1
|
Mishra F, Yuan Y, Yang JJ, Li B, Chan P, Liu Z. Depletion of Activated Hepatic Stellate Cells and Capillarized Liver Sinusoidal Endothelial Cells Using a Rationally Designed Protein for Nonalcoholic Steatohepatitis and Alcoholic Hepatitis Treatment. Int J Mol Sci 2024; 25:7447. [PMID: 39000553 PMCID: PMC11242029 DOI: 10.3390/ijms25137447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Nonalcoholic steatohepatitis (NASH) and alcoholic hepatitis (AH) affect a large part of the general population worldwide. Dysregulation of lipid metabolism and alcohol toxicity drive disease progression by the activation of hepatic stellate cells and the capillarization of liver sinusoidal endothelial cells. Collagen deposition, along with sinusoidal remodeling, alters sinusoid structure, resulting in hepatic inflammation, portal hypertension, liver failure, and other complications. Efforts were made to develop treatments for NASH and AH. However, the success of such treatments is limited and unpredictable. We report a strategy for NASH and AH treatment involving the induction of integrin αvβ3-mediated cell apoptosis using a rationally designed protein (ProAgio). Integrin αvβ3 is highly expressed in activated hepatic stellate cells (αHSCs), the angiogenic endothelium, and capillarized liver sinusoidal endothelial cells (caLSECs). ProAgio induces the apoptosis of these disease-driving cells, therefore decreasing collagen fibril, reversing sinusoid remodeling, and reducing immune cell infiltration. The reversal of sinusoid remodeling reduces the expression of leukocyte adhesion molecules on LSECs, thus decreasing leukocyte infiltration/activation in the diseased liver. Our studies present a novel and effective approach for NASH and AH treatment.
Collapse
Affiliation(s)
- Falguni Mishra
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Yi Yuan
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jenny J Yang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Bin Li
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Payton Chan
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Zhiren Liu
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
2
|
Chen S, Zhuang D, Jia Q, Guo B, Hu G. Advances in Noninvasive Molecular Imaging Probes for Liver Fibrosis Diagnosis. Biomater Res 2024; 28:0042. [PMID: 38952717 PMCID: PMC11214848 DOI: 10.34133/bmr.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/08/2024] [Indexed: 07/03/2024] Open
Abstract
Liver fibrosis is a wound-healing response to chronic liver injury, which may lead to cirrhosis and cancer. Early-stage fibrosis is reversible, and it is difficult to precisely diagnose with conventional imaging modalities such as magnetic resonance imaging, positron emission tomography, single-photon emission computed tomography, and ultrasound imaging. In contrast, probe-assisted molecular imaging offers a promising noninvasive approach to visualize early fibrosis changes in vivo, thus facilitating early diagnosis and staging liver fibrosis, and even monitoring of the treatment response. Here, the most recent progress in molecular imaging technologies for liver fibrosis is updated. We start by illustrating pathogenesis for liver fibrosis, which includes capillarization of liver sinusoidal endothelial cells, cellular and molecular processes involved in inflammation and fibrogenesis, as well as processes of collagen synthesis, oxidation, and cross-linking. Furthermore, the biological targets used in molecular imaging of liver fibrosis are summarized, which are composed of receptors on hepatic stellate cells, macrophages, and even liver collagen. Notably, the focus is on insights into the advances in imaging modalities developed for liver fibrosis diagnosis and the update in the corresponding contrast agents. In addition, challenges and opportunities for future research and clinical translation of the molecular imaging modalities and the contrast agents are pointed out. We hope that this review would serve as a guide for scientists and students who are interested in liver fibrosis imaging and treatment, and as well expedite the translation of molecular imaging technologies from bench to bedside.
Collapse
Affiliation(s)
- Shaofang Chen
- Department of Radiology, Shenzhen People’s Hospital (The Second Clinical Medical College,
Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Danping Zhuang
- Department of Radiology, Shenzhen People’s Hospital (The Second Clinical Medical College,
Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Qingyun Jia
- Department of Radiology, Shenzhen People’s Hospital (The Second Clinical Medical College,
Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application,
Harbin Institute of Technology, Shenzhen 518055, China
| | - Genwen Hu
- Department of Radiology, Shenzhen People’s Hospital (The Second Clinical Medical College,
Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| |
Collapse
|
3
|
Cloutier M, Variya B, Akbari SA, Rexhepi F, Ilangumaran S, Ramanathan S. Profibrogenic role of IL-15 through IL-15 receptor alpha-mediated trans-presentation in the carbon tetrachloride-induced liver fibrosis model. Front Immunol 2024; 15:1404891. [PMID: 38919611 PMCID: PMC11196400 DOI: 10.3389/fimmu.2024.1404891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Background Inflammatory cytokines play key pathogenic roles in liver fibrosis. IL-15 is a proinflammatory cytokine produced by myeloid cells. IL-15 promotes pathogenesis of several chronic inflammatory diseases. However, increased liver fibrosis has been reported in mice lacking IL-15 receptor alpha chain (IL-15Rα), suggesting an anti-fibrogenic role for IL-15. As myeloid cells are key players in liver fibrosis and IL-15 signaling can occur independently of IL-15Rα, we investigated the requirement of IL-15 and IL-15Rα in liver fibrosis. Methods We induced liver fibrosis in Il15-/- , Il15ra-/- and wildtype C57BL/6 mice by the administration of carbon tetrachloride (CCl4). Liver fibrosis was evaluated by Sirius red and Mason's trichrome staining and α-smooth muscle acting immunostaining of myofibroblasts. Gene expression of collagens, matrix modifying enzymes, cytokines and chemokines was quantified by RT-qPCR. The phenotype and the numbers of intrahepatic lymphoid and myeloid cell subsets were evaluated by flow cytometry. Results Both Il15-/- and Il15ra-/- mice developed markedly reduced liver fibrosis compared to wildtype control mice, as revealed by reduced collagen deposition and myofibroblast content. Il15ra-/- mice showed further reduction in collagen deposition compared to Il15-/- mice. However, Col1a1 and Col1a3 genes were similarly induced in the fibrotic livers of wildtype, Il15-/- and Il15ra-/- mice, although notable variations were observed in the expression of matrix remodeling enzymes and chemokines. As expected, Il15-/- and Il15ra-/- mice showed markedly reduced numbers of NK cells compared to wildtype mice. They also showed markedly less staining of CD45+ immune cells and CD68+ macrophages, and significantly reduced inflammatory cell infiltration into the liver, with fewer pro-inflammatory and anti-inflammatory monocyte subsets compared to wildtype mice. Conclusion Our findings indicate that IL-15 exerts its profibrogenic role in the liver by promoting macrophage activation and that this requires trans-presentation of IL-15 by IL-15Rα.
Collapse
|
4
|
Schaub JR, Chen JY, Turner SM. Integrins in biliary injury and fibrosis. Curr Opin Gastroenterol 2024; 40:85-91. [PMID: 38190346 DOI: 10.1097/mog.0000000000000995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
PURPOSE OF REVIEW Current treatment options for cholangiopathies are severely limited and there is thus a critical need to identify and develop therapies. This review discusses the role of integrins in biliary injury and fibrosis and their potential as therapeutic targets. RECENT FINDINGS There are a diverse set of roles that integrins play in biliary injury and fibrosis. Some integrins activate TGF-β signaling or are involved in sensing of the extracellular matrix, making them attractive targets for biliary fibrosis. In recent work, autoantibodies to α v β 6 were identified in patients with PSC, supporting the relevance of this integrin in the disease. In addition, a role for α 2 β 1 in cyst formation was identified in a mouse model of polycystic liver disease. Leukocyte integrins (e.g. α E β 7 and α 4 β 7 ) contribute to lymphocyte trafficking, making them potential targets for biliary inflammation; however, this has not yet translated to the clinic. SUMMARY While all members of the same family of proteins, integrins have diverse roles in the pathogenesis of biliary disease. Targeting one or multiple of these integrins may slow or halt the progression of biliary injury and fibrosis by simultaneously impacting different pathologic cells and processes.
Collapse
Affiliation(s)
| | - Jennifer Y Chen
- Department of Medicine
- The Liver Center, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | | |
Collapse
|
5
|
Eriksson O, Velikyan I. Radiotracers for Imaging of Fibrosis: Advances during the Last Two Decades and Future Directions. Pharmaceuticals (Basel) 2023; 16:1540. [PMID: 38004406 PMCID: PMC10674214 DOI: 10.3390/ph16111540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Fibrosis accompanies various pathologies, and there is thus an unmet medical need for non-invasive, sensitive, and quantitative methods for the assessment of fibrotic processes. Currently, needle biopsy with subsequent histological analysis is routinely used for the diagnosis along with morphological imaging techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US). However, none of these imaging techniques are sufficiently sensitive and accurate to detect minor changes in fibrosis. More importantly, they do not provide information on fibrotic activity on the molecular level, which is critical for fundamental understanding of the underlying biology and disease course. Molecular imaging technology using positron emission tomography (PET) offers the possibility of imaging not only physiological real-time activity, but also high-sensitivity and accurate quantification. This diagnostic tool is well established in oncology and has exhibited exponential development during the last two decades. However, PET diagnostics has only recently been widely applied in the area of fibrosis. This review presents the progress of development of radiopharmaceuticals for non-invasive detection of fibrotic processes, including the fibrotic scar itself, the deposition of new fibrotic components (fibrogenesis), or the degradation of existing fibrosis (fibrolysis).
Collapse
Affiliation(s)
- Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden;
- Antaros Tracer AB, Dragarbrunnsgatan 46, 2 tr, 753 20 Uppsala, Sweden
| | - Irina Velikyan
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden;
- Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, 752 85 Uppsala, Sweden
| |
Collapse
|
6
|
Roy AM, Iyer R, Chakraborty S. The extracellular matrix in hepatocellular carcinoma: Mechanisms and therapeutic vulnerability. Cell Rep Med 2023; 4:101170. [PMID: 37652015 PMCID: PMC10518608 DOI: 10.1016/j.xcrm.2023.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/04/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
The tumor microenvironment (TME) is influenced by a "disorganized" extracellular matrix (ECM) that sensitizes cancer cells toward mechanical stress, signaling, and structural alterations. In hepatocellular carcinoma (HCC), lack of knowledge about key ECM proteins driving the TME refractory to targeted therapies poses a barrier to the identification of new therapeutic targets. Herein, we discuss the contributions of various ECM components that impact hepatocytes and their surrounding support network during tumorigenesis. In addition, the underpinnings by which ECM proteins transduce mechanical signals to the liver TME are detailed. Finally, in view of the bidirectional feedback between the ECM, transformed hepatocytes, and immune cells, we highlight the potential role of the ECM disorganization process in shaping responses to immune checkpoint inhibitors and targeted therapies. Our comprehensive characterization of these ECM components may provide a roadmap for innovative therapeutic approaches to restrain HCC.
