually, mostly because of P. falciparum infections. All of the clinical symptoms are associated with the blood stage of the disease, an obligate part of the parasite life cycle, when a form of the parasite called the merozoite recognizes and invades host erythrocytes. During erythrocyte invasion, merozoites are directly exposed to the host humoral immune system making the blood stage of the parasite a conceptually attractive therapeutic target. Progress in the functional and molecular characterization of P. falciparum merozoite proteins, however, has been hampered by the technical challenges associated with expressing these proteins in a biochemically active recombinant form. This challenge is particularly acute for extracellular proteins, which are the likely targets of host antibody responses, because they contain structurally critical post-translational modifications that are not added by some recombinant expression systems. Here, we report the development of a method that uses a mammalian expression system to compile a protein resource containing the entire ectodomains of 42 P. falciparum merozoite secreted and cell surface proteins, many of which have not previously been characterized. Importantly, we are able to recapitulate known biochemical activities by showing that recombinant MSP1-MSP7 and P12-P41 directly interact, and that both recombinant EBA175 and EBA140 can bind human erythrocytes in a sialic acid-dependent manner. Finally, we use sera from malaria-exposed immune adults to profile the relative immunoreactivity of the proteins and show that the majority of the antigens contain conformational (heat-labile) epitopes. We envisage that this resource of recombinant proteins will make a valuable contribution toward a molecular understanding of the blood stage of P. falciparum infections and facilitate the comparative screening of antigens as blood-stage vaccine candidates.
Collapse
Affiliation(s)
- Cécile Crosnier
- Cell Surface Signalling laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1HH, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
Knuepfer E, Suleyman O, Dluzewski AR, Straschil U, O'Keeffe AH, Ogun SA, Green JL, Grainger M, Tewari R, Holder AA. RON12, a novel Plasmodium-specific rhoptry neck protein important for parasite proliferation. Cell Microbiol 2013; 16:657-72. [PMID: 23937520 PMCID: PMC3922828 DOI: 10.1111/cmi.12181] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/21/2013] [Accepted: 07/30/2013] [Indexed: 11/29/2022]
Abstract
Apicomplexan parasites invade host cells by a conserved mechanism: parasite proteins are secreted from apical organelles, anchored in the host cell plasma membrane, and then interact with integral membrane proteins on the zoite surface to form the moving junction (MJ). The junction moves from the anterior to the posterior of the parasite resulting in parasite internalization into the host cell within a parasitophorous vacuole (PV). Conserved as well as coccidia-unique rhoptry neck proteins (RONs) have been described, some of which associate with the MJ. Here we report a novel RON, which we call RON12. RON12 is found only in Plasmodium and is highly conserved across the genus. RON12 lacks a membrane anchor and is a major soluble component of the nascent PV. The bulk of RON12 secretion happens late during invasion (after parasite internalization) allowing accumulation in the fully formed PV with a small proportion of RON12 also apparent occasionally in structures resembling the MJ. RON12, unlike most other RONs is not essential, but deletion of the gene does affect parasite proliferation. The data suggest that although the overall mechanism of invasion by Apicomplexanparasites is conserved, additional components depending on the parasite–host cell combination are required.
Collapse
Affiliation(s)
- Ellen Knuepfer
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Counihan NA, Kalanon M, Coppel RL, de Koning-Ward TF. Plasmodium rhoptry proteins: why order is important. Trends Parasitol 2013; 29:228-36. [PMID: 23570755 DOI: 10.1016/j.pt.2013.03.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 11/26/2022]
Abstract
Apicomplexan parasites, including the Plasmodium species that cause malaria, contain three unusual apical secretory organelles (micronemes, rhoptries, and dense granules) that are required for the infection of new host cells. Because of their specialized nature, the majority of proteins secreted from these organelles are unique to Apicomplexans and are consequently poorly characterized. Although rhoptry proteins of Plasmodium have been implicated in events central to invasion, there is growing evidence to suggest that proteins originating from this organelle play key roles downstream of parasite entry into the host cell. Here we discuss recent work that has advanced our knowledge of rhoptry protein trafficking and function, and highlight areas of research that require further investigation.
