1
|
Lv N, Huang C, Huang H, Dong Z, Chen X, Lu C, Zhang Y. Overexpression of Glutathione S-Transferases in Human Diseases: Drug Targets and Therapeutic Implications. Antioxidants (Basel) 2023; 12:1970. [PMID: 38001822 PMCID: PMC10668987 DOI: 10.3390/antiox12111970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Glutathione S-transferases (GSTs) are a major class of phase II metabolic enzymes. Besides their essential role in detoxification, GSTs also exert diverse biological activities in the occurrence and development of various diseases. In the past few decades, much research interest has been paid to exploring the mechanisms of GST overexpression in tumor drug resistance. Correspondingly, many GST inhibitors have been developed and applied, solely or in combination with chemotherapeutic drugs, for the treatment of multi-drug resistant tumors. Moreover, novel roles of GSTs in other diseases, such as pulmonary fibrosis and neurodegenerative diseases, have been recognized in recent years, although the exact regulatory mechanisms remain to be elucidated. This review, firstly summarizes the roles of GSTs and their overexpression in the above-mentioned diseases with emphasis on the modulation of cell signaling pathways and protein functions. Secondly, specific GST inhibitors currently in pre-clinical development and in clinical stages are inventoried. Lastly, applications of GST inhibitors in targeting cell signaling pathways and intracellular biological processes are discussed, and the potential for disease treatment is prospected. Taken together, this review is expected to provide new insights into the interconnection between GST overexpression and human diseases, which may assist future drug discovery targeting GSTs.
Collapse
Affiliation(s)
- Ning Lv
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Chunyan Huang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Haoyan Huang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Zhiqiang Dong
- Department of Pharmacy, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China;
| | - Xijing Chen
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Chengcan Lu
- Department of Pharmacy, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China;
- Jiangning Clinical Medical College, Jiangsu University, Nanjing 211100, China
| | - Yongjie Zhang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| |
Collapse
|
2
|
Zhang Z, Xu L, Huang L, Li T, Wang JY, Ma C, Bian X, Ren X, Li H, Wang X. Glutathione S-Transferase Alpha 4 Promotes Proliferation and Chemoresistance in Colorectal Cancer Cells. Front Oncol 2022; 12:887127. [PMID: 35936694 PMCID: PMC9346510 DOI: 10.3389/fonc.2022.887127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Glutathione S-transferase alpha 4 (GSTA4) is a phase II detoxifying enzyme that is overexpressed in colorectal cancer (CRC) and regulated by the oncogenic transcription factor AP-1. However, the role of GSTA4 in these CRC cells remains unclear. In this study, we investigated the roles of GSTA4 in the CRC cells by inactivating GSTA4 in HCT116 human CRC cells (Defined as HCT116ΔGSTA4) using the CRISPR/Cas9 gene editing. Cell proliferation, clonogenicity, and susceptibility to chemotherapeutic drugs were analyzed in vitro and in a xenograft model. The results showed that loss of GSTA4 significantly decreased cell proliferation and clonogenicity, whereas it increased intracellular reactive oxygen species and cell susceptibility to 5-fluorouracil (5-FU) and oxaliplatin. Additionally, exposure of HCT116ΔGSTA4 cells to 5-FU increased the expression of γH2AX, a hallmark of double-stranded DNA breaks. In contrast, no remarkably increased γH2AX was noted in oxaliplatin-treated HCT116ΔGSTA4 cells compared with HCT116 cells. Moreover, loss of GSTA4 blocked the AKT and p38 MAPK pathways, leading to proliferative suppression. Finally, the xenograft model showed decreased tumor size for HCT116ΔGSTA4 cells compared with HCT116 cells, confirming in vitro findings. These findings suggest that GSTA4 is capable of promoting proliferation, tumorigenesis, and chemoresistance and is a potential target for CRC therapy.
Collapse
Affiliation(s)
- Zhanhu Zhang
- Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Lili Xu
- Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Lin Huang
- Department of Gastroenterology, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Tianqi Li
- Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Jane Y. Wang
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Chunhua Ma
- Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Xiaoyun Bian
- Department of Gastroenterology, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Xiaoyan Ren
- Department of Pathology, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Haibo Li
- Department of Clinical Laboratory, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Xingmin Wang
- Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
- *Correspondence: Xingmin Wang,
| |
Collapse
|
3
|
Szeligowska N, Cholewińska P, Smoliński J, Wojnarowski K, Pokorny P, Czyż K, Pogoda-Sewerniak K. Glutathione S-transferase (GST) and cortisol levels vs. microbiology of the digestive system of sheep during lambing. BMC Vet Res 2022; 18:107. [PMID: 35303874 PMCID: PMC8932050 DOI: 10.1186/s12917-022-03201-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/02/2022] [Indexed: 05/31/2023] Open
Abstract
Background During parturition, animals exhibit variation in hormone levels, homeostasis disturbance and dysfunction of the immune system as a result of stress. Glutathione S-transferase (GST) is responsible for the occurrence of oxidative stress in the cells. Cortisol is known as the stress hormone, but it is also involved in the metabolism of proteins, carbohydrates and metabolism processes led by adipose tissue. The aim of the this study was to determine how the levels of GST and cortisol change depending on the parity. Additionally, the influence of lambing on the microbiological composition of the digestive system and placenta in Olkuska sheep was investigated. Methods Eighteen ewes were selected for the experiment - primiparas (n = 9) and multiparas (n = 9), they were kept in the same environmental conditions, had the same diet and did not show any disease symptoms. Fecal samples were collected individually from each ewe (n = 18) and then bacterial DNA isolation was made, then qPCR analysis for Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria phyla and Lactobacillaceae family bacteria levels was performed. These samples were also used to analyze cortisol levels by ELISA test. In addition, placenta fragments were collected during delivery, and then the GST level from the tissue was tested. Results The analysis of the results showed a higher level of cortisol in primiparous sheep than in multiparous ones, as in the case of glutathione transferase. There were differences between both studied groups in the microbiological composition of the digestive system. In primiparous sheep, the levels of the tested microorganisms were significantly lower than in multiparous ones. A similar relationship occurred in the study of the placental microbiome. Conclusion The results show that sheep microbiome, cortisol and GST levels are different in primiparas and multiparas. The study conducted may constitute an introduction to further analyzes that would help positively affect the welfare and homeostasis of the female organism.
Collapse
Affiliation(s)
- Natalia Szeligowska
- Institute of Animal Breeding, Wrocław University of Enviromental and Life Sciences, Chełmońskiego St. 38C, 51-630, Wrocław, Poland.
| | - Paulina Cholewińska
- Institute of Animal Breeding, Wrocław University of Enviromental and Life Sciences, Chełmońskiego St. 38C, 51-630, Wrocław, Poland
| | - Jakub Smoliński
- Institute of Animal Breeding, Wrocław University of Enviromental and Life Sciences, Chełmońskiego St. 38C, 51-630, Wrocław, Poland
| | - Konrad Wojnarowski
- Chair for Fish Diseases and Fisheries Biology, Ludwig-Maximilians-University of Munich, 80539, Munich, Germany
| | - Przemysław Pokorny
- Institute of Animal Breeding, Wrocław University of Enviromental and Life Sciences, Chełmońskiego St. 38C, 51-630, Wrocław, Poland
| | - Katarzyna Czyż
- Institute of Animal Breeding, Wrocław University of Enviromental and Life Sciences, Chełmońskiego St. 38C, 51-630, Wrocław, Poland
| | - Krystyna Pogoda-Sewerniak
- Department of Environmental Hygiene and Animal Welfare, Wrocław University of Enviromental and Life Sciences, Chełmońskiego St. 38E, 51-630, Wrocław, Poland
| |
Collapse
|
4
|
Decreased Expression of the Host Long-Noncoding RNA-GM Facilitates Viral Escape by Inhibiting the Kinase activity TBK1 via S-glutathionylation. Immunity 2021; 53:1168-1181.e7. [PMID: 33326766 DOI: 10.1016/j.immuni.2020.11.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 07/29/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
Viruses have evolved multiple strategies to evade elimination by the immune system. Here we examined the contribution of host long noncoding RNAs (lncRNAs) in viral immune evasion. By functional screening of lncRNAs whose expression decreased upon viral infection of macrophages, we identified a lncRNA (lncRNA-GM, Gene Symbol: AK189470.1) that promoted type I interferon (IFN-I) production and inhibited viral replication. Deficiency of lncRNA-GM in mice increased susceptibility to viral infection and impaired IFN-I production. Mechanistically, lncRNA-GM bound to glutathione S-transferase M1 (GSTM1) and blocked GSTM1 interaction with the kinase TBK1, reducing GSTM1-mediated S-glutathionylation of TBK1. Decreased S-glutathionylation enhanced TBK1 activity and downstream production of antiviral mediators. Viral infection reprogrammed intracellular glutathione metabolism and furthermore, an oxidized glutathione mimetic could inhibit TBK1 activity and promote viral replication. Our findings reveal regulation of TBK1 by S-glutathionylation and provide insight into the viral mediated metabolic changes that impact innate immunity and viral evasion.
Collapse
|
5
|
Glutathione S-Transferases in Cancer. Antioxidants (Basel) 2021; 10:antiox10050701. [PMID: 33946704 PMCID: PMC8146591 DOI: 10.3390/antiox10050701] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
In humans, the glutathione S-transferases (GST) protein family is composed of seven members that present remarkable structural similarity and some degree of overlapping functionalities. GST proteins are crucial antioxidant enzymes that regulate stress-induced signaling pathways. Interestingly, overactive GST proteins are a frequent feature of many human cancers. Recent evidence has revealed that the biology of most GST proteins is complex and multifaceted and that these proteins actively participate in tumorigenic processes such as cell survival, cell proliferation, and drug resistance. Structural and pharmacological studies have identified various GST inhibitors, and these molecules have progressed to clinical trials for the treatment of cancer and other diseases. In this review, we discuss recent findings in GST protein biology and their roles in cancer development, their contribution in chemoresistance, and the development of GST inhibitors for cancer treatment.