Collapse
Affiliation(s)
- Arya Mariam Roy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Renuka Iyer
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Sayan Chakraborty
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263.
| |
Collapse
|
7
|
Hiroyama S, Matsunaga K, Ito M, Iimori H, Morita I, Nakamura J, Shimosegawa E, Abe K. Evaluation of an Integrin α vβ 3 Radiotracer, [ 18F]F-FPP-RGD 2, for Monitoring Pharmacological Effects of Integrin α v siRNA in the NASH Liver. Nucl Med Mol Imaging 2023; 57:172-179. [PMID: 37483876 PMCID: PMC10359219 DOI: 10.1007/s13139-023-00791-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 03/09/2023] Open
Abstract
Purpose Integrin αv is a key regulator in the pathophysiology of hepatic fibrosis. In this study, we evaluated the potential utility of an integrin αvβ3 positron emission tomography (PET) radiotracer, 18F-labeled cyclic arginine-glycine-aspartic acid penta-peptide ([18F]F-FPP-RGD2), for detecting hepatic integrin αv and function in nonalcoholic steatohepatitis (NASH) model rats using integrin αv siRNA. Methods NASH model rats were produced by feeding a choline-deficient, low-methionine, high-fat diet for 8 weeks. PET/computerized tomography imaging and quantification of integrin αv protein, serum aspartate aminotransferase, and alanine aminotransferase were performed 1 week after single intravenous injection of integrin αv siRNA. Results Integrin αv siRNA (0.1 and 0.5 mg/kg) dose-dependently decreased hepatic integrin αv protein concentrations in control and NASH model rats. The hepatic mean standard uptake value of [18F]F-FPP-RGD2 was decreased dose-dependently by integrin αv siRNA. The mean standard uptake value was positively correlated with integrin αv protein levels in control and NASH model rats. Serum aspartate aminotransferase and alanine aminotransferase concentrations were also decreased by siRNA injection and correlated with liver integrin αv protein expression levels in NASH model rats. Conclusion This study suggests that [18F]F-FPP-RGD2 PET imaging is a promising radiotracer for monitoring hepatic integrin αv protein levels and hepatic function in NASH pathology.
Collapse
Affiliation(s)
- Shuichi Hiroyama
- Biomarker R&D Department, Shionogi & Co., Ltd., 3-1-1 Futaba-Cho, Toyonaka, Osaka 561-0825 Japan
| | - Keiko Matsunaga
- Department of Molecular Imaging in Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Miwa Ito
- Biomarker R&D Department, Shionogi & Co., Ltd., 3-1-1 Futaba-Cho, Toyonaka, Osaka 561-0825 Japan
| | - Hitoshi Iimori
- Laboratory for Advanced Medicine Research, Shionogi & Co., Ltd., Osaka, Japan
| | - Ippei Morita
- Laboratory for Advanced Medicine Research, Shionogi & Co., Ltd., Osaka, Japan
| | - Jun Nakamura
- Laboratory for Advanced Medicine Research, Shionogi & Co., Ltd., Osaka, Japan
| | - Eku Shimosegawa
- Department of Molecular Imaging in Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kohji Abe
- Biomarker R&D Department, Shionogi & Co., Ltd., 3-1-1 Futaba-Cho, Toyonaka, Osaka 561-0825 Japan
| |
Collapse
|
8
|
Hu Q, Saleem K, Pandey J, Charania AN, Zhou Y, He C. Cell Adhesion Molecules in Fibrotic Diseases. Biomedicines 2023; 11:1995. [PMID: 37509634 PMCID: PMC10377070 DOI: 10.3390/biomedicines11071995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Mechanisms underlying the pathogenesis of tissue fibrosis remain incompletely understood. Emerging evidence suggests that cell adhesion molecules (CAMs) are critical in fibrotic progression in many organs, including lung, kidney, skin, and liver. CAMs promote cell-cell and cell-extracellular matrix (ECM) interactions to maintain tissue architecture and normal function in homeostasis. However, dysregulated expression and function of CAMs can lead to chronic inflammation and tissue fibrosis. The major families of CAMs include integrins, cadherins, selectins, and immunoglobulins. Here, we review the role of the CAMs in fibrosis development across various organs with a focus on integrins and cadherins, and discuss their respective roles in the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Qianjiang Hu
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Komal Saleem
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jyotsana Pandey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Arzoo N. Charania
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chao He
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
9
|
Lian X, Zhang W, He-Yang J, Zhou X. Human milk oligosaccharide disialyllacto-n-tetraose protects human intestinal epithelium integrity and permeability against mast cell chymase-induced disruption by stabilizing ZO-1/FAK/P38 pathway of intestinal epithelial cell. Immunopharmacol Immunotoxicol 2022:1-10. [PMID: 36537314 DOI: 10.1080/08923973.2022.2160730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CONTEXT Inflammatory bowel disease (IBD) is a chronic gut disease with intestinal-epithelium disruption. Mast cell (MC) has been discussed in IBD studies, but its subset MCTC (chymase/tryptase) and MC-chymase have not been well-explored extensively. Human-milk-oligosaccharide-Disialyllacto-N-Tetraose (DSLNT) was reported as an effective strategy to protect infants against IBD with unclear mechanism. OBJECTIVE This study was to examine the distribution of chymase-positive mast cells in the intestinal-epithelium-tissue of IBD infants, to explore the MC-chymase function on intestinal-epithelium, and to investigate the influences of DSLNT against MC-chymase-induced disruptions. MATERIALS AND METHODS The intestinal-biopsies (surgical-waste) of the infants with IBD or with intestinal-atresia (non-IBD) were paraffin-embedded for immunohistochemistry. In-situ intestinal-tissue model and in-vitro human-intestinal-epithelial-cell (Caco-2) model were established with or without the treatments of MC-chymase (50mU/mL), DSLNT (600 µM) and DSLNT + MC-chymase respectively. The tissue morphology analysis, cell proliferation assay, cell-gap-closure assessment, fluorescence-immunocytochemistry, western blot, trans-epithelial-electrical-resistance, cell-cycle and statistical analysis were applied. RESULTS There was an increased number of MCTC subset around the inflamed intestinal area in-vivo; MC-chymase caused intestinal-epithelial-barrier damage in-situ, decreased trans-epithelial-electrical-resistance of caco-2 cell monolayer in-vitro; while DSLNT protected epithelium against MC-chymase induced disruptions. MC-chymase reduced cell-viability, proliferation and migration, altered cell-cycle, down-regulated ZO-1, FAK, and P38 expressions, while DSLNT protected cells by impairing MC-chymase-induced interruptions. DSLNT can rescue ZO-1, FAK and P38 expressions and restore epithelial-cell integrity and cell cycle. CONCLUSIONS Chymase-positive MCs are involved in IBD progress. MC-chymase disrupts intracellular ZO-1/FAK/P38 signal pathway and cell-cell/cell-matrix contacts, while DSLNT protects intestinal-epithelium against MC-chymase to maintain the intestinal epithelium integrity.
Collapse
Affiliation(s)
- Xuejiao Lian
- The School of Pharmacy, Changzhou University, Jiangsu, China
| | - Wenting Zhang
- The School of Pharmacy, Changzhou University, Jiangsu, China.,Department of Pharmacy, Changzhou Children's Hospital, Changzhou, China
| | - Jingqiu He-Yang
- The School of Pharmacy, Changzhou University, Jiangsu, China
| | - Xiaoying Zhou
- The School of Pharmacy, Changzhou University, Jiangsu, China
| |
Collapse
|
10
|
Sen S, Spasic A, Sinha A, Wang J, Bush M, Li J, Nešić D, Zhou Y, Angiulli G, Morgan P, Salas-Estrada L, Takagi J, Walz T, Coller BS, Filizola M. Structure-Based Discovery of a Novel Class of Small-Molecule Pure Antagonists of Integrin αVβ3. J Chem Inf Model 2022; 62:5607-5621. [PMID: 36279366 PMCID: PMC9767310 DOI: 10.1021/acs.jcim.2c00999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inhibitors of integrin αVβ3 have therapeutic promise for a variety of diseases. Most αVβ3-targeting small molecules patterned after the RGD motif are partial agonists because they induce a high-affinity, ligand-binding conformation and prime the receptor to bind the ligand without an activating stimulus, in part via a charge-charge interaction between their aspartic acid carboxyl group and the metal ion in the metal-ion-dependent adhesion site (MIDAS). Building upon our previous studies on the related integrin αIIbβ3, we searched for pure αVβ3 antagonists that lack this typical aspartic acid carboxyl group and instead engage through direct binding to one of the coordinating residues of the MIDAS metal ion, specifically β3 E220. By in silico screening of two large chemical libraries for compounds interacting with β3 E220, we indeed discovered a novel molecule that does not contain an acidic carboxyl group and does not induce the high-affinity, ligand-binding state of the receptor. Functional and structural characterization of a chemically optimized version of this compound led to the discovery of a novel small-molecule pure αVβ3 antagonist that (i) does not prime the receptor to bind the ligand and does not induce hybrid domain swing-out or receptor extension as judged by antibody binding and negative-stain electron microscopy, (ii) binds at the RGD-binding site as predicted by metadynamics rescoring of induced-fit docking poses and confirmed by a cryo-electron microscopy structure of the compound-bound integrin, and (iii) coordinates the MIDAS metal ion via a quinoline moiety instead of an acidic carboxyl group.
Collapse
Affiliation(s)
- Soumyo Sen
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York10029, United States
| | - Aleksandar Spasic
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York10029, United States
| | - Anjana Sinha
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, 1230 York Avenue, P.O. Box 309, New York, New York10065, United States
| | - Jialing Wang
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, 1230 York Avenue, P.O. Box 219, New York, New York10065, United States
| | - Martin Bush
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, 1230 York Avenue, P.O. Box 219, New York, New York10065, United States
| | - Jihong Li
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, 1230 York Avenue, P.O. Box 309, New York, New York10065, United States
| | - Dragana Nešić
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, 1230 York Avenue, P.O. Box 309, New York, New York10065, United States
| | - Yuchen Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York10029, United States
| | - Gabriella Angiulli
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, 1230 York Avenue, P.O. Box 219, New York, New York10065, United States
| | - Paul Morgan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York10029, United States
| | - Leslie Salas-Estrada
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York10029, United States
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, 1230 York Avenue, P.O. Box 219, New York, New York10065, United States
| | - Barry S Coller
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, 1230 York Avenue, P.O. Box 309, New York, New York10065, United States
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York10029, United States
| |
Collapse
|
11
|
Tang X, Li X, Li M, Zhong X, Fu W, Ao M, Xuan J. Enhanced US/CT/MR imaging of integrin αvβ3 for liver fibrosis staging in rat. Front Chem 2022; 10:996116. [PMID: 36262337 PMCID: PMC9574014 DOI: 10.3389/fchem.2022.996116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Liver fibrosis is a global health challenge with high morbidity and mortality rates, and diagnostic sensitivity of liver fibrosis tests can be increased using multimodal molecular agents. We designed cyclic arginine-glycine-aspartic acid (cRGD)-modified nanoparticles (NPs) using ultrasound (US)/computed tomography (CT)/magnetic resonance (MR) triple-modality imaging to evaluate liver fibrosis stages. In vitro and in vivo studies were conducted using primary hepatic stellate cells (HSCs) and a rat model of liver fibrosis induced by carbon tetrachloride (CCl4). Our results showed cRGD-poly(lactic-co-glycolic acid)-Fe3O4-perfluorocarbon bromide (cRGD-PLGA-Fe3O4-PFOB) NPs were preferentially internalised by activated HSCs (aHSCs). The main cell types expressing integrin αvβ3 during liver fibrogenesis were the aHSCs. The protein levels of αv and β3 expressed on aHSCs increased with the progression of liver fibrosis. After intravenous injection of cRGD-PLGA-Fe3O4-PFOB NPs, the echo intensity (EI) values, CT values, and T2 values of liver parenchyma correlated well with liver fibrosis severity. cRGD-PLGA-Fe3O4-PFOB NPs as multifunction contrast agents showed great potential to reflect the degree of HSC activation and distinguish among different liver fibrotic stages. The ligand-directed and integrin αvβ3-mediated accumulation provides active and passive targeting capabilities, permitting the targeted multimodal imaging of cRGD-PLGA-Fe3O4-PFOB NPs, which delivers accurate non-invasive diagnosis and real-time monitoring of liver fibrosis development.
