1
|
Kelpsch DJ, Zhang L, Thierer JH, Koren K, Kumar U, Lin Y, Hensley MR, Sohn M, Liu JO, Lectka T, Mumm JS, Farber SA. A whole-animal phenotypic drug screen identifies suppressors of atherogenic lipoproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.14.623618. [PMID: 39605440 PMCID: PMC11601432 DOI: 10.1101/2024.11.14.623618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Lipoproteins are essential for lipid transport in all bilaterians. A single Apolipoprotein B (ApoB) molecule is the inseparable structural scaffold of each ApoB-containing lipoprotein (B-lps), which are responsible for transporting lipids to peripheral tissues. The cellular mechanisms that regulate ApoB and B-lp production, secretion, transport, and degradation remain to be fully defined. In humans, elevated levels of vascular B-lps play a causative role in cardiovascular disease. Previously, we have detailed that human B-lp biology is remarkably conserved in the zebrafish using an in vivo chemiluminescent reporter of ApoB (LipoGlo) that does not disrupt ApoB function. Thus, the LipoGlo model is an ideal system for identifying novel mechanisms of ApoB modulation and, due to the ability of zebrafish to generate many progeny, is particularly amenable to large-scale phenotypic drug screening. Here, we report a screen of roughly 3000 compounds that identified 49 unique ApoB-lowering hits. Nineteen hits passed orthogonal screening criteria. A licorice root component, enoxolone, significantly lowered B-lps only in animals that express a functional allele of the nuclear hormone receptor Hepatocyte Nuclear Factor 4α (HNF4α). Consistent with this result, inhibitors of HNF4α also reduce B-lp levels. These data demonstrate that mechanism(s) of action can be rapidly determined from a whole animal zebrafish phenotypic screen. Given the well documented role of HNF4α in human B-lp biology, these data validate the LipoGlo screening platform for identifying small molecule modulators of B-lps that play a critical role in a leading cause of worldwide mortality.
Collapse
Affiliation(s)
- Daniel J. Kelpsch
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Liyun Zhang
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, United States
| | - James H. Thierer
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, United States
| | - Kobe Koren
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Urmi Kumar
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Yuki Lin
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Monica R. Hensley
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Mira Sohn
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Jun O. Liu
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, United States
| | - Thomas Lectka
- Department of Chemistry, Johns Hopkins University, Baltimore, United States
| | - Jeff S. Mumm
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, United States
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University, Baltimore, United States
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, United States
| | - Steven A. Farber
- Department of Biology, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
2
|
Ding Y, Chen QB, Xu H, Adi D, Ding YW, Luo WJ, Zhu WZ, Xu JC, Zhao X, Shi XJ, Luo J, Yin H, Lu XY. siRNA nanoparticle targeting Usp20 lowers lipid levels and ameliorates metabolic syndrome in mice. J Lipid Res 2024; 65:100626. [PMID: 39173829 PMCID: PMC11418111 DOI: 10.1016/j.jlr.2024.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
Atherosclerotic cardiovascular disease is closely correlated with elevated low density lipoprotein-cholesterol. In feeding state, glucose and insulin activate mammalian target of rapamycin 1 that phosphorylates the deubiquitylase ubiquitin-specific peptidase 20 (USP20). USP20 then stabilizes HMG-CoA reductase, thereby increasing lipid biosynthesis. In this study, we applied clinically approved lipid nanoparticles to encapsulate the siRNA targeting Usp20. We demonstrated that silencing of hepatic Usp20 by siRNA decreased body weight, improved insulin sensitivity, and increased energy expenditure through elevating UCP1. In Ldlr-/- mice, silencing Usp20 by siRNA decreased lipid levels and prevented atherosclerosis. This study suggests that the RNAi-based therapy targeting hepatic Usp20 has a translational potential to treat metabolic disease.
Collapse
Affiliation(s)
- Yi Ding
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Qiu-Bing Chen
- Department of Urology, Frontier Science Center for Immunology and Metabolism Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hui Xu
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Dilare Adi
- Heart Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yi-Wen Ding
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Wen-Jun Luo
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Wen-Zhuo Zhu
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Jia-Chen Xu
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Xiaolu Zhao
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Xiong-Jie Shi
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Jie Luo
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Hao Yin
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China; Department of Urology, Frontier Science Center for Immunology and Metabolism Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xiao-Yi Lu
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Ozkan-Nikitaras T, Grzesik DJ, Romano LEL, Chapple JP, King PJ, Shoulders CC. N-SREBP2 Provides a Mechanism for Dynamic Control of Cellular Cholesterol Homeostasis. Cells 2024; 13:1255. [PMID: 39120286 PMCID: PMC11311687 DOI: 10.3390/cells13151255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Cholesterol is required to maintain the functional integrity of cellular membrane systems and signalling pathways, but its supply must be closely and dynamically regulated because excess cholesterol is toxic. Sterol regulatory element-binding protein 2 (SREBP2) and the ER-resident protein HMG-CoA reductase (HMGCR) are key regulators of cholesterol biosynthesis. Here, we assessed the mechanistic aspects of their regulation in hepatic cells. Unexpectedly, we found that the transcriptionally active fragment of SREBP2 (N-SREBP2) was produced constitutively. Moreover, in the absence of an exogenous cholesterol supply, nuclear N-SREBP2 became resistant to proteasome-mediated degradation. This resistance was paired with increased occupancy at the HMGCR promoter and HMGCR expression. Inhibiting nuclear N-SREBP2 degradation did not increase HMGCR RNA levels; this increase required cholesterol depletion. Our findings, combined with previous physiological and biophysical investigations, suggest a new model of SREBP2-mediated regulation of cholesterol biosynthesis in the organ that handles large and rapid fluctuations in the dietary supply of this key lipid. Specifically, in the nucleus, cholesterol and the ubiquitin-proteasome system provide a short-loop system that modulates the rate of cholesterol biosynthesis via regulation of nuclear N-SREBP2 turnover and HMGCR expression. Our findings have important implications for maintaining cellular cholesterol homeostasis and lowering blood cholesterol via the SREBP2-HMGCR axis.
Collapse
Affiliation(s)
- Tozen Ozkan-Nikitaras
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| | - Dominika J. Grzesik
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden
| | - Lisa E. L. Romano
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| | - J. P. Chapple
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| | - Peter J. King
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| | - Carol C. Shoulders
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| |
Collapse
|
4
|
Dell'Anno I, Morani F, Patergnani S, Daga A, Pinton P, Giorgi C, Mutti L, Gemignani F, Landi S. Thonzonium bromide inhibits progression of malignant pleural mesothelioma through regulation of ERK1/2 and p38 pathways and mitochondrial uncoupling. Cancer Cell Int 2024; 24:226. [PMID: 38951927 PMCID: PMC11218145 DOI: 10.1186/s12935-024-03400-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/08/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Malignant Pleural Mesothelioma (MPM) is a rare malignancy with a poor prognosis. Current therapies are unsatisfactory and novel cures are urgently needed. In a previous drug screening, we identified thonzonium bromide (TB) as one of the most active compounds against MPM cells. Since the biological effects of TB are poorly known, in this work we departed from some hints of previous studies and investigated several hypotheses. Moreover, we evaluated the efficacy of TB in an in vivo xenograft rodent model. METHODS In vitro assessment was made on five MPM (Mero-14, Mero-25, Ren, NCI-H28, MSTO-211H) and one SV40-immortalized mesothelial cell line (MeT-5A). We evaluated TB ability to affect proliferation, apoptosis, mitochondrial functions and metabolism, and the mevalonate pathway. In vivo assay was carried out on MPM-xenograft NOD-SCID mice (4 mg/kg delivered intraperitoneally, twice a week for 4 weeks) and the overall survival was analysed with Kaplan-Meier curves. RESULTS After TB treatment, we observed the suppression of ERK 1/2 phosphorylation, the increase of BAX expression and p38 phosphorylation. TB affected Ca2+ homeostasis in both mitochondrial and cytosolic compartments, it regulated the mitochondrial functioning, respiration, and ATP production as well as the mevalonate pathway. The in vivo study showed an increased overall survival for TB treated group vs. vehicle control group (P = 0.0076). CONCLUSIONS Both in vitro and in vivo results confirmed the effect of TB on MPM and unravelled novel targets with translational potential.
Collapse
Affiliation(s)
| | | | - Simone Patergnani
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Advanced Therapies (LTTA), Technopole of Ferrara, Ferrara, Italy
| | - Antonio Daga
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Advanced Therapies (LTTA), Technopole of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Advanced Therapies (LTTA), Technopole of Ferrara, Ferrara, Italy
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, USA.
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | | | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|
5
|
Loix M, Zelcer N, Bogie JFJ, Hendriks JJA. The ubiquitous role of ubiquitination in lipid metabolism. Trends Cell Biol 2024; 34:416-429. [PMID: 37770289 DOI: 10.1016/j.tcb.2023.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/17/2023] [Accepted: 09/01/2023] [Indexed: 09/30/2023]
Abstract
Lipids are essential molecules that play key roles in cell physiology by serving as structural components, for storage of energy, and in signal transduction. Hence, efficient regulation and maintenance of lipid homeostasis are crucial for normal cellular and tissue function. In the past decade, increasing research has shown the importance of ubiquitination in regulating the stability of key players in different aspects of lipid metabolism. This review describes recent insights into the regulation of lipid metabolism by ubiquitin signaling, discusses how ubiquitination can be targeted in diseases characterized by lipid dysregulation, and identifies areas that require further research.
Collapse
Affiliation(s)
- Melanie Loix
- Biomedical Research Institute, School of Life Sciences, Hasselt University, Diepenbeek, Belgium; University MS Center Hasselt, Pelt, Belgium
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen F J Bogie
- Biomedical Research Institute, School of Life Sciences, Hasselt University, Diepenbeek, Belgium; University MS Center Hasselt, Pelt, Belgium
| | - Jerome J A Hendriks
- Biomedical Research Institute, School of Life Sciences, Hasselt University, Diepenbeek, Belgium; University MS Center Hasselt, Pelt, Belgium.
| |
Collapse
|
6
|
Rybak JM, Xie J, Martin-Vicente A, Guruceaga X, Thorn HI, Nywening AV, Ge W, Souza ACO, Shetty AC, McCracken C, Bruno VM, Parker JE, Kelly SL, Snell HM, Cuomo CA, Rogers PD, Fortwendel JR. A secondary mechanism of action for triazole antifungals in Aspergillus fumigatus mediated by hmg1. Nat Commun 2024; 15:3642. [PMID: 38684680 PMCID: PMC11059170 DOI: 10.1038/s41467-024-48029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Triazole antifungals function as ergosterol biosynthesis inhibitors and are frontline therapy for invasive fungal infections, such as invasive aspergillosis. The primary mechanism of action of triazoles is through the specific inhibition of a cytochrome P450 14-α-sterol demethylase enzyme, Cyp51A/B, resulting in depletion of cellular ergosterol. Here, we uncover a clinically relevant secondary mechanism of action for triazoles within the ergosterol biosynthesis pathway. We provide evidence that triazole-mediated inhibition of Cyp51A/B activity generates sterol intermediate perturbations that are likely decoded by the sterol sensing functions of HMG-CoA reductase and Insulin-Induced Gene orthologs as increased pathway activity. This, in turn, results in negative feedback regulation of HMG-CoA reductase, the rate-limiting step of sterol biosynthesis. We also provide evidence that HMG-CoA reductase sterol sensing domain mutations previously identified as generating resistance in clinical isolates of Aspergillus fumigatus partially disrupt this triazole-induced feedback. Therefore, our data point to a secondary mechanism of action for the triazoles: induction of HMG-CoA reductase negative feedback for downregulation of ergosterol biosynthesis pathway activity. Abrogation of this feedback through acquired mutations in the HMG-CoA reductase sterol sensing domain diminishes triazole antifungal activity against fungal pathogens and underpins HMG-CoA reductase-mediated resistance.