Collapse
|
6
|
Delmond KA, Delleon H, Goveia RM, Teixeira TM, Abreu DC, Mello-Andrade F, Reis AADS, Silva DDME, Barbosa ADP, Tavares RS, Anunciação CE, Silveira-Lacerda E. Influence of genetic polymorphisms in glutathione-S-transferases gene in response to imatinib among Brazilian patients with chronic myeloid leukemia. Mol Biol Rep 2021; 48:2035-2046. [PMID: 33709282 DOI: 10.1007/s11033-020-06093-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 12/15/2020] [Indexed: 11/26/2022]
Abstract
Polymorphism in metabolizing enzymes can influence drug response as well as the risk for adverse drug reactions. Nevertheless, there are still few studies analyzing the consequence of polymorphisms for the Glutathione-S-transferases (GST) gene to drug response in chronic myeloid leukemia (CML). This study reports, the influence of GSTP1*B and GSTT1/GSTM1null polymorphisms in response to imatinib in CML patients in a Brazilian population. One hundred thirty-nine CML patients from the Clinical Hospital of Goiânia, Goiás, Brazil, treated with imatinib were enrolled in this study. Genotyping of GSTT1 and GSTM1 genes deletions were performed by qPCR and of GSTP1 gene was performed by RFLP-PCR. The frequency of GSTP1*1B, GSTT1 and GSTM1null polymorphisms were determined for all patients. The influence of each patient's genotypes was analyzed with the patient's response to imatinib treatment. Brazilian CML patients revealed GSTT1 and GSTM1 genes deletions. GSTT1 deletion was found in 19.3% of patients and GSTM1 deletion in 48.7% of patients with CML. GSTT1/GSTM1 deletion was found in 11.7% in Brazilian CML patients. The "G allele" of GSTP1*B, is associated with later cytogenetic response in imatinib therapy. While, the gene presence combined with GG genotype (GSTM1 present/GSTPI-GG) conferred a tend to a later cytogenetic response to patients. GSTP1*B and GSTT1/GSTM1null polymorphisms influence treatment response in CML. Brazilian CML patients presenting GSTP1 AA/AG genotypes alone and in combination with GSTT1 null reach the cytogenetic response faster, while patients presenting GSTP1-GG and GSTMI positive genotypes may take longer to achieve cytogenetic response. As a result, it allows a better prognosis, with the use of an alternative therapy, other than reducing treatment cost.
Collapse
Affiliation(s)
- Kezia Aguiar Delmond
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiânia, Goiás, 74690-900, Brazil
- College of Goyazes Union, Trindade, Goiás, 75380-000, Brazil
| | - Hugo Delleon
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiânia, Goiás, 74690-900, Brazil
- Uni-Anhanguera University Center of Goias, Goiânia, Goiás, 74423-115, Brazil
| | - Rebeca Mota Goveia
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiânia, Goiás, 74690-900, Brazil
| | - Thallita Monteiro Teixeira
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiânia, Goiás, 74690-900, Brazil
| | - Davi Carvalho Abreu
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiânia, Goiás, 74690-900, Brazil
| | - Francyelli Mello-Andrade
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiânia, Goiás, 74690-900, Brazil
- Department of Chemistry, Federal Institute of Education, Science and Technology of Goiás, Goiânia, Goiás, 74055-110, Brazil
| | - Angela Adamski da Silva Reis
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Daniela de Melo E Silva
- Department of Genetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| | | | | | - Carlos Eduardo Anunciação
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Elisângela Silveira-Lacerda
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiânia, Goiás, 74690-900, Brazil.
| |
Collapse
|
7
|
Zhang L, Kim SH, Park KH, Zhi-Wei Y, Jie Z, Townsend DM, Tew KD. Glutathione S-Transferase P Influences Redox Homeostasis and Response to Drugs that Induce the Unfolded Protein Response in Zebrafish. J Pharmacol Exp Ther 2021; 377:121-132. [PMID: 33514607 DOI: 10.1124/jpet.120.000417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/25/2021] [Indexed: 01/21/2023] Open
Abstract
We have created a novel glutathione S-transferase π1 (gstp1) knockout (KO) zebrafish model and used it for comparative analyses of redox homeostasis and response to drugs that cause endoplasmic reticulum (ER) stress and induce the unfolded protein response (UPR). Under basal conditions, gstp1 KO larvae had higher expression of antioxidant nuclear factor erythroid 2-related factor 2 (Nrf2) accompanied by a more reduced larval environment and a status consistent with reductive stress. Compared with wild type, various UPR markers were decreased in KO larvae, but treatment with drugs that induce ER stress caused greater toxicities and increased expression of Nrf2 and UPR markers in KO. Tunicamycin and 02-{2,4-dinitro-5-[4-(N-methylamino)benzoyloxy]phenyl}1-(N,N-dimethylamino)diazen-1-ium-1,2-diolate (PABA/nitric oxide) activated inositol-requiring protein-1/X-box binding protein 1 pathways, whereas thapsigargin caused greater activation of protein kinase-like ER kinase/activating transcription factor 4/CHOP pathways. These results suggest that this teleost model is useful for predicting how GSTP regulates organismal management of oxidative/reductive stress and is a determinant of response to drug-induced ER stress and the UPR. SIGNIFICANCE STATEMENT: A new zebrafish model has been created to study the importance of glutathione S-transferase π1 in development, redox homeostasis, and response to drugs that enact cytotoxicity through endoplasmic reticulum stress and induction of the unfolded protein response.
Collapse
Affiliation(s)
- Leilei Zhang
- Leilei Zhang, Seok-Hyung Kim, Ki-Hoon Park, Zhi-wei Ye, Jie Zhang, Danyelle M. Townsend, Kenneth D. Tew Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., Z.Y., J.Z., K.D.T.), Division of Nephrology, Department of Medicine (S.-H.K., K.-H.P.), and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina
| | - Seok-Hyung Kim
- Leilei Zhang, Seok-Hyung Kim, Ki-Hoon Park, Zhi-wei Ye, Jie Zhang, Danyelle M. Townsend, Kenneth D. Tew Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., Z.Y., J.Z., K.D.T.), Division of Nephrology, Department of Medicine (S.-H.K., K.-H.P.), and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina
| | - Ki-Hoon Park
- Leilei Zhang, Seok-Hyung Kim, Ki-Hoon Park, Zhi-wei Ye, Jie Zhang, Danyelle M. Townsend, Kenneth D. Tew Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., Z.Y., J.Z., K.D.T.), Division of Nephrology, Department of Medicine (S.-H.K., K.-H.P.), and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina
| | - Ye Zhi-Wei
- Leilei Zhang, Seok-Hyung Kim, Ki-Hoon Park, Zhi-wei Ye, Jie Zhang, Danyelle M. Townsend, Kenneth D. Tew Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., Z.Y., J.Z., K.D.T.), Division of Nephrology, Department of Medicine (S.-H.K., K.-H.P.), and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina
| | - Zhang Jie
- Leilei Zhang, Seok-Hyung Kim, Ki-Hoon Park, Zhi-wei Ye, Jie Zhang, Danyelle M. Townsend, Kenneth D. Tew Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., Z.Y., J.Z., K.D.T.), Division of Nephrology, Department of Medicine (S.-H.K., K.-H.P.), and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina
| | - Danyelle M Townsend
- Leilei Zhang, Seok-Hyung Kim, Ki-Hoon Park, Zhi-wei Ye, Jie Zhang, Danyelle M. Townsend, Kenneth D. Tew Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., Z.Y., J.Z., K.D.T.), Division of Nephrology, Department of Medicine (S.-H.K., K.-H.P.), and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina
| | - Kenneth D Tew
- Leilei Zhang, Seok-Hyung Kim, Ki-Hoon Park, Zhi-wei Ye, Jie Zhang, Danyelle M. Townsend, Kenneth D. Tew Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., Z.Y., J.Z., K.D.T.), Division of Nephrology, Department of Medicine (S.-H.K., K.-H.P.), and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
8
|
Zhang J, Ye ZW, Janssen-Heininger Y, Townsend DM, Tew KD. Development of Telintra as an Inhibitor of Glutathione S-Transferase P. Handb Exp Pharmacol 2021; 264:71-91. [PMID: 32767141 PMCID: PMC8963531 DOI: 10.1007/164_2020_392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Glutathione S-transferase P (GSTP) is a component of a complex series of pathways that provide cellular redox homeostasis. It is an abundant protein in certain tumors and is over-expressed in cancer drug resistance. It has diverse cellular functions that include, thiolase activities with small electrophilic agents or susceptible cysteine residues on the protein to mediate S-glutathionylation, and chaperone binding with select protein kinases. Preclinical and clinical testing of a nanomolar inhibitor of GSTP, TLK199 (Telintra; Ezatiostat) has indicated a role for the enzyme in hematopoiesis and utility for the drug in the treatment of patients with myelodysplastic syndrome.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Zhi-Wei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | | | - Danyelle M Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
9
|
Abstract
Drug metabolizing enzymes catalyze the biotransformation of many of drugs and chemicals. The drug metabolizing enzymes are distributed among several evolutionary families and catalyze a range of detoxication reactions, including oxidation/reduction, conjugative, and hydrolytic reactions that serve to detoxify potentially toxic compounds. This detoxication function requires that drug metabolizing enzymes exhibit substrate promiscuity. In addition to their catalytic functions, many drug metabolizing enzymes possess functions unrelated to or in addition to catalysis. Such proteins are termed 'moonlighting proteins' and are defined as proteins with multiple biochemical or biophysical functions that reside in a single protein. This review discusses the diverse moonlighting functions of drug metabolizing enzymes and the roles they play in physiological functions relating to reproduction, vision, cell signaling, cancer, and transport. Further research will likely reveal new examples of moonlighting functions of drug metabolizing enzymes.
Collapse
Affiliation(s)
- Philip G Board
- John Curtin School of Medical Research, ANU College of Health and Medicine, The Australian National University, Canberra, ACT, Australia
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, New York, NY, USA
| |
Collapse
|
10
|
Zhang J, Ye ZW, Chen W, Culpepper J, Jiang H, Ball LE, Mehrotra S, Blumental-Perry A, Tew KD, Townsend DM. Altered redox regulation and S-glutathionylation of BiP contribute to bortezomib resistance in multiple myeloma. Free Radic Biol Med 2020; 160:755-767. [PMID: 32937189 PMCID: PMC7704679 DOI: 10.1016/j.freeradbiomed.2020.09.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
Multiple myeloma (MM) cells have high rates of secretion of proteins rich in disulfide bonds and depend upon compartmentalized redox balance for accurate protein folding. The proteasome inhibitor bortezomib (Btz) is a successful frontline treatment for the disease, but its long-term efficacy is restricted by the acquisition of resistance. We found that MM cell lines resistant to Btz maintain high levels of oxidative stress and are cross resistant to endoplasmic reticulum (ER) stress-inducing agents thapsigargin (ThG), and tunicamycin (TuM). Moreover, cells expressing high/wild type levels of glutathione S-transferase P (GSTP) are more resistant than Gstp1/p2 knockout cells. In agreement, basal levels of S-glutathionylated proteins and redox regulation enzymes, including GSTP are elevated at mRNA and protein levels in resistant cells. GSTP mediated S-glutathionylation (SSG) regulates the activities of a number of redox active ER proteins. Here we demonstrated that the post-translational modification determines the balance between foldase and ATPase activities of the binding immunoglobulin protein (BiP), with Cys41-SSG important for ATPase, and Cys420-SSG for foldase. BiP expression and S-glutathionylation are increased in clinical specimens of bone marrow from MM patients compared to non-cancerous samples. Preventing S-glutathionylation in MM cells with a GSTP specific inhibitor restored BiP activities and reversed resistance to Btz. Therefore, S-glutathionylation of BiP confers pro-survival advantages and represents a novel mechanism of drug resistance in MM cells. We conclude that altered GSTP expression leads to S-glutathionylation of BiP, and contributes to acquired resistance to Btz in MM.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, MSC 509/BSB 358, Charleston, SC, 29425, USA.