Collapse
Affiliation(s)
- Xueyao Tang
- Department of Ultrasound, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Ultrasound, The Third People’s Hospital of Chengdu, Clinical College of Southwest Jiao Tong University, The Second Affiliated Chengdu Hospital of Chongqing Medical University, Chengdu, China
| | - Xuan Li
- Department of Ultrasound, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Ultrasound, Sichuan Provincial People’s Hospital, Chengdu, China
| | - Mingxing Li
- Department of Ultrasound, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoling Zhong
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenguang Fu
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Meng Ao
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, China
- *Correspondence: Jiqing Xuan, ; Meng Ao,
| | - Jiqing Xuan
- Department of Ultrasound, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Jiqing Xuan, ; Meng Ao,
| |
Collapse
|
12
|
Rahman SR, Roper JA, Grove JI, Aithal GP, Pun KT, Bennett AJ. Integrins as a drug target in liver fibrosis. Liver Int 2022; 42:507-521. [PMID: 35048542 DOI: 10.1111/liv.15157] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023]
Abstract
As the worldwide prevalence of chronic liver diseases is high and continuing to increase, there is an urgent need for treatment to prevent cirrhosis-related morbidity and mortality. Integrins are heterodimeric cell-surface proteins that are promising targets for therapeutic intervention. αv integrins are central in the development of fibrosis as they activate latent TGFβ, a known profibrogenic cytokine. The αv subunit can form heterodimers with β1, β3, β5, β6 or β8 subunits and one or more of these integrins are central to the development of liver fibrosis, however, their relative importance is not understood. This review summarises the current knowledge of αv integrins and their respective β subunits in different organs, with a focus on liver fibrosis and the emerging preclinical and clinical data with regards to αv integrin inhibitors.
Collapse
Affiliation(s)
- Syedia R Rahman
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK.,FRAME Alternatives Laboratory, Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK.,Nottingham Digestive Diseases Centre, Translational Medical Sciences, Medicine, University of Nottingham, Nottingham, UK
| | - James A Roper
- Novel Human Genetics Research Unit, GlaxoSmithKline, Stevenage, UK
| | - Jane I Grove
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK.,Nottingham Digestive Diseases Centre, Translational Medical Sciences, Medicine, University of Nottingham, Nottingham, UK
| | - Guruprasad P Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK.,Nottingham Digestive Diseases Centre, Translational Medical Sciences, Medicine, University of Nottingham, Nottingham, UK
| | - K Tao Pun
- Novel Human Genetics Research Unit, GlaxoSmithKline, Stevenage, UK
| | - Andrew J Bennett
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK.,FRAME Alternatives Laboratory, Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK.,Nottingham Digestive Diseases Centre, Translational Medical Sciences, Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
13
|
Decaris ML, Schaub JR, Chen C, Cha J, Lee GG, Rexhepaj M, Ho SS, Rao V, Marlow MM, Kotak P, Budi EH, Hooi L, Wu J, Fridlib M, Martin SP, Huang S, Chen M, Muñoz M, Hom TF, Wolters PJ, Desai TJ, Rock F, Leftheris K, Morgans DJ, Lepist EI, Andre P, Lefebvre EA, Turner SM. Dual inhibition of α vβ 6 and α vβ 1 reduces fibrogenesis in lung tissue explants from patients with IPF. Respir Res 2021; 22:265. [PMID: 34666752 PMCID: PMC8524858 DOI: 10.1186/s12931-021-01863-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/10/2021] [Indexed: 12/11/2022] Open
Abstract
RATIONALE αv integrins, key regulators of transforming growth factor-β activation and fibrogenesis in in vivo models of pulmonary fibrosis, are expressed on abnormal epithelial cells (αvβ6) and fibroblasts (αvβ1) in fibrotic lungs. OBJECTIVES We evaluated multiple αv integrin inhibition strategies to assess which most effectively reduced fibrogenesis in explanted lung tissue from patients with idiopathic pulmonary fibrosis. METHODS Selective αvβ6 and αvβ1, dual αvβ6/αvβ1, and multi-αv integrin inhibitors were characterized for potency, selectivity, and functional activity by ligand binding, cell adhesion, and transforming growth factor-β cell activation assays. Precision-cut lung slices generated from lung explants from patients with idiopathic pulmonary fibrosis or bleomycin-challenged mouse lungs were treated with integrin inhibitors or standard-of-care drugs (nintedanib or pirfenidone) and analyzed for changes in fibrotic gene expression or TGF-β signaling. Bleomycin-challenged mice treated with dual αvβ6/αvβ1 integrin inhibitor, PLN-74809, were assessed for changes in pulmonary collagen deposition and Smad3 phosphorylation. MEASUREMENTS AND MAIN RESULTS Inhibition of integrins αvβ6 and αvβ1 was additive in reducing type I collagen gene expression in explanted lung tissue slices from patients with idiopathic pulmonary fibrosis. These data were replicated in fibrotic mouse lung tissue, with no added benefit observed from inhibition of additional αv integrins. Antifibrotic efficacy of dual αvβ6/αvβ1 integrin inhibitor PLN-74809 was confirmed in vivo, where dose-dependent inhibition of pulmonary Smad3 phosphorylation and collagen deposition was observed. PLN-74809 also, more potently, reduced collagen gene expression in fibrotic human and mouse lung slices than clinically relevant concentrations of nintedanib or pirfenidone. CONCLUSIONS In the fibrotic lung, dual inhibition of integrins αvβ6 and αvβ1 offers the optimal approach for blocking fibrogenesis resulting from integrin-mediated activation of transforming growth factor-β.
Collapse
Affiliation(s)
| | | | - Chun Chen
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Jacob Cha
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Gail G Lee
- Pliant Therapeutics, South San Francisco, CA, USA
| | | | - Steve S Ho
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Vikram Rao
- Pliant Therapeutics, South San Francisco, CA, USA
| | | | - Prerna Kotak
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Erine H Budi
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Lisa Hooi
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Jianfeng Wu
- Pliant Therapeutics, South San Francisco, CA, USA
| | | | | | - Shaoyi Huang
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Ming Chen
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Manuel Muñoz
- Pliant Therapeutics, South San Francisco, CA, USA
| | | | - Paul J Wolters
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Tushar J Desai
- Department of Medicine, Stanford University, Stanford, CA, USA
| | | | | | - David J Morgans
- Pliant Therapeutics, South San Francisco, CA, USA
- Maze Therapeutics, South San Francisco, CA, USA
| | | | - Patrick Andre
- Pliant Therapeutics, South San Francisco, CA, USA
- Acceleron Pharma, Cambridge, MA, USA
| | | | | |
Collapse
|
14
|
Turaga RC, Satyanarayana G, Sharma M, Yang JJ, Wang S, Liu C, Li S, Yang H, Grossniklaus H, Farris AB, Gracia-Sancho J, Liu ZR. Targeting integrin αvβ3 by a rationally designed protein for chronic liver disease treatment. Commun Biol 2021; 4:1087. [PMID: 34531529 PMCID: PMC8445973 DOI: 10.1038/s42003-021-02611-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Chronic Liver Diseases (CLD) are characterized by abnormal accumulation of collagen fibrils, neo-angiogenesis, and sinusoidal remodeling. Collagen deposition along with intrahepatic angiogenesis and sinusoidal remodeling alters sinusoid structure resulting in portal hypertension, liver failure, and other complications. Efforts were made to develop treatments for CLDs. However, the success of such treatments is limited and unpredictable. We report a strategy for CLD treatment by induction of integrin αvβ3 mediated cell apoptosis using a rationally designed protein (ProAgio). ProAgio is designed to target integrin αvβ3 at a novel site. Integrin αvβ3 is highly expressed in activated Hepatic Stellate Cells (HSC), angiogenic endothelium, and capillarized Liver Sinusoidal Endothelial Cells (LSEC). ProAgio induces apoptosis of these disease causative cells. Tests with liver fibrosis mouse models demonstrate that ProAgio reverses liver fibrosis and relieves blood flow resistance by depleting activated HSC and capillarized LSEC. Our studies demonstrate an effective approach for CLD treatment.
Collapse
Affiliation(s)
- Ravi Chakra Turaga
- Department of Biology, Georgia State University, Atlanta, GA, 30324, USA
| | | | - Malvika Sharma
- Department of Biology, Georgia State University, Atlanta, GA, 30324, USA
| | - Jenny J Yang
- Department of Chemistry, Georgia State University, Atlanta, USA
| | | | | | - Sun Li
- Department of Chemistry, Georgia State University, Atlanta, USA
| | - Hua Yang
- Department Ophthalmology, Emory University, Atlanta, GA, 30322, USA
| | | | | | | | - Zhi-Ren Liu
- Department of Biology, Georgia State University, Atlanta, GA, 30324, USA.
| |
Collapse
|
15
|
Kumar V, Xin X, Ma J, Tan C, Osna N, Mahato RI. Therapeutic targets, novel drugs, and delivery systems for diabetes associated NAFLD and liver fibrosis. Adv Drug Deliv Rev 2021; 176:113888. [PMID: 34314787 PMCID: PMC8440458 DOI: 10.1016/j.addr.2021.113888] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/12/2021] [Accepted: 07/18/2021] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) associated non-alcoholic fatty liver disease (NAFLD) is the fourth-leading cause of death. Hyperglycemia induces various complications, including nephropathy, cirrhosis and eventually hepatocellular carcinoma (HCC). There are several etiological factors leading to liver disease development, which involve insulin resistance and oxidative stress. Free fatty acid (FFA) accumulation in the liver exerts oxidative and endoplasmic reticulum (ER) stresses. Hepatocyte injury induces release of inflammatory cytokines from Kupffer cells (KCs), which are responsible for activating hepatic stellate cells (HSCs). In this review, we will discuss various molecular targets for treating chronic liver diseases, including homeostasis of FFA, lipid metabolism, and decrease in hepatocyte apoptosis, role of growth factors, and regulation of epithelial-to-mesenchymal transition (EMT) and HSC activation. This review will also critically assess different strategies to enhance drug delivery to different cell types. Targeting nanocarriers to specific liver cell types have the potential to increase efficacy and suppress off-target effects.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Xiaofei Xin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jingyi Ma
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Natalia Osna
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
16
|
Integrin αVβ1 regulates procollagen I production through a non-canonical transforming growth factor β signaling pathway in human hepatic stellate cells. Biochem J 2021; 478:1689-1703. [PMID: 33876829 DOI: 10.1042/bcj20200749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022]
Abstract
Hepatic stellate cells (HSCs) are thought to play key roles in the development of liver fibrosis. Extensive evidence has established the concept that αV integrins are involved in the activation of latent transforming growth factor β (TGF-β), a master regulator of the fibrotic signaling cascade. Based on mRNA and protein expression profiling data, we found that αVβ1 integrin is the most abundant member of the αV integrin family in either quiescent or TGF-β1-activated primary human HSCs. Unexpectedly, either a selective αVβ1 inhibitor, Compound 8 (C8), or a pan-αV integrin inhibitor, GSK3008348, decreased TGF-β1-activated procollagen I production in primary human HSCs, in which the role of β1 integrin was confirmed by ITGB1 siRNA. In contrast with an Activin receptor-like kinase 5 (Alk5) inhibitor, C8 and GSK3008348 failed to inhibit TGF-β1 induced SMAD3 and SMAD2 phosphorylation, but inhibited TGF-β-induced phosphorylation of ERK1/2 and STAT3, suggesting that αVβ1 integrin is involved in non-canonical TGF-β signaling pathways. Consistently, ITGB1 siRNA significantly decreased phosphorylation of ERK1/2. Furthermore, a selective inhibitor of MEK1/2 blocked TGF-β1 induced phosphorylation of ERK1/2 and decreased TGF-β1 induced procollagen I production, while a specific inhibitor of STAT3 had no effect on TGF-β1 induced procollagen I production. Taken together, current data indicate that αVβ1 integrin can regulate TGF-β signaling independent of its reported role in activating latent TGF-β. Our data further support that αVβ1 inhibition is a promising therapeutic target for the treatment of liver fibrosis.