Collapse
Affiliation(s)
- Jeffrey M Rybak
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinhong Xie
- Graduate Program in Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adela Martin-Vicente
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Xabier Guruceaga
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Harrison I Thorn
- Graduate Program in Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ashley V Nywening
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Integrated Program in Biomedical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Wenbo Ge
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ana C O Souza
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amol C Shetty
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carrie McCracken
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vincent M Bruno
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Josie E Parker
- Molecular Biosciences Division, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Steven L Kelly
- Institute of Life Science, Swansea University Medical School, Swansea, Wales, UK
| | - Hannah M Snell
- Infectious Diseases and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christina A Cuomo
- Infectious Diseases and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - P David Rogers
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jarrod R Fortwendel
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
7
|
Kwon YS, Cho YE, Kim Y, Koh M, Hwang S. Dimethyloxalylglycine Suppresses SREBP1c and Lipogenic Gene Expressions in Hepatocytes Independently of HIF1A. Curr Issues Mol Biol 2024; 46:2386-2397. [PMID: 38534767 DOI: 10.3390/cimb46030151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Dimethyloxalylglycine (DMOG) is a representative inhibitor of the prolyl hydroxylase domain (PHD), which mediates the degradation of hypoxia-inducible factor-1-alpha (HIF1A). DMOG exerts its pharmacological effects via the canonical pathway that involves PHD inhibition; however, it remains unclear whether DMOG affects lipogenic gene expression in hepatocytes. We aimed to elucidate the effects of DMOG on sterol regulatory element-binding protein-1c (SREBP1c), a master regulator of fatty acid synthesis in hepatocytes. DMOG treatment inhibited SREBP1c mRNA and protein expression in HepG2 and AML12 hepatocytes and reduced the transcript levels of SREBP1c-regulated lipogenic genes. A luciferase reporter assay revealed that DMOG inhibited the transcriptional activity of SREBP1c. Moreover, DMOG suppressed SREBP1c expression in mice liver. Mechanistically, treatment with DMOG enhanced the expression of HIF1A and insulin-induced gene 2 (INSIG2), which inhibits the activation of SREBP1c. However, HIF1A or INSIG2 knockdown failed to reverse the inhibitory effect of DMOG on SREBP1c expression, suggesting a redundant role of HIF1A and INSIG2 in terms of repressing SREBP1c. DMOG did not function through the canonical pathway involving inhibition of SREBP1c by PHD, highlighting the presence of non-canonical pathways that mediate its anti-lipogenic effect.
Collapse
Affiliation(s)
- Yong Seong Kwon
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Ye Eun Cho
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Yeonsoo Kim
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Minseob Koh
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
8
|
Faulkner RA, Yang Y, Tsien J, Qin T, DeBose-Boyd RA. Direct binding to sterols accelerates endoplasmic reticulum-associated degradation of HMG CoA reductase. Proc Natl Acad Sci U S A 2024; 121:e2318822121. [PMID: 38319967 PMCID: PMC10873557 DOI: 10.1073/pnas.2318822121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
The maintenance of cholesterol homeostasis is crucial for normal function at both the cellular and organismal levels. Two integral membrane proteins, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and Scap, are key targets of a complex feedback regulatory system that operates to ensure cholesterol homeostasis. HMGCR catalyzes the rate-limiting step in the transformation of the 2-carbon precursor acetate to 27-carbon cholesterol. Scap mediates proteolytic activation of sterol regulatory element-binding protein-2 (SREBP-2), a membrane-bound transcription factor that controls expression of genes involved in the synthesis and uptake of cholesterol. Sterol accumulation triggers binding of HMGCR to endoplasmic reticulum (ER)-localized Insig proteins, leading to the enzyme's ubiquitination and proteasome-mediated ER-associated degradation (ERAD). Sterols also induce binding of Insigs to Scap, which leads to sequestration of Scap and its bound SREBP-2 in the ER, thereby preventing proteolytic activation of SREBP-2 in the Golgi. The oxygenated cholesterol derivative 25-hydroxycholesterol (25HC) and the methylated cholesterol synthesis intermediate 24,25-dihydrolanosterol (DHL) differentially modulate HMGCR and Scap. While both sterols promote binding of HMGCR to Insigs for ubiquitination and subsequent ERAD, only 25HC inhibits the Scap-mediated proteolytic activation of SREBP-2. We showed previously that 1,1-bisphosphonate esters mimic DHL, accelerating ERAD of HMGCR while sparing SREBP-2 activation. Building on these results, our current studies reveal specific, Insig-independent photoaffinity labeling of HMGCR by photoactivatable derivatives of the 1,1-bisphosphonate ester SRP-3042 and 25HC. These findings disclose a direct sterol binding mechanism as the trigger that initiates the HMGCR ERAD pathway, providing valuable insights into the intricate mechanisms that govern cholesterol homeostasis.
Collapse
Affiliation(s)
- Rebecca A. Faulkner
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390-9046
| | - Yangyan Yang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390-9046
| | - Jet Tsien
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390-9046
| | - Tian Qin
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390-9046
| | - Russell A. DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390-9046
| |
Collapse
|
9
|
Avci D, Heidasch R, Costa M, Lüchtenborg C, Kale D, Brügger B, Lemberg MK. Intramembrane protease SPP defines a cholesterol-regulated abundance control of the mevalonate pathway enzyme squalene synthase. J Biol Chem 2024; 300:105644. [PMID: 38218226 PMCID: PMC10850959 DOI: 10.1016/j.jbc.2024.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Intramembrane proteolysis regulates important processes such as signaling and transcriptional and posttranslational abundance control of proteins with key functions in metabolic pathways. This includes transcriptional control of mevalonate pathway genes, thereby ensuring balanced biosynthesis of cholesterol and other isoprenoids. Our work shows that, at high cholesterol levels, signal peptide peptidase (SPP) cleaves squalene synthase (SQS), an enzyme that defines the branching point for allocation of isoprenoids to the sterol and nonsterol arms of the mevalonate pathway. This intramembrane cleavage releases SQS from the membrane and targets it for proteasomal degradation. Regulation of this mechanism is achieved by the E3 ubiquitin ligase TRC8 that, in addition to ubiquitinating SQS in response to cholesterol levels, acts as an allosteric activator of SPP-catalyzed intramembrane cleavage of SQS. Cellular cholesterol levels increase in the absence of SPP activity. We infer from these results that, SPP-TRC8 mediated abundance control of SQS acts as a regulation step within the mevalonate pathway.
Collapse
Affiliation(s)
- Dönem Avci
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.
| | - Ronny Heidasch
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Martina Costa
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | | | - Dipali Kale
- Biochemistry Center of Heidelberg University (BZH), Heidelberg, Germany
| | - Britta Brügger
- Biochemistry Center of Heidelberg University (BZH), Heidelberg, Germany
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.
| |
Collapse
|
10
|
Stubbs EB. Determining Isoprenoid-Facilitated Monomeric GTPase Turnover in Primary Human Trabecular Meshwork Cultures. Methods Mol Biol 2024; 2816:101-115. [PMID: 38977592 DOI: 10.1007/978-1-0716-3902-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Members of the Rho family of small monomeric GTPases regulate a plethora of critical cellular functions including gene expression, cell cycle progression, and the dynamic modeling of the actin cytoskeleton. Diversity among Rho family members is derived, in part, from variations in their subcellular distribution. Localization of newly synthesized (naïve) Rho proteins to target subcellular compartments is largely governed by lipid modifications, including posttranslational prenylation. Here, using well-established and widely available contemporary methodologies, detailed protocols by which to semiquantitatively evaluate the functional consequence of posttranslational prenylation in human trabecular meshwork cells are described. We propose the novel concept that posttranslational prenylation itself is a key regulator of mammalian Rho GTPase protein expression and turnover.
Collapse
Affiliation(s)
- Evan B Stubbs
- Research Service, Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, IL, USA.
- Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.
| |
Collapse
|
11
|
Huang Y, Wang YF, Ruan XZ, Lau CW, Wang L, Huang Y. The role of KLF2 in regulating hepatic lipogenesis and blood cholesterol homeostasis via the SCAP/SREBP pathway. J Lipid Res 2024; 65:100472. [PMID: 37949368 PMCID: PMC10805670 DOI: 10.1016/j.jlr.2023.100472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/21/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Liver steatosis is a common metabolic disorder resulting from imbalanced lipid metabolism, which involves various processes such as de novo lipogenesis, fatty acid uptake, fatty acid oxidation, and VLDL secretion. In this study, we discovered that KLF2, a transcription factor, plays a crucial role in regulating lipid metabolism in the liver. Overexpression of KLF2 in the liver of db/db mice, C57BL/6J mice, and Cd36-/- mice fed on a normal diet resulted in increased lipid content in the liver. Additionally, transgenic mice (ALB-Klf2) that overexpressed Klf2 in the liver developed liver steatosis after being fed a normal diet. We found that KLF2 promotes lipogenesis by increasing the expression of SCAP, a chaperone that facilitates the activation of SREBP, the master transcription factor for lipogenic gene expression. Our mechanism studies revealed that KLF2 enhances lipogenesis in the liver by binding to the promoter of SCAP and increasing the expression of genes involved in fatty acid synthesis. Reduction of KLF2 expression led to a decrease in SCAP expression and a reduction in the expression of SREBP1 target genes involved in lipogenesis. Overexpression of KLF2 also increased the activation of SREBP2 and the mRNA levels of its downstream target SOAT1. In C57BL/6J mice fed a high-fat diet, overexpression of Klf2 increased blood VLDL secretion, while reducing its expression decreased blood cholesterol levels. Our study emphasizes the novelty that hepatic KLF2 plays a critical role in regulating lipid metabolism through the KLF2/SCAP/SREBPs pathway, which is essential for hepatic lipogenesis and maintaining blood cholesterol homeostasis.
Collapse
Affiliation(s)
- Yuhong Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, PR China; Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Shenzhen, China
| | - Yi Fan Wang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, PR China
| | - Xiong Zhong Ruan
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chi Wai Lau
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, PR China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Zhou X, Wu X, Wang R, Han L, Li H, Zhao W. Mechanisms of 3-Hydroxyl 3-Methylglutaryl CoA Reductase in Alzheimer's Disease. Int J Mol Sci 2023; 25:170. [PMID: 38203341 PMCID: PMC10778631 DOI: 10.3390/ijms25010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide and has a high incidence in the elderly. Unfortunately, there is no effective therapy for AD owing to its complicated pathogenesis. However, the development of lipid-lowering anti-inflammatory drugs has heralded a new era in the treatment of Alzheimer's disease. Several studies in recent years have shown that lipid metabolic dysregulation and neuroinflammation are associated with the pathogenesis of AD. 3-Hydroxyl 3-methylglutaryl CoA reductase (HMGCR) is a rate-limiting enzyme in cholesterol synthesis that plays a key role in cholesterol metabolism. HMGCR inhibitors, known as statins, have changed from being solely lipid-lowering agents to neuroprotective compounds because of their effects on lipid levels and inflammation. In this review, we first summarize the main regulatory mechanism of HMGCR affecting cholesterol biosynthesis. We also discuss the pathogenesis of AD induced by HMGCR, including disordered lipid metabolism, oxidative stress, inflammation, microglial proliferation, and amyloid-β (Aβ) deposition. Subsequently, we explain the possibility of HMGCR as a potential target for AD treatment. Statins-based AD treatment is an ascent field and currently quite controversial; therefore, we also elaborate on the current application prospects and limitations of statins in AD treatment.
Collapse
Affiliation(s)
- Xun Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
- Department of Endocrinology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China;
| | - Xiaolang Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
| | - Rui Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
| | - Lu Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
| | - Huilin Li
- Department of Endocrinology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China;
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
| |
Collapse
|
13
|
Dickson AS, Pauzaite T, Arnaiz E, Ortmann BM, West JA, Volkmar N, Martinelli AW, Li Z, Wit N, Vitkup D, Kaser A, Lehner PJ, Nathan JA. A HIF independent oxygen-sensitive pathway for controlling cholesterol synthesis. Nat Commun 2023; 14:4816. [PMID: 37558666 PMCID: PMC10412576 DOI: 10.1038/s41467-023-40541-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/30/2023] [Indexed: 08/11/2023] Open
Abstract
Cholesterol biosynthesis is a highly regulated, oxygen-dependent pathway, vital for cell membrane integrity and growth. In fungi, the dependency on oxygen for sterol production has resulted in a shared transcriptional response, resembling prolyl hydroxylation of Hypoxia Inducible Factors (HIFs) in metazoans. Whether an analogous metazoan pathway exists is unknown. Here, we identify Sterol Regulatory Element Binding Protein 2 (SREBP2), the key transcription factor driving sterol production in mammals, as an oxygen-sensitive regulator of cholesterol synthesis. SREBP2 degradation in hypoxia overrides the normal sterol-sensing response, and is HIF independent. We identify MARCHF6, through its NADPH-mediated activation in hypoxia, as the main ubiquitin ligase controlling SREBP2 stability. Hypoxia-mediated degradation of SREBP2 protects cells from statin-induced cell death by forcing cells to rely on exogenous cholesterol uptake, explaining why many solid organ tumours become auxotrophic for cholesterol. Our findings therefore uncover an oxygen-sensitive pathway for governing cholesterol synthesis through regulated SREBP2-dependent protein degradation.
