1
|
Lameris R, Ruben JM, Iglesias-Guimarais V, de Jong M, Veth M, van de Bovenkamp FS, de Weerdt I, Kater AP, Zweegman S, Horbach S, Riedl T, Winograd B, Roovers RC, Adang AEP, de Gruijl TD, Parren PWHI, van der Vliet HJ. A bispecific T cell engager recruits both type 1 NKT and Vγ9Vδ2-T cells for the treatment of CD1d-expressing hematological malignancies. Cell Rep Med 2023; 4:100961. [PMID: 36868236 PMCID: PMC10040383 DOI: 10.1016/j.xcrm.2023.100961] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/13/2022] [Accepted: 02/09/2023] [Indexed: 03/05/2023]
Abstract
Bispecific T cell engagers (bsTCEs) hold great promise for cancer treatment but face challenges due to the induction of cytokine release syndrome (CRS), on-target off-tumor toxicity, and the engagement of immunosuppressive regulatory T cells that limit efficacy. The development of Vγ9Vδ2-T cell engagers may overcome these challenges by combining high therapeutic efficacy with limited toxicity. By linking a CD1d-specific single-domain antibody (VHH) to a Vδ2-TCR-specific VHH, we create a bsTCE with trispecific properties, which engages not only Vγ9Vδ2-T cells but also type 1 NKT cells to CD1d+ tumors and triggers robust proinflammatory cytokine production, effector cell expansion, and target cell lysis in vitro. We show that CD1d is expressed by the majority of patient MM, (myelo)monocytic AML, and CLL cells and that the bsTCE triggers type 1 NKT and Vγ9Vδ2-T cell-mediated antitumor activity against these patient tumor cells and improves survival in in vivo AML, MM, and T-ALL mouse models. Evaluation of a surrogate CD1d-γδ bsTCE in NHPs shows Vγ9Vδ2-T cell engagement and excellent tolerability. Based on these results, CD1d-Vδ2 bsTCE (LAVA-051) is now evaluated in a phase 1/2a study in patients with therapy refractory CLL, MM, or AML.
Collapse
Affiliation(s)
- Roeland Lameris
- Amsterdam UMC location Vrije University Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | | | | | - Milon de Jong
- Amsterdam UMC location Vrije University Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Myrthe Veth
- Amsterdam UMC location Vrije University Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | | | - Iris de Weerdt
- Amsterdam UMC location University of Amsterdam, Department of Hematology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Arnon P Kater
- Amsterdam UMC location University of Amsterdam, Department of Hematology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Sonja Zweegman
- Amsterdam UMC location Vrije University Amsterdam, Department of Hematology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | | | | | - Benjamin Winograd
- LAVA Therapeutics, Utrecht, the Netherlands; LAVA Therapeutics, Philadelphia, PA, USA
| | | | | | - Tanja D de Gruijl
- Amsterdam UMC location Vrije University Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Paul W H I Parren
- LAVA Therapeutics, Utrecht, the Netherlands; Leiden University Medical Center, Department of Immunology, Leiden, the Netherlands
| | - Hans J van der Vliet
- Amsterdam UMC location Vrije University Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, the Netherlands; LAVA Therapeutics, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Perazzo A, Gallier S, Liuzzi R, Guido S, Caserta S. Quantitative methods to detect phospholipids at the oil-water interface. Adv Colloid Interface Sci 2021; 290:102392. [PMID: 33740709 DOI: 10.1016/j.cis.2021.102392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 01/29/2023]
Abstract
Phospholipids are the main constituents of cell membranes and act as natural stabilizers of milk fat globules. Phospholipids are used in a wide range of applications, e.g. as emulsifiers in cosmetic, pharmaceutical and food products. While processed emulsion droplets are usually stabilized by a monolayer of phospholipids, cell membranes have a phospholipid bilayer structure and milk fat globules are stabilized by a complex phospholipid trilayer membrane. Despite the broad relevance of phospholipids, there are still many scientific challenges in understanding how their behavior at the fluid-fluid interface affects microstructure, stability, and physico-chemical properties of natural and industrial products. Most of these challenges arise from the experimental difficulties related to the investigation of the molecular arrangement of phospholipids in situ at the fluid-fluid interface and the quantification of their partitioning between the bulk phase and the interface, both under static and flow conditions. This task is further complicated by the presence of other surface-active components, such as proteins, that can interact with phospholipids and compete for space at the interface. Here, we review the methodologies available from the literature to detect and quantify phospholipids, focusing on oil-water interfaces, and highlight current limitations and future perspectives.
Collapse
Affiliation(s)
- Antonio Perazzo
- Novaflux Inc., 1 Wall Street, Princeton, NJ, 08540, United States; Advanced BioDevices LLC., 1 Wall Street, Princeton, NJ, 08540, United States
| | - Sophie Gallier
- Dairy Goat Co-operative (N.Z.) Limited, 18 Gallagher Drive, PO Box 1398, Hamilton 3240, New Zealand
| | - Roberta Liuzzi
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", P.le Ascarelli 80, 80125 Napoli, Italy
| | - Stefano Guido
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", P.le Ascarelli 80, 80125 Napoli, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), UdR INSTM Napoli Federico II, P.le Ascarelli 80, 80125 Napoli, Italy; CEINGE - Biotecnologie Avanzate, Via G. Salvatore 486, 80145 Napoli, Italy.
| | - Sergio Caserta
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", P.le Ascarelli 80, 80125 Napoli, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), UdR INSTM Napoli Federico II, P.le Ascarelli 80, 80125 Napoli, Italy; CEINGE - Biotecnologie Avanzate, Via G. Salvatore 486, 80145 Napoli, Italy
| |
Collapse
|
3
|
Kharkwal SS, Johndrow CT, Veerapen N, Kharkwal H, Saavedra-Avila NA, Carreño LJ, Rothberg S, Zhang J, Garforth SJ, Jervis PJ, Zhang L, Donda A, Besra AK, Cox LR, Almo SC, Howell A, Evans EE, Zauderer M, Besra GS, Porcelli SA. Serial Stimulation of Invariant Natural Killer T Cells with Covalently Stabilized Bispecific T-cell Engagers Generates Antitumor Immunity While Avoiding Anergy. Cancer Res 2021; 81:1788-1801. [PMID: 33483371 DOI: 10.1158/0008-5472.can-20-2219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/15/2020] [Accepted: 01/15/2021] [Indexed: 11/16/2022]
Abstract
CD1d-restricted invariant natural killer T cells (iNKT cells) mediate strong antitumor immunity when stimulated by glycolipid agonists. However, attempts to develop effective iNKT cell agonists for clinical applications have been thwarted by potential problems with dose-limiting toxicity and by activation-induced iNKT cell anergy, which limits the efficacy of repeated administration. To overcome these issues, we developed a unique bispecific T-cell engager (BiTE) based on covalent conjugates of soluble CD1d with photoreactive analogues of the glycolipid α-galactosylceramide. Here we characterize the in vivo activities of iNKT cell-specific BiTEs and assess their efficacy for cancer immunotherapy in mouse models using transplantable colorectal cancer or melanoma tumor lines engineered to express human Her2 as a tumor-associated antigen. Systemic administration of conjugated BiTEs stimulated multiple iNKT cell effector functions including cytokine release, secondary activation of NK cells, and induction of dendritic cell maturation and also initiated epitope spreading for tumor-specific CD8+ cytolytic T-cell responses. The antitumor effects of iNKT-cell activation with conjugated BiTEs were further enhanced by simultaneous checkpoint blockade with antibodies to CTLA-4, providing a potential approach for combination immunotherapy. Multiple injections of covalently stabilized iNKT cell-specific BiTEs activated iNKT cells without causing iNKT cell anergy or exhaustion, thus enabling repeated administration for effective and nontoxic cancer immunotherapy regimens. SIGNIFICANCE: Covalently stabilized conjugates that engage the antigen receptors of iNKT cells and target a tumor antigen activate potent antitumor immunity without induction of anergy or depletion of the responding iNKT cells.