Collapse
|
36
|
Siddiqui FA, Dhawan S, Singh S, Singh B, Gupta P, Pandey A, Mohmmed A, Gaur D, Chitnis CE. A thrombospondin structural repeat containing rhoptry protein from Plasmodium falciparum mediates erythrocyte invasion. Cell Microbiol 2013; 15:1341-56. [PMID: 23387921 DOI: 10.1111/cmi.12118] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 11/30/2012] [Accepted: 01/18/2013] [Indexed: 12/01/2022]
Abstract
Host cell invasion by Plasmodium falciparum requires multiple molecular interactions between host receptors and parasite ligands. A family of parasite proteins, which contain the conserved thrombospondin structural repeat motif (TSR), has been implicated in receptor binding during invasion. In this study we have characterized the functional role of a TSR containing blood stage protein referred to as P. falciparum thrombospondin related apical merozoite protein (PfTRAMP). Both native and recombinant PfTRAMP bind untreated as well as neuraminidase, trypsin or chymotrypsin-treated human erythrocytes. PfTRAMP is localized in the rhoptry bulb and is secreted during invasion. Adhesion of microneme protein EBA175 with its erythrocyte receptor glycophorin A provides the signal that triggers release of PfTRAMP from the rhoptries. Rabbit antibodies raised against PfTRAMP block erythrocyte invasion by P. falciparum suggesting that PfTRAMP plays an important functional role in invasion. Combination of antibodies against PfTRAMP with antibodies against microneme protein EBA175 provides an additive inhibitory effect against invasion. These observations suggest that targeting multiple conserved parasite ligands involved in different steps of invasion may provide an effective strategy for the development of vaccines against blood stage malaria parasites.
Collapse
Affiliation(s)
- Faiza Amber Siddiqui
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kemp LE, Yamamoto M, Soldati-Favre D. Subversion of host cellular functions by the apicomplexan parasites. FEMS Microbiol Rev 2012. [PMID: 23186105 DOI: 10.1111/1574-6976.12013] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Rhoptries are club-shaped secretory organelles located at the anterior pole of species belonging to the phylum of Apicomplexa. Parasites of this phylum are responsible for a huge burden of disease in humans and animals and a loss of economic productivity. Members of this elite group of obligate intracellular parasites include Plasmodium spp. that cause malaria and Cryptosporidium spp. that cause diarrhoeal disease. Although rhoptries are almost ubiquitous throughout the phylum, the relevance and role of the proteins contained within the rhoptries varies. Rhoptry contents separate into two intra-organellar compartments, the neck and the bulb. A number of rhoptry neck proteins are conserved between species and are involved in functions such as host cell invasion. The bulb proteins are less well-conserved and probably evolved for a particular lifestyle. In the majority of species studied to date, rhoptry content is involved in formation and maintenance of the parasitophorous vacuole; however some species live free within the host cytoplasm. In this review, we will summarise the knowledge available regarding rhoptry proteins. Specifically, we will discuss the role of the rhoptry kinases that are used by Toxoplasma gondii and other coccidian parasites to subvert the host cellular functions and prevent parasite death.
Collapse
Affiliation(s)
- Louise E Kemp
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | | | | |
Collapse
|
38
|
Deponte M, Hoppe HC, Lee MC, Maier AG, Richard D, Rug M, Spielmann T, Przyborski JM. Wherever I may roam: Protein and membrane trafficking in P. falciparum-infected red blood cells. Mol Biochem Parasitol 2012; 186:95-116. [DOI: 10.1016/j.molbiopara.2012.09.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 11/27/2022]
|
39
|
Wang B, Lu F, Cheng Y, Li J, Ito D, Sattabongkot J, Tsuboi T, Han ET. Identification and characterization of the Plasmodium falciparum RhopH2 ortholog in Plasmodium vivax. Parasitol Res 2012; 112:585-93. [PMID: 23097184 DOI: 10.1007/s00436-012-3170-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/08/2012] [Indexed: 11/28/2022]
Abstract
Plasmodium vivax is one of the most important human malaria species that is geographically widely endemic and potentially affects a larger number of people than its more notorious cousin, Plasmodium falciparum. During invasion of red blood cells, the parasite requires the intervention of high molecular weight complex rhoptry proteins (RhopH) that are also essential for cytoadherence. PfRhopH2, a member of the RhopH multigene family, has been characterized as being crucial during P. falciparum infection. This study describes identifying and characterizing the pfrhoph2 orthologous gene in P. vivax (hereinafter named pvrhoph2). The PvRhopH2 is a 1,369-amino acid polypeptide encoded by PVX_099930 gene, for which orthologous genes have been identified in other Plasmodium species by bioinformatic approaches. Both P. falciparum and P. vivax genes contain nine introns, and there is a high degree of similarity between the deduced amino acid sequences of the two proteins. Moreover, PvRhopH2 contains a signal peptide at its N-terminus and 12 cysteines predominantly in its C-terminal half. PvRhopH2 is localized in one of the apical organelles of the merozoite, the rhoptry, and the localization pattern is similar to that of PfRhopH2 in P. falciparum. The recombinant PvRhopH2 protein is recognized by serum antibodies of patients naturally exposed to P. vivax, suggesting that PvRhopH2 is immunogenic in humans.