Collapse
|
17
|
Khanam A, Saleeb PG, Kottilil S. Pathophysiology and Treatment Options for Hepatic Fibrosis: Can It Be Completely Cured? Cells 2021; 10:cells10051097. [PMID: 34064375 PMCID: PMC8147843 DOI: 10.3390/cells10051097] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatic fibrosis is a dynamic process that occurs as a wound healing response against liver injury. During fibrosis, crosstalk between parenchymal and non-parenchymal cells, activation of different immune cells and signaling pathways, as well as a release of several inflammatory mediators take place, resulting in inflammation. Excessive inflammation drives hepatic stellate cell (HSC) activation, which then encounters various morphological and functional changes before transforming into proliferative and extracellular matrix (ECM)-producing myofibroblasts. Finally, enormous ECM accumulation interferes with hepatic function and leads to liver failure. To overcome this condition, several therapeutic approaches have been developed to inhibit inflammatory responses, HSC proliferation and activation. Preclinical studies also suggest several targets for the development of anti-fibrotic therapies; however, very few advanced to clinical trials. The pathophysiology of hepatic fibrosis is extremely complex and requires comprehensive understanding to identify effective therapeutic targets; therefore, in this review, we focus on the various cellular and molecular mechanisms associated with the pathophysiology of hepatic fibrosis and discuss potential strategies to control or reverse the fibrosis.
Collapse
Affiliation(s)
- Arshi Khanam
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Paul G. Saleeb
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Shyam Kottilil
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Correspondence: ; Tel.: +1-410-706-4872
| |
Collapse
|
18
|
Malta KK, Silva TP, Palazzi C, Neves VH, Carmo LAS, Cardoso SJ, Melo RCN. Changing our view of the Schistosoma granuloma to an ecological standpoint. Biol Rev Camb Philos Soc 2021; 96:1404-1420. [PMID: 33754464 DOI: 10.1111/brv.12708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022]
Abstract
Schistosomiasis, a neglected parasitic tropical disease that has plagued humans for centuries, remains a major public health burden. A primary challenge to understanding schistosomiasis is deciphering the most remarkable pathological feature of this disease, the granuloma - a highly dynamic and self-organized structure formed by both host and parasite components. Granulomas are considered a remarkable example of how parasites evolved with their hosts to establish complex and intimate associations. However, much remains unclear regarding life within the granuloma, and strategies to restrain its development are still lacking. Here we explore current information on the hepatic Schistosoma mansoni granuloma in the light of Ecology and propose that this intricate structure acts as a real ecosystem. The schistosomal granuloma is formed by cells (biotic component), protein scaffolds, fibres, and chemical compounds (abiotic components) with inputs/outputs of energy and matter, as complex as in classical ecosystems. We review the distinct cell populations ('species') within the granuloma and examine how they integrate with each other and interact with their microenvironment to form a multifaceted cell community in different space-time frames. The colonization of the hepatic tissue to form granulomas is explained from the point of view of an ecological succession whereby a community is able to modify its physical environment, creating conditions and resources for ecosystem construction. Remarkably, the granuloma represents a dynamic evolutionary system that undergoes progressive changes in the 'species' that compose its community over time. In line with ecological concepts, we examine the granuloma not only as a place where a community of cells is settled (spatial niche or habitat) but also as a site in which the functional activities of these combined populations occur in an orchestrated way in response to microenvironmental gradients such as cytokines and egg antigens. Finally, we assert how the levels of organization of cellular components in a granuloma as conventionally defined by Cell Biology can fit perfectly into a hierarchical structure of biological systems as defined by Ecology. By rethinking the granuloma as an integrating and evolving ecosystem, we draw attention to the inner workings of this structure that are central to the understanding of schistosomiasis and could guide its future treatment.
Collapse
Affiliation(s)
- Kássia K Malta
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Biodiversity, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Thiago P Silva
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Biodiversity, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Cinthia Palazzi
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Cell Biology, Federal University of Minas Gerais, Belo Horizonte, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Vitor H Neves
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Cell Biology, Federal University of Minas Gerais, Belo Horizonte, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Lívia A S Carmo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Department of Medicine, Federal University of Alagoas, Rodovia AL-115, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Simone J Cardoso
- Graduate Program in Biodiversity, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Laboratory of Plankton Ecology, Department of Zoology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Biodiversity, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Cell Biology, Federal University of Minas Gerais, Belo Horizonte, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
19
|
Yasmin A, Regan DP, Schook LB, Gaba RC, Schachtschneider KM. Transcriptional regulation of alcohol induced liver fibrosis in a translational porcine hepatocellular carcinoma model. Biochimie 2021; 182:73-84. [PMID: 33444661 DOI: 10.1016/j.biochi.2020.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/09/2020] [Accepted: 12/28/2020] [Indexed: 01/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is the 5th most common and 2nd deadliest cancer worldwide. HCC risk factors include alcohol induced liver cirrhosis, which prompts hepatic inflammation, cell necrosis, and fibrosis deposition. As 25% of HCC cases are associated with alcohol induced liver disease, understanding the effects of the cirrhotic liver microenvironment on HCC tumor biology and therapeutic responses are critical. This study utilized the Oncopig Cancer Model-a transgenic pig model that recapitulates human HCC through induced expression of KRASG12D and TP53R167H driver mutations-to investigate the molecular mechanisms underlying alcohol induced liver disease. Oncopigs (n = 5) underwent fibrosis induction via infusion of ethanol and ethiodized oil (1:3 v/v dosed at 0.75 mL/kg) into the hepatic arterial circulation. Eight-weeks post induction, liver tissue samples from fibrotic and age-matched control (n = 5) Oncopigs were collected for histological evaluation and transcriptional profiling. Increased hepatic inflammation and fibrosis was observed in fibrotic Oncopigs via pathological assessment. Transcriptional profiling (RNA-seq) resulted in the identification of 4387 differentially expressed genes between Oncopig fibrotic and control livers. GO term enrichment analysis identified pathway alterations associated with cirrhosis progression in humans, including cell proliferation, angiogenesis, extracellular matrix deposition, and oxidation-reduction. Key alterations include activation of hepatic stellate cells, increased matrix metalloproteinase production, and altered expression of ABC and SLC transporter genes involved in transport of anticancer drugs.These results demonstrate Oncopig liver fibrosis recapitulates transcriptional hallmarks of human cirrhosis, making the Oncopig an ideal model for studying the effects of the cirrhotic liver microenvironment on HCC tumor biology and therapeutic response.
Collapse
Affiliation(s)
- Alvi Yasmin
- Department of Radiology, University of Illinois at Chicago, United States
| | - Daniel P Regan
- Flint Animal Cancer Center, Colorado State University, United States
| | - Lawrence B Schook
- Department of Radiology, University of Illinois at Chicago, United States; Department of Animal Sciences, University of Illinois at Urbana-Champaign, United States; National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, United States
| | - Ron C Gaba
- Department of Radiology, University of Illinois at Chicago, United States
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, United States; National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, United States; Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, United States.
| |
Collapse
|
20
|
Extracellular Matrix Remodeling in Chronic Liver Disease. CURRENT TISSUE MICROENVIRONMENT REPORTS 2021; 2:41-52. [PMID: 34337431 PMCID: PMC8300084 DOI: 10.1007/s43152-021-00030-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/09/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF THE REVIEW This review aims to summarize the current knowledge of the extracellular matrix remodeling during hepatic fibrosis. We discuss the diverse interactions of the extracellular matrix with hepatic cells and the surrounding matrix in liver fibrosis, with the focus on the molecular pathways and the mechanisms that regulate extracellular matrix remodeling. RECENT FINDINGS The extracellular matrix not only provides structure and support for the cells, but also controls cell behavior by providing adhesion signals and by acting as a reservoir of growth factors and cytokines. SUMMARY Hepatic fibrosis is characterized by an excessive accumulation of extracellular matrix. During fibrogenesis, the natural remodeling process of the extracellular matrix varies, resulting in the excessive accumulation of its components, mainly collagens. Signals released by the extracellular matrix induce the activation of hepatic stellate cells, which are the major source of extracellular matrix and most abundant myofibroblasts in the liver. GRAPHICAL ABSTRACT
Collapse
|
21
|
Urquiza M, Guevara V, Diaz-Sana E, Mora F. The Role of αvβ6 Integrin Binding Molecules in the Diagnosis and Treatment of Cancer. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200528124936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peptidic and non-peptidic αvβ6 integrin-binding molecules have been used in
the clinic for detection and treatment of tumors expressing αvβ6 integrin, because this protein
is expressed in malignant epithelial cells of the oral cavity, pancreas, breast, ovary,
colon and stomach carcinomas but it is not expressed in healthy adult tissue except during
wound healing and inflammation. This review focuses on the landscape of αvβ6 integrinbinding
molecules and their use in cancer treatment and detection, and discusses recent
designs for tumor detection, treatment, and immunotherapy. In the last ten years, several
reviews abamp;#945;vβ6 integrin-binding molecules and their role in cancer detection and treatment.
Firstly, this review describes the role of the αvβ6 integrin in normal tissues, how the expression
of this protein is correlated with cancer severity and its role in cancer development. Taking into account
the potential of αvβ6 integrin-binding molecules in detection and treatment of specific tumors, special
attention is given to several high-affinity αvβ6 integrin-binding peptides used for tumor imaging; particularly,
the αvβ6-binding peptide NAVPNLRGDLQVLAQKVART [A20FMDV2], derived from the foot and mouth
disease virus. This peptide labeled with either 18F, 111In or with 68Ga has been used for PET imaging of αvβ6
integrin-positive tumors. Moreover, αvβ6 integrin-binding peptides have been used for photoacoustic and fluorescence
imaging and could potentially be used in clinical application in cancer diagnosis and intraoperative
imaging of αvβ6-integrin positive tumors. Additionally, non-peptidic αvβ6-binding molecules have been designed
and used in the clinic for the detection and treatment of αvβ6-expressing tumors. Anti-αvβ6 integrin antibodies
are another useful tool for selective identification and treatment of αvβ6 (+) tumors. The utility of
these αvβ6 integrin-binding molecules as a tool for tumor detection and treatment is discussed, considering
specificity, sensitivity and serum stability. Another use of the αvβ6 integrin-binding peptides is to modify the
Ad5 cell tropism for inducing oncolytic activity of αvβ6-integrin positive tumor cells by expressing
A20FMDV2 peptide within the fiber knob protein (Ad5NULL-A20). The newly designed oncolytic
Ad5NULL-A20 virotherapy is promising for local and systemic targeting of αvβ6-overexpressing cancers. Finally,
new evidence has emerged, indicating that chimeric antigen receptor (CAR) containing the αvβ6 integrin-
binding peptide on top of CD28+CD3 endodomain displays a potent therapeutic activity in a diverse
repertoire of solid tumor models.