| | - Zhi-Wei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, MSC 509/BSB 358, Charleston, SC, 29425, USA
| | - Wei Chen
- Clinical Research Center, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, 1-1 Zhongfu Road, Nangjing, 21003, China
| | - John Culpepper
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, MSC 509/BSB 358, Charleston, SC, 29425, USA
| | - Haiming Jiang
- Intensive Care Unit, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Jinbu Road, Muping District, Yantai City, Shandong, 264100, PR China
| | - Lauren E Ball
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, MSC 509/BSB 358, Charleston, SC, 29425, USA
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, 86 Jonathan Lucas Street, HCC512H, Charleston, SC, 29425, USA
| | - Anna Blumental-Perry
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14203, USA
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, MSC 509/BSB 358, Charleston, SC, 29425, USA
| | - Danyelle M Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, 274 Calhoun Street, MSC 141, Charleston, SC, 29425, USA.
| |
Collapse
|
11
|
Oncology Therapeutics Targeting the Metabolism of Amino Acids. Cells 2020; 9:cells9081904. [PMID: 32824193 PMCID: PMC7463463 DOI: 10.3390/cells9081904] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Amino acid metabolism promotes cancer cell proliferation and survival by supporting building block synthesis, producing reducing agents to mitigate oxidative stress, and generating immunosuppressive metabolites for immune evasion. Malignant cells rewire amino acid metabolism to maximize their access to nutrients. Amino acid transporter expression is upregulated to acquire amino acids from the extracellular environment. Under nutrient depleted conditions, macropinocytosis can be activated where proteins from the extracellular environment are engulfed and degraded into the constituent amino acids. The demand for non-essential amino acids (NEAAs) can be met through de novo synthesis pathways. Cancer cells can alter various signaling pathways to boost amino acid usage for the generation of nucleotides, reactive oxygen species (ROS) scavenging molecules, and oncometabolites. The importance of amino acid metabolism in cancer proliferation makes it a potential target for therapeutic intervention, including via small molecules and antibodies. In this review, we will delineate the targets related to amino acid metabolism and promising therapeutic approaches.
Collapse
|
12
|
Sciarretta F, Fulci C, Palumbo C, Aquilano K, Pastore A, Iorio E, Lettieri-Barbato D, Cicconi R, Minutolo A, Parravano M, Gilardi M, Varano M, Caccuri AM. Glutathione transferase P silencing promotes neuronal differentiation of retinal R28 cells. J Cell Physiol 2019; 234:15885-15897. [PMID: 30741416 DOI: 10.1002/jcp.28246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 01/24/2023]
Abstract
Glutathione transferases (GSTs) play an important role in retinal pathophysiology. Within this family, the GSTP isoform is known as an endogenous regulator of cell survival and proliferation pathways and of cellular responses to oxidative stress. In the present study we silenced GSTP in R28 cells, a retinal precursor cell line with markers of both glial and neuronal origin, and obtained stable clones which were viable and, unexpectedly, characterized by a more neuronal phenotype. The degree of neuronal differentiation was inversely correlated with GSTP residual expression levels. The clone with the lowest expression of GSTP showed metabolic reprogramming, a more favorable redox status and, despite its neuronal phenotype, a sensitivity to glutamate and 4-hydroxynonenal toxicity comparable to that of control cells. Altogether, our evidence shows that near full depletion of GSTP in retinal precursor cells, triggers neuronal differentiation and prosurvival metabolic changes.
Collapse
Affiliation(s)
- Francesca Sciarretta
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Chiara Fulci
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Anna Pastore
- Laboratory of Molecular Genetics and Functional Genomics, Division of Genetic and Rare Disease, Children's Hospital and Research Institute Bambino Gesù, Rome, Italy
| | - Egidio Iorio
- Core Facilities, High Resolution NMR Unit, Istituto Superiore di Sanità, Rome, Italy
| | | | - Rosella Cicconi
- Interdepartmental Service Centre - Station for Animal Technology (STA), University of Rome Tor Vergata, Rome, Italy
| | | | | | - Marta Gilardi
- Ophthalmology, IRCCS-G.B. Bietti Foundation, Rome, Italy
| | - Monica Varano
- Ophthalmology, IRCCS-G.B. Bietti Foundation, Rome, Italy
| | - Anna Maria Caccuri
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Interdepartmental Centre for Nanosciences, Nanotechnologies, Innovative Instrumentation (NAST), University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
13
|
Dong SC, Sha HH, Xu XY, Hu TM, Lou R, Li H, Wu JZ, Dan C, Feng J. Glutathione S-transferase π: a potential role in antitumor therapy. Drug Des Devel Ther 2018; 12:3535-3547. [PMID: 30425455 PMCID: PMC6204874 DOI: 10.2147/dddt.s169833] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Glutathione S-transferase π (GSTπ) is a Phase II metabolic enzyme that is an important facilitator of cellular detoxification. Traditional dogma asserts that GSTπ functions to catalyze glutathione (GSH)-substrate conjunction to preserve the macromolecule upon exposure to oxidative stress, thus defending cells against various toxic compounds. Over the past 20 years, abnormal GSTπ expression has been linked to the occurrence of tumor resistance to chemotherapy drugs, demonstrating that this enzyme possesses functions beyond metabolism. This revelation reveals exciting possibilities in the realm of drug discovery, as GSTπ inhibitors and its prodrugs offer a feasible strategy in designing anticancer drugs with the primary purpose of reversing tumor resistance. In connection with the authors' current research, we provide a review on the biological function of GSTπ and current developments in GSTπ-targeting drugs, as well as the prospects of future strategies.
Collapse
Affiliation(s)
- Shu-Chen Dong
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Huan-Huan Sha
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Xiao-Yue Xu
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Tian-Mu Hu
- Department of Biological Science, Purdue University, West Lafayette, IN, USA
| | - Rui Lou
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Huizi Li
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Jian-Zhong Wu
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Chen Dan
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Jifeng Feng
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| |
Collapse
|
14
|
Antidiabetic and antiparasitic potentials: Inhibition effects of some natural antioxidant compounds on α-glycosidase, α-amylase and human glutathione S-transferase enzymes. Int J Biol Macromol 2018; 119:741-746. [PMID: 30076927 DOI: 10.1016/j.ijbiomac.2018.08.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 11/20/2022]
Abstract
The glutathione S-transferase (GST) was purified from fresh blood erythrocytes using affinity column chromatography. Also, α-amylase from porcine pancreas and α-glycosidase from Saccharomyces cerevisiae were used as target enzymes. In this study, these compounds were tested on α-amylase, α-glycosidase, and GST enzymes and demonstrated effective inhibitor compounds with Ki values in the range of 8.34-40.78 μM against GST, and 120.53-892.36 nM against α-glycosidase. Additionally, the phenolic molecules were tested for the inhibition of α-amylase enzyme which determined effective inhibition profile with IC50 values in the range of 175.01-626.58 nM. Indeed, these molecules can be elective inhibitors of GST, α-glycosidase and α-amylase enzymes as antidiabetic and antiparasitic agents.
Collapse
|
15
|
Bräutigam L, Zhang J, Dreij K, Spahiu L, Holmgren A, Abe H, Tew KD, Townsend DM, Kelner MJ, Morgenstern R, Johansson K. MGST1, a GSH transferase/peroxidase essential for development and hematopoietic stem cell differentiation. Redox Biol 2018; 17:171-179. [PMID: 29702404 PMCID: PMC6006721 DOI: 10.1016/j.redox.2018.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
We show for the first time that, in contrast to other glutathione transferases and peroxidases, deletion of microsomal glutathione transferase 1 (MGST1) in mice is embryonic lethal. To elucidate why, we used zebrafish development as a model system and found that knockdown of MGST1 produced impaired hematopoiesis. We show that MGST1 is expressed early during zebrafish development and plays an important role in hematopoiesis. High expression of MGST1 was detected in regions of active hematopoiesis and co-expressed with markers for hematopoietic stem cells. Further, morpholino-mediated knock-down of MGST1 led to a significant reduction of differentiated hematopoietic cells both from the myeloid and the lymphoid lineages. In fact, hemoglobin was virtually absent in the knock-down fish as revealed by diaminofluorene staining. The impact of MGST1 on hematopoiesis was also shown in hematopoietic stem/progenitor cells (HSPC) isolated from mice, where it was expressed at high levels. Upon promoting HSPC differentiation, lentiviral shRNA MGST1 knockdown significantly reduced differentiated, dedicated cells of the hematopoietic system. Further, MGST1 knockdown resulted in a significant lowering of mitochondrial metabolism and an induction of glycolytic enzymes, energetic states closely coupled to HSPC dynamics. Thus, the non-selenium, glutathione dependent redox regulatory enzyme MGST1 is crucial for embryonic development and for hematopoiesis in vertebrates.
Collapse
Affiliation(s)
- Lars Bräutigam
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jie Zhang
- Departments of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Kristian Dreij
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet, SE 17177 Stockholm, Sweden
| | - Linda Spahiu
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet, SE 17177 Stockholm, Sweden
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-Ku, Nagoya 464-8602, Japan
| | - Kenneth D Tew
- Departments of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Danyelle M Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Michael J Kelner
- Department of Pathology, University of California, San Diego, MC7721, La Jolla, CA 92093-7721, United States
| | - Ralf Morgenstern
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet, SE 17177 Stockholm, Sweden.
| | - Katarina Johansson
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
16
|
Zhang J, Ye ZW, Singh S, Townsend DM, Tew KD. An evolving understanding of the S-glutathionylation cycle in pathways of redox regulation. Free Radic Biol Med 2018; 120:204-216. [PMID: 29578070 PMCID: PMC5940525 DOI: 10.1016/j.freeradbiomed.2018.03.038] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022]
Abstract
By nature of the reversibility of the addition of glutathione to low pKa cysteine residues, the post-translational modification of S-glutathionylation sanctions a cycle that can create a conduit for cell signaling events linked with cellular exposure to oxidative or nitrosative stress. The modification can also avert proteolysis by protection from over-oxidation of those clusters of target proteins that are substrates. Altered functions are associated with S-glutathionylation of proteins within the mitochondria and endoplasmic reticulum compartments, and these impact energy production and protein folding pathways. The existence of human polymorphisms of enzymes involved in the cycle (particularly glutathione S-transferase P) create a scenario for inter-individual variance in response to oxidative stress and a number of human diseases with associated aberrant S-glutathionylation have now been identified.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, United States
| | - Zhi-Wei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, United States
| | - Shweta Singh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, United States
| | - Danyelle M Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, 274 Calhoun Street, MSC141, Charleston, SC 29425, United States
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, United States.