Collapse
Affiliation(s)
- Anna S Dickson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Tekle Pauzaite
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Esther Arnaiz
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
- Ochre-Bio Ltd, Hayakawa Building, Oxford Science Park, Edmund Halley Road, Oxford, OX4 4GB, UK
| | - Brian M Ortmann
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
- Biosciences Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU, UK
| | - James A West
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Norbert Volkmar
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
- Institute for Molecular Systems Biology (IMSB), ETH Zürich, Zürich, Switzerland
- DISCO Pharmaceuticals Swiss GmbH, ETH Zürich, Zürich, Switzerland
| | - Anthony W Martinelli
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Zhaoqi Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Tango Therapeutics, 201 Brookline Ave Suite 901, Boston, MA, USA
| | - Niek Wit
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Dennis Vitkup
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK.
| |
Collapse
|
14
|
Zhu Y, Lei L, Wang X, Jiang Q, Loor JJ, Kong F, Chen L, Li J, Zhao C, Liu M, Liu G, Li X. Low abundance of insulin-induced gene 1 contributes to SREBP-1c processing and hepatic steatosis in dairy cows with severe fatty liver. J Dairy Sci 2023; 106:5626-5635. [PMID: 37291038 DOI: 10.3168/jds.2022-22895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/09/2023] [Indexed: 06/10/2023]
Abstract
Fatty liver is a major metabolic disorder of high-producing dairy cows during the transition period. In nonruminants, it is well established that insulin-induced gene 1 (INSIG1) plays a crucial role in regulating hepatic lipogenesis by controlling the anchoring of sterol regulatory element-binding protein 1 (SREBP-1) on the endoplasmic reticulum along with SREBP cleavage-activating protein (SCAP). Whether the INSIG1-SCAP-SREBP-1c transport axis is affected in cows experiencing fatty liver is unknown. Thus, the aim of this study was to investigate the potential role of INSIG1-SCAP-SREBP-1c axis in the progression of fatty liver in dairy cows. For in vivo experiments, 24 dairy cows at the start of their fourth lactation (median; range 3-5) and 8 d in milk (median; range 4-12 d) were selected into a healthy group [n = 12; triglyceride (TG) content <1%] and a severe fatty liver group (n = 12; TG content >10%) according to their hepatic TG content. Blood samples were collected for detecting serum concentrations of free fatty acids, β-hydroxybutyrate, and glucose. Compared with healthy cows, cows with severe fatty liver had higher serum concentrations of β-hydroxybutyrate and free fatty acids and lower concentration of glucose. Liver biopsies were used to detect the status of INSIG1-SCAP-SREBP-1c axis, and the mRNA expression of SREBP-1c-target lipogenic genes acetyl-CoA carboxylase α (ACACA), fatty acid synthase (FASN), and diacylglycerol acyltransferase 1 (DGAT1). Cows with severe fatty liver had lower protein expression of INSIG1 in the hepatocyte endoplasmic reticulum fraction, greater protein expression of SCAP and precursor SREBP-1c in the hepatocyte Golgi fraction, and greater protein expression of mature SREBP-1c in the hepatocyte nuclear fraction. In addition, the mRNA expression of SREBP-1c-target lipogenic genes ACACA, FASN, and DGAT1 was greater in the liver of dairy cows with severe fatty liver. In vitro experiments were conducted on hepatocytes isolated from 5 healthy 1-d-old female Holstein calves, and hepatocytes from each calf were run independently. First, hepatocytes were treated with 0, 200, or 400 μM palmitic acid (PA) for 12 h. Exogenous PA treatment decreased INSIG1 protein abundance, enhanced the endoplasmic reticulum to Golgi export of SCAP-precursor SREBP-1c complex and the nuclear translocation of mature SREBP-1c, all of which was associated with increased transcriptional activation of lipogenic genes and TG synthesis. Second, hepatocytes were transfected with INSIG1-overexpressing adenovirus for 48 h and treated with 400 μM PA 12 h before the end of transfection. Overexpressing INSIG1 inhibited PA-induced SREBP-1c processing, upregulation of lipogenic genes, and TG synthesis in hepatocytes. Overall, the present in vivo and in vitro results indicated that the low abundance of INSIG1 contributed to SREBP-1c processing and hepatic steatosis in dairy cows. Thus, the INSIG1-SCAP-SREBP-1c axis may be a novel target for treatment of fatty liver in dairy cows.
Collapse
Affiliation(s)
- Yiwei Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xinghui Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Fanrong Kong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Linfang Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jinxia Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Chenchen Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Menglin Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
15
|
Kennewick KT, Bensinger SJ. Decoding the crosstalk between mevalonate metabolism and T cell function. Immunol Rev 2023; 317:71-94. [PMID: 36999733 DOI: 10.1111/imr.13200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 04/01/2023]
Abstract
The mevalonate pathway is an essential metabolic pathway in T cells regulating development, proliferation, survival, differentiation, and effector functions. The mevalonate pathway is a complex, branched pathway composed of many enzymes that ultimately generate cholesterol and nonsterol isoprenoids. T cells must tightly control metabolic flux through the branches of the mevalonate pathway to ensure sufficient isoprenoids and cholesterol are available to meet cellular demands. Unbalanced metabolite flux through the sterol or the nonsterol isoprenoid branch is metabolically inefficient and can have deleterious consequences for T cell fate and function. Accordingly, there is tight regulatory control over metabolic flux through the branches of this essential lipid synthetic pathway. In this review we provide an overview of how the branches of the mevalonate pathway are regulated in T cells and discuss our current understanding of the relationship between mevalonate metabolism, cholesterol homeostasis and T cell function.
Collapse
Affiliation(s)
- Kelly T Kennewick
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Steven J Bensinger
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
| |
Collapse
|
16
|
Vatandaslar H, Garzia A, Meyer C, Godbersen S, Brandt LTL, Griesbach E, Chao JA, Tuschl T, Stoffel M. In vivo PAR-CLIP (viP-CLIP) of liver TIAL1 unveils targets regulating cholesterol synthesis and secretion. Nat Commun 2023; 14:3386. [PMID: 37296170 PMCID: PMC10256721 DOI: 10.1038/s41467-023-39135-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
System-wide cross-linking and immunoprecipitation (CLIP) approaches have unveiled regulatory mechanisms of RNA-binding proteins (RBPs) mainly in cultured cells due to limitations in the cross-linking efficiency of tissues. Here, we describe viP-CLIP (in vivo PAR-CLIP), a method capable of identifying RBP targets in mammalian tissues, thereby facilitating the functional analysis of RBP-regulatory networks in vivo. We applied viP-CLIP to mouse livers and identified Insig2 and ApoB as prominent TIAL1 target transcripts, indicating an important role of TIAL1 in cholesterol synthesis and secretion. The functional relevance of these targets was confirmed by showing that TIAL1 influences their translation in hepatocytes. Mutant Tial1 mice exhibit altered cholesterol synthesis, APOB secretion and plasma cholesterol levels. Our results demonstrate that viP-CLIP can identify physiologically relevant RBP targets by finding a factor implicated in the negative feedback regulation of cholesterol biosynthesis.
Collapse
Affiliation(s)
- Hasan Vatandaslar
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| | - Aitor Garzia
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10021, USA
| | - Cindy Meyer
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10021, USA
| | - Svenja Godbersen
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| | - Laura T L Brandt
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| | - Esther Griesbach
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10021, USA
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland.
- Medical Faculty, University of Zürich, 8091, Zürich, Switzerland.
| |
Collapse
|
17
|
Jung D, Bachmann HS. Regulation of protein prenylation. Biomed Pharmacother 2023; 164:114915. [PMID: 37236024 DOI: 10.1016/j.biopha.2023.114915] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Prenyltransferases (PTases) are known to play a role in embryonic development, normal tissue homeostasis and cancer by posttranslationally modifying proteins involved in these processes. They are being discussed as potential drug targets in an increasing number of diseases, ranging from Alzheimer's disease to malaria. Protein prenylation and the development of specific PTase inhibitors (PTIs) have been subject to intense research in recent decades. Recently, the FDA approved lonafarnib, a specific farnesyltransferase inhibitor that acts directly on protein prenylation; and bempedoic acid, an ATP citrate lyase inhibitor that might alter intracellular isoprenoid composition, the relative concentrations of which can exert a decisive influence on protein prenylation. Both drugs represent the first approved agent in their respective substance class. Furthermore, an overwhelming number of processes and proteins that regulate protein prenylation have been identified over the years, many of which have been proposed as molecular targets for pharmacotherapy in their own right. However, certain aspects of protein prenylation, such as the regulation of PTase gene expression or the modulation of PTase activity by phosphorylation, have attracted less attention, despite their reported influence on tumor cell proliferation. Here, we want to summarize the advances regarding our understanding of the regulation of protein prenylation and the potential implications for drug development. Additionally, we want to suggest new lines of investigation that encompass the search for regulatory elements for PTases, especially at the genetic and epigenetic levels.
Collapse
Affiliation(s)
- Dominik Jung
- Institute of Pharmacology and Toxicology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Hagen S Bachmann
- Institute of Pharmacology and Toxicology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany.
| |
Collapse
|
18
|
Stubbs EB. Isoprenylation of Monomeric GTPases in Human Trabecular Meshwork Cells. Methods Mol Biol 2023; 2625:217-230. [PMID: 36653646 DOI: 10.1007/978-1-0716-2966-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Small monomeric GTPases, including those belonging to the Rho family, regulate a diverse array of intracellular signaling pathways which affect vesicle transport/trafficking, endocytosis, cell cycle progression, cell contractility, and formation of stress fibers or focal adhesions. Functional activation of newly synthesized small monomeric GTPases is facilitated by a multi-step posttranslational process involving transferase-catalyzed addition of farnesyl or geranylgeranyl isoprenoids to conserved cysteine residues within a unique carboxy terminal -CaaX motif. Here, using well-established and widely available contemporary methodologies, detailed protocols by which to semi-quantitatively evaluate the functional consequence of posttranslational isoprenylation in human trabecular meshwork cells are described. We propose the novel concept that posttranslational isoprenylation itself is a key regulator of mammalian Rho GTPase protein expression and turnover.
Collapse
Affiliation(s)
- Evan B Stubbs
- Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, IL, USA.
- Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.
| |
Collapse
|
19
|
Halimi H, Farjadian S. Cholesterol: An important actor on the cancer immune scene. Front Immunol 2022; 13:1057546. [PMID: 36479100 PMCID: PMC9719946 DOI: 10.3389/fimmu.2022.1057546] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Based on the structural and signaling roles of cholesterol, which are necessary for immune cell activity, high concentrations of cholesterol and its metabolites not only trigger malignant cell activities but also impede immune responses against cancer cells. To proliferate and evade immune responses, tumor cells overcome environmental restrictions by changing their metabolic and signaling pathways. Overexpression of mevalonate pathway enzymes and low-density lipoprotein receptor cause elevated cholesterol synthesis and uptake, respectively. Accordingly, cholesterol can be considered as both a cause and an effect of cancer. Variations in the effects of blood cholesterol levels on the outcome of different types of cancer may depend on the stage of cancer. However, positive effects of cholesterol-lowering drugs have been reported in the treatment of patients with some malignancies.
Collapse
|
20
|
Faulkner R, Jo Y. Synthesis, function, and regulation of sterol and nonsterol isoprenoids. Front Mol Biosci 2022; 9:1006822. [PMID: 36275615 PMCID: PMC9579336 DOI: 10.3389/fmolb.2022.1006822] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Cholesterol, the bulk end-product of the mevalonate pathway, is a key component of cellular membranes and lipoproteins that transport lipids throughout the body. It is also a precursor of steroid hormones, vitamin D, and bile acids. In addition to cholesterol, the mevalonate pathway yields a variety of nonsterol isoprenoids that are essential to cell survival. Flux through the mevalonate pathway is tightly controlled to ensure cells continuously synthesize nonsterol isoprenoids but avoid overproducing cholesterol and other sterols. Endoplasmic reticulum (ER)-localized 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase (HMGCR), the rate limiting enzyme in the mevalonate pathway, is the focus of a complex feedback regulatory system governed by sterol and nonsterol isoprenoids. This review highlights transcriptional and post-translational regulation of HMGCR. Transcriptional regulation of HMGCR is mediated by the Scap-SREBP pathway. Post-translational control is initiated by the intracellular accumulation of sterols, which causes HMGCR to become ubiquitinated and subjected to proteasome-mediated ER-associated degradation (ERAD). Sterols also cause a subfraction of HMGCR molecules to bind the vitamin K2 synthetic enzyme, UbiA prenyltransferase domain-containing protein-1 (UBIAD1). This binding inhibits ERAD of HMGCR, which allows cells to continuously synthesize nonsterol isoprenoids such as geranylgeranyl pyrophosphate (GGPP), even when sterols are abundant. Recent studies reveal that UBIAD1 is a GGPP sensor, dissociating from HMGCR when GGPP thresholds are met to allow maximal ERAD. Animal studies using genetically manipulated mice disclose the physiological significance of the HMGCR regulatory system and we describe how dysregulation of these pathways contributes to disease.