Collapse
Affiliation(s)
- Bo Wang
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Hyoja2-dong, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Spielmann T, Montagna GN, Hecht L, Matuschewski K. Molecular make-up of the Plasmodium parasitophorous vacuolar membrane. Int J Med Microbiol 2012; 302:179-86. [PMID: 22898489 DOI: 10.1016/j.ijmm.2012.07.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Plasmodium, the causative agent of malaria, is an obligate, intracellular, eukaryotic cell that invades, replicates, and differentiates within hepatocytes and erythrocytes. Inside a host cell, a second membrane delineates the developing pathogen in addition to the parasite plasma membrane, resulting in a distinct cellular compartment, termed parasitophorous vacuole (PV). The PV membrane (PVM) constitutes the parasite-host cell interface and is likely central to nutrient acquisition, host cell remodeling, waste disposal, environmental sensing, and protection from innate defense. Over the past two decades, a number of parasite-encoded PVM proteins have been identified. They include multigene families and protein complexes, such as early-transcribed membrane proteins (ETRAMPs) and the Plasmodium translocon for exported proteins (PTEX). Nearly all Plasmodium PVM proteins are restricted to this genus and display transient and stage-specific expression. Here, we provide an overview of the PVM proteins of Plasmodium blood and liver stages. Biochemical and experimental genetics data suggest that some PVM proteins are ideal targets for novel anti-malarial intervention strategies.
Collapse
Affiliation(s)
- Tobias Spielmann
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | | | | | | |
Collapse
|
41
|
Cabrera A, Herrmann S, Warszta D, Santos JM, John Peter AT, Kono M, Debrouver S, Jacobs T, Spielmann T, Ungermann C, Soldati-Favre D, Gilberger TW. Dissection of minimal sequence requirements for rhoptry membrane targeting in the malaria parasite. Traffic 2012; 13:1335-50. [PMID: 22759070 DOI: 10.1111/j.1600-0854.2012.01394.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 06/28/2012] [Accepted: 07/03/2012] [Indexed: 12/20/2022]
Abstract
Rhoptries are specialized secretory organelles characteristic of single cell organisms belonging to the clade Apicomplexa. These organelles play a key role in the invasion process of host cells by accumulating and subsequently secreting an unknown number of proteins mediating host cell entry. Despite their essential role, little is known about their biogenesis, components and targeting determinants. Here, we report on a conserved apicomplexan protein termed Armadillo Repeats-Only (ARO) protein that we localized to the cytosolic face of Plasmodium falciparum and Toxoplasma gondii rhoptries. We show that the first 20 N-terminal amino acids are sufficient for rhoptry membrane targeting. This protein relies on both - myristoylation and palmitoylation motifs - for membrane attachment. Although these lipid modifications are essential, they are not sufficient to direct ARO to the rhoptry membranes. Mutational analysis revealed additional residues within the first 20 amino acids of ARO that play an important role for rhoptry membrane attachment: the positively charged residues R9 and K14. Interestingly, the exchange of R9 with a negative charge entirely abolishes membrane attachment, whereas the exchange of K14 (and to a lesser extent K16) alters only its membrane specificity. Additionally, 17 proteins predicted to be myristoylated and palmitoylated in the first 20 N-terminal amino acids were identified in the genome of the malaria parasite. While most of the corresponding GFP fusion proteins were trafficked to the parasite plasma membrane, two were sorted to the apical organelles. Interestingly, these proteins have a similar motif identified for ARO.