Collapse
Affiliation(s)
- Shalu Sharma Kharkwal
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York.,Elstar Therapeutics, Cambridge, Massachusetts
| | - Christopher T Johndrow
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Natacha Veerapen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Himanshu Kharkwal
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Department of Clinical Oncology, Montefiore Medical Centre, Bronx, New York
| | - Noemi A Saavedra-Avila
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Leandro J Carreño
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York.,Millennium Institute on Immunology and Immunotherapy, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Samantha Rothberg
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Jinghang Zhang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Scott J Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York
| | - Peter J Jervis
- Centre of Chemistry, University of Minho, Braga, Portugal
| | - Lianjun Zhang
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China.,Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Alena Donda
- Department of Oncology and Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Amareeta K Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Liam R Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | | | | | | | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Steven A Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
4
|
Lameris R, Shahine A, Pellicci DG, Uldrich AP, Gras S, Le Nours J, Groen RWJ, Vree J, Reddiex SJJ, Quiñones-Parra SM, Richardson SK, Howell AR, Zweegman S, Godfrey DI, de Gruijl TD, Rossjohn J, van der Vliet HJ. A single-domain bispecific antibody targeting CD1d and the NKT T-cell receptor induces a potent antitumor response. ACTA ACUST UNITED AC 2020; 1:1054-1065. [DOI: 10.1038/s43018-020-00111-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/05/2020] [Indexed: 12/29/2022]
|
5
|
Govindarajan S, Verheugen E, Venken K, Gaublomme D, Maelegheer M, Cloots E, Gysens F, De Geest BG, Cheng TY, Moody DB, Janssens S, Drennan M, Elewaut D. ER stress in antigen-presenting cells promotes NKT cell activation through endogenous neutral lipids. EMBO Rep 2020; 21:e48927. [PMID: 32363653 PMCID: PMC7271650 DOI: 10.15252/embr.201948927] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
CD1d‐restricted invariant natural killer T (iNKT) cells constitute a common glycolipid‐reactive innate‐like T‐cell subset with a broad impact on innate and adaptive immunity. While several microbial glycolipids are known to activate iNKT cells, the cellular mechanisms leading to endogenous CD1d‐dependent glycolipid responses remain largely unclear. Here, we show that endoplasmic reticulum (ER) stress in APCs is a potent inducer of CD1d‐dependent iNKT cell autoreactivity. This pathway relies on the presence of two transducers of the unfolded protein response: inositol‐requiring enzyme‐1a (IRE1α) and protein kinase R‐like ER kinase (PERK). Surprisingly, the neutral but not the polar lipids generated within APCs undergoing ER stress are capable of activating iNKT cells. These data reveal that ER stress is an important mechanism to elicit endogenous CD1d‐restricted iNKT cell responses through induction of distinct classes of neutral lipids.
Collapse
Affiliation(s)
- Srinath Govindarajan
- Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Eveline Verheugen
- Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Koen Venken
- Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Djoere Gaublomme
- Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Margaux Maelegheer
- Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Eva Cloots
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Laboratory for ER Stress and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium.,VIB-Center for Medical Biotechnology, Ghent, Belgium
| | - Fien Gysens
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium.,Biopharmaceutical Technology Unit, Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Bruno G De Geest
- Biopharmaceutical Technology Unit, Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Tan-Yun Cheng
- Brigham and Women's Hospital Division of Rheumatology, Immunity and Inflammation, Harvard Medical School, Boston, MA, USA
| | - D Branch Moody
- Brigham and Women's Hospital Division of Rheumatology, Immunity and Inflammation, Harvard Medical School, Boston, MA, USA
| | - Sophie Janssens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Laboratory for ER Stress and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium
| | - Michael Drennan
- Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Dirk Elewaut
- Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Herrmann AC, Im JS, Pareek S, Ruiz-Vasquez W, Lu S, Sergeeva A, Mehrens J, He H, Alatrash G, Sukhumalchandra P, St John L, Clise-Dwyer K, Zha D, Molldrem JJ. A Novel T-Cell Engaging Bi-specific Antibody Targeting the Leukemia Antigen PR1/HLA-A2. Front Immunol 2019; 9:3153. [PMID: 30713535 PMCID: PMC6345694 DOI: 10.3389/fimmu.2018.03153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/20/2018] [Indexed: 12/31/2022] Open
Abstract
Despite substantial advances in the treatment of acute myeloid leukemia (AML), only 30% of patients survive more than 5 years. Therefore, new therapeutics are much needed. Here, we present a novel therapeutic strategy targeting PR1, an HLA-A2 restricted myeloid leukemia antigen. Previously, we have developed and characterized a novel T-cell receptor-like monoclonal antibody (8F4) that targets PR1/HLA-A2 and eliminates AML xenografts by antibody-dependent cellular cytotoxicity (ADCC). To improve the potency of 8F4, we adopted a strategy to link T-cell cytotoxicity with a bi-specific T-cell-engaging antibody that binds PR1/HLA-A2 on leukemia and CD3 on neighboring T-cells. The 8F4 bi-specific antibody maintained high affinity and specific binding to PR1/HLA-A2 comparable to parent 8F4 antibody, shown by flow cytometry and Bio-Layer Interferometry. In addition, 8F4 bi-specific antibody activated donor T-cells in the presence of HLA-A2+ primary AML blasts and cell lines in a dose dependent manner. Importantly, activated T-cells lysed HLA-A2+ primary AML blasts and cell lines after addition of 8F4 bi-specific antibody. In conclusion, our studies demonstrate the therapeutic potential of a novel bi-specific antibody targeting the PR1/HLA-A2 leukemia-associated antigen, justifying further clinical development of this strategy.