Collapse
|
21
|
Luo J, Wang JK, Song BL. Lowering low-density lipoprotein cholesterol: from mechanisms to therapies. LIFE METABOLISM 2022; 1:25-38. [PMID: 39872686 PMCID: PMC11749099 DOI: 10.1093/lifemeta/loac004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/31/2022] [Accepted: 05/13/2022] [Indexed: 01/30/2025]
Abstract
Low-density lipoprotein (LDL) is the main carrier of cholesterol and cholesteryl ester in circulation. High plasma levels of LDL cholesterol (LDL-C) are a major risk factor of atherosclerotic cardiovascular disease (ASCVD). LDL-C lowering is recommended by many guidelines for the prevention and treatment of ASCVD. Statins, ezetimibe, and proprotein convertase subtilisin/kexin type 9 inhibitors are the mainstay of LDL-C-lowering therapy. Novel therapies are also emerging for patients who are intolerant to statins or respond poorly to standard treatments. Here, we review the most recent advances on LDL-C-lowering drugs, focusing on the mechanisms by which they act to reduce LDL-C levels. The article starts with the cornerstone therapies applicable to most patients at risk for ASCVD. Special treatments for those with little or no LDL receptor function then follow. The inhibitors of ATP-citrate lyase and cholesteryl ester transfer protein, which are recently approved and still under investigation for LDL-C lowering, respectively, are also included. Strategies targeting the stability of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and cholesterol catabolism can be novel regimens to reduce LDL-C levels and cardiovascular risk.
Collapse
Affiliation(s)
- Jie Luo
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Jin-Kai Wang
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Bao-Liang Song
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Chen H, Qi X, Faulkner RA, Schumacher MM, Donnelly LM, DeBose-Boyd RA, Li X. Regulated degradation of HMG CoA reductase requires conformational changes in sterol-sensing domain. Nat Commun 2022; 13:4273. [PMID: 35879350 PMCID: PMC9314443 DOI: 10.1038/s41467-022-32025-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/12/2022] [Indexed: 01/20/2023] Open
Abstract
3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) is the rate-limiting enzyme in cholesterol synthesis and target of cholesterol-lowering statin drugs. Accumulation of sterols in endoplasmic reticulum (ER) membranes accelerates degradation of HMGCR, slowing the synthesis of cholesterol. Degradation of HMGCR is inhibited by its binding to UBIAD1 (UbiA prenyltransferase domain-containing protein-1). This inhibition contributes to statin-induced accumulation of HMGCR, which limits their cholesterol-lowering effects. Here, we report cryo-electron microscopy structures of the HMGCR-UBIAD1 complex, which is maintained by interactions between transmembrane helix (TM) 7 of HMGCR and TMs 2-4 of UBIAD1. Disrupting this interface by mutagenesis prevents complex formation, enhancing HMGCR degradation. TMs 2-6 of HMGCR contain a 170-amino acid sterol sensing domain (SSD), which exists in two conformations-one of which is essential for degradation. Thus, our data supports a model that rearrangement of the TMs in the SSD permits recruitment of proteins that initate HMGCR degradation, a key reaction in the regulatory system that governs cholesterol synthesis.
Collapse
Affiliation(s)
- Hongwen Chen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaofeng Qi
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rebecca A Faulkner
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marc M Schumacher
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Linda M Donnelly
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
23
|
Gong S, Huo S, Luo Y, Li Y, Ma Y, Huang X, Hu M, Liu W, Zhang R, Cai X, Zhou L, Chen L, Ren Q, Zhang S, Zhu Y, Zhang X, Chen J, Wu J, Zhou X, Lin X, Han X, Ji L. A variation in SORBS1 is associated with type 2 diabetes and high-density lipoprotein cholesterol in Chinese population. Diabetes Metab Res Rev 2022; 38:e3524. [PMID: 35107206 DOI: 10.1002/dmrr.3524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 12/05/2021] [Accepted: 12/25/2021] [Indexed: 11/09/2022]
Abstract
AIM Sorbin and SH3-domain-containing-1 (SORBS1) play important roles in insulin signalling and cytoskeleton regulation. Variants of the SORBS1 gene have been inconsistently reported to be associated with type 2 diabetes or diabetic kidney disease (DKD). METHODS Two independent case-control studies based on two randomized sampling cohorts (cohort 1, n = 3345; cohort 2, n = 2282) were used to confirm the association between rs2281939 of SORBS1 and impaired glucose regulation (IGR). An additional hospital-based cohort (cohort 3, n = 2135) and cohort 1 were used to investigate the association between rs2281939 and DKD. The phenotype of rare variants of SORBS1 was explored in 453 patients with early onset type 2 diabetes (diagnosed before 40 years of age, EOD). RESULTS The G allele was associated with type 2 diabetes (additive model: OR = 1.25, 95% CI [1.03-1.52], p = 0.022) in cohort 1, and IGR in cohort 2 (additive model: OR = 1.22, 95% CI [1.05-1.43], p = 0.01). We found that the G allele was also associated with HDL-c levels in women in both cohort 1 (p = 0.03) and 2 (p = 0.029) in the dominant model. The rare variant carriers also had lower HDL-c and LDL-c levels than non-carriers in patients with EOD. No association between rs2281939 or rare variants and DKD was observed. CONCLUSIONS The variants in the SORBS1 gene were associated with IGR and HDL-c levels but not with DKD in the Chinese Han population.
Collapse
Affiliation(s)
- Siqian Gong
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Shaofeng Huo
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Yingying Luo
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yufeng Li
- Beijing Pinggu Hospital, Beijing, China
| | - Yumin Ma
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xiuting Huang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Mengdie Hu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Wei Liu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Rui Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Lingli Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Ling Chen
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Qian Ren
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Simin Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yu Zhu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xiuying Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Jing Chen
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Jing Wu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xianghai Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xu Lin
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| |
Collapse
|
24
|
He C, Liu J, Wang R, Li Y, Zheng Q, Jiao F, He C, Shi Q, Xu Y, Zhang R, Thomas H, Batt J, Hill P, Lewis M, Maclntyre H, Lu L, Zhang Q, Tu Q, Shi T, Chen F, Jiao N. Metagenomic evidence for the microbial transformation of carboxyl-rich alicyclic molecules: A long-term macrocosm experiment. WATER RESEARCH 2022; 216:118281. [PMID: 35316680 DOI: 10.1016/j.watres.2022.118281] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Carboxyl-rich alicyclic molecules (CRAMs) widely exist in the ocean and constitute the central part of the refractory dissolved organic matter (RDOM) pool. Although a consensus has been reached that microbial activity forms CRAMs, the detailed molecular mechanisms remain largely unexplored. To better understand the underlying genetic mechanisms driving the microbial transformation of CRAM, a long-term macrocosm experiment spanning 220 days was conducted in the Aquatron Tower Tank at Dalhousie University, Halifax, Canada, with the supply of diatom-derived DOM as a carbon source. The DOM composition, community structure, and metabolic pathways were characterised using multi-omics approaches. The addition of diatom lysate introduced a mass of labile DOM into the incubation seawater, which led to a low degradation index (IDEG) and refractory molecular lability boundary (RMLB) on days 1 and 18. The molecular compositions of the DOM molecules in the later incubation period (from day 120 to day 220) were more similar in composition to those on day 0, suggesting a rapid turnover of phytoplankton debris by microbial communities. Taxonomically, while Alpha proteobacteria dominated during the entire incubation period, Gamma proteobacteria became more sensitive and abundant than the other bacterial groups on days 1 and 18. Recalcitrant measurements such as IDEG and RMLB were closely related to the DOM molecules, bacterial community, and Kyoto encyclopaedia of Genes and Genomes (KEGG) modules, suggesting close associations between RDOM accumulation and microbial metabolism. KEGG modules that showed strong positive correlation with CRAMs were identified using a microbial ecological network approach. The identified KEGG modules produced the substrates, such as the acetyl-CoA or 3‑hydroxy-3-methylglutaryl-CoA, which could participate in the mevalonate pathway to generate the precursor of CRAM analogues, isopentenyl-PP, suggesting a potential generation pathway of CRAM analogues in bacteria and archaea. This study revealed the potential genetic and molecular processes involved in the microbial origin of CRAM analogues, and thus indicated a vital ecological role of bacteria and archaea in RDOM production. This study also offered new perspectives on the carbon sequestration in the ocean.
Collapse
Affiliation(s)
- Changfei He
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and Xiamen 361005, China
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and Xiamen 361005, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510000, China.
| | - Rui Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and Xiamen 361005, China
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and Xiamen 361005, China
| | - Qiang Zheng
- Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and Xiamen 361005, China; State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361005, China
| | - Fanglue Jiao
- Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and Xiamen 361005, China; Department of Oceanography, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yongle Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and Xiamen 361005, China
| | - Rui Zhang
- Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and Xiamen 361005, China; State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361005, China
| | - Helmuth Thomas
- Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and Xiamen 361005, China; Department of Oceanography, Dalhousie University, Halifax, NS B3H 4R2, Canada; Helmholtz-Center Geesthacht, Institute for Coastal Research, Max-Planck-Strasse 1, Geesthacht d-21502, Germany
| | - John Batt
- Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and Xiamen 361005, China; Department of Oceanography, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Paul Hill
- Department of Oceanography, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Marlon Lewis
- Department of Oceanography, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Hugh Maclntyre
- Department of Oceanography, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Longfei Lu
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361005, China; Weihai Changqing Ocean Science Technology Co., Ltd., Weihai, Shandong, China
| | - Qinghua Zhang
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361005, China; Marine Equipment Inspection & Testing Co. Ltd, China
| | - Qichao Tu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and Xiamen 361005, China
| | - Tuo Shi
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and Xiamen 361005, China
| | - Feng Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; Environmental Research Center, University of Maryland at Baltimore, United States
| | - Nianzhi Jiao
- Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and Xiamen 361005, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510000, China
| |
Collapse
|
25
|
Shi Q, Chen J, Zou X, Tang X. Intracellular Cholesterol Synthesis and Transport. Front Cell Dev Biol 2022; 10:819281. [PMID: 35386193 PMCID: PMC8978673 DOI: 10.3389/fcell.2022.819281] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/01/2022] [Indexed: 12/18/2022] Open
Abstract
Cholesterol homeostasis is related to multiple diseases in humans, including cardiovascular disease, cancer, and neurodegenerative and hepatic diseases. The cholesterol levels in cells are balanced dynamically by uptake, biosynthesis, transport, distribution, esterification, and export. In this review, we focus on de novo cholesterol synthesis, cholesterol synthesis regulation, and intracellular cholesterol trafficking. In addition, the progression of lipid transfer proteins (LTPs) at multiple contact sites between organelles is considered.
Collapse
Affiliation(s)
- Qingyang Shi
- Center of Reproductive Medicine and Center of Prenatal Diagnosis, The First Hospital, Jilin University, Changchun, China
| | - Jiahuan Chen
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, China
| | - Xiaodong Zou
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, China
| | - Xiaochun Tang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, China
- Chongqing Research Institute of Jilin University, Chongqing, China
- *Correspondence: Xiaochun Tang,
| |
Collapse
|
26
|
Christianson JC, Carvalho P. Order through destruction: how ER-associated protein degradation contributes to organelle homeostasis. EMBO J 2022; 41:e109845. [PMID: 35170763 PMCID: PMC8922271 DOI: 10.15252/embj.2021109845] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 12/24/2022] Open
Abstract
The endoplasmic reticulum (ER) is a large, dynamic, and multifunctional organelle. ER protein homeostasis is essential for the coordination of its diverse functions and depends on ER-associated protein degradation (ERAD). The latter process selects target proteins in the lumen and membrane of the ER, promotes their ubiquitination, and facilitates their delivery into the cytosol for degradation by the proteasome. Originally characterized for a role in the degradation of misfolded proteins and rate-limiting enzymes of sterol biosynthesis, the many branches of ERAD now appear to control the levels of a wider range of substrates and influence more broadly the organization and functions of the ER, as well as its interactions with adjacent organelles. Here, we discuss recent mechanistic advances in our understanding of ERAD and of its consequences for the regulation of ER functions.