| |
Collapse
|
17
|
Zhang J, Ye ZW, Chen W, Manevich Y, Mehrotra S, Ball L, Janssen-Heininger Y, Tew KD, Townsend DM. S-Glutathionylation of estrogen receptor α affects dendritic cell function. J Biol Chem 2018; 293:4366-4380. [PMID: 29374060 DOI: 10.1074/jbc.m117.814327] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/18/2018] [Indexed: 12/27/2022] Open
Abstract
Glutathione S-transferase Pi (GSTP) is a thiolase that catalyzes the addition of glutathione (GSH) to receptive cysteines in target proteins, producing an S-glutathionylated residue. Accordingly, previous studies have reported that S-glutathionylation is constitutively decreased in cells from mice lacking GSTP (Gstp1/p2-/-). Here, we found that bone marrow-derived dendritic cells (BMDDCs) from Gstp1/p2-/- mice have proliferation rates that are greater than those in their WT counterparts (Gstp1/p2+/+). Moreover, Gstp1/p2-/- BMDDCs had increased reactive oxygen species (ROS) levels and decreased GSH:glutathione disulfide (GSSG) ratios. Estrogen receptor α (ERα) is linked to myeloproliferation and differentiation, and we observed that its steady-state levels are elevated in Gstp1/p2-/- BMDDCs, indicating a link between GSTP and ERα activities. BMDDCs differentiated by granulocyte-macrophage colony-stimulating factor had elevated ERα levels, which were more pronounced in Gstp1/p2-/- than WT mice. When stimulated with lipopolysaccharide for maturation, Gstp1/p2-/- BMDDCs exhibited augmented endocytosis, maturation rate, cytokine secretion, and T-cell activation; heightened glucose uptake and glycolysis; increased Akt signaling (in the mTOR pathway); and decreased AMPK-mediated phosphorylation of proteins. Of note, GSTP formed a complex with ERα, stimulating ERα S-glutathionylation at cysteines 221, 245, 417, and 447; altering ERα's binding affinity for estradiol; and reducing overall binding potential (receptor density and affinity) 3-fold. Moreover, in Gstp1/p2-/- BMDDCs, ERα S-glutathionylation was constitutively decreased. Taken together, these findings suggest that GSTP-mediated S-glutathionylation of ERα controls BMDDC differentiation and affects metabolic function in dendritic cells.
Collapse
Affiliation(s)
- Jie Zhang
- From the Departments of Cell and Molecular Pharmacology and Experimental Therapeutics
| | - Zhi-Wei Ye
- From the Departments of Cell and Molecular Pharmacology and Experimental Therapeutics
| | - Wei Chen
- Department of Infectious Disease, the Second Affiliated Hospital of Medical School of the Southeast University, 1-1 Zhongfu Road, Nanjing 210003, China, and
| | - Yefim Manevich
- From the Departments of Cell and Molecular Pharmacology and Experimental Therapeutics
| | - Shikhar Mehrotra
- Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Lauren Ball
- From the Departments of Cell and Molecular Pharmacology and Experimental Therapeutics
| | - Yvonne Janssen-Heininger
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont 05405
| | - Kenneth D Tew
- From the Departments of Cell and Molecular Pharmacology and Experimental Therapeutics,
| | | |
Collapse
|
18
|
Ye ZW, Zhang J, Ancrum T, Manevich Y, Townsend DM, Tew KD. Glutathione S-Transferase P-Mediated Protein S-Glutathionylation of Resident Endoplasmic Reticulum Proteins Influences Sensitivity to Drug-Induced Unfolded Protein Response. Antioxid Redox Signal 2017; 26:247-261. [PMID: 26838680 PMCID: PMC5312626 DOI: 10.1089/ars.2015.6486] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS S-glutathionylation of cysteine residues, catalyzed by glutathione S-transferase Pi (GSTP), alters structure/function characteristics of certain targeted proteins. Our goal is to characterize how S-glutathionylation of proteins within the endoplasmic reticulum (ER) impact cell sensitivity to ER-stress inducing drugs. RESULTS We identify GSTP to be an ER-resident protein where it demonstrates both chaperone and catalytic functions. Redox based proteomic analyses identified a cluster of proteins cooperatively involved in the regulation of ER stress (immunoglobulin heavy chain-binding protein [BiP], protein disulfide isomerase [PDI], calnexin, calreticulin, endoplasmin, sarco/endoplasmic reticulum Ca2+-ATPase [SERCA]) that individually co-immunoprecipitated with GSTP (implying protein complex formation) and were subject to reactive oxygen species (ROS) induced S-glutathionylation. S-glutathionylation of each of these six proteins was attenuated in cells (liver, embryo fibroblasts or bone marrow dendritic) from mice lacking GSTP (Gstp1/p2-/-) compared to wild type (Gstp1/p2+/+). Moreover, Gstp1/p2-/- cells were significantly more sensitive to the cytotoxic effects of the ER-stress inducing drugs, thapsigargin (7-fold) and tunicamycin (2-fold). INNOVATION Within the family of GST isozymes, GSTP has been ascribed the broadest range of catalytic and chaperone functions. Now, for the first time, we identify it as an ER resident protein that catalyzes S-glutathionylation of critical ER proteins within this organelle. Of note, this can provide a nexus for linkage of redox based signaling and pathways that regulate the unfolded protein response (UPR). This has novel importance in determining how some drugs kill cancer cells. CONCLUSIONS Contextually, these results provide mechanistic evidence that GSTP can exert redox regulation in the oxidative ER environment and indicate that, within the ER, GSTP influences the cellular consequences of the UPR through S-glutathionylation of a series of key interrelated proteins. Antioxid. Redox Signal. 26, 247-261.
Collapse
Affiliation(s)
- Zhi-Wei Ye
- 1 Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| | - Jie Zhang
- 1 Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| | - Tiffany Ancrum
- 1 Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| | - Yefim Manevich
- 1 Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| | - Danyelle M Townsend
- 2 Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina , Charleston, South Carolina
| | - Kenneth D Tew
- 1 Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
19
|
Bartolini D, Galli F. The functional interactome of GSTP: A regulatory biomolecular network at the interface with the Nrf2 adaption response to oxidative stress. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1019:29-44. [DOI: 10.1016/j.jchromb.2016.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 01/01/2023]
|
20
|
McGarry DJ, Chakravarty P, Wolf CR, Henderson CJ. Altered protein S-glutathionylation identifies a potential mechanism of resistance to acetaminophen-induced hepatotoxicity. J Pharmacol Exp Ther 2015; 355:137-44. [PMID: 26311813 PMCID: PMC4631951 DOI: 10.1124/jpet.115.227389] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/25/2015] [Indexed: 01/01/2023] Open
Abstract
Acetaminophen (APAP) is the most commonly used over-the-counter analgesic. However, hepatotoxicity induced by APAP is a major clinical issue, and the factors that define sensitivity to APAP remain unclear. We have previously demonstrated that mice nulled for glutathione S-transferase Pi (GSTP) are resistant to APAP-induced hepatotoxicity. This study aims to exploit this difference to delineate pathways of importance in APAP toxicity. We used mice nulled for GSTP and heme oxygenase-1 oxidative stress reporter mice, together with a novel nanoflow liquid chromatography-tandem mass spectrometry methodology to investigate the role of oxidative stress, cell signaling, and protein S-glutathionylation in APAP hepatotoxicity. We provide evidence that the sensitivity difference between wild-type and Gstp1/2(-/-) mice is unrelated to the ability of APAP to induce oxidative stress, despite observing significant increases in c-Jun N-terminal kinase and extracellular signal-regulated kinase phosphorylation in wild-type mice. The major difference in response to APAP was in the levels of protein S-glutathionylation: Gstp1/2(-/-) mice exhibited a significant increase in the number of S-glutathionylated proteins compared with wild-type animals. Remarkably, these S-glutathionylated proteins are involved in oxidative phosphorylation, respiratory complexes, drug metabolism, and mitochondrial apoptosis. Furthermore, we found that S-glutathionylation of the rate-limiting glutathione-synthesizing enzyme, glutamate cysteine ligase, was markedly increased in Gstp1/2(-/-) mice in response to APAP. The data demonstrate that S-glutathionylation provides an adaptive response to APAP and, as a consequence, suggest that this is an important determinant in APAP hepatotoxicity. This work identifies potential novel avenues associated with cell survival for the treatment of chemical-induced hepatotoxicity.
Collapse
Affiliation(s)
- David J McGarry
- Molecular Pharmacology Group, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Dundee, United Kingdom (D.J.M., C.R.W., C.J.H.); and Bioinformatics and Biostatistics Group, Cancer Research UK London Research Institute, London, United Kingdom (P.C.)
| | - Probir Chakravarty
- Molecular Pharmacology Group, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Dundee, United Kingdom (D.J.M., C.R.W., C.J.H.); and Bioinformatics and Biostatistics Group, Cancer Research UK London Research Institute, London, United Kingdom (P.C.)
| | - C Roland Wolf
- Molecular Pharmacology Group, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Dundee, United Kingdom (D.J.M., C.R.W., C.J.H.); and Bioinformatics and Biostatistics Group, Cancer Research UK London Research Institute, London, United Kingdom (P.C.)
| | - Colin J Henderson
- Molecular Pharmacology Group, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Dundee, United Kingdom (D.J.M., C.R.W., C.J.H.); and Bioinformatics and Biostatistics Group, Cancer Research UK London Research Institute, London, United Kingdom (P.C.)
| |
Collapse
|
21
|
Conklin DJ, Haberzettl P, Jagatheesan G, Baba S, Merchant ML, Prough RA, Williams JD, Prabhu SD, Bhatnagar A. Glutathione S-transferase P protects against cyclophosphamide-induced cardiotoxicity in mice. Toxicol Appl Pharmacol 2015; 285:136-48. [PMID: 25868843 DOI: 10.1016/j.taap.2015.03.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/04/2015] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
Abstract
High-dose chemotherapy regimens using cyclophosphamide (CY) are frequently associated with cardiotoxicity that could lead to myocyte damage and congestive heart failure. However, the mechanisms regulating the cardiotoxic effects of CY remain unclear. Because CY is converted to an unsaturated aldehyde acrolein, a toxic, reactive CY metabolite that induces extensive protein modification and myocardial injury, we examined the role of glutathione S-transferase P (GSTP), an acrolein-metabolizing enzyme, in CY cardiotoxicity in wild-type (WT) and GSTP-null mice. Treatment with CY (100-300 mg/kg) increased plasma levels of creatine kinase-MB isoform (CK · MB) and heart-to-body weight ratio to a significantly greater extent in GSTP-null than WT mice. In addition to modest yet significant echocardiographic changes following acute CY-treatment, GSTP insufficiency was associated with greater phosphorylation of c-Jun and p38 as well as greater accumulation of albumin and protein-acrolein adducts in the heart. Mass spectrometric analysis revealed likely prominent modification of albumin, kallikrein-1-related peptidase, myoglobin and transgelin-2 by acrolein in the hearts of CY-treated mice. Treatment with acrolein (low dose, 1-5 mg/kg) also led to increased heart-to-body weight ratio and myocardial contractility changes. Acrolein induced similar hypotension in GSTP-null and WT mice. GSTP-null mice also were more susceptible than WT mice to mortality associated with high-dose acrolein (10-20 mg/kg). Collectively, these results suggest that CY cardiotoxicity is regulated, in part, by GSTP, which prevents CY toxicity by detoxifying acrolein. Thus, humans with low cardiac GSTP levels or polymorphic forms of GSTP with low acrolein-metabolizing capacity may be more sensitive to CY toxicity.