Collapse
Affiliation(s)
- Amanda C Herrmann
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jin S Im
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sumedha Pareek
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Wilfredo Ruiz-Vasquez
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sijie Lu
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anna Sergeeva
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jennifer Mehrens
- Oncology Research for Biologics and Immunotherapy Translation Platform, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hong He
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gheath Alatrash
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Pariya Sukhumalchandra
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lisa St John
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dongxing Zha
- Oncology Research for Biologics and Immunotherapy Translation Platform, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jeffrey J Molldrem
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
7
|
Veerapen N, Kharkwal SS, Jervis P, Bhowruth V, Besra AK, North SJ, Haslam SM, Dell A, Hobrath J, Quaid PJ, Moynihan PJ, Cox LR, Kharkwal H, Zauderer M, Besra GS, Porcelli SA. Photoactivable Glycolipid Antigens Generate Stable Conjugates with CD1d for Invariant Natural Killer T Cell Activation. Bioconjug Chem 2018; 29:3161-3173. [PMID: 30085659 DOI: 10.1021/acs.bioconjchem.8b00484] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activation of invariant natural killer T lymphocytes (iNKT cells) by α-galactosylceramide (α-GC) elicits a range of pro-inflammatory or anti-inflammatory immune responses. We report the synthesis and characterization of a series of α-GC analogues with acyl chains of varying length and a terminal benzophenone. These bound efficiently to the glycolipid antigen presenting protein CD1d, and upon photoactivation formed stable CD1d-glycolipid covalent conjugates. Conjugates of benzophenone α-GCs with soluble or cell-bound CD1d proteins retained potent iNKT cell activating properties, with biologic effects that were modulated by acyl chain length and the resulting affinities of conjugates for iNKT cell antigen receptors. Analysis by mass spectrometry identified a unique covalent attachment site for the glycolipid ligands in the hydrophobic ligand binding pocket of CD1d. The creation of covalent conjugates of CD1d with α-GC provides a new tool for probing the biology of glycolipid antigen presentation, as well as opportunities for developing effective immunotherapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Simon J North
- Department of Life Sciences, Faculty of Natural Sciences , Imperial College London , South Kensington Campus, London , SW7 2AZ , United Kingdom
| | - Stuart M Haslam
- Department of Life Sciences, Faculty of Natural Sciences , Imperial College London , South Kensington Campus, London , SW7 2AZ , United Kingdom
| | - Anne Dell
- Department of Life Sciences, Faculty of Natural Sciences , Imperial College London , South Kensington Campus, London , SW7 2AZ , United Kingdom
| | - Judith Hobrath
- Drug Discovery Unit, College of Life Sciences , University of Dundee , Dow Street , Dundee , DD1 5EH , Scotland , United Kingdom
| | | | | | | | | | - Maurice Zauderer
- Vaccinex Inc. , 1895 Mount Hope Avenue , Rochester , New York 14620 , United States
| | | | | |
Collapse
|
8
|
Schröter F, Jakop U, Teichmann A, Haralampiev I, Tannert A, Wiesner B, Müller P, Müller K. Lipid dynamics in boar sperm studied by advanced fluorescence imaging techniques. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 45:149-63. [DOI: 10.1007/s00249-015-1084-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/09/2015] [Accepted: 09/17/2015] [Indexed: 12/23/2022]
|
9
|
Van Rhijn I, Godfrey DI, Rossjohn J, Moody DB. Lipid and small-molecule display by CD1 and MR1. Nat Rev Immunol 2015; 15:643-54. [PMID: 26388332 PMCID: PMC6944187 DOI: 10.1038/nri3889] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The antigen-presenting molecules CD1 and MHC class I-related protein (MR1) display lipids and small molecules to T cells. The antigen display platforms in the four CD1 proteins are laterally asymmetrical, so that the T cell receptor (TCR)-binding surfaces are comprised of roofs and portals, rather than the long grooves seen in the MHC antigen-presenting molecules. TCRs can bind CD1 proteins with left-sided or right-sided footprints, creating unexpected modes of antigen recognition. The use of tetramers of human CD1a, CD1b, CD1c or MR1 proteins now allows detailed analysis of the human T cell repertoire, which has revealed new invariant TCRs that bind CD1b molecules and are different from those that define natural killer T cells and mucosal-associated invariant T cells.
Collapse
MESH Headings
- Antigen Presentation/immunology
- Antigens, CD1/chemistry
- Antigens, CD1/immunology
- Antigens, CD1/metabolism
- Histocompatibility Antigens Class I/chemistry
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Lipids/chemistry
- Lipids/immunology
- Minor Histocompatibility Antigens
- Models, Molecular
- Protein Binding/immunology
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Ildiko Van Rhijn
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - D Branch Moody
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
10
|
Nguyen TKA, Reinink P, El Messlaki C, Im JS, Ercan A, Porcelli SA, Van Rhijn I. Expression patterns of bovine CD1 in vivo and assessment of the specificities of the anti-bovine CD1 antibodies. PLoS One 2015; 10:e0121923. [PMID: 25815476 PMCID: PMC4376853 DOI: 10.1371/journal.pone.0121923] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/08/2015] [Indexed: 12/16/2022] Open
Abstract
Research addressing the in vivo effects of T cell activation by lipids, glycolipids, and lipopeptides is hampered by the absence of a suitable animal model. Mice and rats do not express CD1a, CD1b, and CD1c molecules that present pathogen-derived lipid antigens in humans. In cattle, two CD1A and three CD1B genes are transcribed. The proteins encoded by these genes differ in their antigen binding domains and in their cytoplasmic tails, suggesting that they may traffic differently in the cell and thus have access to different antigens. In the current study, we describe the genomic organization of the bovine CD1 locus and transcription of bovine CD1 genes in freshly isolated dendritic cells and B cells from different tissues. After determining the specificity of previously only partly characterized anti-CD1 antibodies by testing recombinant single chain bovine CD1 proteins and CD1-transfected cells, we were able to determine cell surface protein expression on freshly isolated cells. Our study suggests that CD1b1 and CD1b3 are more broadly expressed than CD1b5, and CD1a2 is more broadly expressed than CD1a1. Pseudoafferent lymph dendritic cells express CD1B genes, but no transcription is detected in lymph nodes. Even though B cells transcribe CD1B genes, there is no evidence of protein expression at the cell surface. Thus, patterns of CD1 protein expression are largely conserved among species.
Collapse
Affiliation(s)
- Thi Kim Anh Nguyen
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584CL Utrecht, the Netherlands
| | - Peter Reinink
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584CL Utrecht, the Netherlands
| | - Chema El Messlaki
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584CL Utrecht, the Netherlands
| | - Jin S. Im
- Section of Transplant Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Altan Ercan
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States of America
| | - Ildiko Van Rhijn
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584CL Utrecht, the Netherlands
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
- * E-mail:
| |
Collapse
|
11
|
Carreño LJ, Kharkwal SS, Porcelli SA. Optimizing NKT cell ligands as vaccine adjuvants. Immunotherapy 2015; 6:309-20. [PMID: 24762075 DOI: 10.2217/imt.13.175] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
NKT cells are a subpopulation of T lymphocytes with phenotypic properties of both T and NK cells and a wide range of immune effector properties. In particular, one subset of these cells, known as invariant NKT cells (iNKT cells), has attracted substantial attention because of their ability to be specifically activated by glycolipid antigens presented by a cell surface protein called CD1d. The development of synthetic α-galactosylceramides as a family of powerful glycolipid agonists for iNKT cells has led to approaches for augmenting a wide variety of immune responses, including those involved in vaccination against infections and cancers. Here, we review basic, preclinical and clinical observations supporting approaches to improving immune responses through the use of iNKT cell-activating glycolipids. Results from preclinical animal studies and preliminary clinical studies in humans identify many promising applications for this approach in the development of vaccines and novel immunotherapies.
Collapse
Affiliation(s)
- Leandro J Carreño
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
12
|
Bushmarina N, Tourne S, Giacometti G, Signorino-Gelo F, Garcia-Alles LF, Cazenave JP, Hanau D, de la Salle H. Increased flexibility and liposome-binding capacity of CD1e at endosomal pH. FEBS J 2011; 278:2022-33. [PMID: 21481186 DOI: 10.1111/j.1742-4658.2011.08118.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The plasma membrane proteins CD1a, CD1b and CD1c are expressed by human dendritic cells, the professional antigen-presenting cells of the immune system, and present lipid antigens to T lymphocytes. CD1e belongs to the same family of molecules, but accumulates as a membrane-associated form in the Golgi compartments of immature dendritic cells and as a soluble cleaved form in the lysosomes of mature dendritic cells. In lysosomes, the N-terminal propeptide of CD1e is also cleaved, but the functional consequences of this step are unknown. Here, we investigated how the pH changes encountered during transport to lysosomes affect the structure of CD1e and its ligand-binding properties. Circular dichroism studies demonstrated that the secondary and tertiary structures of recombinant CD1e were barely altered by pH changes. Nevertheless, at acidic pH, guanidium chloride-induced unfolding of CD1e molecules required lower concentrations of denaturing agent. The nonfunctional L194P allelic variant was found to be structurally less stable at acidic pH than the functional forms, providing an explanation for the lack of its detection in lysosomes. The number of water-exposed hydrophobic patches that bind 8-anilinonaphthalene-1-sulfonate was higher in acidic conditions, especially for the L194P variant. CD1e molecules interacted with lipid surfaces enriched in anionic lipids, such as bis(monoacylglycero)phosphate, a late endosomal/lysosomal lipid, especially at acidic pH, or when the propeptide was present. Altogether, these data indicate that, in the late endosomes/lysosomes of DCs, the acid pH promotes the binding of lipid antigens to CD1e through increased hydrophobic and ionic interactions.