Collapse
Affiliation(s)
- John C Christianson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesBotnar Research CentreUniversity of OxfordOxfordUK
| | - Pedro Carvalho
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
27
|
Batista MA, de Lima Teixeira dos Santos AVT, do Nascimento AL, Moreira LF, Souza IRS, da Silva HR, Pereira ACM, da Silva Hage-Melim LI, Carvalho JCT. Potential of the Compounds from Bixa orellana Purified Annatto Oil and Its Granules (Chronic ®) against Dyslipidemia and Inflammatory Diseases: In Silico Studies with Geranylgeraniol and Tocotrienols. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051584. [PMID: 35268686 PMCID: PMC8911567 DOI: 10.3390/molecules27051584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
Abstract
Some significant compounds present in annatto are geranylgeraniol and tocotrienols. These compounds have beneficial effects against hyperlipidemia and chronic diseases, where oxidative stress and inflammation are present, but the exact mechanism of action of such activities is still a subject of research. This study aimed to evaluate possible mechanisms of action that could be underlying the activities of these molecules. For this, in silico approaches such as ligand topology (PASS and SEA servers) and molecular docking with the software GOLD were used. Additionally, we screened some pharmacokinetic and toxicological parameters using the servers PreADMET, SwissADME, and ProTox-II. The results corroborate the antidyslipidemia and anti-inflammatory activities of geranylgeraniol and tocotrienols. Notably, some new mechanisms of action were predicted to be potentially underlying the activities of these compounds, including inhibition of squalene monooxygenase, lanosterol synthase, and phospholipase A2. These results give new insight into new mechanisms of action involved in these molecules from annatto and Chronic®.
Collapse
Affiliation(s)
- Mateus Alves Batista
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapá, Amapá, Macapá 68902-280, Brazil; (M.A.B.); (L.I.d.S.H.-M.)
| | - Abrahão Victor Tavares de Lima Teixeira dos Santos
- Laboratory of Drugs Research, Biology and Healthy Sciences Department, Pharmacy Faculty, Federal University of Amapá, Rod. JK, km 02, Amapá, Macapá 68902-280, Brazil; (A.V.T.d.L.T.d.S.); (A.L.d.N.); (L.F.M.); (H.R.d.S.)
| | - Aline Lopes do Nascimento
- Laboratory of Drugs Research, Biology and Healthy Sciences Department, Pharmacy Faculty, Federal University of Amapá, Rod. JK, km 02, Amapá, Macapá 68902-280, Brazil; (A.V.T.d.L.T.d.S.); (A.L.d.N.); (L.F.M.); (H.R.d.S.)
| | - Luiz Fernando Moreira
- Laboratory of Drugs Research, Biology and Healthy Sciences Department, Pharmacy Faculty, Federal University of Amapá, Rod. JK, km 02, Amapá, Macapá 68902-280, Brazil; (A.V.T.d.L.T.d.S.); (A.L.d.N.); (L.F.M.); (H.R.d.S.)
| | - Indira Ramos Senna Souza
- Diamantina Chapada Regional Hospital, Avenida Francisco Costa, 350-468, Vasco Filho, Bahia, Seabra 46900-000, Brazil;
| | - Heitor Ribeiro da Silva
- Laboratory of Drugs Research, Biology and Healthy Sciences Department, Pharmacy Faculty, Federal University of Amapá, Rod. JK, km 02, Amapá, Macapá 68902-280, Brazil; (A.V.T.d.L.T.d.S.); (A.L.d.N.); (L.F.M.); (H.R.d.S.)
| | - Arlindo César Matias Pereira
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), São Paulo, Ribeirão Preto 05508-000, Brazil;
| | - Lorane Izabel da Silva Hage-Melim
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapá, Amapá, Macapá 68902-280, Brazil; (M.A.B.); (L.I.d.S.H.-M.)
| | - José Carlos Tavares Carvalho
- Laboratory of Drugs Research, Biology and Healthy Sciences Department, Pharmacy Faculty, Federal University of Amapá, Rod. JK, km 02, Amapá, Macapá 68902-280, Brazil; (A.V.T.d.L.T.d.S.); (A.L.d.N.); (L.F.M.); (H.R.d.S.)
- Correspondence:
| |
Collapse
|
28
|
Wu X, Yan R, Cao P, Qian H, Yan N. Structural advances in sterol-sensing domain-containing proteins. Trends Biochem Sci 2022; 47:289-300. [PMID: 35012873 DOI: 10.1016/j.tibs.2021.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022]
Abstract
The sterol-sensing domain (SSD) is present in several membrane proteins that function in cholesterol metabolism, transport, and signaling. Recent progress in structural studies of SSD-containing proteins, such as sterol regulatory element-binding protein (SREBP)-cleavage activating protein (Scap), Patched, Niemann-Pick disease type C1 (NPC1), and related proteins, reveals a conserved core that is essential for their sterol-dependent functions. This domain, by its name, 'senses' the presence of sterol substrates through interactions and may modulate protein behaviors with changing sterol levels. We summarize recent advances in structural and mechanistic investigations of these proteins and propose to divide them to two classes: M for 'moderator' proteins that regulate sterol metabolism in response to membrane sterol levels, and T for 'transporter' proteins that harbor inner tunnels for cargo trafficking across cellular membranes.
Collapse
Affiliation(s)
- Xuelan Wu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Renhong Yan
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Pingping Cao
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Hongwu Qian
- Ministry of Education (MOE) Key Laboratory of Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
29
|
Bilirubin ameliorates murine atherosclerosis through inhibiting cholesterol synthesis and reshaping the immune system. J Transl Med 2022; 20:1. [PMID: 34980160 PMCID: PMC8722314 DOI: 10.1186/s12967-021-03207-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease caused mainly by lipid accumulation and excessive inflammatory immune response. Although the lipid-lowering and cardioprotective properties of bilirubin, as well as the negative relationship between bilirubin and atherosclerosis, were well documented, it is not yet clear whether bilirubin can attenuate atherosclerosis in vivo. In this study, we investigated the role of bilirubin in improving atherosclerosis. We found that mildly elevated bilirubin significantly reduced the risk factors of atherosclerosis, such as plasma glucose, total cholesterol, and low-density lipoprotein cholesterol, and the formation of atherosclerotic plaques, liver total cholesterol, and cholesterol ester concentration in apolipoprotein E-deficient (ApoE-/-) mice fed a western-type (high fat) diet. It was further found that bilirubin could promote the degradation of 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR), a rate-limiting enzyme for endogenous cholesterol synthesis. Using mass cytometry-based high dimensional single cell analysis, we observed a decrease of natural killer cells and an increase of dendritic cells and myeloid-derived suppressor cells, which all are closely associated with atherosclerosis risk factors and contribute to the improvement of atherosclerosis, in ApoE-/- mice treated with bilirubin. By in-depth analysis, modulation of multiple spleen or peripheral blood T cell clusters exhibiting either positive or negative correlations with total cholesterol or low-density lipoprotein cholesterol was detected after bilirubin treatment. In this study, we demonstrate that bilirubin serves as a negative regulator of atherosclerosis and reduces atherosclerosis by inhibiting cholesterol synthesis and modulating the immune system.
Collapse
|
30
|
Elsabrouty R, Jo Y, Hwang S, Jun DJ, DeBose-Boyd RA. Type 1 polyisoprenoid diphosphate phosphatase modulates geranylgeranyl-mediated control of HMG CoA reductase and UBIAD1. eLife 2021; 10:64688. [PMID: 34842525 PMCID: PMC8641950 DOI: 10.7554/elife.64688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/28/2021] [Indexed: 11/18/2022] Open
Abstract
UbiA prenyltransferase domain-containing protein-1 (UBIAD1) utilizes geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4. The prenyltransferase has emerged as a key regulator of sterol-accelerated, endoplasmic reticulum (ER)-associated degradation (ERAD) of HMG CoA reductase, the rate-limiting enzyme in synthesis of cholesterol and nonsterol isoprenoids including GGpp. Sterols induce binding of UBIAD1 to reductase, inhibiting its ERAD. Geranylgeraniol (GGOH), the alcohol derivative of GGpp, disrupts this binding and thereby stimulates ERAD of reductase and translocation of UBIAD1 to Golgi. We now show that overexpression of Type 1 polyisoprenoid diphosphate phosphatase (PDP1), which dephosphorylates GGpp and other isoprenyl pyrophosphates to corresponding isoprenols, abolishes protein geranylgeranylation as well as GGOH-induced ERAD of reductase and Golgi transport of UBIAD1. Conversely, these reactions are enhanced in the absence of PDP1. Our findings indicate PDP1-mediated hydrolysis of GGpp significantly contributes to a feedback mechanism that maintains optimal intracellular levels of the nonsterol isoprenoid.
Collapse
Affiliation(s)
- Rania Elsabrouty
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Youngah Jo
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Seonghwan Hwang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Dong-Jae Jun
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| |
Collapse
|
31
|
Liu F, Ma M, Gao A, Ma F, Ma G, Liu P, Jia C, Wang Y, Donahue K, Zhang S, Ong IM, Keles S, Li L, Xu W. PKM2-TMEM33 axis regulates lipid homeostasis in cancer cells by controlling SCAP stability. EMBO J 2021; 40:e108065. [PMID: 34487377 PMCID: PMC8591543 DOI: 10.15252/embj.2021108065] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 02/01/2023] Open
Abstract
The pyruvate kinase M2 isoform (PKM2) is preferentially expressed in cancer cells to regulate anabolic metabolism. Although PKM2 was recently reported to regulate lipid homeostasis, the molecular mechanism remains unclear. Herein, we discovered an ER transmembrane protein 33 (TMEM33) as a downstream effector of PKM2 that regulates activation of SREBPs and lipid metabolism. Loss of PKM2 leads to up-regulation of TMEM33, which recruits RNF5, an E3 ligase, to promote SREBP-cleavage activating protein (SCAP) degradation. TMEM33 is transcriptionally regulated by nuclear factor erythroid 2-like 1 (NRF1), whose cleavage and activation are controlled by PKM2 levels. Total plasma cholesterol levels are elevated by either treatment with PKM2 tetramer-promoting agent TEPP-46 or by global PKM2 knockout in mice, highlighting the essential function of PKM2 in lipid metabolism. Although depletion of PKM2 decreases cancer cell growth, global PKM2 knockout accelerates allografted tumor growth. Together, our findings reveal the cell-autonomous and systemic effects of PKM2 in lipid homeostasis and carcinogenesis, as well as TMEM33 as a bona fide regulator of lipid metabolism.
Collapse
Affiliation(s)
- Fabao Liu
- McArdle Laboratory for Cancer ResearchUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Min Ma
- School of PharmacyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Ang Gao
- McArdle Laboratory for Cancer ResearchUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Fengfei Ma
- School of PharmacyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Present address:
Protein Sciences, Discovery BiologicsMerck & Co., Inc.South San FranciscoCAUSA
| | - Gui Ma
- McArdle Laboratory for Cancer ResearchUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Peng Liu
- Department of Biostatistics and Medical InformaticsUniversity of Wisconsin‐MadisonMadisonWIUSA
- UW Carbone Cancer CenterSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Chenxi Jia
- School of PharmacyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Present address:
State Key Laboratory of ProteomicsNational Center for Protein Sciences‐BeijingBeijing Proteome Research CenterBeijing Institute of Radiation MedicineBeijingChina
| | - Yidan Wang
- McArdle Laboratory for Cancer ResearchUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Kristine Donahue
- McArdle Laboratory for Cancer ResearchUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Shengjie Zhang
- McArdle Laboratory for Cancer ResearchUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Irene M Ong
- Department of Biostatistics and Medical InformaticsUniversity of Wisconsin‐MadisonMadisonWIUSA
- UW Carbone Cancer CenterSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Sunduz Keles
- Department of StatisticsUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Lingjun Li
- School of PharmacyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of ChemistryUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Wei Xu
- McArdle Laboratory for Cancer ResearchUniversity of Wisconsin‐MadisonMadisonWIUSA
| |
Collapse
|
32
|
Gonzalez-Jimenez I, Lucio J, Roldan A, Alcazar-Fuoli L, Mellado E. Are Point Mutations in HMG-CoA Reductases (Hmg1 and Hmg2) a Step towards Azole Resistance in Aspergillus fumigatus? Molecules 2021; 26:5975. [PMID: 34641518 PMCID: PMC8512156 DOI: 10.3390/molecules26195975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
Invasive aspergillosis, mainly caused by Aspergillus fumigatus, can lead to severe clinical outcomes in immunocompromised individuals. Antifungal treatment, based on the use of azoles, is crucial to increase survival rates. However, the recent emergence of azole-resistant A. fumigatus isolates is affecting the efficacy of the clinical therapy and lowering the success rate of azole strategies against aspergillosis. Azole resistance mechanisms described to date are mainly associated with mutations in the azole target gene cyp51A that entail structural changes in Cyp51A or overexpression of the gene. However, strains lacking cyp51A modifications but resistant to clinical azoles have recently been detected. Some genes have been proposed as new players in azole resistance. In this study, the gene hmg1, recently related to azole resistance, and its paralogue hmg2 were studied in a collection of fifteen azole-resistant strains without cyp51A modifications. Both genes encode HMG-CoA reductases and are involved in the ergosterol biosynthesis. Several mutations located in the sterol sensing domain (SSD) of Hmg1 (D242Y, G307D/S, P309L, K319Q, Y368H, F390L and I412T) and Hmg2 (I235S, V303A, I312S, I360F and V397C) were detected. The role of these mutations in conferring azole resistance is discussed in this work.