Collapse
Affiliation(s)
- Ana Cabrera
- M.G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kuss C, Gan CS, Gunalan K, Bozdech Z, Sze SK, Preiser PR. Quantitative proteomics reveals new insights into erythrocyte invasion by Plasmodium falciparum. Mol Cell Proteomics 2011; 11:M111.010645. [PMID: 22023809 DOI: 10.1074/mcp.m111.010645] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Differential expression of ligands in the human malaria parasite Plasmodium falciparum enables it to recognize different receptors on the erythrocyte surface, thereby providing alternative invasion pathways. Switching of invasion from using sialated to nonsialated erythrocyte receptors has been linked to the transcriptional activation of a single parasite ligand. We have used quantitative proteomics to show that in addition to this single known change, there are a significant number of changes in the expression of merozoite proteins that are regulated independent of transcription during invasion pathway switching. These results demonstrate a so far unrecognized mechanism by which the malaria parasite is able to adapt to variations in the host cell environment by post-transcriptional regulation.
Collapse
Affiliation(s)
- Claudia Kuss
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | | | | | | | | |
Collapse
|
43
|
Moreno-Perez DA, Mongui A, Soler LN, Sanchez-Ladino M, Patarroyo MA. Identifying and characterizing a member of the RhopH1/Clag family in Plasmodium vivax. Gene 2011; 481:17-23. [PMID: 21513780 DOI: 10.1016/j.gene.2011.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/05/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
Abstract
Plasmodium vivax malaria caused is a public health problem that produces very high morbidity worldwide. During invasion of red blood cells the parasite requires the intervention of high molecular weight complex rhoptry proteins that are also essential for cytoadherence. PfClag9, a member of the RhopH multigene family, has been identified as being critical during Plasmodium falciparum infection. This study describes identifying and characterizing the pfclag9 ortholog in P. vivax (hereinafter named pvclag7). The pvclag7 gene is transcribed at the end of the intraerythrocytic cycle and is recognized by sera from humans who have been infected by P. vivax. PvClag7 subcellular localization has been also determined and, similar to what occurs with PfClag9, it co-localize with other proteins from the Rhoptry high molecular weight complex.
Collapse
Affiliation(s)
- Darwin A Moreno-Perez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá, Colombia.
| | | | | | | | | |
Collapse
|
44
|
Tracking Glideosome-associated protein 50 reveals the development and organization of the inner membrane complex of Plasmodium falciparum. EUKARYOTIC CELL 2011; 10:556-64. [PMID: 21239623 DOI: 10.1128/ec.00244-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The most deadly of the human malaria parasites, Plasmodium falciparum, has different stages specialized for invasion of hepatocytes, erythrocytes, and the mosquito gut wall. In each case, host cell invasion is powered by an actin-myosin motor complex that is linked to an inner membrane complex (IMC) via a membrane anchor called the glideosome-associated protein 50 (PfGAP50). We generated P. falciparum transfectants expressing green fluorescent protein (GFP) chimeras of PfGAP50 (PfGAP50-GFP). Using immunoprecipitation and fluorescence photobleaching, we show that C-terminally tagged PfGAP50-GFP can form a complex with endogenous copies of the linker protein PfGAP45 and the myosin A tail domain-interacting protein (MTIP). Full-length PfGAP50-GFP is located in the endoplasmic reticulum in early-stage parasites and then redistributes to apical caps during the formation of daughter merozoites. In the final stage of schizogony, the PfGAP50-GFP profile extends further around the merozoite surface. Three-dimensional (3D) structured illumination microscopy reveals the early-stage IMC as a doubly punctured flat ellipsoid that separates to form claw-shaped apposed structures. A GFP fusion of PfGAP50 lacking the C-terminal membrane anchor is misdirected to the parasitophorous vacuole. Replacement of the acid phosphatase homology domain of PfGAP50 with GFP appears to allow correct trafficking of the chimera but confers a growth disadvantage.