Collapse
|
13
|
Α-galactosylceramide analogs with weak agonist activity for human iNKT cells define new candidate anti-inflammatory agents. PLoS One 2010; 5:e14374. [PMID: 21179412 PMCID: PMC3003687 DOI: 10.1371/journal.pone.0014374] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 11/05/2010] [Indexed: 01/22/2023] Open
Abstract
CD1d-restricted natural killer T cells with invariant T cell receptor α chains (iNKT cells) are a unique lymphocyte subset that responds to recognition of specific lipid and glycolipid antigens. They are conserved between mice and humans and exert various immunoregulatory functions through their rapid secretion of a variety of cytokines and secondary activation of dendritic cells, B cells and NK cells. In the current study, we analyzed the range of functional activation states of human iNKT cells using a library of novel analogs of α-galactosylceramide (αGalCer), the prototypical iNKT cell antigen. Measurement of cytokines secreted by human iNKT cell clones over a wide range of glycolipid concentrations revealed that iNKT cell ligands could be classified into functional groups, correlating with weak versus strong agonistic activity. The findings established a hierarchy for induction of different cytokines, with thresholds for secretion being consistently lowest for IL-13, higher for interferon-γ (IFNγ), and even higher for IL-4. These findings suggested that human iNKT cells can be intrinsically polarized to selective production of IL-13 by maintaining a low level of activation using weak agonists, whereas selective polarization to IL-4 production cannot be achieved through modulating the strength of the activating ligand. In addition, using a newly designed in vitro system to assess the ability of human iNKT cells to transactivate NK cells, we found that robust secondary induction of interferon-γ secretion by NK cells was associated with strong but not weak agonist ligands of iNKT cells. These results indicate that polarization of human iNKT cell responses to Th2-like or anti-inflammatory effects may best be achieved through selective induction of IL-13 and suggest potential discrepancies with findings from mouse models that may be important in designing iNKT cell-based therapies in humans.
Collapse
|
14
|
Mercanti V, Marchetti A, Lelong E, Perez F, Orci L, Cosson P. Transmembrane domains control exclusion of membrane proteins from clathrin-coated pits. J Cell Sci 2010; 123:3329-35. [DOI: 10.1242/jcs.073031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient sorting of proteins is essential to allow transport between intracellular compartments while maintaining their specific composition. During endocytosis, membrane proteins can be concentrated in endocytic vesicles by specific interactions between their cytoplasmic domains and cytosolic coat proteins. It is, however, unclear whether they can be excluded from transport vesicles and what the determinants for this sorting could be. Here, we show that in the absence of cytosolic sorting signals, transmembrane domains control the access of surface proteins to endosomal compartments. They act in particular by determining the degree of exclusion of membrane proteins from endocytic clathrin-coated vesicles. When cytosolic endocytosis signals are present, it is the combination of cytosolic and transmembrane determinants that ultimately controls the efficiency with which a given transmembrane protein is endocytosed.
Collapse
Affiliation(s)
- Valentina Mercanti
- Centre Médical Universitaire, Département de Physiologie Cellulaire et Métabolisme, 1, rue Michel Servet, CH1211 Geneva 4, Switzerland
- UMR 144 CNRS, Institut Curie, 12 rue Lhomond, 75005 Paris, France
| | - Anna Marchetti
- Centre Médical Universitaire, Département de Physiologie Cellulaire et Métabolisme, 1, rue Michel Servet, CH1211 Geneva 4, Switzerland
| | - Emmanuelle Lelong
- Centre Médical Universitaire, Département de Physiologie Cellulaire et Métabolisme, 1, rue Michel Servet, CH1211 Geneva 4, Switzerland
| | - Franck Perez
- UMR 144 CNRS, Institut Curie, 12 rue Lhomond, 75005 Paris, France
| | - Lelio Orci
- Centre Médical Universitaire, Département de Physiologie Cellulaire et Métabolisme, 1, rue Michel Servet, CH1211 Geneva 4, Switzerland
| | - Pierre Cosson
- Centre Médical Universitaire, Département de Physiologie Cellulaire et Métabolisme, 1, rue Michel Servet, CH1211 Geneva 4, Switzerland
| |
Collapse
|
15
|
Kou PM, Babensee JE. Validation of a high-throughput methodology to assess the effects of biomaterials on dendritic cell phenotype. Acta Biomater 2010; 6:2621-30. [PMID: 20097314 DOI: 10.1016/j.actbio.2010.01.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 01/04/2010] [Accepted: 01/15/2010] [Indexed: 01/30/2023]
Abstract
A variety of combination products composed of biomaterials and biologics have been developed for tissue regeneration or vaccine delivery. The host immune response to the immunogenic biological components in such products may be modulated by the biomaterial component. Distinct biomaterials have been shown to differentially affect the maturation of dendritic cells (DCs). DCs are professional antigen-presenting cells (APCs) that bridge innate and adaptive immunity and play a central role in inducing immunity or initiating immune tolerance. However, the biomaterials systems used to study DC response thus far have been insufficient to draw a clear conclusion as to which biomaterial properties are the key to controlling DC phenotype. In this study, we developed a 96-well filter plate-based high-throughput (HTP) methodology to assess DC maturation upon biomaterial treatment. Equivalent biomaterial effects on DC phenotype were measured using the conventional flow cytometric and filter-plate method, which validated the HTP methodology. This methodology will be used to screen a large number of biomaterials simultaneously and to draw correlations between material properties and DC phenotype, thereby providing biomaterial design criteria and immunomodulatory strategies for both tissue engineering and vaccine delivery applications.
Collapse
|
16
|
Cox D, Fox L, Tian R, Bardet W, Skaley M, Mojsilovic D, Gumperz J, Hildebrand W. Determination of cellular lipids bound to human CD1d molecules. PLoS One 2009; 4:e5325. [PMID: 19415116 PMCID: PMC2673035 DOI: 10.1371/journal.pone.0005325] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 02/24/2009] [Indexed: 11/19/2022] Open
Abstract
CD1 molecules are glycoproteins that present lipid antigens at the cell surface for immunological recognition by specialized populations of T lymphocytes. Prior experimental data suggest a wide variety of lipid species can bind to CD1 molecules, but little is known about the characteristics of cellular ligands that are selected for presentation. Here we have molecularly characterized lipids bound to the human CD1d isoform. Ligands were eluted from secreted CD1d molecules and separated by normal phase HPLC, then characterized by mass spectroscopy. A total of 177 lipid species were molecularly identified, comprising glycerophospholipids and sphingolipids. The glycerophospholipids included common diacylglycerol species, reduced forms known as plasmalogens, lyso-phospholipids (monoacyl species), and cardiolipins (tetraacyl species). The sphingolipids included sphingomyelins and glycosylated forms, such as the ganglioside GM3. These results demonstrate that human CD1d molecules bind a surprising diversity of lipid structures within the secretory pathway, including compounds that have been reported to play roles in cancer, autoimmune diseases, lipid signaling, and cell death.