Collapse
Affiliation(s)
- Daniel J Conklin
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292, USA; Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA.
| | - Petra Haberzettl
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292, USA; Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| | - Ganapathy Jagatheesan
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292, USA; Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| | - Shahid Baba
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292, USA; Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| | - Michael L Merchant
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292, USA; Division of Nephrology, Department of Medicine, University of Louisville, Louisville, KY 40292, USA
| | - Russell A Prough
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292, USA; Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40292, USA
| | - Jessica D Williams
- University of Cincinnati College of Medicine, Internal Medicine, Cincinnati, OH 45267, USA
| | - Sumanth D Prabhu
- Division of Cardiovascular Disease, University of Alabama-Birmingham, Birmingham, AL 35294, USA
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292, USA; Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA; Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
22
|
Zhang J, Grek C, Ye ZW, Manevich Y, Tew KD, Townsend DM. Pleiotropic functions of glutathione S-transferase P. Adv Cancer Res 2015; 122:143-75. [PMID: 24974181 DOI: 10.1016/b978-0-12-420117-0.00004-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glutathione S-transferase P (GSTP) is one member of the GST superfamily that is prevalently expressed in mammals. Known to possess catalytic activity through deprotonating glutathione allowing formation of thioether bonds with electrophilic substrates, more recent discoveries have broadened our understanding of the biological roles of this protein. In addition to catalytic detoxification, other properties so far ascribed to GSTP include chaperone functions, regulation of nitric oxide pathways, regulation of a variety of kinase signaling pathways, and participation in the forward reaction of protein S-glutathionylation. The expression of GSTP has been linked with cancer and other human pathologies and more recently even with drug addiction. With respect to human health, polymorphic variants of GSTP may determine individual susceptibility to oxidative stress and/or be critical in the design and development of drugs that have used redox pathways as a discovery platform.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Christina Grek
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Zhi-Wei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yefim Manevich
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kenneth D Tew
- Professor and Chairman, Department of Cell and Molecular Pharmacology, John C. West Chair of Cancer Research, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Danyelle M Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
23
|
Ye ZW, Zhang J, Townsend DM, Tew KD. Oxidative stress, redox regulation and diseases of cellular differentiation. Biochim Biophys Acta Gen Subj 2014; 1850:1607-21. [PMID: 25445706 DOI: 10.1016/j.bbagen.2014.11.010] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Within cells, there is a narrow concentration threshold that governs whether reactive oxygen species (ROS) induce toxicity or act as second messengers. SCOPE OF REVIEW We discuss current understanding of how ROS arise, facilitate cell signaling, cause toxicities and disease related to abnormal cell differentiation and those (primarily) sulfur based pathways that provide nucleophilicity to offset these effects. PRIMARY CONCLUSIONS Cellular redox homeostasis mediates a plethora of cellular pathways that determine life and death events. For example, ROS intersect with GSH based enzyme pathways to influence cell differentiation, a process integral to normal hematopoiesis, but also affecting a number of diverse cell differentiation related human diseases. Recent attempts to manage such pathologies have focused on intervening in some of these pathways, with the consequence that differentiation therapy targeting redox homeostasis has provided a platform for drug discovery and development. GENERAL SIGNIFICANCE The balance between electrophilic oxidative stress and protective biomolecular nucleophiles predisposes the evolution of modern life forms. Imbalances of the two can produce aberrant redox homeostasis with resultant pathologies. Understanding the pathways involved provides opportunities to consider interventional strategies. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Zhi-Wei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Danyelle M Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, 274 Calhoun Street MSC 141, Charleston, SC 29425-1410, USA
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA.
| |
Collapse
|
24
|
Glutathione S-transferase P influences redox and migration pathways in bone marrow. PLoS One 2014; 9:e107478. [PMID: 25216273 PMCID: PMC4162606 DOI: 10.1371/journal.pone.0107478] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/11/2014] [Indexed: 01/22/2023] Open
Abstract
To interrogate why redox homeostasis and glutathione S-transferase P (GSTP) are important in regulating bone marrow cell proliferation and migration, we isolated crude bone marrow, lineage negative and bone marrow derived-dendritic cells (BMDDCs) from both wild type (WT) and knockout (Gstp1/p2(-/-)) mice. Comparison of the two strains showed distinct thiol expression patterns. WT had higher baseline and reactive oxygen species-induced levels of S-glutathionylated proteins, some of which (sarco-endoplasmic reticulum Ca2(+)-ATPase) regulate Ca(2+) fluxes and subsequently influence proliferation and migration. Redox status is also a crucial determinant in the regulation of the chemokine system. CXCL12 chemotactic response was stronger in WT cells, with commensurate alterations in plasma membrane polarization/permeability and intracellular calcium fluxes; activities of the downstream kinases, ERK and Akt were also higher in WT. In addition, expression levels of the chemokine receptor CXCR4 and its associated phosphatase, SHP-2, were higher in WT. Inhibition of CXCR4 or SHP2 decreased the extent of CXCL12-induced migration in WT BMDDCs. The differential surface densities of CXCR4, SHP-2 and inositol trisphosphate receptor in WT and Gstp1/p2(-/-) cells correlated with the differential CXCR4 functional activities, as measured by the extent of chemokine-induced directional migration and differences in intracellular signaling. These observed differences contribute to our understanding of how genetic ablation of GSTP causes different levels of myeloproliferation and migration [corrected]
Collapse
|
25
|
Chen D, Liu J, Rui B, Gao M, Zhao N, Sun S, Bi A, Yang T, Guo Y, Yin Z, Luo L. GSTpi protects against angiotensin II-induced proliferation and migration of vascular smooth muscle cells by preventing signal transducer and activator of transcription 3 activation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:454-63. [PMID: 24321768 DOI: 10.1016/j.bbamcr.2013.11.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/20/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
Abstract
Angiotensin II (Ang II)-elicited excessive proliferation, hypertrophy and migration of vascular smooth muscle cells (VSMCs) are vital to the pathogenesis of atheroclerosis. Glutathione S-transferase pi (GSTpi) exists extensively in various kinds of cells and protects cells against different stresses. However, knowledge remains limited about what GSTpi acts in VSMCs. We investigated the effect of GSTpi on Ang II-induced VSMC proliferation, hypertrophy and migration and its latent mechanism. Overexpression and RNAi experiments demonstrated that GSTpi inhibited Ang II-induced proliferation, hypertrophy and migration of VSMCs and arrested progression of cell cycle from G0/G1 to S phase. Immunoprecipitation, mass spectrometry and confocal microscopy analyses showed that GSTpi directly associated with signal transducer and activator of transcription 3 (STAT3) to prevent Ang II-triggered binding of Src to STAT3 and thus suppressed Ang II-stimulated phosphorylation and nuclear translocation of STAT3, as well as cyclin D1 expression. In contrast, GSTpi didn't affect Ang II-activated extracellular signal-regulated kinase (ERK1/2). GSTpi acts as a negative regulator to prevent Ang II-triggered proliferative signaling in VSMCs, suggesting that it may protect vessels against the stresses associated with atherosclerosis formation.
Collapse
Affiliation(s)
- Dan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210097, People's Republic of China
| | - Jinjiao Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210097, People's Republic of China
| | - Bing Rui
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210097, People's Republic of China
| | - Min Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210097, People's Republic of China
| | - Ningwei Zhao
- School of Biotechnology, Royal Institute of Technology, No. 21, Roslagstullsbacken, Stockholm SE-10691, Sweden
| | - Shuai Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210097, People's Republic of China
| | - Aijing Bi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210097, People's Republic of China
| | - Tingting Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210097, People's Republic of China
| | - Yingtao Guo
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, People's Republic of China.
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210097, People's Republic of China.
| |
Collapse
|
26
|
Furman D, Jojic V, Kidd B, Shen-Orr S, Price J, Jarrell J, Tse T, Huang H, Lund P, Maecker HT, Utz PJ, Dekker CL, Koller D, Davis MM. Apoptosis and other immune biomarkers predict influenza vaccine responsiveness. Mol Syst Biol 2013; 9:659. [PMID: 23591775 PMCID: PMC3658270 DOI: 10.1038/msb.2013.15] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/07/2013] [Indexed: 12/17/2022] Open
Abstract
Despite the importance of the immune system in many diseases, there are currently no objective benchmarks of immunological health. In an effort to identifying such markers, we used influenza vaccination in 30 young (20-30 years) and 59 older subjects (60 to >89 years) as models for strong and weak immune responses, respectively, and assayed their serological responses to influenza strains as well as a wide variety of other parameters, including gene expression, antibodies to hemagglutinin peptides, serum cytokines, cell subset phenotypes and in vitro cytokine stimulation. Using machine learning, we identified nine variables that predict the antibody response with 84% accuracy. Two of these variables are involved in apoptosis, which positively associated with the response to vaccination and was confirmed to be a contributor to vaccine responsiveness in mice. The identification of these biomarkers provides new insights into what immune features may be most important for immune health.
Collapse
Affiliation(s)
- David Furman
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Vladimir Jojic
- Department of Computer Science, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Brian Kidd
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Shai Shen-Orr
- Department of Immunology, Faculty of Medicine, Technion, Technion City, Haifa, Israel
| | - Jordan Price
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Justin Jarrell
- Division of Immunology and Rheumatology, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Tiffany Tse
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Huang Huang
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Peder Lund
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Holden T Maecker
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Paul J Utz
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Palo Alto, CA, USA
- Division of Immunology and Rheumatology, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Cornelia L Dekker
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Palo Alto, CA, USA
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Daphne Koller
- Department of Computer Science, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Mark M Davis
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Palo Alto, CA, USA
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Palo Alto, CA, USA
- The Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
27
|
Abstract
SIGNIFICANCE The family of glutathione S-transferases (GSTs) is part of a cellular Phase II detoxification program composed of multiple isozymes with functional human polymorphisms that have the capacity to influence individual response to drugs and environmental stresses. Catalytic activity is expressed through GST dimer-mediated thioether conjugate formation with resultant detoxification of a variety of small molecule electrophiles. RECENT ADVANCES More recent work indicates that in addition to the classic catalytic functions, specific GST isozymes have other characteristics that impact cell survival pathways in ways unrelated to detoxification. These characteristics include the following: regulation of mitogen-activated protein kinases; facilitation of the addition of glutathione to cysteine residues in certain proteins (S-glutathionylation); as a novel cellular partner of the human papilloma virus-16 E7 oncoprotein playing a pivotal role in preventing cell death in infected human cells; mitogenic influence in myeloproliferative pathways; participant in the process of cocaine addiction. CRITICAL ISSUES Some of these functions have provided a platform for targeting GST with novel small molecule therapeutics, particularly in cancer where evidence of clinical applications is emerging. FUTURE DIRECTIONS Our evolving understanding of the GST superfamily and their divergent expression patterns in individuals make them attractive candidates for translational studies in a variety of human pathologies. In addition, their role in regulating cell fate in signaling and cell death pathways has opened up a significant functional complexity that extends well beyond standard detoxification reactions.