Collapse
Affiliation(s)
- Mauricio Urquiza
- Grupo de Investigacion en Hormonas (GIH), Department of Chemistry, National University of Columbia, Cra 30 # 45-03, Bogota, zip code 111321, Colombia
| | - Valentina Guevara
- Grupo de Investigacion en Hormonas (GIH), Department of Chemistry, National University of Columbia, Cra 30 # 45-03, Bogota, zip code 111321, Colombia
| | - Erika Diaz-Sana
- Grupo de Investigacion en Hormonas (GIH), Department of Chemistry, National University of Columbia, Cra 30 # 45-03, Bogota, zip code 111321, Colombia
| | - Felipe Mora
- Grupo de Investigacion en Hormonas (GIH), Department of Chemistry, National University of Columbia, Cra 30 # 45-03, Bogota, zip code 111321, Colombia
| |
Collapse
|
22
|
McQuitty CE, Williams R, Chokshi S, Urbani L. Immunomodulatory Role of the Extracellular Matrix Within the Liver Disease Microenvironment. Front Immunol 2020; 11:574276. [PMID: 33262757 PMCID: PMC7686550 DOI: 10.3389/fimmu.2020.574276] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease when accompanied by underlying fibrosis, is characterized by an accumulation of extracellular matrix (ECM) proteins and chronic inflammation. Although traditionally considered as a passive and largely architectural structure, the ECM is now being recognized as a source of potent damage-associated molecular pattern (DAMP)s with immune-active peptides and domains. In parallel, the ECM anchors a range of cytokines, chemokines and growth factors, all of which are capable of modulating immune responses. A growing body of evidence shows that ECM proteins themselves are capable of modulating immunity either directly via ligation with immune cell receptors including integrins and TLRs, or indirectly through release of immunoactive molecules such as cytokines which are stored within the ECM structure. Notably, ECM deposition and remodeling during injury and fibrosis can result in release or formation of ECM-DAMPs within the tissue, which can promote local inflammatory immune response and chemotactic immune cell recruitment and inflammation. It is well described that the ECM and immune response are interlinked and mutually participate in driving fibrosis, although their precise interactions in the context of chronic liver disease are poorly understood. This review aims to describe the known pro-/anti-inflammatory and fibrogenic properties of ECM proteins and DAMPs, with particular reference to the immunomodulatory properties of the ECM in the context of chronic liver disease. Finally, we discuss the importance of developing novel biotechnological platforms based on decellularized ECM-scaffolds, which provide opportunities to directly explore liver ECM-immune cell interactions in greater detail.
Collapse
Affiliation(s)
- Claire E. McQuitty
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Roger Williams
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Shilpa Chokshi
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Luca Urbani
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
23
|
Hiroyama S, Rokugawa T, Ito M, Iimori H, Morita I, Maeda H, Fujisawa K, Matsunaga K, Shimosegawa E, Abe K. Quantitative evaluation of hepatic integrin α vβ 3 expression by positron emission tomography imaging using 18F-FPP-RGD 2 in rats with non-alcoholic steatohepatitis. EJNMMI Res 2020; 10:118. [PMID: 33026561 PMCID: PMC7541810 DOI: 10.1186/s13550-020-00704-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Background Integrin αvβ3, which are expressed by activated hepatic stellate cells in non-alcoholic steatohepatitis (NASH), play an important role in the fibrosis. Recently, we reported that an RGD peptide positron emission tomography (PET) probe is useful as a predictor of hepatic fibrosis. Kinetic analysis of the RGD PET probe has been performed in tumours, but not in hepatic fibrosis. Therefore, we aimed to quantify hepatic integrin αvβ3 in a model of NASH by kinetic analysis using 18F-FPP-RGD2, an integrin αvβ3 PET probe. Methods 18F-FPP-RGD2 PET/CT scans were performed in control and NASH rats. Tissue kinetic analyses were performed using a one-tissue, two-compartment (1T2C) and a two-tissue, three-compartment (2T3C) model using an image-derived input function (IDIF) for the left ventricle. We then conducted correlation analysis between standard uptake values (SUVs) or volume of distribution (VT), evaluated using compartment kinetic analysis and integrin αv or β3 protein expression. Results Biochemical and histological evaluation confirmed the development of NASH rats. Integrin αvβ3 protein expression and hepatic SUV were higher in NASH- than normal rats. The hepatic activity of 18F-FPP-RGD2 peaked rapidly after administration and then gradually decreased, whereas left ventricular activity rapidly disappeared. The 2T3C model was found to be preferable for 18F-FPP-RGD2 kinetic analysis in the liver. The VT (IDIF) for 18F-FPP-RGD2, calculated using the 2T3C model, was significantly higher in NASH- than normal rats and correlated strongly with hepatic integrin αv and β3 protein expression. The strengths of these correlations were similar to those between SUV60–90 min and hepatic integrin αv or β3 protein expression. Conclusions We have demonstrated that the VT (IDIF) of 18F-FPP-RGD2, calculated using kinetic modelling, positively correlates with integrin αv and β3 protein in the liver of NASH rats. These findings suggest that hepatic VT (IDIF) provides a quantitative assessment of integrin αvβ3 protein in liver.
Collapse
Affiliation(s)
- Shuichi Hiroyama
- Translational Research Unit, Biomarker R&D Department, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka, 561-0825, Japan.
| | - Takemi Rokugawa
- Translational Research Unit, Biomarker R&D Department, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Miwa Ito
- Translational Research Unit, Biomarker R&D Department, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Hitoshi Iimori
- Research Laboratory for Development, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Ippei Morita
- Laboratory for Advanced Medicine Research, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Hiroki Maeda
- Laboratory for Innovative Therapy Research, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Kae Fujisawa
- Research Laboratory for Development, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Keiko Matsunaga
- Department of Molecular Imaging in Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eku Shimosegawa
- Department of Molecular Imaging in Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kohji Abe
- Translational Research Unit, Biomarker R&D Department, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| |
Collapse
|
24
|
Differential effects of olive oil, soybean oil, corn oil and lard oil on carbon tetrachloride-induced liver fibrosis in mice. Biosci Rep 2020; 39:BSR20191913. [PMID: 31481526 PMCID: PMC6822505 DOI: 10.1042/bsr20191913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022] Open
Abstract
Olive oil could attenuate carbon tetrachloride (CCl4) induced liver fibrosis (LF) in mouse model. The present study aimed to evaluate the effects of other common oils on CCl4 induced LF. Healthy male ICR mice were administered with CCl4 intraperitoneally at 2.5 ml/kg twice a week for total 3 weeks. Mice were pre-treated with olive oil, soybean oil, corn oil or lard oil. After treatment, histopathological changes were observed using Masson trichrome staining, and alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), hydroxyproline (HYP) and triglyceride (TG) were measured by commercial kits. The expression of LF related genes was detected by quantitative real-time PCR. We found that soybean oil or olive oil significantly reduced ALT and AST levels in serum, and MDA, HYP and TG levels in the liver, compared with corn oil or lard oil. Moreover, Masson trichrome staining and real-time PCR showed that the mice treated with CCl4 dissolved in soybean oil or olive oil had less fibrosis and apoptosis in the liver comparted to the mice treated with CCl4 dissolved in corn oil or lard oil. In conclusion, soybean oil but not corn or lard oil exerts protective effects against CCl4 induced LF in mice, possibly due to its antioxidant activity.
Collapse
|
25
|
Meurer SK, Karsdal MA, Weiskirchen R. Advances in the clinical use of collagen as biomarker of liver fibrosis. Expert Rev Mol Diagn 2020; 20:947-969. [PMID: 32865433 DOI: 10.1080/14737159.2020.1814746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Hepatic fibrosis is the excessive synthesis and deposition of extracellular matrix including collagen in the tissue. Chronic liver insult leads to progressive parenchymal damage, portal hypertension, and cirrhosis. Determination of hepatic collagen by invasive liver biopsy is the gold standard to estimate severity and stage of fibrosis. However, this procedure is associated with pain, carries the risk of infection and bleeding, and is afflicted with a high degree of sampling error. Therefore, there is urgent need for serological collagen-derived markers to assess collagen synthesis/turnover. AREAS COVERED Biochemical properties of collagens, cellular sources of hepatic collagen synthesis, and regulatory aspects in collagen expression. Markers are discussed suitable to estimate hepatic collagen synthesis and/or turnover. Discussed studies were identified through a PubMed search done in May 2020 and the authors' topic knowledge. EXPERT OPINION Hepatic fibrosis is mainly characterized by accumulation of collagen-rich scar tissue. Although traditionally performed liver biopsy is still standard in estimating hepatic fibrosis, there is evidence that noninvasive diagnostic scores and collagen-derived neo-epitopes provide clinical useful information. These noninvasive tests are less expensive than liver biopsy, better tolerated, safer, and more acceptable to patients. Therefore, these tests will lead to dramatic changes in diagnosis.
Collapse
Affiliation(s)
- Steffen K Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen , Aachen, Germany
| | - Morten A Karsdal
- Nordic Bioscience, Fibrosis Biomarkers and Research , Herlev, Denmark
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen , Aachen, Germany
| |
Collapse
|
26
|
Turaga RC, Sharma M, Mishra F, Krasinskas A, Yuan Y, Yang JJ, Wang S, Liu C, Li S, Liu ZR. Modulation of Cancer-Associated Fibrotic Stroma by An Integrin α vβ 3 Targeting Protein for Pancreatic Cancer Treatment. Cell Mol Gastroenterol Hepatol 2020; 11:161-179. [PMID: 32810598 PMCID: PMC7674520 DOI: 10.1016/j.jcmgh.2020.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) is resistant to most therapeutics owing to dense fibrotic stroma orchestrated by cancer-associated pancreatic stellate cells (CAPaSC). CAPaSC also support cancer cell growth, metastasis, and resistance to apoptosis. Currently, there is no effective therapy for PDAC that specifically targets CAPaSC. We previously reported a rationally designed protein, ProAgio, that targets integrin αvβ3 at a novel site and induces apoptosis in integrin αvβ3-expressing cells. Because both CAPaSC and angiogenic endothelial cells express high levels of integrin αvβ3, we aimed to analyze the effects of ProAgio in PDAC tumor. METHODS Expression of integrin αvβ3 was examined in both patient tissue and cultured cells. The effects of ProAgio on CAPaSC were analyzed using an apoptosis assay kit. The effects of ProAgio in PDAC tumor were studied in 3 murine tumor models: subcutaneous xenograft, genetic engineered (KrasG12D; p53R172H; Pdx1-Cre, GEM-KPC) mice, and an orthotopic KrasG12D; p53R172H; Pdx1-Cre (KPC) model. RESULTS ProAgio induces apoptosis in CAPaSC. ProAgio treatment significantly prolonged survival of a genetically engineered mouse-KPC and orthotopic KPC mice alone or in combination with gemcitabine (Gem). ProAgio specifically induced apoptosis in CAPaSC, resorbed collagen, and opened collapsed tumor vessels without an increase in angiogenesis in PDAC tumor, enabling drug delivery into the tumor. ProAgio decreased intratumoral insulin-like growth factor 1 levels as a result of depletion of CAPaSC and consequently decreased cytidine deaminase, a Gem metabolism enzyme in cancer cells, and thereby reduced resistance to Gem-induced apoptosis. CONCLUSIONS Our study suggests that ProAgio is an effective PDAC treatment agent because it specifically depletes CAPaSC and eliminates tumor angiogenesis, thereby enhancing drug delivery and Gem efficacy in PDAC tumors.