Collapse
Affiliation(s)
- Daryl Cox
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Chemistry, Southern Nazarene University, Bethany, Oklahoma, United States of America
| | - Lisa Fox
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Runying Tian
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Wilfried Bardet
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Matthew Skaley
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Danijela Mojsilovic
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Jenny Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail:
| | - William Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
17
|
Bricard G, Cesson V, Devevre E, Bouzourene H, Barbey C, Rufer N, Im JS, Alves PM, Martinet O, Halkic N, Cerottini JC, Romero P, Porcelli SA, Macdonald HR, Speiser DE. Enrichment of human CD4+ V(alpha)24/Vbeta11 invariant NKT cells in intrahepatic malignant tumors. THE JOURNAL OF IMMUNOLOGY 2009; 182:5140-51. [PMID: 19342695 DOI: 10.4049/jimmunol.0711086] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Invariant NKT cells (iNKT cells) recognize glycolipid Ags via an invariant TCR alpha-chain and play a central role in various immune responses. Although human CD4(+) and CD4(-) iNKT cell subsets both produce Th1 cytokines, the CD4(+) subset displays an enhanced ability to secrete Th2 cytokines and shows regulatory activity. We performed an ex vivo analysis of blood, liver, and tumor iNKT cells from patients with hepatocellular carcinoma and metastases from uveal melanoma or colon carcinoma. Frequencies of Valpha24/Vbeta11 iNKT cells were increased in tumors, especially in patients with hepatocellular carcinoma. The proportions of CD4(+), double negative, and CD8alpha(+) iNKT cell subsets in the blood of patients were similar to those of healthy donors. However, we consistently found that the proportion of CD4(+) iNKT cells increased gradually from blood to liver to tumor. Furthermore, CD4(+) iNKT cell clones generated from healthy donors were functionally distinct from their CD4(-) counterparts, exhibiting higher Th2 cytokine production and lower cytolytic activity. Thus, in the tumor microenvironment the iNKT cell repertoire is modified by the enrichment of CD4(+) iNKT cells, a subset able to generate Th2 cytokines that can inhibit the expansion of tumor Ag-specific CD8(+) T cells. Because CD4(+) iNKT cells appear inefficient in tumor defense and may even favor tumor growth and recurrence, novel iNKT-targeted therapies should restore CD4(-) iNKT cells at the tumor site and specifically induce Th1 cytokine production from all iNKT cell subsets.
Collapse
Affiliation(s)
- Gabriel Bricard
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yuan W, Kang SJ, Evans JE, Cresswell P. Natural lipid ligands associated with human CD1d targeted to different subcellular compartments. THE JOURNAL OF IMMUNOLOGY 2009; 182:4784-91. [PMID: 19342656 DOI: 10.4049/jimmunol.0803981] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD1d is an MHC class I-like membrane glycoprotein that presents lipid Ags to NKT cells. Despite intensive biochemical, genetic, and structural studies, the endogenous lipids associated with CD1d remain poorly defined because of the biochemical challenges posed by their hydrophobic nature. In this study, we report the generation of a protease-cleavable CD1d variant with a similar trafficking pattern to wild-type CD1d that can be purified in the absence of detergent and allows the characterization of the naturally associated lipids. In addition, we used soluble variants of CD1d that are secreted or retained in the endoplasmic reticulum (ER) to survey their acquired lipids. By using multiple mass spectrometry methods, we found that CD1d retained in the ER is predominantly loaded with the most abundant phospholipid in the cell, phosphatidyl choline, while the protease cleavable version of CD1d contains bound sphingomyelin and lysophospholipids in addition to phosphatidyl choline. The secreted soluble version of CD1d, in contrast, lacks detectable phosphatidyl choline and the only detectable associated lipid is sphingomyelin. The data suggest that, in the absence of infection or stress, CD1d molecules survey the ER, the secretory pathway, and the endocytic pathway, and accumulate the most abundantly available lipids present in these compartments.
Collapse
Affiliation(s)
- Weiming Yuan
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520-8011, USA
| | | | | | | |
Collapse
|
19
|
Shiratsuchi T, Schneck J, Kawamura A, Tsuji M. Human CD1 dimeric proteins as indispensable tools for research on CD1-binding lipids and CD1-restricted T cells. J Immunol Methods 2009; 345:49-59. [PMID: 19374905 DOI: 10.1016/j.jim.2009.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 03/31/2009] [Accepted: 04/02/2009] [Indexed: 11/18/2022]
Abstract
Antigen presenting molecules play an important role in both innate and adoptive immune responses by priming and activating T cells. Among them, CD1 molecules have been identified to present both exogenous and endogenous lipid antigens to CD1-restricted T cells. The involvement of CD1-restricted T cells in autoimmune diseases and in defense against infectious diseases, however, remains largely unknown. Identifying novel antigenic lipids that bind to CD1 molecules and understanding the role of CD1-restricted T cells should lead to the successful development of vaccines, because the lipids can be used as antigens and also as adjuvants. In this paper, we have constructed functional recombinant human CD1 dimeric proteins and established a competitive ELISA assay to measure the lipid binding to CD1 molecules using the CD1 dimers. By using the competitive ELISA assay, we were able to show that the lipid extracts from murine malaria parasites can actually be loaded onto CD1 molecules. In addition, we have demonstrated that artificial antigen-presenting cells, which consist of magnetic beads coated with CD1d dimer and anti-CD28 antibody, stimulated and expanded human invariant NKT cells as efficiently as autologous immature DCs. A set of the tools presented in the current study should be valuable for screening various CD1 molecule-binding lipid antigens and for isolating CD1-restricted T cells.
Collapse
Affiliation(s)
- Takayuki Shiratsuchi
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA
| | | | | | | |
Collapse
|
20
|
Liang PH, Imamura M, Li X, Wu D, Fujio M, Guy RT, Wu BC, Tsuji M, Wong CH. Quantitative microarray analysis of intact glycolipid-CD1d interaction and correlation with cell-based cytokine production. J Am Chem Soc 2008; 130:12348-54. [PMID: 18712867 DOI: 10.1021/ja8012787] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The protein CD1d binds self and foreign glycolipids for presentation to CD1-restricted T cells by means of TCR recognition and activates T(H)1 and T(H)2 chemokine release. In this study, a variety of glycolipid ligands were attached to a microarray surface and their binding with dimeric CD1d was investigated. An alpha-galactosyl ceramide (alpha-GalCer) bearing a carbamate group at the 6'-OH position was tethered to the surface, and the dissociation constant on surface with CD1d was determined to reflect the multivalent interaction. Competition assays were then used to determine the dissociation constants (Ki) of new and intact glycolipids in solution. The 4-fluorophenyloctanoyl-modified alpha-GalCer (18) was found to bind most strongly with CD1d (Ki 0.21 microM), 2 orders of magnitude stronger than alpha-GalCer and more than three times more selective than alpha-GalCer for IFN-gamma release from NKT cells. Various alpha-GalCer analogues were analyzed, and the results showed that the binding affinity of glycolipids to CD1d correlates well with IFN-gamma production but poorly with IL-4 secretion by NKT cells, suggesting that tighter binding ligands could bias cytokine release through the T(H)1 pathway.