Collapse
Affiliation(s)
- Kenneth D Tew
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425-5050, USA.
| | | |
Collapse
|
28
|
Board PG, Menon D. Glutathione transferases, regulators of cellular metabolism and physiology. Biochim Biophys Acta Gen Subj 2012. [PMID: 23201197 DOI: 10.1016/j.bbagen.2012.11.019] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The cytosolic glutathione transferases (GSTs) comprise a super family of proteins that can be categorized into multiple classes with a mixture of highly specific and overlapping functions. SCOPE OF REVIEW The review covers the genetics, structure and function of the human cytosolic GSTs with particular attention to their emerging roles in cellular metabolism. MAJOR CONCLUSIONS All the catalytically active GSTs contribute to the glutathione conjugation or glutathione dependant-biotransformation of xenobiotics and many catalyze glutathione peroxidase or thiol transferase reactions. GSTs also catalyze glutathione dependent isomerization reactions required for the synthesis of several prostaglandins and steroid hormones and the catabolism of tyrosine. An increasing body of work has implicated several GSTs in the regulation of cell signaling pathways mediated by stress-activated kinases like Jun N-terminal kinase. In addition, some members of the cytosolic GST family have been shown to form ion channels in intracellular membranes and to modulate ryanodine receptor Ca(2+) channels in skeletal and cardiac muscle. GENERAL SIGNIFICANCE In addition to their well established roles in the conjugation and biotransformation of xenobiotics, GSTs have emerged as significant regulators of pathways determining cell proliferation and survival and as regulators of ryanodine receptors that are essential for muscle function. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
Affiliation(s)
- Philip G Board
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | |
Collapse
|
29
|
Anathy V, Roberson EC, Guala AS, Godburn KE, Budd RC, Janssen-Heininger YMW. Redox-based regulation of apoptosis: S-glutathionylation as a regulatory mechanism to control cell death. Antioxid Redox Signal 2012; 16:496-505. [PMID: 21929356 PMCID: PMC3304251 DOI: 10.1089/ars.2011.4281] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Redox-based signaling governs a number of important pathways in tissue homeostasis. Consequently, deregulation of redox-controlled processes has been linked to a number of human diseases. Among the biological processes regulated by redox signaling, apoptosis or programmed cell death is a highly conserved process important for tissue homeostasis. Apoptosis can be triggered by a wide variety of stimuli, including death receptor ligands, environmental agents, and cytotoxic drugs. Apoptosis has also been implicated in the etiology of many human diseases. RECENT ADVANCES Recent discoveries demonstrate that redox-based changes are required for efficient activation of apoptosis. Among these redox changes, alterations in the abundant thiol, glutathione (GSH), and the oxidative post-translational modification, protein S-glutathionylation (PSSG) have come to the forefront as critical regulators of apoptosis. CRITICAL ISSUES Although redox-based changes have been documented in apoptosis and disease pathogenesis, the mechanistic details, whereby redox perturbations intersect with pathogenic processes, remain obscure. FUTURE DIRECTIONS Further research will be needed to understand the context in which of the members of the death receptor pathways undergo ligand dependent oxidative modifications. Additional investigation into the interplay between oxidative modifications, redox enzymes, and apoptosis pathway members are also critically needed to improve our understanding how redox-based control is achieved. Such analyses will be important in understanding the diverse chronic diseases. In this review we will discuss the emerging paradigms in our current understanding of redox-based regulation of apoptosis with an emphasis on S-glutathionylation of proteins and the enzymes involved in this important post-translational modification.
Collapse
Affiliation(s)
- Vikas Anathy
- Department of Pathology, University of Vermont College of Medicine, Burlington, 05405, USA
| | | | | | | | | | | |
Collapse
|
30
|
Tew KD, Manevich Y, Grek C, Xiong Y, Uys J, Townsend DM. The role of glutathione S-transferase P in signaling pathways and S-glutathionylation in cancer. Free Radic Biol Med 2011; 51:299-313. [PMID: 21558000 PMCID: PMC3125017 DOI: 10.1016/j.freeradbiomed.2011.04.013] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/07/2011] [Accepted: 04/07/2011] [Indexed: 12/12/2022]
Abstract
Glutathione S-transferase P is abundantly expressed in some mammalian tissues, particularly those associated with malignancies. While the enzyme can catalyze thioether bond formation between some electrophilic chemicals and GSH, novel nondetoxification functions are now ascribed to it. This review summarizes recent material that implicates GSTP in mediating S-glutathionylation of specific clusters of target proteins and in reactions that define a negative regulatory role in some kinase pathways through ligand or protein:protein interactions. It is becoming apparent that GSTP participates in the maintenance of cellular redox homeostasis through a number of convergent and divergent mechanisms. Moreover, drug platforms that have GSTP as a target have produced some interesting preclinical and clinical candidates.
Collapse
Affiliation(s)
- Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Xiong Y, Uys JD, Tew KD, Townsend DM. S-glutathionylation: from molecular mechanisms to health outcomes. Antioxid Redox Signal 2011; 15:233-70. [PMID: 21235352 PMCID: PMC3110090 DOI: 10.1089/ars.2010.3540] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox homeostasis governs a number of critical cellular processes. In turn, imbalances in pathways that control oxidative and reductive conditions have been linked to a number of human disease pathologies, particularly those associated with aging. Reduced glutathione is the most prevalent biological thiol and plays a crucial role in maintaining a reduced intracellular environment. Exposure to reactive oxygen or nitrogen species is causatively linked to the disease pathologies associated with redox imbalance. In particular, reactive oxygen species can differentially oxidize certain cysteine residues in target proteins and the reversible process of S-glutathionylation may mitigate or mediate the damage. This post-translational modification adds a tripeptide and a net negative charge that can lead to distinct structural and functional changes in the target protein. Because it is reversible, S-glutathionylation has the potential to act as a biological switch and to be integral in a number of critical oxidative signaling events. The present review provides a comprehensive account of how the S-glutathionylation cycle influences protein structure/function and cellular regulatory events, and how these may impact on human diseases. By understanding the components of this cycle, there should be opportunities to intervene in stress- and aging-related pathologies, perhaps through prevention and diagnostic and therapeutic platforms.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Pharmaceutical Sciences, Medical University of South Carolina, Charleston, 29425, USA
| | | | | | | |
Collapse
|
32
|
|
33
|
Abstract
Glutathione transferases (GSTs) are a multigene family of ubiquitously expressed, polymorphic enzymes responsible for the metabolism of a wide range of both endogenous and exogenous substrates, play a central role in the adaptive response to chemical and oxidative stress, and are subject to regulation by a range of structurally unrelated chemicals. In this review, we present a current summary of knockout mouse models in the GST field, discussing some of the issues pertaining to orthologous proteins between mice and humans, the potential confounding issues related to genetic background, and also cover new transgenic models in the increasingly important area of humanization.
Collapse
Affiliation(s)
- Colin J Henderson
- Cancer Research UK, Molecular Pharmacology Group, Biomedical Research Institute, University of Dundee College of Medicine Dentistry and Nursing, Ninewells Hospital, Dundee, United Kingdom.
| | | |
Collapse
|
34
|
Tew KD, Townsend DM. Regulatory functions of glutathione S-transferase P1-1 unrelated to detoxification. Drug Metab Rev 2011; 43:179-93. [PMID: 21351850 DOI: 10.3109/03602532.2011.552912] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glutathione S-transferase P1-1 (GSTP) is one member of the family of GSTs and is ubiquitously expressed in human tissues. The literature is replete with reports of high levels of GSTP linked either with cancer incidence or drug resistance, and yet no entirely cogent explanation for these correlations exists. The catalytic detoxification properties of the GST isozyme family have been a primary research focus for the last four decades. However, it has become apparent that they have undergone structural and functional convergence where evolutionary selective pressures have favored the emergence of noncatalytic properties of GSTP that has imbued this isozyme with expanded biological importance. For example, GSTP has now been linked with two cell-signaling functions that are critical to survival. Through protein:protein interactions, GSTP can sequester c-jun N-terminal kinase (JNK) and act as a negative regulator of this stress kinase. Pharmacologically, this activity has been linked with the activity of GSTP inhibitors in stimulating myeloproliferation. In addition, GSTP is linked with the forward S-glutathionylation reaction, a post-translational modification that impacts the function/activity of a number of proteins. Catalytic reversal of S-glutathionylation is well characterized, but the role of GSTP in catalyzing the forward reaction contributes to the "glutathionylation cycle." Moreover, GSTP is itself susceptible to S-glutathionylation, providing an autoregulatory loop for the cycle. Because oxidative stress regulates both S-glutathionylation and JNK-signaling pathways, such links may help to explain the aberrant patterns of GSTP expression in the cancer phenotype. As such, there is an ongoing preclinical and clinical platform of drug discovery and development around GSTP.
Collapse
Affiliation(s)
- Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425-5050, USA.
| | | |
Collapse
|
35
|
Tew KD, Townsend DM. Redox platforms in cancer drug discovery and development. Curr Opin Chem Biol 2010; 15:156-61. [PMID: 21075043 DOI: 10.1016/j.cbpa.2010.10.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 10/11/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
Abstract
Redox homeostasis is frequently dysregulated in human disease, particularly cancer. Recent and ongoing efforts seek to validate and extend this platform for the discovery/development of anticancer drugs. As the primary source of cellular redox buffer, thiols (in particular glutathione) have been therapeutically targeted in cancer treatment, myeloproliferation, hematopoietic progenitor cell mobilization and immune response. A number of 'redox modulating' drugs have been, or are, under development and the pipeline seems viable. Moreover, S-glutathionylation is a protein post-translational modification that influences a number of critical cell pathways and in the medium term, defining the 'glutathionome' has the possibility to provide opportunities for target identification for therapeutic intervention perhaps with a relevance that parallels ongoing efforts with the kinome.