Collapse
Affiliation(s)
| | - Malvika Sharma
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Falguni Mishra
- Department of Biology, Georgia State University, Atlanta, Georgia
| | | | - Yi Yuan
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Jenny J Yang
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Shiyuan Wang
- Research and Development Division, Amoytop Biotech, Inc, Xiamen, People's Republic of China
| | - Chunfeng Liu
- Research and Development Division, Amoytop Biotech, Inc, Xiamen, People's Republic of China
| | - Sun Li
- Research and Development Division, Amoytop Biotech, Inc, Xiamen, People's Republic of China
| | - Zhi-Ren Liu
- Department of Biology, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
27
|
Bestion E, Jilkova ZM, Mège JL, Novello M, Kurma K, Pour STA, Lalmanach G, Vanderlynden L, Fizanne L, Bassissi F, Rachid M, Tracz J, Boursier J, Courcambeck J, Serdjebi C, Ansaldi C, Decaens T, Halfon P, Brun S. GNS561 acts as a potent anti-fibrotic and pro-fibrolytic agent in liver fibrosis through TGF-β1 inhibition. Ther Adv Chronic Dis 2020; 11:2040622320942042. [PMID: 32728410 PMCID: PMC7366401 DOI: 10.1177/2040622320942042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Hepatic fibrosis is the result of chronic liver injury that can progress to
cirrhosis and lead to liver failure. Nevertheless, there are no
anti-fibrotic drugs licensed for human use. Here, we investigated the
anti-fibrotic activity of GNS561, a new lysosomotropic molecule with high
liver tropism. Methods: The anti-fibrotic effect of GNS561 was determined in vitro
using LX-2 hepatic stellate cells (HSCs) and primary human HSCs by studying
cell viability, activity of caspases 3/7, autophagic flux, cathepsin
maturation and activity, HSC activation and transforming growth factor-β1
(TGF-β1) maturation and signaling. The contribution of GNS561
lysosomotropism to its anti-fibrotic activity was assessed by increasing
lysosomal pH. The potency of GNS561 on fibrosis was evaluated in
vivo in a rat model of diethylnitrosamine-induced liver
fibrosis. Results: GNS561 significantly decreased cell viability and promoted apoptosis.
Disrupting the lysosomal pH gradient impaired its pharmacological effects,
suggesting that GNS561 lysosomotropism mediated cell death. GNS561 impaired
cathepsin activity, leading to defective TGF-β1 maturation and autophagic
processes. Moreover, GNS561 decreased HSC activation and extracellular
matrix deposition by downregulating TGF-β1/Smad and mitogen-activated
proteine kinase signaling and inducing fibrolysis. Finally, oral
administration of GNS561 (15 mg/kg per day) was well tolerated and
attenuated diethylnitrosamine-induced liver fibrosis in this rat model
(decrease of collagen deposition and of pro-fibrotic markers and increase of
fibrolysis). Conclusion: GNS561 is a new potent lysosomotropic compound that could represent a valid
medicinal option for hepatic fibrosis treatment through both its
anti-fibrotic and its pro-fibrolytic effects. In addition, this study
provides a rationale for targeting lysosomes as a promising therapeutic
strategy in liver fibrosis.
Collapse
Affiliation(s)
- Eloïne Bestion
- Genoscience Pharma, Marseille, France, IRD, MEPHI, IHU Méditerranée Infection, Aix Marseille Université, Marseille, France
| | - Zuzana Macek Jilkova
- Institute for Advanced Biosciences, Research Center UGA/Inserm U 1209/CNRS 5309, La Tronche, France Université Grenoble Alpes, Faculté de médecine, France, Clinique Universitaire d'Hépato-gastroentérologie, Pôle Digidune, CHU Grenoble, France
| | - Jean-Louis Mège
- IRD, MEPHI, IHU Méditerranée Infection, Aix Marseille Université, Marseille, France
| | | | - Keerthi Kurma
- Institute for Advanced Biosciences, Research Center UGA/Inserm U 1209/CNRS 5309, La Tronche, France Université Grenoble Alpes, Faculté de médecine, France, Clinique Universitaire d'Hépato-gastroentérologie, Pôle Digidune, CHU Grenoble, France
| | - Seyedeh Tayebeh Ahmad Pour
- Institute for Advanced Biosciences, Research Center UGA/Inserm U 1209/CNRS 5309, La Tronche, France Université Grenoble Alpes, Faculté de médecine, France, Clinique Universitaire d'Hépato-gastroentérologie, Pôle Digidune, CHU Grenoble, France
| | - Gilles Lalmanach
- INSERM, UMR1100, Centre d'Etude des Pathologies Respiratoires, Equipe «Mécanismes Protéolytiques dans l'Inflammation», Tours, France, Université de Tours, Tours, France
| | - Lise Vanderlynden
- INSERM, UMR1100, Centre d'Etude des Pathologies Respiratoires, Equipe «Mécanismes Protéolytiques dans l'Inflammation», Tours, France, Université de Tours, Tours, France
| | - Lionel Fizanne
- Laboratoire HIFIH, UPRES EA 3859, Université d'Angers, Angers, France
| | | | | | | | - Jérôme Boursier
- Laboratoire HIFIH, UPRES EA 3859, Université d'Angers, Angers, France
| | | | | | | | - Thomas Decaens
- Institute for Advanced Biosciences, Research Center UGA/Inserm U 1209/CNRS 5309, La Tronche, France Université Grenoble Alpes, Faculté de médecine, France, Clinique Universitaire d'Hépato-gastroentérologie, Pôle Digidune, CHU Grenoble, France
| | | | - Sonia Brun
- Genoscience Pharma, 10 Rue d'Iéna, Marseille, 13006, France
| |
Collapse
|
28
|
Masuzaki R, Kanda T, Sasaki R, Matsumoto N, Ogawa M, Matsuoka S, Karp SJ, Moriyama M. Noninvasive Assessment of Liver Fibrosis: Current and Future Clinical and Molecular Perspectives. Int J Mol Sci 2020; 21:E4906. [PMID: 32664553 PMCID: PMC7402287 DOI: 10.3390/ijms21144906] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 01/18/2023] Open
Abstract
Liver fibrosis is one of the risk factors for hepatocellular carcinoma (HCC) development. The staging of liver fibrosis can be evaluated only via a liver biopsy, which is an invasive procedure. Noninvasive methods for the diagnosis of liver fibrosis can be divided into morphological tests such as elastography and serum biochemical tests. Transient elastography is reported to have excellent performance in the diagnosis of liver fibrosis and has been accepted as a useful tool for the prediction of HCC development and other clinical outcomes. Two-dimensional shear wave elastography is a new technique and provides a real-time stiffness image. Serum fibrosis markers have been studied based on the mechanism of fibrogenesis and fibrolysis. In the healthy liver, homeostasis of the extracellular matrix is maintained directly by enzymes called matrix metalloproteinases (MMPs) and their specific inhibitors, tissue inhibitors of metalloproteinases (TIMPs). MMPs and TIMPs could be useful serum biomarkers for liver fibrosis and promising candidates for the treatment of liver fibrosis. Further studies are required to establish liver fibrosis-specific markers based on further clinical and molecular research. In this review, we summarize noninvasive fibrosis tests and molecular mechanism of liver fibrosis in current daily clinical practice.
Collapse
Affiliation(s)
- Ryota Masuzaki
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-Ku, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (M.O.); (S.M.); (M.M.)
| | - Tatsuo Kanda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-Ku, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (M.O.); (S.M.); (M.M.)
| | - Reina Sasaki
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-Ku, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (M.O.); (S.M.); (M.M.)
| | - Naoki Matsumoto
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-Ku, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (M.O.); (S.M.); (M.M.)
| | - Masahiro Ogawa
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-Ku, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (M.O.); (S.M.); (M.M.)
| | - Shunichi Matsuoka
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-Ku, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (M.O.); (S.M.); (M.M.)
| | - Seth J. Karp
- Division of Liver Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Mitsuhiko Moriyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-Ku, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (M.O.); (S.M.); (M.M.)
| |
Collapse
|
29
|
Shao T, Chen Z, Belov V, Wang X, Rwema SH, Kumar V, Fu H, Deng X, Rong J, Yu Q, Lang L, Lin W, Josephson L, Samir AE, Chen X, Chung RT, Liang SH. [ 18F]-Alfatide PET imaging of integrin αvβ3 for the non-invasive quantification of liver fibrosis. J Hepatol 2020; 73:161-169. [PMID: 32145257 PMCID: PMC7363052 DOI: 10.1016/j.jhep.2020.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/21/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS The vitronectin receptor integrin αvβ3 drives fibrogenic activation of hepatic stellate cells (HSCs). Molecular imaging targeting the integrin αvβ3 could provide a non-invasive method for evaluating the expression and the function of the integrin αvβ3 on activated HSCs (aHSCs) in the injured liver. In this study, we sought to compare differences in the uptake of [18F]-Alfatide between normal and injured liver to evaluate its utility for assessment of hepatic fibrogenesis. METHODS PET with [18F]-Alfatide, non-enhanced CT, histopathology, immunofluorescence staining, immunoblotting and gene analysis were performed to evaluate and quantify hepatic integrin αvβ3 levels and liver fibrosis progression in mouse models of fibrosis (carbon tetrachloride [CCl4] and bile duct ligation [BDL]). The liver AUC divided by the blood AUC over 30 min was used as an integrin αvβ3-PET index to quantify fibrosis progression. Ex vivo analysis of frozen liver tissue from patients with fibrosis and cirrhosis verified the animal findings. RESULTS Fibrotic mouse livers showed enhanced [18F]-Alfatide uptake and retention compared to control livers. The radiotracer was demonstrated to bind specifically with integrin αvβ3, which is mainly expressed on aHSCs. Autoradiography and histopathology confirmed the PET imaging results. Further, the mRNA and protein level of integrin αvβ3 and its signaling complex were higher in CCl4 and BDL models than controls. The results obtained from analyses on human fibrotic liver sections supported the animal findings. CONCLUSIONS Imaging hepatic integrin αvβ3 with PET and [18F]-Alfatide offers a potential non-invasive method for monitoring the progression of liver fibrosis. LAY SUMMARY Integrin αvβ3 expression on activated hepatic stellate cells (aHSCs) is associated with HSC proliferation during hepatic fibrogenesis. Herein, we show that a radioactive tracer, [18F]-Alfatide, binds to integrin αvβ3 with high affinity and specificity. [18F]-Alfatide could thus be used as a non-invasive imaging biomarker to track hepatic fibrosis progression.
Collapse
Affiliation(s)
- Tuo Shao
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, USA; Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Boston, USA
| | - Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, USA
| | - Vasily Belov
- Massachusetts General Hospital, Shriners Hospitals for Children, Boston, USA
| | - Xiaohong Wang
- Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, Boston, USA
| | - Steve H Rwema
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Boston, USA
| | - Viksit Kumar
- Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, Boston, USA
| | - Hualong Fu
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, USA
| | - Xiaoyun Deng
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, USA
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, USA
| | - Qingzhen Yu
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, USA
| | - Lixin Lang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, USA
| | - Wenyu Lin
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Boston, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, USA
| | - Anthony E Samir
- Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, Boston, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, USA.
| | - Raymond T Chung
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Boston, USA.
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, USA.
| |
Collapse
|
30
|
Shao T, Josephson L, Liang SH. PET/SPECT Molecular Probes for the Diagnosis and Staging of Nonalcoholic Fatty Liver Disease. Mol Imaging 2020; 18:1536012119871455. [PMID: 31478458 PMCID: PMC6724487 DOI: 10.1177/1536012119871455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a significant public health challenge afflicting approximately 1 billion individuals both in the Western world and in the East world. While liver biopsy is considered as gold standard in the diagnosis and staging of liver fibrosis, noninvasive imaging technologies, including ultrasonography, computed tomography, single-photon emission computed tomography (SPECT), magnetic resonance imaging, and positron emission tomography (PET) could offer more sensitive, comprehensive, and quantitative measurement for NAFLD. In this review, we focus on recent development and applications of PET/SPECT molecular probes that enable multispatial/temporal visualization and quantification of physiopathological progress at the molecular level in the NAFLD. We shall also discuss the limitations of current radioligands and future direction for PET/SPECT probe development.