Collapse
Affiliation(s)
- Pi-Hui Liang
- The Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang Dist., Taipei, Taiwan 11529
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Roy KC, Maricic I, Khurana A, Smith TRF, Halder RC, Kumar V. Involvement of secretory and endosomal compartments in presentation of an exogenous self-glycolipid to type II NKT cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:2942-50. [PMID: 18292516 DOI: 10.4049/jimmunol.180.5.2942] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Natural Killer T (NKT) cells recognize both self and foreign lipid Ags presented by CD1 molecules. Although presentation of the marine sponge-derived lipid alphaGalCer to type I NKT cells has been well studied, little is known about self-glycolipid presentation to either type I or type II NKT cells. Here we have investigated presentation of the self-glycolipid sulfatide to a type II NKT cell that specifically recognizes a single species of sulfatide, namely lyso-sulfatide but not other sulfatides containing additional acyl chains. In comparison to other sulfatides or alphaGalCer, lyso-sulfatide binds with lower affinity to CD1d. Although plate-bound CD1d is inefficient in presenting lyso-sulfatide at neutral pH, it is efficiently presented at acidic pH and in the presence of saposin C. The lysosomal trafficking of mCD1d is required for alphaGalCer presentation to type I NKT cells, it is not important for presentation of lyso-sulfatide to type II NKT cells. Consistently, APCs deficient in a lysosomal lipid-transfer protein effectively present lyso-sulfatide. Presentation of lyso-sulfatide is inhibited in the presence of primaquine, concanamycin A, monensin, cycloheximide, and an inhibitor of microsomal triglyceride transfer protein but remains unchanged following treatment with brefeldin A. Wortmannin-mediated inhibition of lipid presentation indicates an important role for the PI-3kinase in mCD1d trafficking. Our data collectively suggest that weak CD1d-binding self-glycolipid ligands such as lyso-sulfatide can be presented via the secretory and endosomal compartments. Thus this study provides important insights into the exogenous self-glycolipid presentation to CD1d-restricted T cells.
Collapse
Affiliation(s)
- Keshab Chandra Roy
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| | | | | | | | | | | |
Collapse
|
22
|
pH-dependent interdomain tethers of CD1b regulate its antigen capture. Immunity 2008; 28:774-86. [PMID: 18538591 DOI: 10.1016/j.immuni.2008.04.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 03/10/2008] [Accepted: 04/15/2008] [Indexed: 11/20/2022]
Abstract
As CD1 proteins recycle between the cell surface and endosomes, they show altered receptiveness to lipid antigen loading. We hypothesized that changes in proton concentration encountered within distinct endosomal compartments influence the charge state of residues near the entrance to the CD1 groove and thereby control antigen loading. Molecular dynamic models identified flexible areas of the CD1b heavy chain in the superior and lateral walls of the A' pocket. In these same areas, residues that carry charge in a pH-dependent manner (D60, E62) were found to tether the rigid alpha1 helix to flexible areas of the alpha2 helix and the 50-60 loop. After disruption of these tethers with acid pH or mutation, we observed increased association and dissociation of lipids with CD1b and preferential presentation of antigens with bulky lipid tails. We propose that ionic tethers act as molecular switches that respond to pH fluxes during endosomal recycling and regulate the conformation of the CD1 heavy chain to control the size and rate of antigens captured.
Collapse
|
23
|
Abstract
How do CD1 molecules load lipid antigens? In this issue of Immunity, Relloso et al. (2008) uncover how lysosomal pH targets amino acids in CD1b, causing it to open and attain a conformation more receptive to lipid antigens.
Collapse
|
24
|
Stirnemann K, Romero JF, Baldi L, Robert B, Cesson V, Besra GS, Zauderer M, Wurm F, Corradin G, Mach JP, Macdonald HR, Donda A. Sustained activation and tumor targeting of NKT cells using a CD1d-anti-HER2-scFv fusion protein induce antitumor effects in mice. J Clin Invest 2008; 118:994-1005. [PMID: 18259610 DOI: 10.1172/jci33249] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 12/12/2007] [Indexed: 12/26/2022] Open
Abstract
Invariant NKT (iNKT) cells are potent activators of DCs, NK cells, and T cells, and their antitumor activity has been well demonstrated. A single injection of the high-affinity CD1d ligand alpha-galactosylceramide (alphaGalCer) leads to short-lived iNKT cell activation followed, however, by long-term anergy, limiting its therapeutic use. In contrast, we demonstrated here that when alphaGalCer was loaded on a recombinant soluble CD1d molecule (alphaGalCer/sCD1d), repeated injections led to sustained iNKT and NK cell activation associated with IFN-gamma secretion as well as DC maturation in mice. Most importantly, when alphaGalCer/sCD1d was fused to a HER2-specific scFv antibody fragment, potent inhibition of experimental lung metastasis and established s.c. tumors was obtained when systemic treatment was started 2-7 days after the injection of HER2-expressing B16 melanoma cells. In contrast, administration of free alphaGalCer at this time had no effect. The antitumor activity of the CD1d-anti-HER2 fusion protein was associated with HER2-specific tumor localization and accumulation of iNKT, NK, and T cells at the tumor site. Targeting iNKT cells to the tumor site thus may activate a combined innate and adaptive immune response that may prove to be effective in cancer immunotherapy.
Collapse
Affiliation(s)
- Kathrin Stirnemann
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Im JS, Kang TJ, Lee SB, Kim CH, Lee SH, Venkataswamy MM, Serfass ER, Chen B, Illarionov PA, Besra GS, Jacobs WR, Chae GT, Porcelli SA. Alteration of the relative levels of iNKT cell subsets is associated with chronic mycobacterial infections. Clin Immunol 2008; 127:214-24. [PMID: 18308638 DOI: 10.1016/j.clim.2007.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 12/06/2007] [Accepted: 12/18/2007] [Indexed: 01/13/2023]
Abstract
CD1d-restricted invariant natural killer T cells (iNKT cells) have been identified as an important type of effector and regulatory T cell, but their roles in the chronic infectious diseases caused by Mycobacterium tuberculosis and Mycobacterium leprae remain poorly defined. Here, we studied circulating human iNKT cells in blood samples from tuberculosis (TB) and leprosy patients. We found that the percentages of iNKT cells among total circulating T cells in TB and leprosy patients were not significantly different from those in normal controls. However, both TB and leprosy patients showed a selective reduction of the proinflammatory CD4(-)CD8beta(-) (DN) iNKT cells with a proportionate increase in the CD4(+) iNKT cells. Similar phenotypic alterations in circulating iNKT cells were observed in a mouse model of M. tuberculosis infection. Taken together, these findings indicate that the selective reduction of circulating DN iNKT cells is associated with chronic infections caused by M. tuberculosis and M. leprae.
Collapse
Affiliation(s)
- Jin S Im
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yu KOA, Im JS, Illarianov PA, Ndonye RM, Howell AR, Besra GS, Porcelli SA. Production and characterization of monoclonal antibodies against complexes of the NKT cell ligand alpha-galactosylceramide bound to mouse CD1d. J Immunol Methods 2007; 323:11-23. [PMID: 17442335 PMCID: PMC1939826 DOI: 10.1016/j.jim.2007.03.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 03/09/2007] [Accepted: 03/14/2007] [Indexed: 11/18/2022]
Abstract
The alpha-galactosylceramide (alpha-GalCer) known as KRN7000 remains the best studied ligand of the lipid-binding MHC class I-like protein CD1d. The KRN7000:CD1d complex is highly recognized by invariant natural killer T (iNKT) cells, an evolutionarily conserved subset of T lymphocytes that express an unusual semi-invariant T cell antigen receptor, and mediate a variety of proinflammatory and immunoregulatory functions. To facilitate the study of glycolipid antigen presentation to iNKT cells by CD1d, we undertook the production of mouse monoclonal antibodies (mAbs) specific for complexes of KRN7000 bound to mouse CD1d (mCD1d) proteins. Three such monoclonal antibodies were isolated that bound only to mCD1d proteins that were loaded with KRN7000 or closely-related forms of alpha-GalCer. These mAbs showed no reactivity with mCD1d proteins that were not loaded with alpha-GalCer, nor did they bind to complexes formed by loading mCD1d with the self-glycolipid and putative iNKT cell ligand isoglobotrihexosylceramide. These complex-specific monoclonal antibodies allow the direct detection and monitoring of complexes formed by the binding of KRN7000 and other alpha-GalCer analogues to mCD1d. The availability of these mAbs should facilitate a wide range of studies on the biology and potential clinical applications of CD1d-restricted iNKT cells.