Collapse
|
45
|
Ito D, Han ET, Takeo S, Thongkukiatkul A, Otsuki H, Torii M, Tsuboi T. Plasmodial ortholog of Toxoplasma gondii rhoptry neck protein 3 is localized to the rhoptry body. Parasitol Int 2011; 60:132-8. [PMID: 21237287 DOI: 10.1016/j.parint.2011.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 12/24/2010] [Accepted: 01/07/2011] [Indexed: 11/24/2022]
Abstract
The proteins in apical organelles of Plasmodium falciparum merozoite play an important role in invasion into erythrocytes. Several rhoptry neck (RON) proteins have been identified in rhoptry proteome of the closely-related apicomplexan parasite, Toxoplasma gondii. Recently, three of P. falciparum proteins orthologous to TgRON proteins, PfRON2, 4 and 5, were found to be located in the rhoptry neck and interact with the micronemal protein apical membrane antigen 1 (PfAMA1) to form a moving junction complex that helps the invasion of merozoite into erythrocyte. However, the other P. falciparum RON proteins have yet to be characterized. Here, we determined that "PFL2505c" (hereafter referred to as pfron3) is the ortholog of the tgron3 in P. falciparum and characterized its protein expression profile, subcellular localization, and complex formation. Protein expression analysis revealed that PfRON3 was expressed primarily in late schizont stage parasites. Immunofluorescence microscopy (IFA) showed that PfRON3 localizes in the apical region of P. falciparum merozoites. Results from immunoelectron microscopy, along with IFA, clarified that PfRON3 localizes in the rhoptry body and not in the rhoptry neck. Even after erythrocyte invasion, PfRON3 was still detectable at the parasite ring stage in the parasitophorous vacuole. Moreover, co-immunoprecipitation studies indicated that PfRON3 interacts with PfRON2 and PfRON4, but not with PfAMA1. These results suggest that PfRON3 partakes in the novel PfRON complex formation (PfRON2, 3, and 4), but not in the moving junction complex (PfRON2, 4, 5, and PfAMA1). The novel PfRON complex, as well as the moving junction complex, might play a fundamental role in erythrocyte invasion by merozoite stage parasites.
Collapse
Affiliation(s)
- Daisuke Ito
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Global identification of multiple substrates for Plasmodium falciparum SUB1, an essential malarial processing protease. Infect Immun 2011; 79:1086-97. [PMID: 21220481 DOI: 10.1128/iai.00902-10] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protozoan pathogen responsible for the most severe form of human malaria, Plasmodium falciparum, replicates asexually in erythrocytes within a membrane-bound parasitophorous vacuole (PV). Following each round of intracellular growth, the PV membrane (PVM) and host cell membrane rupture to release infectious merozoites in a protease-dependent process called egress. Previous work has shown that, just prior to egress, an essential, subtilisin-like parasite protease called PfSUB1 is discharged into the PV lumen, where it directly cleaves a number of important merozoite surface and PV proteins. These include the essential merozoite surface protein complex MSP1/6/7 and members of a family of papain-like putative proteases called SERA (serine-rich antigen) that are implicated in egress. To determine whether PfSUB1 has additional, previously unrecognized substrates, we have performed a bioinformatic and proteomic analysis of the entire late asexual blood stage proteome of the parasite. Our results demonstrate that PfSUB1 is responsible for the proteolytic processing of a range of merozoite, PV, and PVM proteins, including the rhoptry protein RAP1 (rhoptry-associated protein 1) and the merozoite surface protein MSRP2 (MSP7-related protein-2). Our findings imply multiple roles for PfSUB1 in the parasite life cycle, further supporting the case for considering the protease as a potential new antimalarial drug target.
Collapse
|
47
|
Curtidor H, Patiño LC, Arévalo-Pinzón G, Patarroyo ME, Patarroyo MA. Identification of the Plasmodium falciparum rhoptry neck protein 5 (PfRON5). Gene 2010; 474:22-8. [PMID: 21185360 DOI: 10.1016/j.gene.2010.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/04/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
Abstract
Gathering knowledge about the proteins involved in erythrocyte invasion by Plasmodium merozoites is the starting point for developing new strategies to control malarial disease. Many of these proteins have been studied in Toxoplasma gondii, where some belonging to the Moving Junction complex have been identified. This complex allows a strong interaction between host cell and parasite membranes, required for parasite invasion. In this genus, four rhoptry proteins (RON2, RON4, RON5 and RON8) and one micronemal protein (TgAMA-1) have been found as part of the complex. In Plasmodium falciparum, RON2 and RON4 have been characterized. In the present study, we identify PfRON5, a ~110 kDa protein which is expressed in merozoite and schizont stages of the FCB-2 strain.