Collapse
Affiliation(s)
- Tuo Shao
- 1 Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lee Josephson
- 1 Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Steven H Liang
- 1 Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Geervliet E, Bansal R. Matrix Metalloproteinases as Potential Biomarkers and Therapeutic Targets in Liver Diseases. Cells 2020; 9:E1212. [PMID: 32414178 PMCID: PMC7290342 DOI: 10.3390/cells9051212] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 01/18/2023] Open
Abstract
Chronic liver diseases, characterized by an excessive accumulation of extracellular matrix (ECM) resulting in scar tissue formation, are a growing health problem causing increasing morbidity and mortality worldwide. Currently, therapeutic options for tissue fibrosis are severely limited, and organ transplantation is the only treatment for the end-stage liver diseases. During liver damage, injured hepatocytes release proinflammatory factors resulting in the recruitment and activation of immune cells that activate quiescent hepatic stellate cells (HSCs). Upon activation, HSCs transdifferentiate into highly proliferative, migratory, contractile and ECM-producing myofibroblasts. The disrupted balance between ECM deposition and degradation leads to the formation of scar tissue referred to as fibrosis. This balance can be restored either by reducing ECM deposition (by inhibition of HSCs activation and proliferation) or enhancing ECM degradation (by increased expression of matrix metalloproteinases (MMPs)). MMPs play an important role in ECM remodeling and represent an interesting target for therapeutic drug discovery. In this review, we present the current knowledge about ECM remodeling and role of the different MMPs in liver diseases. MMP expression patterns in different stages of liver diseases have also been reviewed to determine their role as biomarkers. Finally, we highlight MMPs as promising therapeutic targets for the resolution of liver diseases.
Collapse
Affiliation(s)
| | - Ruchi Bansal
- Translational Liver Research, Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands;
| |
Collapse
|
32
|
Devaraj E, Roy A, Royapuram Veeraragavan G, Magesh A, Varikalam Sleeba A, Arivarasu L, Marimuthu Parasuraman B. β-Sitosterol attenuates carbon tetrachloride-induced oxidative stress and chronic liver injury in rats. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1067-1075. [PMID: 31930431 DOI: 10.1007/s00210-020-01810-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/04/2020] [Indexed: 02/06/2023]
Abstract
Chronic liver diseases are clinically silent and responsible for significant morbidity and mortality worldwide. β-Sitosterol (BSS), major phytosterol in plants, has a wide spectrum of protective effect against various chronic ailments. We investigated the hepatoprotective effect of BSS against carbon tetrachloride (CCl4)-induced chronic liver injury in rats. Thirty rats were divided into five groups, with six animals in each group. Group I rats served as control while groups II, III, IV, and V rats were injected intraperitoneally with CCl4 (0.2 mL/100 g b.w. in olive oil (1:1)) for 7 consecutive weeks. After 7 weeks, group II rats were left without any treatments and served as CCl4 alone group, while groups III, IV, and V rats were treated with BSS 25 and 50 mg/kg b.w. and silymarin 100 mg/kg b.w. as oral post-treatments respectively, for the next 4 weeks. At the end of the experiment, hepatotoxicity marker enzymes in serum, oxidative stress, and fibrosis marker were analyzed. CCl4 administration caused significant elevation of marker enzymes of hepatotoxicity in serum and increased lipid peroxidation and fibrosis markers such as hydroxyproline, collagen, α-smooth muscle actin, vimentin, desmin, and matrix metalloproteinases 9 in liver tissue of rats. This treatment also caused a significant diminution of intracellular enyzmic antioxidants such as SOD and CAT in the liver tissue of rats. All the above adversities were significantly mitigated by the BSS post-treatments. The results suggest that BSS could have a hepatoprotective effect against oxidative stress-mediated CLD induced by CCl4.
Collapse
Affiliation(s)
- Ezhilarasan Devaraj
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600 077, India.
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600 077, India
| | - Geetha Royapuram Veeraragavan
- Department of Microbiology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600 077, India
| | - Anitha Magesh
- Department of Research and Development, Saveetha Institute of Medical and Technical Sciences, Chennai, 602 105, India
| | | | - Lakshminarayanan Arivarasu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600 077, India
| | - Brundha Marimuthu Parasuraman
- Department of Pathology, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600 077, India
| |
Collapse
|
33
|
Li J, Fukase Y, Shang Y, Zou W, Muñoz-Félix JM, Buitrago L, van Agthoven J, Zhang Y, Hara R, Tanaka Y, Okamoto R, Yasui T, Nakahata T, Imaeda T, Aso K, Zhou Y, Locuson C, Nesic D, Duggan M, Takagi J, Vaughan RD, Walz T, Hodivala-Dilke K, Teitelbaum SL, Arnaout MA, Filizola M, Foley MA, Coller BS. Novel Pure αVβ3 Integrin Antagonists That Do Not Induce Receptor Extension, Prime the Receptor, or Enhance Angiogenesis at Low Concentrations. ACS Pharmacol Transl Sci 2019; 2:387-401. [PMID: 32259072 PMCID: PMC7088984 DOI: 10.1021/acsptsci.9b00041] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Indexed: 01/12/2023]
Abstract
The integrin αVβ3 receptor has been implicated in several important diseases, but no antagonists are approved for human therapy. One possible limitation of current small-molecule antagonists is their ability to induce a major conformational change in the receptor that induces it to adopt a high-affinity ligand-binding state. In response, we used structural inferences from a pure peptide antagonist to design the small-molecule pure antagonists TDI-4161 and TDI-3761. Both compounds inhibit αVβ3-mediated cell adhesion to αVβ3 ligands, but do not induce the conformational change as judged by antibody binding, electron microscopy, X-ray crystallography, and receptor priming studies. Both compounds demonstrated the favorable property of inhibiting bone resorption in vitro, supporting potential value in treating osteoporosis. Neither, however, had the unfavorable property of the αVβ3 antagonist cilengitide of paradoxically enhancing aortic sprout angiogenesis at concentrations below its IC50, which correlates with cilengitide's enhancement of tumor growth in vivo.
Collapse
Affiliation(s)
- Jihong Li
- Allen and
Frances Adler Laboratory of Blood and Vascular Biology, Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Yoshiyuki Fukase
- Tri-Institutional
Therapeutics Discovery Institute, 413 East 69 Street, New York, New York 10021, United
States
| | - Yi Shang
- Department
of Pharmacological Sciences, Icahn School
of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York 10029-6574, United States
| | - Wei Zou
- Washington
University School of Medicine, Campus Box 8118, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - José M. Muñoz-Félix
- Adhesion
and Angiogenesis Laboratory, Centre for Tumour Biology, Barts Cancer Institute—a CR-UK Centre of Excellence,
Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | - Lorena Buitrago
- Allen and
Frances Adler Laboratory of Blood and Vascular Biology, Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Johannes van Agthoven
- Leukocyte
Biology and Inflammation and Structural Biology Programs, Division
of Nephrology, Massachusetts General Hospital
and Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Yixiao Zhang
- Laboratory
of Molecular Electron Microscopy, Rockefeller
University, 1230 York Avenue, New York, New York 10065, United
States
| | - Ryoma Hara
- Tri-Institutional
Therapeutics Discovery Institute, 413 East 69 Street, New York, New York 10021, United
States
| | - Yuta Tanaka
- Tri-Institutional
Therapeutics Discovery Institute, 413 East 69 Street, New York, New York 10021, United
States
| | - Rei Okamoto
- Tri-Institutional
Therapeutics Discovery Institute, 413 East 69 Street, New York, New York 10021, United
States
| | - Takeshi Yasui
- Tri-Institutional
Therapeutics Discovery Institute, 413 East 69 Street, New York, New York 10021, United
States
| | - Takashi Nakahata
- Tri-Institutional
Therapeutics Discovery Institute, 413 East 69 Street, New York, New York 10021, United
States
| | - Toshihiro Imaeda
- Tri-Institutional
Therapeutics Discovery Institute, 413 East 69 Street, New York, New York 10021, United
States
| | - Kazuyoshi Aso
- Tri-Institutional
Therapeutics Discovery Institute, 413 East 69 Street, New York, New York 10021, United
States
| | - Yuchen Zhou
- Department
of Pharmacological Sciences, Icahn School
of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York 10029-6574, United States
| | - Charles Locuson
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, Massachusetts 02139-4169, United States
| | - Dragana Nesic
- Allen and
Frances Adler Laboratory of Blood and Vascular Biology, Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Mark Duggan
- LifeSci
Consulting, LLC, 18243
SE Ridgeview Drive, Tequesta, Florida 33469, United
States
| | - Junichi Takagi
- Laboratory
of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Roger D. Vaughan
- Rockefeller
University Center for Clinical and Translational Science, Rockefeller University, 2130 York Avenue, New York, New York 10065, United States
| | - Thomas Walz
- Laboratory
of Molecular Electron Microscopy, Rockefeller
University, 1230 York Avenue, New York, New York 10065, United
States
| | - Kairbaan Hodivala-Dilke
- Adhesion
and Angiogenesis Laboratory, Centre for Tumour Biology, Barts Cancer Institute—a CR-UK Centre of Excellence,
Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | - Steven L. Teitelbaum
- Washington
University School of Medicine, Campus Box 8118, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - M. Amin Arnaout
- Leukocyte
Biology and Inflammation and Structural Biology Programs, Division
of Nephrology, Massachusetts General Hospital
and Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Marta Filizola
- Department
of Pharmacological Sciences, Icahn School
of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York 10029-6574, United States
| | - Michael A. Foley
- Tri-Institutional
Therapeutics Discovery Institute, 413 East 69 Street, New York, New York 10021, United
States
| | - Barry S. Coller
- Allen and
Frances Adler Laboratory of Blood and Vascular Biology, Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| |
Collapse
|
34
|
The Many Roles of Cell Adhesion Molecules in Hepatic Fibrosis. Cells 2019; 8:cells8121503. [PMID: 31771248 PMCID: PMC6952767 DOI: 10.3390/cells8121503] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 01/09/2023] Open
Abstract
Fibrogenesis is a progressive scarring event resulting from disrupted regular wound healing due to repeated tissue injury and can end in organ failure, like in liver cirrhosis. The protagonists in this process, either liver-resident cells or patrolling leukocytes attracted to the site of tissue damage, interact with each other by soluble factors but also by direct cell–cell contact mediated by cell adhesion molecules. Since cell adhesion molecules also support binding to the extracellular matrix, they represent excellent biosensors, which allow cells to modulate their behavior based on changes in the surrounding microenvironment. In this review, we focus on selectins, cadherins, integrins and members of the immunoglobulin superfamily of adhesion molecules as well as some non-classical cell adhesion molecules in the context of hepatic fibrosis. We describe their liver-specific contributions to leukocyte recruitment, cell differentiation and survival, matrix remodeling or angiogenesis and touch on their suitability as targets in antifibrotic therapies.