Collapse
Affiliation(s)
- Karl O. A. Yu
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, U.S.A
| | - Jin S. Im
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, U.S.A
| | - Petr A. Illarianov
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Rachel M. Ndonye
- Department of Chemistry, University of Connecticut, Stoors, CT 06269-3060, U.S.A
| | - Amy R. Howell
- Department of Chemistry, University of Connecticut, Stoors, CT 06269-3060, U.S.A
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, U.S.A
- * Corresponding author. Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 416. Bronx, NY 10461, U.S.A. Tel.: +1 718 430-3228; fax: +1 718 430-8711. E-mail address: (S.A. Porcelli)
| |
Collapse
|
27
|
Yuan W, Qi X, Tsang P, Kang SJ, Illarionov PA, Besra GS, Gumperz J, Cresswell P. Saposin B is the dominant saposin that facilitates lipid binding to human CD1d molecules. Proc Natl Acad Sci U S A 2007; 104:5551-6. [PMID: 17372201 PMCID: PMC1838443 DOI: 10.1073/pnas.0700617104] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
CD1d molecules bind lipid antigens in the endocytic pathway, and access to the pathway is important for the development of CD1d-restricted natural killer T (NKT) cells. Saposins, derived from a common precursor, prosaposin, are small, heat-stable lysosomal glycoproteins required for lysosomal degradation of sphingolipids. Expression of prosaposin is required for efficient lipid binding and recognition of human CD1d molecules by NKT cells. Despite high sequence homology among the four saposins, they have different specificities for lipid substrates and different mechanisms of action. To determine the saposins involved in promoting lipid binding to CD1d, we expressed prosaposin deletion mutants lacking individual saposins in prosaposin-negative, CD1d-positive cells. No individual saposin proved to be absolutely essential, but the absence of saposin B resulted in the lowest recognition of alpha-galactosylceramide by NKT cells. When recombinant exogenous saposins were added to the prosaposin-negative cells, saposin B was the most efficient in restoring CD1d recognition. Saposin B was also the most efficient in mediating alpha-galactosylceramide binding to recombinant plate-bound CD1d and facilitating NKT cell activation. Saposin B could also mediate lipid binding to soluble CD1d molecules in a T cell-independent assay. The optimal pH for saposin B-mediated lipid binding to CD1d, pH 6, is higher than that of lysosomes, suggesting that saposin B may facilitate lipid binding to CD1d molecules throughout the endocytic pathway.
Collapse
Affiliation(s)
- Weiming Yuan
- *Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520-8011
| | - Xiaoyang Qi
- Division and Program in Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229
| | - Pansy Tsang
- *Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520-8011
| | - Suk-Jo Kang
- *Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520-8011
| | - Petr A. Illarionov
- Department of Microbial Physiology and Chemistry, School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Gurdyal S. Besra
- Department of Microbial Physiology and Chemistry, School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Jenny Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin Medical School, 1300 University Avenue, Madison, WI 53706
| | - Peter Cresswell
- *Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520-8011
- To whom correspondence should be addressed at:
Howard Hughes Medical Institute, Department of Immunobiology, Yale University School of Medicine, P.O. Box 208011, New Haven, CT 06520-8011. E-mail:
| |
Collapse
|
28
|
Forestier C, Takaki T, Molano A, Im JS, Baine I, Jerud ES, Illarionov P, Ndonye R, Howell AR, Santamaria P, Besra GS, Dilorenzo TP, Porcelli SA. Improved Outcomes in NOD Mice Treated with a Novel Th2 Cytokine-Biasing NKT Cell Activator. THE JOURNAL OF IMMUNOLOGY 2007; 178:1415-25. [PMID: 17237389 DOI: 10.4049/jimmunol.178.3.1415] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Activation of CD1d-restricted invariant NKT (iNKT) cells by alpha-galactosylceramide (alphaGalCer) significantly suppresses development of diabetes in NOD mice. The mechanisms of this protective effect are complex, involving both Th1 and Th2 cytokines and a network of regulatory cells including tolerogenic dendritic cells. In the current study, we evaluated a newly described synthetic alphaGalCer analog (C20:2) that elicits a Th2-biased cytokine response for its impact on disease progression and immunopathology in NOD mice. Treatment of NOD mice with alphaGalCer C20:2 significantly delayed and reduced the incidence of diabetes. This was associated with significant suppression of the late progression of insulitis, reduced infiltration of islets by autoreactive CD8(+) T cells, and prevention of progressive disease-related changes in relative proportions of different subsets of dendritic cells in the draining pancreatic lymph nodes. Multiple favorable effects observed with alphaGalCer C20:2 were significantly more pronounced than those seen in direct comparisons with a closely related analog of alphaGalCer that stimulated a more mixed pattern of Th1 and Th2 cytokine secretion. Unlike a previously reported Th2-skewing murine iNKT cell agonist, the alphaGalCer C20:2 analog was strongly stimulatory for human iNKT cells and thus warrants further examination as a potential immunomodulatory agent for human disease.
Collapse
Affiliation(s)
- Claire Forestier
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tannert A, Kurz A, Erlemann KR, Müller K, Herrmann A, Schiller J, Töpfer-Petersen E, Manjunath P, Müller P. The bovine seminal plasma protein PDC-109 extracts phosphorylcholine-containing lipids from the outer membrane leaflet. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 36:461-75. [PMID: 17066268 DOI: 10.1007/s00249-006-0105-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 09/14/2006] [Accepted: 09/21/2006] [Indexed: 10/24/2022]
Abstract
The bovine seminal plasma protein PDC-109 modulates the maturation of bull sperm cells by removing lipids, mainly phosphatidylcholine and cholesterol, from their cellular membrane. Here, we have characterized the process of extraction of endogenous phospholipids and of their respective analogues. By measuring the PDC-109-mediated release of fluorescent phospholipid analogues from lipid vesicles and from biological membranes (human erythrocytes, bovine epididymal sperm cells), we showed that PDC-109 extracts phospholipids with a phosphorylcholine headgroup mainly from the outer leaflet of these membranes. The ability of PDC-109 to extract endogenous phospholipids from epididymal sperm cells was followed by mass spectrometry, which allowed us to characterize the fatty acid pattern of the released lipids. From these cells, PDC-109 extracted phosphatidylcholine and sphingomyelin that contained an enrichment of mono- and di-unsaturated fatty acids as well as short-chain and lyso-phosphatidylcholine species. Based on the results, a model explaining the phospholipid specificity of PDC-109-mediated lipid release is presented.
Collapse
Affiliation(s)
- Astrid Tannert
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Im JS, Tapinos N, Chae GT, Illarionov PA, Besra GS, DeVries GH, Modlin RL, Sieling PA, Rambukkana A, Porcelli SA. Expression of CD1d Molecules by Human Schwann Cells and Potential Interactions with Immunoregulatory Invariant NK T Cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:5226-35. [PMID: 17015708 DOI: 10.4049/jimmunol.177.8.5226] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CD1d-restricted NKT cells expressing invariant TCR alpha-chains (iNKT cells) produce both proinflammatory and anti-inflammatory cytokines rapidly upon activation, and are believed to play an important role in both host defense and immunoregulation. To address the potential implications of iNKT cell responses for infectious or inflammatory diseases of the nervous system, we investigated the expression of CD1d in human peripheral nerve. We found that CD1d was expressed on the surface of Schwann cells in situ and on primary or immortalized Schwann cell lines in culture. Schwann cells activated iNKT cells in a CD1d-dependent manner in the presence of alpha-galactosylceramide. Surprisingly, the cytokine production of iNKT cells stimulated by alpha-galactosylceramide presented by CD1d+ Schwann cells showed a predominance of Th2-associated cytokines such as IL-5 and IL-13 with a marked deficiency of proinflammatory Th1 cytokines such as IFN-gamma or TNF-alpha. Our findings suggest a mechanism by which iNKT cells may restrain inflammatory responses in peripheral nerves, and raise the possibility that the expression of CD1d by Schwann cells could be relevant in the pathogenesis of infectious and inflammatory diseases of the peripheral nervous system.