Collapse
Affiliation(s)
- Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | |
Collapse
|
36
|
Grek CL, Townsend DM, Tew KD. The impact of redox and thiol status on the bone marrow: Pharmacological intervention strategies. Pharmacol Ther 2010; 129:172-84. [PMID: 20951732 DOI: 10.1016/j.pharmthera.2010.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 09/14/2010] [Indexed: 10/18/2022]
Abstract
Imbalances in cancer cell redox homeostasis provide a platform for new opportunities in the development of anticancer drugs. The control of severe dose-limiting toxicities associated with redox regulation, including myelosuppression and immunosuppression, remains a challenge. Recent evidence implicates a critical role for redox regulation and thiol balance in pathways that control myeloproliferation, hematopoietic progenitor cell mobilization, and immune response. Hematopoietic stem cell (HSC) self-renewal and differentiation are dependent upon levels of intracellular reactive oxygen species (ROS) and niche microenvironments. Redox status and the equilibrium of free thiol:disulfide couples are important in modulating immune response and lymphocyte activation, proliferation and differentiation. This subject matter is the focus of the present review. The potential of redox modulating chemotherapeutics as myeloproliferative and immunomodulatory agents is also covered.
Collapse
Affiliation(s)
- Christina L Grek
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
37
|
Laborde E. Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death. Cell Death Differ 2010; 17:1373-80. [DOI: 10.1038/cdd.2010.80] [Citation(s) in RCA: 265] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
38
|
Markedly enhanced colon tumorigenesis in Apc(Min) mice lacking glutathione S-transferase Pi. Proc Natl Acad Sci U S A 2009; 106:20859-64. [PMID: 19915149 DOI: 10.1073/pnas.0911351106] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glutathione transferases are a multigene family of proteins that catalyze the conjugation of toxic electrophiles and carcinogens to glutathione. Glutathione transferase Pi (GSTP) is commonly overexpressed in human tumors and there is emerging evidence that the enzyme has additional cellular functions in addition to its role in drug and carcinogen detoxification. To investigate the unique functions of this enzyme, we have crossed Gstp null mice with an initiated model of colon cancer, the Apc(Min) mouse. In contrast to the Apc(Min/+) Gstp1/p2(+/+) (Gstp-wt Apc(Min)) mice, which rarely develop colonic tumours, Apc(Min/+)Gstp1/p2(-/-) (Gstp-null Apc(Min)) mice had a 6-fold increase in colon adenoma incidence, and a 50-fold increase in colorectal adenoma multiplicity, relative to Gstp-wt Apc(Min). This increase was associated with early tumor onset and decreased survival. Analysis of the biochemical changes in the colon tissue of Gstp-null Apc(Min) mice demonstrated a marked induction of many inflammatory genes, including IL-6, IL-4, IFN-gamma, and inducible nitric oxide synthase. In support of the induction of inducible nitric oxide synthase, a profound induction of nitrotyrosine adducts was observed. Gstp therefore appears to play a role in controlling inflammatory responses in the colon, which would explain the change in tumor incidence observed. These data also suggest that individual variation in GSTP levels may be a factor in colon cancer susceptibility.
Collapse
|
39
|
Conklin DJ, Haberzettl P, Lesgards JF, Prough RA, Srivastava S, Bhatnagar A. Increased sensitivity of glutathione S-transferase P-null mice to cyclophosphamide-induced urinary bladder toxicity. J Pharmacol Exp Ther 2009; 331:456-69. [PMID: 19696094 DOI: 10.1124/jpet.109.156513] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hemorrhagic cystitis and diffuse inflammation of the bladder, common side effects of cyclophosphamide (CY) treatment, have been linked to the generation of acrolein derived from CY metabolism. Metabolic removal of acrolein involves multiple pathways, which include reduction, oxidation, and conjugation with glutathione. Herein, we tested the hypothesis that glutathione S-transferase P (GSTP), the GST isoform that displays high catalytic efficiency with acrolein, protects against CY-induced urotoxicity by detoxifying acrolein. Treatment of wild-type (WT) and mGstP1/P2 null (GSTP-null) mice with CY caused hemorrhagic cystitis, edema, albumin extravasation, and sloughing of bladder epithelium; however, CY-induced bladder ulcerations of the lamina propria were more numerous and more severe in GSTP-null mice. CY treatment also led to greater accumulation of myeloperoxidase-positive cells and specific protein-acrolein adducts in the bladder of GSTP-null than WT mice. There was no difference in hepatic microsomal production of acrolein from CY or urinary hydroxypropyl mercapturic acid output between WT and GSTP-null mice, but CY induced greater c-Jun NH(2)-terminal kinase (JNK) and c-Jun, but not extracellular signal-regulated kinase or p38, activation in GSTP-null than in WT mice. Pretreatment with mesna (2-mercaptoethane sulfonate sodium) abolished CY toxicity and JNK activation in GSTP-null mice. Taken together, these data support the view that GSTP prevents CY-induced bladder toxicity, in part by detoxifying acrolein. Because polymorphisms in human GSTP gene code for protein variants differing significantly in their catalytic efficiency toward acrolein, it is likely that GSTP polymorphisms influence CY urotoxicity. In addition, pretreatment with dietary or nutrient inducers of GSTP may be of use in minimizing bladder injury in patients undergoing CY therapy.
Collapse
Affiliation(s)
- Daniel J Conklin
- Diabetes and Obesity Center , University of Louisville, Louisville, Kentucky, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Tuomela S, Rautajoki KJ, Moulder R, Nyman TA, Lahesmaa R. Identification of novel Stat6 regulated proteins in IL-4-treated mouse lymphocytes. Proteomics 2009; 9:1087-98. [PMID: 19180534 DOI: 10.1002/pmic.200800161] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Interleukin 4 (IL-4) has an indispensable role in the differentiation of naive T helper (Th) cells toward the Th2 phenotype and induction of B cells to produce the IgE class of Igs. By regulating these two cell types, IL-4 has a pre-eminent role in regulation of allergic inflammation. IL-4-mediated regulation of T and B cell functions is largely transmitted through signal transducer and activator of transcription 6 (Stat6). In this study, we have used metabolic labeling and 2-D electrophoresis to detect differences in the proteomes of IL-4 stimulated spleen mononuclear cells of Stat6-/- and wild type mice and MS/MS for protein identification. With this methodology, we identified 49 unique proteins from 21 protein spots to be differentially expressed. Interestingly, in Stat6-/- CD4(+) cells the expression of isoform 2 of core binding factor b (CBFb2) was enhanced. CBFb is a non-DNA binding cofactor for the Runx family of transcription factors, which have been implicated in regulation of Th cell differentiation. We also found cellular nucleic acid protein (CNBP) to be downregulated in Stat6-/- cells. None of the proteins identified in this study have previously been reported to be regulated via Stat6. The results highlight the importance of exploiting proteomics tools to complement the studies on Stat6 target genes identified through transcriptional profiling.
Collapse
Affiliation(s)
- Soile Tuomela
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | | | | | | | | |
Collapse
|
41
|
Fabiani E, D’Alò F, Scardocci A, Greco M, Di Ruscio A, Criscuolo M, Fianchi L, Pagano L, Hohaus S, Leone G, Voso MT. Polymorphisms of detoxification and DNA repair enzymes in myelodyplastic syndromes. Leuk Res 2009; 33:1068-71. [DOI: 10.1016/j.leukres.2008.10.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/14/2008] [Accepted: 10/14/2008] [Indexed: 11/16/2022]
|
42
|
Townsend DM, Tew KD. Pharmacology of a mimetic of glutathione disulfide, NOV-002. Biomed Pharmacother 2008; 63:75-8. [PMID: 18851905 DOI: 10.1016/j.biopha.2008.08.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 08/26/2008] [Indexed: 10/21/2022] Open
Abstract
NOV-002 is a novel therapeutic agent in development for oncology indications used in combination with chemotherapy. Clinical trials in Russia and the USA have demonstrated clinical activity and the present focus is on non-small cell lung cancer (NSCLC) patients. The active component of the drug is oxidized glutathione (GSSG) and this imparts multiple effects upon redox pathways both at the cell surface and inside the cell. The drug induces S-glutathionylation of some proteins and impacts kinase/phosphatase regulated signaling pathways. Induction of myeloproliferation is believed to contribute to the clinical advantages provided by NOV-002 that include improved tolerance of chemotherapy and increased survival.
Collapse
Affiliation(s)
- Danyelle M Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, 173 Ashley Avenue, P.O. Box 250505, Charleston, SC 29425, USA
| | | |
Collapse
|
43
|
Townsend DM, Pazoles CJ, Tew KD. NOV-002, a mimetic of glutathione disulfide. Expert Opin Investig Drugs 2008; 17:1075-83. [PMID: 18549343 DOI: 10.1517/13543784.17.7.1075] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Oxidative signaling to modulate redox-sensitive cell functions is a heretofore unexploited approach to developing new drugs for poorly treated oncology indications, where current therapies are often only palliative and accompanied by severe toxicities. OBJECTIVE Clinical and non-clinical findings with NOV-002 (a mimetic of glutathione disulfide that represents such an approach) are reviewed and evaluated. METHODS Published data on NOV-002 along with unpublished information from the drug's sponsor were reviewed. Literature analysis also focused on protein S-glutathionylation as a regulatory mechanism, particularly in relation to cell signaling, proliferation and cytoskeletal architecture. RESULTS/CONCLUSION NOV-002 is a mechanistically novel agent with potential for ameliorating hematologic toxicity and enhancing efficacy when used in combination with standard chemotherapy to treat cancer patients.
Collapse
Affiliation(s)
- Danyelle M Townsend
- Medical University of South Carolina, Department of Pharmaceutical Sciences, 173 Ashley Avenue, PO Box 250505, Charleston, SC 29425, USA
| | | | | |
Collapse
|
44
|
Janssen-Heininger YMW, Mossman BT, Heintz NH, Forman HJ, Kalyanaraman B, Finkel T, Stamler JS, Rhee SG, van der Vliet A. Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med 2008; 45:1-17. [PMID: 18423411 PMCID: PMC2453533 DOI: 10.1016/j.freeradbiomed.2008.03.011] [Citation(s) in RCA: 581] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 03/04/2008] [Accepted: 03/11/2008] [Indexed: 12/15/2022]
Abstract
Oxidants are produced as a by-product of aerobic metabolism, and organisms ranging from prokaryotes to mammals have evolved with an elaborate and redundant complement of antioxidant defenses to confer protection against oxidative insults. Compelling data now exist demonstrating that oxidants are used in physiological settings as signaling molecules with important regulatory functions controlling cell division, migration, contraction, and mediator production. These physiological functions are carried out in an exquisitely regulated and compartmentalized manner by mild oxidants, through subtle oxidative events that involve targeted amino acids in proteins. The precise understanding of the physiological relevance of redox signal transduction has been hampered by the lack of specificity of reagents and the need for chemical derivatization to visualize reversible oxidations. In addition, it is difficult to measure these subtle oxidation events in vivo. This article reviews some of the recent findings that illuminate the significance of redox signaling and exciting future perspectives. We also attempt to highlight some of the current pitfalls and the approaches needed to advance this important area of biochemical and biomedical research.