Collapse
Affiliation(s)
- Hernando Curtidor
- Fundacion Instituto de Inmunologia de Colombia, Carrera 50 No. 26-20, Bogota, Colombia
| | | | | | | | | |
Collapse
|
48
|
Ranjan R, Chugh M, Kumar S, Singh S, Kanodia S, Hossain MJ, Korde R, Grover A, Dhawan S, Chauhan VS, Reddy VS, Mohmmed A, Malhotra P. Proteome analysis reveals a large merozoite surface protein-1 associated complex on the Plasmodium falciparum merozoite surface. J Proteome Res 2010; 10:680-91. [PMID: 21175202 DOI: 10.1021/pr100875y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasmodium merozoite surface protein-1 (MSP-1) is an essential antigen for the merozoite invasion of erythrocytes. A key challenge to the development of an effective malaria vaccine that can block the erythrocyte invasion is to establish the molecular interaction(s) among the parasite surface proteins as well as with the host cell encoded receptors. In the present study, we applied molecular interactions and proteome approaches to identify PfMSP-1 associated complex on the merozoite surface. Proteomic analysis identified a major malaria surface protein, PfRhopH3 interacting with PfMSP-1(42). Pull-down experiments with merozoite lysate using anti-PfMSP-1 or anti-PfRhopH3 antibodies showed 16 bands that when identified by tandem mass spectrometry corresponded to11 parasite proteins: PfMSP-3, PfMSP-6, PfMSP-7, PfMSP-9, PfRhopH3, PfRhopH1, PfRAP-1, PfRAP-2, and two RAP domain containing proteins. This MSP-1 associated complex was specifically seen at schizont/merozoite stages but not the next ring stage. We could also identify many of these proteins in culture supernatant, suggesting the shedding of the complex. Interestingly, the PfRhopH3 protein also showed binding to the human erythrocyte and anti-PfRhopH3 antibodies blocked the erythrocyte invasion of the merozoites. These results have potential implications in the development of PfMSP-1 based blood stage malaria vaccine.
Collapse
Affiliation(s)
- Ravi Ranjan
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Baravalle M, Thompson C, de Echaide ST, Palacios C, Valentini B, Suárez C, Christensen MF, Echaide I. The novel protein BboRhop68 is expressed by intraerythrocytic stages of Babesia bovis. Parasitol Int 2010; 59:571-8. [DOI: 10.1016/j.parint.2010.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 06/19/2010] [Accepted: 07/26/2010] [Indexed: 10/19/2022]
|
50
|
Arévalo-Pinzón G, Curtidor H, Vanegas M, Vizcaíno C, Patarroyo MA, Patarroyo ME. Conserved high activity binding peptides from the Plasmodium falciparum Pf34 rhoptry protein inhibit merozoites in vitro invasion of red blood cells. Peptides 2010; 31:1987-94. [PMID: 20654670 DOI: 10.1016/j.peptides.2010.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 07/10/2010] [Accepted: 07/12/2010] [Indexed: 11/18/2022]
Abstract
Rhoptries are specialized secretory organelles found in all members of the genus Plasmodium whose proteins have been considered as promising vaccine candidates due to their involvement in cell invasion and the formation of the parasitophorous vacuole (PV). The Plasmodium falciparum Pf34 protein was recently identified as a rhoptry-neck protein located in detergent-resistant microdomains (DRMs) that is expressed in mature intraerythrocytic parasite stages, but its biological function is still unknown. Receptor-ligand assays carried out in this study found that peptides 36,051 ((101)DKKFSESLKAHMDHLKILNN(120)Y), 36,053 ((141)KKYIIKEIQNNKYLNKEKKS(160)), 36,055 ((181)WLESVNNIEEKSNILKNIKS(200)Y) and 36,056 ((201)QLLNNIASLNHTLSEEIKNI(220)Y), located in the central portion of Pf34, were found to establish protease-sensitive interactions of high affinity and specificity with receptors on the surface of red blood cell (RBCs). In vitro assays showed that Pf34 high activity binding peptides (HABPs) inhibit invasion of RBCs by P. falciparum merozoites, therefore suggesting that Pf34 could act as an adhesin during invasion and supporting the inclusion of Pf34 HABPs in further studies to develop antimalarial control methods.
Collapse
|