Collapse
Affiliation(s)
- Irene Gonzalez-Jimenez
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain; (I.G.-J.); (J.L.); (A.R.); (L.A.-F.)
| | - Jose Lucio
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain; (I.G.-J.); (J.L.); (A.R.); (L.A.-F.)
| | - Alejandra Roldan
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain; (I.G.-J.); (J.L.); (A.R.); (L.A.-F.)
| | - Laura Alcazar-Fuoli
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain; (I.G.-J.); (J.L.); (A.R.); (L.A.-F.)
- Spanish Network for Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), ISCIII, 28220 Majadahonda, Madrid, Spain
| | - Emilia Mellado
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain; (I.G.-J.); (J.L.); (A.R.); (L.A.-F.)
- Spanish Network for Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), ISCIII, 28220 Majadahonda, Madrid, Spain
| |
Collapse
|
33
|
Politiek FA, Waterham HR. Compromised Protein Prenylation as Pathogenic Mechanism in Mevalonate Kinase Deficiency. Front Immunol 2021; 12:724991. [PMID: 34539662 PMCID: PMC8446354 DOI: 10.3389/fimmu.2021.724991] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
Mevalonate kinase deficiency (MKD) is an autoinflammatory metabolic disorder characterized by life-long recurring episodes of fever and inflammation, often without clear cause. MKD is caused by bi-allelic pathogenic variants in the MVK gene, resulting in a decreased activity of the encoded enzyme mevalonate kinase (MK). MK is an essential enzyme in the isoprenoid biosynthesis pathway, which generates both non-sterol and sterol isoprenoids. The inflammatory symptoms of patients with MKD point to a major role for isoprenoids in the regulation of the innate immune system. In particular a temporary shortage of the non-sterol isoprenoid geranylgeranyl pyrophosphate (GGPP) is increasingly linked with inflammation in MKD. The shortage of GGPP compromises protein prenylation, which is thought to be one of the main causes leading to the inflammatory episodes in MKD. In this review, we discuss current views and the state of knowledge of the pathogenetic mechanisms in MKD, with particular focus on the role of compromised protein prenylation.
Collapse
Affiliation(s)
- Frouwkje A Politiek
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
34
|
Pereira ACM, de Oliveira Carvalho H, Gonçalves DES, Picanço KRT, de Lima Teixeira dos Santos AVT, da Silva HR, Braga FS, Bezerra RM, de Sousa Nunes A, Nazima MTST, Cerqueira JG, Taglialegna T, Teixeira JM, Carvalho JCT. Co-Treatment of Purified Annatto Oil ( Bixa orellana L.) and Its Granules (Chronic ®) Improves the Blood Lipid Profile and Bone Protective Effects of Testosterone in the Orchiectomy-Induced Osteoporosis in Wistar Rats. Molecules 2021; 26:4720. [PMID: 34443306 PMCID: PMC8399955 DOI: 10.3390/molecules26164720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/14/2023] Open
Abstract
This study aimed to evaluate and compare the effects of co-treatment with purified annatto oil (PAO) or its granules (GRA, Chronic®) with that of testosterone on the orchiectomy-induced osteoporosis in Wistar rats. After surgery, rats were treated from day 7 until day 45 with testosterone only (TES, 7 mg/kg, IM) or TES + PAO or GRA (200 mg/kg, p.o.). The following parameters were evaluated: food/water intake, weight, HDL, LDL, glucose, triglycerides (TG), total cholesterol (TC), alkaline phosphatase levels, blood phosphorus and calcium contents, femur weight, structure (through scanning electron microscopy), and calcium content (through atomic absorption spectrophotometry). Our results show that orchiectomy could significantly change the blood lipid profile and decrease bone integrity parameters. Testosterone reposition alone could improve some endpoints, including LDL, TC, bone weight, and bone calcium concentration. However, other parameters were not significantly improved. Co-treatment with PAO or GRA improved the blood lipid profile and bone integrity more significantly and improved some endpoints not affected by testosterone reposition alone (such as TG levels and trabeculae sizes). The results suggest that co-treatment with annatto products improved the blood lipid profile and the anti-osteoporosis effects of testosterone. Overall, GRA had better results than PAO.
Collapse
Affiliation(s)
- Arlindo César Matias Pereira
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá 68902-280, AP, Brazil; (A.C.M.P.); (H.d.O.C.); (D.E.S.G.); (K.R.T.P.); (A.V.T.d.L.T.d.S.); (H.R.d.S.); (A.d.S.N.); (M.T.S.T.N.); (J.M.T.)
| | - Helison de Oliveira Carvalho
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá 68902-280, AP, Brazil; (A.C.M.P.); (H.d.O.C.); (D.E.S.G.); (K.R.T.P.); (A.V.T.d.L.T.d.S.); (H.R.d.S.); (A.d.S.N.); (M.T.S.T.N.); (J.M.T.)
- Programa de Pós-Graduação em Inovação Farmacêutica, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá 68902-280, AP, Brazil
| | - Danna Emanuelle Santos Gonçalves
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá 68902-280, AP, Brazil; (A.C.M.P.); (H.d.O.C.); (D.E.S.G.); (K.R.T.P.); (A.V.T.d.L.T.d.S.); (H.R.d.S.); (A.d.S.N.); (M.T.S.T.N.); (J.M.T.)
| | - Karyny Roberta Tavares Picanço
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá 68902-280, AP, Brazil; (A.C.M.P.); (H.d.O.C.); (D.E.S.G.); (K.R.T.P.); (A.V.T.d.L.T.d.S.); (H.R.d.S.); (A.d.S.N.); (M.T.S.T.N.); (J.M.T.)
| | - Abrahão Victor Tavares de Lima Teixeira dos Santos
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá 68902-280, AP, Brazil; (A.C.M.P.); (H.d.O.C.); (D.E.S.G.); (K.R.T.P.); (A.V.T.d.L.T.d.S.); (H.R.d.S.); (A.d.S.N.); (M.T.S.T.N.); (J.M.T.)
| | - Heitor Ribeiro da Silva
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá 68902-280, AP, Brazil; (A.C.M.P.); (H.d.O.C.); (D.E.S.G.); (K.R.T.P.); (A.V.T.d.L.T.d.S.); (H.R.d.S.); (A.d.S.N.); (M.T.S.T.N.); (J.M.T.)
| | - Francinaldo Sarges Braga
- Laboratório de Absorção Atômica e Bioprospecção, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá 68902-280, AP, Brazil; (F.S.B.); (R.M.B.)
| | - Roberto Messias Bezerra
- Laboratório de Absorção Atômica e Bioprospecção, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá 68902-280, AP, Brazil; (F.S.B.); (R.M.B.)
| | - Alessandro de Sousa Nunes
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá 68902-280, AP, Brazil; (A.C.M.P.); (H.d.O.C.); (D.E.S.G.); (K.R.T.P.); (A.V.T.d.L.T.d.S.); (H.R.d.S.); (A.d.S.N.); (M.T.S.T.N.); (J.M.T.)
| | - Maira Tiyomi Sacata Tongo Nazima
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá 68902-280, AP, Brazil; (A.C.M.P.); (H.d.O.C.); (D.E.S.G.); (K.R.T.P.); (A.V.T.d.L.T.d.S.); (H.R.d.S.); (A.d.S.N.); (M.T.S.T.N.); (J.M.T.)
| | - Júlia Gomes Cerqueira
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (J.G.C.); (T.T.)
| | - Talisson Taglialegna
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (J.G.C.); (T.T.)
| | - Janayra Maris Teixeira
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá 68902-280, AP, Brazil; (A.C.M.P.); (H.d.O.C.); (D.E.S.G.); (K.R.T.P.); (A.V.T.d.L.T.d.S.); (H.R.d.S.); (A.d.S.N.); (M.T.S.T.N.); (J.M.T.)
| | - José Carlos Tavares Carvalho
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá 68902-280, AP, Brazil; (A.C.M.P.); (H.d.O.C.); (D.E.S.G.); (K.R.T.P.); (A.V.T.d.L.T.d.S.); (H.R.d.S.); (A.d.S.N.); (M.T.S.T.N.); (J.M.T.)
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (J.G.C.); (T.T.)
| |
Collapse
|
35
|
Guidara W, Messedi M, Maalej M, Naifar M, Khrouf W, Grayaa S, Maalej M, Bonnefont-Rousselot D, Lamari F, Ayadi F. Plasma oxysterols: Altered level of plasma 24-hydroxycholesterol in patients with bipolar disorder. J Steroid Biochem Mol Biol 2021; 211:105902. [PMID: 33901658 DOI: 10.1016/j.jsbmb.2021.105902] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022]
Abstract
Cholesterol and its oxygenated metabolites, including oxysterols, are intensively investigated as potential players in the pathophysiology of brain disorders. Altered oxysterol levels have been described in patients with numerous neuropsychiatric disorders. Recent studies have shown that Bipolar disorder (BD) is associated with the disruption of cholesterol metabolism. The present study was aimed at investigating the profile of oxysterols in plasma, their ratio to total cholesterol and their association with clinical parameters in patients with BD. Thirty three men diagnosed with BD and forty healthy controls matched for age and sex were included in the study. Oxysterol levels were measured by isotope-dilution ultra-performance liquid chromatography-tandem mass spectrometry. Significantly higher levels were observed for cholestane-3β,5α,6β-triol, 27-hydroxycholesterol (27-OHC) and Cholestanol in patients with BD. The concentration of 24-hydroxycholesterol (24-OHC) was significantly lower in patients compared to controls. 24-OHC was also negatively correlated to MAS subscale score (r =-0.343; p = 0.049). In patients, 24-OHC was inversely correlated with age (r = -0.240; p = 0.045). Multivariate analysis found that BD acute decompensation was independently related to the rise in plasma 24-OHC (p = 0.002; OR = 0.966, 95 % CI [0.945 - 0.987]). However, the 24-OHC assay relevance as a biomarker of this disease deserves further investigation in other studies.
Collapse
Affiliation(s)
- Wassim Guidara
- Laboratory of Research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia.
| | - Meriam Messedi
- Laboratory of Research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Manel Maalej
- Psychiatry C-department, University of Sfax & Hédi Chaker Hospital, Sfax, Tunisia
| | - Manel Naifar
- Laboratory of Research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia; Laboratory of Biochemistry, University of Sfax & Habib Bourguiba Hospital, Sfax, Tunisia
| | - Walid Khrouf
- AP-HP, Sorbonne University, La Pitié-Salpêtrière University Hospital, Department of Metabolic Biochemistry, Paris, France
| | - Sahar Grayaa
- Laboratory of Research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Mohamed Maalej
- Psychiatry C-department, University of Sfax & Hédi Chaker Hospital, Sfax, Tunisia
| | - Dominique Bonnefont-Rousselot
- AP-HP, Sorbonne University, La Pitié-Salpêtrière University Hospital, Department of Metabolic Biochemistry, Paris, France; UTCBS, U1267 Inserm, UMR 8258 CNRS, Université de Paris, Paris, France
| | - Foudil Lamari
- AP-HP, Sorbonne University, La Pitié-Salpêtrière University Hospital, Department of Metabolic Biochemistry, Paris, France
| | - Fatma Ayadi
- Laboratory of Research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia; Laboratory of Biochemistry, University of Sfax & Habib Bourguiba Hospital, Sfax, Tunisia
| |
Collapse
|
36
|
Schumacher MM, DeBose-Boyd RA. Posttranslational Regulation of HMG CoA Reductase, the Rate-Limiting Enzyme in Synthesis of Cholesterol. Annu Rev Biochem 2021; 90:659-679. [PMID: 34153214 DOI: 10.1146/annurev-biochem-081820-101010] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The polytopic, endoplasmic reticulum (ER) membrane protein 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase produces mevalonate, the key intermediate in the synthesis of cholesterol and many nonsterol isoprenoids including geranylgeranyl pyrophosphate (GGpp). Transcriptional, translational, and posttranslational feedback mechanisms converge on this reductase to ensure cells maintain a sufficient supply of essential nonsterol isoprenoids but avoid overaccumulation of cholesterol and other sterols. The focus of this review is mechanisms for the posttranslational regulation of HMG CoA reductase, which include sterol-accelerated ubiquitination and ER-associated degradation (ERAD) that is augmented by GGpp. We discuss how GGpp-induced ER-to-Golgi trafficking of the vitamin K2 synthetic enzyme UbiA prenyltransferase domain-containing protein-1 (UBIAD1) modulates HMG CoA reductase ERAD to balance the synthesis of sterol and nonsterol isoprenoids. We also summarize the characterization of genetically manipulated mice, which established that sterol-accelerated, UBIAD1-modulated ERAD plays a major role in regulation of HMG CoA reductase and cholesterol metabolism in vivo.