Collapse
Affiliation(s)
- Jin S Im
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Van Rhijn I, Koets AP, Im JS, Piebes D, Reddington F, Besra GS, Porcelli SA, van Eden W, Rutten VPMG. The bovine CD1 family contains group 1 CD1 proteins, but no functional CD1d. THE JOURNAL OF IMMUNOLOGY 2006; 176:4888-93. [PMID: 16585584 DOI: 10.4049/jimmunol.176.8.4888] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The CD1 family of proteins presents lipid Ags to T cells. Human CD1a, CD1b, and CD1c have been shown in humans to present mycobacterial lipid Ags. Cattle, like humans, are a natural host of several mycobacterial pathogens. In this study, we describe the CD1 family of genes in cattle (Bos taurus) and provide evidence that B. taurus expresses CD1a, CD1e, and multiple CD1b molecules, but no CD1c and CD1d molecules. In mice and humans, CD1d is known to present Ag to NKT cells, a T cell lineage that is characterized by a limited TCR repertoire, capable of rapidly secreting large amounts of IFN-gamma and IL-4. In cattle, two CD1D pseudogenes were found and no intact CD1D genes. Consistent with this, we found complete lack of reactivity to a potent, cross-reactive Ag for NKT cells in mice and humans, alpha-galactosylceramide. Our data suggest the absence of NKT cells in cattle. It remains open whether other cells with the NKT-like phenotype and functions are present in this species. With its functional CD1A and CD1B genes, B. taurus is well equipped to present Ags to CD1-restricted T cells other than NKT cells. Cattle can be used as a model to study group 1 CD1-restricted T cell immunity, including its role in the defense against mycobacterial infections that occur naturally in this species.
Collapse
Affiliation(s)
- Ildiko Van Rhijn
- Department of Infection and Immunity, Faculty of Veterinary Medicine, Utrecht University, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
An emerging area of investigation is the role of lipids as immunological antigens. CD1 glycoproteins comprise a family of molecules that are specialized for presenting lipids, glycolipids and lipopeptides to T lymphocytes. Variations in the cytoplasmic tail sequences of CD1 isoforms lead to differential association with adaptor proteins and consequently divergent routes of intracellular trafficking, resulting in surveillance of distinct cellular sites for binding lipid antigens. CD1 molecules efficiently gain access to lipids from intracellular microbial pathogens in endosomal compartments, and the trafficking and lipid-binding specialization of CD1 isoforms may correlate with the endosomal segregation of structurally distinct lipids. Endosomal trafficking is also critical for CD1d molecules to load antigenic self-lipids that are presented to autoreactive CD1d-restricted natural killer (NK)T cells and is required for the positive selection of these unique T cells. Recent studies reveal a key role for accessory proteins that facilitate the uptake of lipid antigens by CD1 molecules. These include lysosomal lipid-transfer proteins, such as the saposins, and apolipoprotein E, the major serum factor that binds and delivers extracellular lipids to antigen-presenting cells. These advances in understanding the CD1 lipid antigen presentation system raise new considerations about the role of the immune response in lipid-related diseases.
Collapse
Affiliation(s)
- Jenny E Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin Medical School, Madison, 53706, USA,
| |
Collapse
|
33
|
Huang YM, Adikari S, Båve U, Sanna A, Alm G. Multiple sclerosis: interferon-beta induces CD123(+)BDCA2- dendritic cells that produce IL-6 and IL-10 and have no enhanced type I interferon production. J Neuroimmunol 2005; 158:204-12. [PMID: 15589055 DOI: 10.1016/j.jneuroim.2004.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Revised: 08/09/2004] [Accepted: 08/12/2004] [Indexed: 11/18/2022]
Abstract
Interferon-beta (IFN-beta), an approved drug for multiple sclerosis (MS), acts on dendritic cells (DC) by suppressing IL-12p40 and increasing IL-10. This results in Th2-biased immune responses. The nature of IFN-beta-modulated DC remains elusive. Previously, we observed that IFN-beta dose dependently induces expression of CD123, i.e., a classical marker for plasmacytoid DC, on human blood monocyte-derived myeloid DC. Such IFN-beta-modulated DCs produce predominantly IL-10 but are IL-12 deficient, with potent Th2 promotion. In the present study, we further characterize IFN-beta-modulated DC by using recently identified blood DC antigens (BDCA), and investigate their ability to produce type I IFN in response to virus stimulation. We show that IFN-beta induces development of CD123+ DC from human blood monocytes, which coexpress BDCA4+ but are negative for BDCA2-, a specific marker for plasmacytoid DC. Such IFN-beta-modulated DC can produce IL-6 and IL-10 but not IL-12p40, and have no enhanced IFN-alpha and IFN-beta production. The findings indicate that IFN-beta-modulated DCs represent a myeloid DC subset with diminished CD11c, BDCA-1 and CD1a expression. They may promote Th2 and B cell differentiation through IL-6 and IL-10 production, and suppression of IL-12p40, but they have no enhanced antiviral capacity.
Collapse
Affiliation(s)
- Y M Huang
- Division of Neuroimmunology, Karolinska Institute, Alfred Nobels allé 10, 141 83 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
34
|
Franchini L, Compostella F, Donda A, Mori L, Colombo D, De Libero G, Matto P, Ronchetti F, Panza L. Synthesis of a Fluorescent Sulfatide for the Study of CD1 Antigen Binding Properties. European J Org Chem 2004. [DOI: 10.1002/ejoc.200400398] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Van Rhijn I, Young DC, Im JS, Levery SB, Illarionov PA, Besra GS, Porcelli SA, Gumperz J, Cheng TY, Moody DB. CD1d-restricted T cell activation by nonlipidic small molecules. Proc Natl Acad Sci U S A 2004; 101:13578-83. [PMID: 15342907 PMCID: PMC518797 DOI: 10.1073/pnas.0402838101] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2004] [Indexed: 11/18/2022] Open
Abstract
In addition to NK T cells expressing invariant Valpha14 or Valpha24 T cell receptors (TCRs), the CD1d-restricted T cell repertoire is comprised of T cells with diverse TCRs that mediate inflammation during autoimmune and infectious disease. Here we describe the isolation of human Valpha24(-) T cells that are activated by antigen and CD1d. Mass spectrometric and NMR studies revealed that the stimulatory compounds were neither peptidic nor lipidic but instead were composed of sulfur and aromatic hydrocarbon rings, corresponding to the general structure of phenyl pentamethyldihydrobenzofuran sulfonates. Studies of the molecular mechanism of T cell activation showed that a clonotypic Valpha2/Vbeta21 TCR transmitted activating signals, which were highly specific for hydroxylation and methylation patterns at the terminal structures of stimulatory compounds. These studies provide evidence for noninvariant CD1d-restricted T cells in humans and identify the complete molecular structure of a nonlipidic small molecule that activates T cells through an alphabeta TCR.
Collapse
MESH Headings
- Antigens, CD1/chemistry
- Antigens, CD1/immunology
- Antigens, CD1/metabolism
- Antigens, CD1d
- Arylsulfonates/chemistry
- Arylsulfonates/pharmacology
- Benzofurans/chemistry
- Benzofurans/pharmacology
- Chromatography, High Pressure Liquid
- Humans
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Lymphocyte Activation/drug effects
- Magnetic Resonance Spectroscopy
- Molecular Sequence Data
- Molecular Structure
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Ildiko Van Rhijn
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, 1 Jimmy Fund Way, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|