Collapse
|
45
|
Voso MT, Hohaus S, Guidi F, Fabiani E, D'Alò F, Groner S, Späth D, Doehner K, Leone G, Doehner H, Schlenk RF. Prognostic role of glutathione S-transferase polymorphisms in acute myeloid leukemia. Leukemia 2008; 22:1685-91. [DOI: 10.1038/leu.2008.169] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
46
|
Townsend DM, He L, Hutchens S, Garrett TE, Pazoles CJ, Tew KD. NOV-002, a glutathione disulfide mimetic, as a modulator of cellular redox balance. Cancer Res 2008; 68:2870-7. [PMID: 18413755 DOI: 10.1158/0008-5472.can-07-5957] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
NOV-002 is a novel glutathione disulfide mimetic that when administered in combination with standard chemotherapeutic regimens has resulted in increased efficacy (survival, tumor response) and improved tolerance to chemotherapy (e.g., hematologic recovery) in advanced non-small cell lung cancer patients. We show that NOV-002, which is not cytotoxic as a single agent, generated time- and concentration-dependent oxidative signals at the cell surface (reduction in protein thiols) and intracellularly [altered oxidized glutathione (GSSG) and reduced glutathione levels and ratio; increased reactive oxygen species] in the premyeloid HL-60 cell line and that this was associated with an increase in S-glutathionylation of cell proteins, particularly actin. Commensurate with these effects, NOV-002 activated p38, c-Jun-NH(2)-kinase, and extracellular signal-regulated kinase and caused a dose-dependent increase in phosphorylation of three proteins that have previously been linked with hematopoiesis, AKT, JAK2, and STAT5. The effect of NOV-002 on enzymes involved in glutathione metabolism was evaluated. Relative to oxidized glutathione, NOV-002 was an equivalent substrate for glutathione reductase and was an inhibitor of protein disulfide isomerase, one of the components of the redox-sensitive unfolded protein response pathway. These redox-stimulated cell signaling actions occurred in the context of increased HL-60 cell proliferation after treatment with NOV-002. Overall, the pleiotropic pharmacologic effects of NOV-002 can be attributed to the GSSG component of the drug, and modulation of cellular redox balance is a feature central to the mechanism of action of NOV-002. Such modulation may underlie its clinical actions, including hematologic recovery and immunostimulation in the face of chemosuppression.
Collapse
Affiliation(s)
- Danyelle M Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | |
Collapse
|
47
|
Fan Y, Shimizu T, Yamada T, Nanashima N, Akita M, Asano J, Tsuchida S. Development of glutathione S-transferase-P-negative foci accompanying nuclear factor-erythroid 2-related factor 2 expression during early stage of rat hepatocarcinogenesis. Cancer Sci 2008; 99:497-501. [PMID: 18081878 PMCID: PMC11159688 DOI: 10.1111/j.1349-7006.2007.00703.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 10/18/2007] [Accepted: 11/04/2007] [Indexed: 11/30/2022] Open
Abstract
Glutathione S-transferase P (GST-P), a marker for rat hepatic preneoplastic lesions, is suggested to bind to Jun N-terminal kinase (JNK) to repress stress response, and GST-P gene expression is regulated by a transcription factor, nuclear factor-erythroid 2-related factor 2 (Nrf2). In this study, we examined by immunohistochemistry whether JNK2, p38 mitogen-activated protein kinase, and Nrf2 were expressed in GST-P-positive foci induced by the Solt-Farber protocol. At 2 weeks after partial hepatectomy, all GST-P-positive foci were negative for p38, and 86.4 +/- 5.6% and 64.7 +/- 6.3% of GST-P-positive foci were negative for JNK2 and Nrf2, respectively. Western blot analysis showed decreased p38 mitogen-activated protein kinase and JNK2 expression in livers treated with the protocol. In immunohistochemistry, besides GST-P-positive foci, GST-P-negative foci were detected as p38-negative foci in the surrounding tissues positive for p38. In contrast to GST-P-positive foci, most GST-P-negative foci showed enhanced Nrf2 expression. The number of GST-P-negative foci was 76 +/- 18/10 mm(2) of liver section at 2 weeks, but was undetectable at 1 week. The area of GST-P-negative foci was 0.09 +/- 0.05 mm(2), smaller than that of GST-P-positive ones (0.29 +/- 0.23). After treatment with carbon tetrachloride, small vacuoles due to liver injury were frequently observed inside GST-P-negative foci but less frequently in GST-P-positive foci. However, this treatment resulted in expression of JNK2, p38, and Nrf2 in both foci. These results showed development of GST-P-negative foci during the early stage of hepatocarcinogenesis and suggested that Nrf2 is not responsible for GST-P expression in rat hepatic preneoplastic foci.
Collapse
Affiliation(s)
- Yang Fan
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Su PF, Lee TC, Lin PJ, Lee PH, Jeng YM, Chen CH, Liang JD, Chiou LL, Huang GT, Lee HS. Differential DNA methylation associated with hepatitis B virus infection in hepatocellular carcinoma. Int J Cancer 2007; 121:1257-64. [PMID: 17534893 DOI: 10.1002/ijc.22849] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gene inactivation through DNA hypermethylation plays a pivotal role in carcinogenesis. This study aimed to profile aberrant DNA methylation in different stages of liver disease, namely noncirrhosis, cirrhosis and hepatocellular carcinoma (HCC), and also to clarify the influence of hepatitis B virus (HBV) infection on the aberrant DNA methylation in HCCs. Promoter methylation in p14(ARF), p16(INK4a), O(6)-methylguanine-DNA methyltransferase (MGMT), glutathione S-transferase pi (GSTP1) and E-cadherin (E-Cad) genes of 58 HCCs paired with adjacent nontumorous tissues was assayed by methylation-specific PCR. HBV infection was determined using a hepatitis B virus surface antigen (HBsAg) serological assay. The frequency of p16(INK4a) promoter methylation increased from noncirrhotic, cirrhotic, to HCC tissues (noncirrhotic vs. HCC, p < 0.001), while that of GSTP1 promoter methylation increased in cirrhotic tissues compared to noncirrhotic ones (p = 0.029). The frequency of GSTP1 promoter hypermethylation is significantly higher in HCC than in nontumorous tissues (p = 0.022) from HBsAg-positive patients, but not the HBsAg-negative controls (p = 0.289). While the frequency of E-Cad promoter hypermethylation remained high in both nontumorous tissues and HCCs from HBsAg-positive patients (p = 0.438), it was lower in HCCs than in nontumorous tissues from HBsAg-negative patients (p = 0.002). In contrast, the frequency of p16(INK4a), MGMT and p14(ARF) promoter hypermethylation in HCCs was unrelated to HBsAg status. In conclusion, aberrant DNA methylation may begin at different stages of liver disease in a gene-dependent manner. Moreover, HBV infection may enhance or maintain GSTP1 and E-Cad promoter methylation and thereby affect hepatocarcinogenesis.
Collapse
Affiliation(s)
- Pei-Fen Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ranganna K, Mathew OP, Yatsu FM, Yousefipour Z, Hayes BE, Milton SG. Involvement of glutathione/glutathione S-transferase antioxidant system in butyrate-inhibited vascular smooth muscle cell proliferation. FEBS J 2007; 274:5962-78. [PMID: 17961182 DOI: 10.1111/j.1742-4658.2007.06119.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vascular smooth muscle cell (VSMC) proliferation is an important etiological factor in vascular proliferative diseases such as primary atherosclerosis, hypertension, arterial and in-stent restenosis, and transplant vasculopathy. Our studies established that butyrate, a bacterial fermentation product of dietary fiber and a chromatin modulator, is a potent inhibitor of VSMC proliferation. The cardiovascular health benefits of a high-fiber diet, the principle source of butyrate in the body, have been known for a long time, however, very little is known about the antiatherogenic potential of butyrate. Because oxidative stress plays an important role in the pathogenesis of atherosclerosis, we examined involvement of the glutathione/glutathione S-transferase (GST) antioxidant system in butyrate's inhibition of VSMC proliferation. Treatment of proliferating VSMCs with butyrate leads to the induction of several GSTs. Interestingly, our study also demonstrated the nuclear localization of GST-P1 (GST-7-7), which is considered to be a cytosolic protein; this was demonstrated using immunostaining and was corroborated by western blotting. Also, the butyrate-induced antiproliferative action, and the induction of GST-P1 and its nuclear localization are downregulated when butyrate is withdrawn. Furthermore, assessment of intracellular glutathione levels reveals their augmentation by butyrate. Conversely, butyrate treatment reduces the levels of reactive oxygen species in VSMCs. Collectively, the butyrate-treatment-related increase in glutathione content, the reduction in reactive oxygen species, the upregulation of GST and the nuclear localization of GST-P1 in growth-arrested VSMCs imply that butyrate's antiproliferative action involves modulation of the cellular redox state. Thus, induction of the glutathione/GST antioxidant system appears to have other regulatory role(s) besides detoxification and regulation of the cellular redox state, for example, cell-cycle control and cell proliferation, which are both critical to atherogenesis.
Collapse
Affiliation(s)
- Kasturi Ranganna
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX 77004, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Zhang W, Li H, Cheng G, Hu S, Li Z, Bi D. Avian influenza virus infection induces differential expression of genes in chicken kidney. Res Vet Sci 2007; 84:374-81. [PMID: 17692877 DOI: 10.1016/j.rvsc.2007.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2006] [Revised: 04/01/2007] [Accepted: 05/25/2007] [Indexed: 11/24/2022]
Abstract
The pathogenic process of highly pathogenic avian influenza virus (HPAIV) infection is poorly understood. To explore the differential expression of kidney genes as a result of HPAIV infection, two cDNA libraries were constructed from uninfected and infected kidneys by suppression subtractive hybridization (SSH). Fifteen genes including IFN-stimulated genes (ISG12), lymphocyte antigen 6 complex locus E gene (LY6E), matrix Gla protein gene (MGP), lysozyme gene, haemopoiesis related membrane protein 1 gene, KIAA1259, MGC68696, G6pc-prov protein gene (G6PC), MGC4504, alcohol dehydrogenase gene (ADH), glutathione S-transferase gene (GST), sodium-dependent high-affinity dicarboxylate transporter gene (SDCT), Synaptotagmin XV (SytXV) and two novel genes were found significantly up-regulated or dramatically suppressed. Differential expression of these genes was further identified by Northern blot. Functional analysis indicated that the regulation of their expression might contribute to the pathogenic process of HPAIV infection. In contrast, the increased expression of three IFN-stimulated genes named ISG12, LY6E, and haemopoiesis related membrane protein 1 gene might reflect host defense responses. Further study showed that ISG12 protein failed to directly interact with NS1 protein of HPAIV which expressed simultaneously in the organs where HPAIV replication occurred, by use of BacterioMatch two-hybrid system. Therefore, our findings may provide new insights into understanding the molecular mechanism underlying the pathophysiological process of HPAIV infection in chicken.
Collapse
Affiliation(s)
- Wanpo Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | | | |
Collapse
|