Collapse
Affiliation(s)
- Marc M Schumacher
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA;
| | - Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA;
| |
Collapse
|
37
|
Lemberg MK, Strisovsky K. Maintenance of organellar protein homeostasis by ER-associated degradation and related mechanisms. Mol Cell 2021; 81:2507-2519. [PMID: 34107306 DOI: 10.1016/j.molcel.2021.05.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/14/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
Protein homeostasis mechanisms are fundamentally important to match cellular needs and to counteract stress conditions. A fundamental challenge is to understand how defective proteins are recognized and extracted from cellular organelles to be degraded in the cytoplasm. The endoplasmic reticulum (ER)-associated degradation (ERAD) pathway is the best-understood organellar protein quality control system. Here, we review new insights into the mechanism of recognition and retrotranslocation of client proteins in ERAD. In addition to the membrane-integral ERAD E3 ubiquitin ligases, we highlight one protein family that is remarkably often involved in various aspects of membrane protein quality control and protein dislocation: the rhomboid superfamily, which includes derlins and intramembrane serine proteases. Rhomboid-like proteins have been found to control protein homeostasis in the ER, but also in other eukaryotic organelles and in bacteria, pointing toward conserved principles of membrane protein quality control across organelles and evolution.
Collapse
Affiliation(s)
- Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany.
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czechia.
| |
Collapse
|
38
|
Sharpe LJ, Coates HW, Brown AJ. Post-translational control of the long and winding road to cholesterol. J Biol Chem 2021; 295:17549-17559. [PMID: 33453997 DOI: 10.1074/jbc.rev120.010723] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/12/2020] [Indexed: 01/19/2023] Open
Abstract
The synthesis of cholesterol requires more than 20 enzymes, many of which are intricately regulated. Post-translational control of these enzymes provides a rapid means for modifying flux through the pathway. So far, several enzymes have been shown to be rapidly degraded through the ubiquitin-proteasome pathway in response to cholesterol and other sterol intermediates. Additionally, several enzymes have their activity altered through phosphorylation mechanisms. Most work has focused on the two rate-limiting enzymes: 3-hydroxy-3-methylglutaryl CoA reductase and squalene monooxygenase. Here, we review current literature in the area to define some common themes in the regulation of the entire cholesterol synthesis pathway. We highlight the rich variety of inputs controlling each enzyme, discuss the interplay that exists between regulatory mechanisms, and summarize findings that reveal an intricately coordinated network of regulation along the cholesterol synthesis pathway. We provide a roadmap for future research into the post-translational control of cholesterol synthesis, and no doubt the road ahead will reveal further twists and turns for this fascinating pathway crucial for human health and disease.
Collapse
Affiliation(s)
- Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Hudson W Coates
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
39
|
Yan R, Cao P, Song W, Qian H, Du X, Coates HW, Zhao X, Li Y, Gao S, Gong X, Liu X, Sui J, Lei J, Yang H, Brown AJ, Zhou Q, Yan C, Yan N. A structure of human Scap bound to Insig-2 suggests how their interaction is regulated by sterols. Science 2021; 371:science.abb2224. [PMID: 33446483 DOI: 10.1126/science.abb2224] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/31/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022]
Abstract
The sterol regulatory element-binding protein (SREBP) pathway controls cellular homeostasis of sterols. The key players in this pathway, Scap and Insig-1 and -2, are membrane-embedded sterol sensors. The 25-hydroxycholesterol (25HC)-dependent association of Scap and Insig acts as the master switch for the SREBP pathway. Here, we present cryo-electron microscopy analysis of the human Scap and Insig-2 complex in the presence of 25HC, with the transmembrane (TM) domains determined at an average resolution of 3.7 angstrom. The sterol-sensing domain in Scap and all six TMs in Insig-2 were resolved. A 25HC molecule is sandwiched between the S4 to S6 segments in Scap and TMs 3 and 4 in Insig-2 in the luminal leaflet of the membrane. Unwinding of the middle of the Scap-S4 segment is crucial for 25HC binding and Insig association.
Collapse
Affiliation(s)
- Renhong Yan
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| | - Pingping Cao
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenqi Song
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongwu Qian
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ximing Du
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Hudson W Coates
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xin Zhao
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yaning Li
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuai Gao
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Xin Gong
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ximing Liu
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Jianhua Sui
- National Institute of Biological Sciences (NIBS), Beijing 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Jianlin Lei
- Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Qiang Zhou
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| | - Chuangye Yan
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
40
|
Shioi R, Karaki F, Yoshioka H, Noguchi-Yachide T, Ishikawa M, Dodo K, Hashimoto Y, Sodeoka M, Ohgane K. Image-based screen capturing misfolding status of Niemann-Pick type C1 identifies potential candidates for chaperone drugs. PLoS One 2020; 15:e0243746. [PMID: 33315900 PMCID: PMC7735562 DOI: 10.1371/journal.pone.0243746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Niemann-Pick disease type C is a rare, fatal neurodegenerative disorder characterized by massive intracellular accumulation of cholesterol. In most cases, loss-of-function mutations in the NPC1 gene that encodes lysosomal cholesterol transporter NPC1 are responsible for the disease, and more than half of the mutations are considered to interfere with the biogenesis or folding of the protein. We previously identified a series of oxysterol derivatives and phenanthridine-6-one derivatives as pharmacological chaperones, i.e., small molecules that can rescue folding-defective phenotypes of mutated NPC1, opening up an avenue to develop chaperone therapy for Niemann-Pick disease type C. Here, we present an improved image-based screen for NPC1 chaperones and we describe its application for drug-repurposing screening. We identified some azole antifungals, including itraconazole and posaconazole, and a kinase inhibitor, lapatinib, as probable pharmacological chaperones. A photo-crosslinking study confirmed direct binding of itraconazole to a representative folding-defective mutant protein, NPC1-I1061T. Competitive photo-crosslinking experiments suggested that oxysterol-based chaperones and itraconazole share the same or adjacent binding site(s), and the sensitivity of the crosslinking to P691S mutation in the sterol-sensing domain supports the hypothesis that their binding sites are located near this domain. Although the azoles were less effective in reducing cholesterol accumulation than the oxysterol-derived chaperones or an HDAC inhibitor, LBH-589, our findings should offer new starting points for medicinal chemistry efforts to develop better pharmacological chaperones for NPC1.
Collapse
Affiliation(s)
- Ryuta Shioi
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Fumika Karaki
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiromasa Yoshioka
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomomi Noguchi-Yachide
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Minoru Ishikawa
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | - Kosuke Dodo
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Yuichi Hashimoto
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Kenji Ohgane
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- * E-mail:
| |
Collapse
|
41
|
Insulin-Induced Gene 2 Expression Is Associated with Breast Cancer Metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:385-395. [PMID: 33321090 DOI: 10.1016/j.ajpath.2020.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/25/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022]
Abstract
Insulin-induced gene 2 (INSIG2) functions as a blocker of cholesterol biosynthesis and has been shown to be involved in colon and pancreatic cancer pathogenesis. Cholesterol is a risk factor for breast cancer pathophysiology; however, the underlying mechanisms are not well-defined. Hence, our goal was to determine the role of INISG2 in breast cancer. INSIG2 mRNA and protein expression was correlated to metastatic potential of breast cancer cell lines. Knockdown of INSIG2 inhibited epithelial-to-mesenchymal transition. Conversely, overexpression of INSIG2 induced epithelial-to-mesenchymal transition. Knockdown of INSIG2 did not affect cell proliferation but resulted in altered metabolism in vitro and attenuated experimental metastasis in vivo. Analysis of breast cancer tissue microarrays revealed significantly higher INSIG2 protein expression in breast cancer tissues. INSIG2 protein expression was correlated to hormone receptor status, with significantly higher expression in patients with triple-negative and human epidermal growth factor receptor 2 molecular subtypes of invasive breast cancer. Analysis of The Cancer Genome Atlas, however, revealed significantly lower INSIG2 mRNA expression in triple-negative breast cancer patients. Higher INSIG2 mRNA expression was correlated to poor survival probability. Asian patients with high INSIG2 mRNA expression had significantly lower survival probability compared with Asian patients with low/medium INSIG2 mRNA expression. These results reveal a yet undefined role of INSIG2 in breast cancer, potentially more relevant for breast cancer patients in Asia.
Collapse
|
42
|
Wangeline MA, Hampton RY. An autonomous, but INSIG-modulated, role for the sterol sensing domain in mallostery-regulated ERAD of yeast HMG-CoA reductase. J Biol Chem 2020; 296:100063. [PMID: 33184059 PMCID: PMC7948459 DOI: 10.1074/jbc.ra120.015910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/01/2020] [Accepted: 11/12/2020] [Indexed: 01/23/2023] Open
Abstract
HMG-CoA reductase (HMGR) undergoes feedback-regulated degradation as part of sterol pathway control. Degradation of the yeast HMGR isozyme Hmg2 is controlled by the sterol pathway intermediate GGPP, which causes misfolding of Hmg2, leading to degradation by the HRD pathway; we call this process mallostery. We evaluated the role of the Hmg2 sterol sensing domain (SSD) in mallostery, as well as the involvement of the highly conserved INSIG proteins. We show that the Hmg2 SSD is critical for regulated degradation of Hmg2 and required for mallosteric misfolding of GGPP as studied by in vitro limited proteolysis. The Hmg2 SSD functions independently of conserved yeast INSIG proteins, but its function was modulated by INSIG, thus imposing a second layer of control on Hmg2 regulation. Mutant analyses indicated that SSD-mediated mallostery occurred prior to and independent of HRD-dependent ubiquitination. GGPP-dependent misfolding was still extant but occurred at a much slower rate in the absence of a functional SSD, indicating that the SSD facilitates a physiologically useful rate of GGPP response and implying that the SSD is not a binding site for GGPP. Nonfunctional SSD mutants allowed us to test the importance of Hmg2 quaternary structure in mallostery: a nonresponsive Hmg2 SSD mutant strongly suppressed regulation of a coexpressed, normal Hmg2. Finally, we have found that GGPP-regulated misfolding occurred in detergent-solubilized Hmg2, a feature that will allow next-level analysis of the mechanism of this novel tactic of ligand-regulated misfolding.
Collapse
Affiliation(s)
- Margaret A Wangeline
- Division of Biological Sciences, the Section of Cell and Developmental Biology, UCSD, La Jolla, California, USA
| | - Randolph Y Hampton
- Division of Biological Sciences, the Section of Cell and Developmental Biology, UCSD, La Jolla, California, USA.
| |
Collapse
|
43
|
Feeding induces cholesterol biosynthesis via the mTORC1-USP20-HMGCR axis. Nature 2020; 588:479-484. [PMID: 33177714 DOI: 10.1038/s41586-020-2928-y] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 08/19/2020] [Indexed: 12/14/2022]
Abstract
Cholesterol is an essential lipid and its synthesis is nutritionally and energetically costly1,2. In mammals, cholesterol biosynthesis increases after feeding and is inhibited under fasting conditions3. However, the regulatory mechanisms of cholesterol biosynthesis at the fasting-feeding transition remain poorly understood. Here we show that the deubiquitylase ubiquitin-specific peptidase 20 (USP20) stabilizes HMG-CoA reductase (HMGCR), the rate-limiting enzyme in the cholesterol biosynthetic pathway, in the feeding state. The post-prandial increase in insulin and glucose concentration stimulates mTORC1 to phosphorylate USP20 at S132 and S134; USP20 is recruited to the HMGCR complex and antagonizes its degradation. The feeding-induced stabilization of HMGCR is abolished in mice with liver-specific Usp20 deletion and in USP20(S132A/S134A) knock-in mice. Genetic deletion or pharmacological inhibition of USP20 markedly decreases diet-induced body weight gain, reduces lipid levels in the serum and liver, improves insulin sensitivity and increases energy expenditure. These metabolic changes are reversed by expression of the constitutively stable HMGCR(K248R). This study reveals an unexpected regulatory axis from mTORC1 to HMGCR via USP20 phosphorylation and suggests that inhibitors of USP20 could be used to lower cholesterol levels to treat metabolic diseases including hyperlipidaemia, liver steatosis, obesity and diabetes.
Collapse
|
44
|
Gesto DS, Pereira CMS, Cerqueira NMFS, Sousa SF. An Atomic-Level Perspective of HMG-CoA-Reductase: The Target Enzyme to Treat Hypercholesterolemia. Molecules 2020; 25:molecules25173891. [PMID: 32859023 PMCID: PMC7503714 DOI: 10.3390/molecules25173891] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022] Open
Abstract
This review provides an updated atomic-level perspective regarding the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR), linking the more recent data on this enzyme with a structure/function interpretation. This enzyme catalyzes one of the most important steps in cholesterol biosynthesis and is regarded as one of the most important drug targets in the treatment of hypercholesterolemia. Taking this into consideration, we review in the present article several aspects of this enzyme, including its structure and biochemistry, its catalytic mechanism and different reported and proposed approaches for inhibiting this enzyme, including the commercially available statins or the possibility of using dimerization inhibitors.
Collapse
Affiliation(s)
- Diana S. Gesto
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Carlos M. S. Pereira
- UCIBIO/REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.M.S.P.); (N.M.F.S.C.)
| | - Nuno M. F. S. Cerqueira
- UCIBIO/REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.M.S.P.); (N.M.F.S.C.)
| | - Sérgio F. Sousa
- UCIBIO/REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.M.S.P.); (N.M.F.S.C.)
- Correspondence:
| |
Collapse
|
45
|
Chan D, Meister ML, Madhani CR, Elfakhani M, Yount ST, Ji X, Feresin RG, Wanders D, Mo H. Synergistic Impact of Xanthorrhizol and d-δ-Tocotrienol on the Proliferation of Murine B16 Melanoma Cells and Human DU145 Prostate Carcinoma Cells. Nutr Cancer 2020; 73:1746-1757. [PMID: 32811212 DOI: 10.1080/01635581.2020.1807573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Isoprenoids suppress the mevalonate pathway that provides prenyl groups for the posttranslational modification of growth-regulating proteins. We hypothesize that xanthorrhizol and d-δ-tocotrienol synergistically suppress the growth of murine B16 melanoma and human DU145 prostate carcinoma cells. Xanthorrhizol (0-200 µmol/L; half maximal inhibitory concentration [IC50] = 65 µmol/L) and d-δ-tocotrienol (0-40 µmol/L; IC50 = 20 µmol/L) each induced a concentration-dependent suppression of the proliferation of B16 cells and concurrent cell cycle arrest at the G1 phase. A blend of 16.25 µmol/L xanthorrhizol and 10 µmol/L d-δ-tocotrienol suppressed B16 cell proliferation by 69%, an impact greater than the sum of those induced by xanthorrhizol (15%) and d-δ-tocotrienol (12%) individually. The blend cumulatively reduced the levels of cyclin-dependent kinase four and cyclin D1, key regulators of cell cycle progression at the G1 phase. The expression of RAS and extracellular signal-regulated kinase (ERK1/2) in the proliferation-stimulating RAS-RAF-MEK-ERK pathway was downregulated by the blend. Xanthorrhizol also induced a concentration-dependent suppression of the proliferation of DU145 cells with concomitant morphological changes. Isobologram confirmed the synergistic effect of xanthorrhizol and d-δ-tocotrienol on DU145 cell proliferation with combination index values ranging 0.61-0.94. Novel combinations of isoprenoids with synergistic actions may offer effective approaches in cancer prevention and therapy.
Collapse
Affiliation(s)
- Darren Chan
- Department of Nutrition, Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, Atlanta, Georgia, USA
| | - Maureen L Meister
- Department of Nutrition, Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, Atlanta, Georgia, USA
| | - Chappell R Madhani
- Department of Nutrition, Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, Atlanta, Georgia, USA
| | - Manal Elfakhani
- Department of Nutrition, Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, Atlanta, Georgia, USA
| | - Sophie T Yount
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Xiangming Ji
- Department of Nutrition, Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, Atlanta, Georgia, USA
| | - Rafaela G Feresin
- Department of Nutrition, Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, Atlanta, Georgia, USA
| | - Desiree Wanders
- Department of Nutrition, Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, Atlanta, Georgia, USA
| | - Huanbiao Mo
- Department of Nutrition, Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
46
|
van den Boomen DJH, Volkmar N, Lehner PJ. Ubiquitin-mediated regulation of sterol homeostasis. Curr Opin Cell Biol 2020; 65:103-111. [PMID: 32580085 DOI: 10.1016/j.ceb.2020.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/03/2020] [Accepted: 04/26/2020] [Indexed: 11/19/2022]
Abstract
Cholesterol is an essential component of mammalian membranes, and its homeostasis is strictly regulated, with imbalances causing atherosclerosis, Niemann Pick disease, and familial hypercholesterolemia. Cellular cholesterol supply is mediated by LDL-cholesterol import and de novo cholesterol biosynthesis, and both pathways are adjusted to cellular demand by the cholesterol-sensitive SREBP2 transcription factor. Cholesterol homeostasis is modulated by a wide variety of metabolic pathways and the ubiquitination machinery, in particular E3 ubiquitin ligases. In this article, we review recent progress in understanding the role of E3 ubiquitin ligases in the metabolic control of cellular sterol homeostasis.
Collapse
Affiliation(s)
- Dick J H van den Boomen
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Norbert Volkmar
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
47
|
Toyota Y, Yoshioka H, Sagimori I, Hashimoto Y, Ohgane K. Bisphosphonate esters interact with HMG-CoA reductase membrane domain to induce its degradation. Bioorg Med Chem 2020; 28:115576. [PMID: 32616181 DOI: 10.1016/j.bmc.2020.115576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 12/16/2022]
Abstract
HMG-CoA reductase (HMGCR) is a rate-limiting enzyme in the cholesterol biosynthetic pathway, and its catalytic domain is the well-known target of cholesterol-lowering drugs, statins. HMGCR is subject to layers of negative feedback loops; excess cholesterol inhibits transcription of the gene, and lanosterols and oxysterols accelerate degradation of HMGCR. A class of synthetic small molecules, bisphosphonate esters exemplified by SR12813, has been known to induce accelerated degradation of HMGCR and reduce the serum cholesterol level. Although genetic and biochemical studies revealed that the accelerated degradation requires the membrane domain of HMGCR and Insig, an oxysterol sensor on the endoplasmic reticulum membrane, the direct target of the bisphosphonate esters remains unclear. In this study, we developed a potent photoaffinity probe of the bisphosphonate esters through preliminary structure-activity relationship study and demonstrated binding of the bisphosphonate esters to the HMGCR membrane domain. These results provide an important clue to understand the elusive mechanism of the SR12813-mediated HMGCR degradation and serve as a basis to develop more potent HMGCR degraders that target the non-catalytic, membrane domain of the enzyme.
Collapse
Affiliation(s)
- Yosuke Toyota
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113 0032, Japan
| | - Hiromasa Yoshioka
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113 0032, Japan
| | - Ikuya Sagimori
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113 0032, Japan
| | - Yuichi Hashimoto
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113 0032, Japan
| | - Kenji Ohgane
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113 0032, Japan.
| |
Collapse
|
48
|
Jun DJ, Schumacher MM, Hwang S, Kinch LN, Grishin NV, DeBose-Boyd RA. Schnyder corneal dystrophy-associated UBIAD1 is defective in MK-4 synthesis and resists autophagy-mediated degradation. J Lipid Res 2020; 61:746-757. [PMID: 32188638 PMCID: PMC7193952 DOI: 10.1194/jlr.ra119000551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/21/2020] [Indexed: 12/15/2022] Open
Abstract
The autosomal dominant disorder Schnyder corneal dystrophy (SCD) is caused by mutations in UbiA prenyltransferase domain-containing protein-1 (UBIAD1), which uses geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4 (MK-4). SCD is characterized by opacification of the cornea, owing to aberrant build-up of cholesterol in the tissue. We previously discovered that sterols stimulate association of UBIAD1 with ER-localized HMG-CoA reductase, which catalyzes a rate-limiting step in the synthesis of cholesterol and nonsterol isoprenoids, including GGpp. Binding to UBIAD1 inhibits sterol-accelerated ER-associated degradation (ERAD) of reductase and permits continued synthesis of GGpp in cholesterol-replete cells. GGpp disrupts UBIAD1-reductase binding and thereby allows for maximal ERAD of reductase as well as ER-to-Golgi translocation of UBIAD1. SCD-associated UBIAD1 is refractory to GGpp-mediated dissociation from reductase and remains sequestered in the ER to inhibit ERAD. Here, we report development of a biochemical assay for UBIAD1-mediated synthesis of MK-4 in isolated membranes and intact cells. Using this assay, we compared enzymatic activity of WT UBIAD1 with that of SCD-associated variants. Our studies revealed that SCD-associated UBIAD1 exhibited reduced MK-4 synthetic activity, which may result from its reduced affinity for GGpp. Sequestration in the ER protects SCD-associated UBIAD1 from autophagy and allows intracellular accumulation of the mutant protein, which amplifies the inhibitory effect on reductase ERAD. These findings have important implications not only for the understanding of SCD etiology but also for the efficacy of cholesterol-lowering statin therapy, which becomes limited, in part, because of UBIAD1-mediated inhibition of reductase ERAD.
Collapse
Affiliation(s)
- Dong-Jae Jun
- Departments of Molecular Genetics,University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Marc M Schumacher
- Departments of Molecular Genetics,University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Seonghwan Hwang
- Departments of Molecular Genetics,University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Lisa N Kinch
- Biophysics,University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Nick V Grishin
- Biophysics,University of Texas Southwestern Medical Center, Dallas, TX 75390-9046; Howard Hughes Medical Institute,University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Russell A DeBose-Boyd
- Departments of Molecular Genetics,University of Texas Southwestern Medical Center, Dallas, TX 75390-9046. mailto:
| |
Collapse
|
49
|
Knopf JD, Landscheidt N, Pegg CL, Schulz BL, Kühnle N, Chao CW, Huck S, Lemberg MK. Intramembrane protease RHBDL4 cleaves oligosaccharyltransferase subunits to target them for ER-associated degradation. J Cell Sci 2020; 133:jcs243790. [PMID: 32005703 DOI: 10.1242/jcs.243790] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 08/31/2023] Open
Abstract
The endoplasmic reticulum (ER)-resident intramembrane rhomboid protease RHBDL4 generates metastable protein fragments and together with the ER-associated degradation (ERAD) machinery provides a clearance mechanism for aberrant and surplus proteins. However, the endogenous substrate spectrum and with that the role of RHBDL4 in physiological ERAD is mainly unknown. Here, we use a substrate trapping approach in combination with quantitative proteomics to identify physiological RHBDL4 substrates. This revealed oligosaccharyltransferase (OST) complex subunits such as the catalytic active subunit STT3A as substrates for the RHBDL4-dependent ERAD pathway. RHBDL4-catalysed cleavage inactivates OST subunits by triggering dislocation into the cytoplasm and subsequent proteasomal degradation. RHBDL4 thereby controls the abundance and activity of OST, suggesting a novel link between the ERAD machinery and glycosylation tuning.
Collapse
Affiliation(s)
- Julia D Knopf
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Nina Landscheidt
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Nathalie Kühnle
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Chao-Wei Chao
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Simon Huck
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| |
Collapse
|
50
|
Merino-Serrais P, Loera-Valencia R, Rodriguez-Rodriguez P, Parrado-Fernandez C, Ismail MA, Maioli S, Matute E, Jimenez-Mateos EM, Björkhem I, DeFelipe J, Cedazo-Minguez A. 27-Hydroxycholesterol Induces Aberrant Morphology and Synaptic Dysfunction in Hippocampal Neurons. Cereb Cortex 2020; 29:429-446. [PMID: 30395175 PMCID: PMC6294414 DOI: 10.1093/cercor/bhy274] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022] Open
Abstract
Hypercholesterolemia is a risk factor for neurodegenerative diseases, but how high blood cholesterol levels are linked to neurodegeneration is still unknown. Here, we show that an excess of the blood-brain barrier permeable cholesterol metabolite 27-hydroxycholesterol (27-OH) impairs neuronal morphology and reduces hippocampal spine density and the levels of the postsynaptic protein PSD95. Dendritic spines are the main postsynaptic elements of excitatory synapses and are crucial structures for memory and cognition. Furthermore, PSD95 has an essential function for synaptic maintenance and plasticity. PSD95 synthesis is controlled by the REST-miR124a-PTBP1 axis. Here, we report that high levels of 27-OH induce REST-miR124a-PTBP1 axis dysregulation in a possible RxRγ-dependent manner, suggesting that 27-OH reduces PSD95 levels through this mechanism. Our results reveal a possible molecular link between hypercholesterolemia and neurodegeneration. We discuss the possibility that reduction of 27-OH levels could be a useful strategy for preventing memory and cognitive decline in neurodegenerative disorders.
Collapse
Affiliation(s)
- Paula Merino-Serrais
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Raul Loera-Valencia
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Patricia Rodriguez-Rodriguez
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Cristina Parrado-Fernandez
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Muhammad A Ismail
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Silvia Maioli
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Eduardo Matute
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Eva Maria Jimenez-Mateos
- Department of Physiology and Medical Physics Royal, College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Ingemar Björkhem
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain.,Instituto Cajal, CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Angel Cedazo-Minguez
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|