Collapse
|
35
|
Garcia Ribeiro RS, Belderbos S, Danhier P, Gallo J, Manshian BB, Gallez B, Bañobre M, de Cuyper M, Soenen SJ, Gsell W, Himmelreich U. Targeting tumor cells and neovascularization using RGD-functionalized magnetoliposomes. Int J Nanomedicine 2019; 14:5911-5924. [PMID: 31534330 PMCID: PMC6681073 DOI: 10.2147/ijn.s214041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/29/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose Magnetoliposomes (MLs) have shown great potential as magnetic resonance imaging contrast agents and as delivery vehicles for cancer therapy. Targeting the MLs towards the tumor cells or neovascularization could ensure delivery of drugs at the tumor site. In this study, we evaluated the potential of MLs targeting the αvβ3 integrin overexpressed on tumor neovascularization and different tumor cell types, including glioma and ovarian cancer. Methods MLs functionalized with a Texas Red fluorophore (anionic MLs), and with the fluorophore and the cyclic Arginine-Glycine-Aspartate (cRGD; cRGD-MLs) targeting the αvβ3 integrin, were produced in-house. Swiss nude mice were subcutaneously injected with 107 human ovarian cancer SKOV-3 cells. Tumors were allowed to grow for 3 weeks before injection of anionic or cRGD-MLs. Biodistribution of MLs was followed up with a 7T preclinical magnetic resonance imaging (MRI) scanner and fluorescence imaging (FLI) right after injection, 2h, 4h, 24h and 48h post injection. Ex vivo intratumoral ML uptake was confirmed using FLI, electron paramagnetic resonance spectroscopy (EPR) and histology at different time points post injection. Results In vivo, we visualized a higher uptake of cRGD-MLs in SKOV-3 xenografts compared to control, anionic MLs with both MRI and FLI. Highest ML uptake was seen after 4h using MRI, but only after 24h using FLI indicating the lower sensitivity of this technique. Furthermore, ex vivo EPR and FLI confirmed the highest tumoral ML uptake at 4 h. Last, a Perl’s stain supported the presence of our iron-based particles in SKOV-3 xenografts. Conclusion Uptake of cRGD-MLs can be visualized using both MRI and FLI, even though the latter was less sensitive due to lower depth penetration. Furthermore, our results indicate that cRGD-MLs can be used to target SKOV-3 xenograft in Swiss nude mice. Therefore, the further development of this particles into theranostics would be of interest.
Collapse
Affiliation(s)
- Rita Sofia Garcia Ribeiro
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven B-3000, Belgium
| | - Sarah Belderbos
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven B-3000, Belgium
| | - Pierre Danhier
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, Brussels B-1200, Belgium
| | - Juan Gallo
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, Brussels B-1200, Belgium
| | - Bella B Manshian
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven B-3000, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, Brussels B-1200, Belgium
| | - Manuel Bañobre
- Diagnostic Tools and Methods/Advanced (Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory (INL), PT-Braga 4715-330, Portugal
| | - Marcel de Cuyper
- Laboratory of Bionanocolloids, Interdisciplinary Research Centre, KULAK/KU Leuven, Kortrijk B-8500, Belgium
| | - Stefaan J Soenen
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven B-3000, Belgium
| | - Willy Gsell
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven B-3000, Belgium
| | - Uwe Himmelreich
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven B-3000, Belgium
| |
Collapse
|
36
|
Rauchman M, Griggs D. Emerging strategies to disrupt the central TGF-β axis in kidney fibrosis. Transl Res 2019; 209:90-104. [PMID: 31085163 PMCID: PMC6850218 DOI: 10.1016/j.trsl.2019.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/27/2019] [Accepted: 04/08/2019] [Indexed: 12/26/2022]
Abstract
Chronic kidney disease (CKD) affects more than 20 million people in the United States and the global burden of this disorder is increasing. Many affected individuals will progress to end stage kidney disease necessitating dialysis or transplantation. CKD is also a major independent contributor to the risk of cardiovascular morbidity and mortality. Tubulointerstitial fibrosis is a final common pathway for most causes of progressive CKD. Currently, there are no clinically available therapies targeting fibrosis that can slow the decline in kidney function. Although it has long been known that TGF-β signaling is a critical mediator of kidney fibrosis, translating this knowledge to the clinic has been challenging. In this review, we highlight some recent insights into the mechanisms of TGF-β signaling that target activation of this cytokine at the site of injury or selectively inhibit pro-fibrotic gene expression. Molecules directed at these targets hold the promise of attaining therapeutic efficacy while limiting toxicity seen with global inhibition of TGF-β. Kidney injury has profound epigenetic effects leading to altered expression of more than a thousand genes. We discuss how drugs targeting epigenetic modifications, some of which are in use for cancer therapy, have the potential to reprogram gene regulatory networks to favor adaptive repair and prevent fibrosis. The lack of reliable biomarkers of kidney fibrosis is a major limitation in designing clinical trials for testing CKD treatments. We conclude by reviewing recent advances in fibrosis biomarker development.
Collapse
Affiliation(s)
- Michael Rauchman
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri; VA St. Louis Health Care System, Saint Louis, Missouri.
| | - David Griggs
- Department of Molecular Microbiology and Immunology, Edward A. Doisy Research Center, Saint Louis University, Saint Louis, Missouri.
| |
Collapse
|
37
|
de Souza VCA, Moura DMN, de Castro MCAB, Bozza PT, de Almeida Paiva L, Fernandes CJB, Leão RLC, Lucena JP, de Araujo RE, de Melo Silva AJ, Figueiredo RCBQ, de Oliveira SA. Adoptive Transfer of Bone Marrow-Derived Monocytes Ameliorates Schistosoma mansoni -Induced Liver Fibrosis in Mice. Sci Rep 2019; 9:6434. [PMID: 31015492 PMCID: PMC6478942 DOI: 10.1038/s41598-019-42703-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/04/2019] [Indexed: 12/19/2022] Open
Abstract
Liver diseases are a major health problem worldwide leading to high mortality rates and causing a considerable economic burden in many countries. Cellular therapies as potential treatments for liver diseases have proven beneficial in most of the conditions. In recent years, studies involving therapy with bone marrow cells have been implemented to promote liver regeneration and to reduce hepatic fibrosis, however identifying the cell population present in the bone marrow that is responsible for hepatic improvement after therapy is still necessary. The aim of the present study was the evaluation of the therapeutic efficacy of monocytes obtained from bone marrow in fibrosis resulting from S. mansoni infection in C57BL/6 mice. Monocytes were isolated by immunomagnetic separation and administered to the infected animals. The effects of treatment were evaluated through morphometric, biochemical, immunological and molecular analyzes. Monocyte therapy promoted reduction of liver fibrosis induced by S. mansoni infection, associated with a decrease in production of inflammatory and pro-fibrogenic mediators. In addition, monocyte infusion caused downregulation of factors associated with the M1 activation profile, as well as upregulation of M2reg markers. The findings altogether reinforce the hypothesis that the predominance of M2reg macrophages, producers of immunosuppressive cytokines, may favor the improvement of hepatic fibrosis in a preclinical model, through fibrous tissue remodeling, modulation of the inflammatory response and fibrogenesis.
Collapse
Affiliation(s)
| | | | | | - Patrícia Torres Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ligia de Almeida Paiva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hayashida M, Hashimoto K, Ishikawa T, Miyamoto Y. Vitronectin deficiency attenuates hepatic fibrosis in a non-alcoholic steatohepatitis-induced mouse model. Int J Exp Pathol 2019; 100:72-82. [PMID: 30887659 DOI: 10.1111/iep.12306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/13/2018] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
Vitronectin (VN), an extracellular matrix protein, is a promising immune biomarker of non-alcoholic steatohepatitis (NASH); however, its precise function remains unclear. This study investigated how VN deficiency contributes to the development of NASH. Towards this aim, wild-type (WT) and VN-/- mice were fed with a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) for 6 and 10 weeks to induce NASH, and the livers were isolated. In WT mice fed with CDAHFD for 6 and 10 weeks, the expression of Vn mRNA and protein was up-regulated compared with that in mice fed with the MF control diet, indicating that VN is regulated in NASH condition. VN-/- mice showed decreased picrosirius red staining in the liver area and Col1a2 mRNA expression levels, compared with WT mice, indicating that the severity of hepatic fibrosis is attenuated in the CDAHFD-fed VN-/- mice. In addition, VN deficiency did not affect the area of lipid droplets in haematoxylin-eosin staining and the mRNA expression levels of fatty acid synthases, Srebp, Acc and Fas in the CDAHFD-fed mice. Moreover, VN deficiency decreased the inflammation score and the mRNA expression levels of Cd11b and F4/80, macrophage markers, as well as Tnf-α and Il-1β, inflammatory cytokines in the CDAHFD-fed mice. Furthermore, VN deficiency decreased the protein and mRNA expression levels of α-smooth muscle actin in the CDAHFD-fed mice, suggesting that VN deficiency inhibits the activation of hepatic stellate cells (HSCs). Our findings indicate that VN contributes to the development of fibrosis in the NASH model mice via modulation of the inflammatory reaction and activation of HSCs.
Collapse
Affiliation(s)
- Momoka Hayashida
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan.,Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan
| | - Kei Hashimoto
- Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tomoko Ishikawa
- Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan
| | - Yasunori Miyamoto
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan.,Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
39
|
Lackner C, Tiniakos D. Fibrosis and alcohol-related liver disease. J Hepatol 2019; 70:294-304. [PMID: 30658730 DOI: 10.1016/j.jhep.2018.12.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023]
Abstract
Histological fibrosis stage is one of the most important prognostic factors in compensated and decompensated alcohol-related liver disease (ALD). Morphological assessment of fibrosis is useful for patient stratification, enabling individualised management, and for evaluation of treatment effects in clinical studies. In contrast to most chronic liver diseases where fibrosis is portal-based, fatty liver disease (FLD) of alcoholic or non-alcoholic aetiology (NAFLD) is associated with a centrilobular pattern of injury which leads to perivenular fibrosis and/or pericellular fibrosis. Progression of FLD drives expansive pericellular fibrosis, linking vascular structures and paving the way for the development of cirrhosis. At the cirrhotic stage, ongoing tissue damage leads to increasing fibrosis severity due to parenchymal loss and proliferation of fibrous scars. Histologic fibrosis staging systems have been devised, based on topography and the extent of fibrosis, for most chronic liver diseases. The utility of histological staging is reflected in different risks associated with individual fibrosis stages which cannot be reliably distinguished by non-invasive fibrosis assessment. In contrast to NAFLD, ALD-specific staging systems that enable the standardised prognostication required for clinical management and trials are lacking. Although morphological similarities between NAFLD and ALD exist, differences in clinical and histological features may substantially limit the utility of established NAFLD-specific staging systems for prognostication in ALD. This review summarises morphological features of fibrosis in ALD and compares them to other chronic liver diseases, particularly NAFLD. ALD-related fibrosis is examined in the context of pathogenetic mechanisms of fibrosis progression, regression and clinical settings that need to be considered in future prognostically relevant ALD staging approaches.
Collapse
Affiliation(s)
- Carolin Lackner
- Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria.
| | - Dina Tiniakos
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK; Dept of Pathology, Aretaieion Hospital, Medical School, National & Kapodistrian University of Athens, Vas. Sofias Avenue 76, Athens 11528, Greece
| |
Collapse
|
40
|
Montesi SB, Désogère P, Fuchs BC, Caravan P. Molecular imaging of fibrosis: recent advances and future directions. J Clin Invest 2019; 129:24-33. [PMID: 30601139 DOI: 10.1172/jci122132] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibrosis, the progressive accumulation of connective tissue that occurs in response to injury, causes irreparable organ damage and may result in organ failure. The few available antifibrotic treatments modify the rate of fibrosis progression, but there are no available treatments to reverse established fibrosis. Thus, more effective therapies are urgently needed. Molecular imaging is a promising biomedical methodology that enables noninvasive visualization of cellular and subcellular processes. It provides a unique means to monitor and quantify dysregulated molecular fibrotic pathways in a noninvasive manner. Molecular imaging could be used for early detection, disease staging, and prognostication, as well as for assessing disease activity and treatment response. As fibrotic diseases are often molecularly heterogeneous, molecular imaging of a specific pathway could be used for patient stratification and cohort enrichment with the goal of improving clinical trial design and feasibility and increasing the ability to detect a definitive outcome for new therapies. Here we review currently available molecular imaging probes for detecting fibrosis and fibrogenesis, the active formation of new fibrous tissue, and their application to models of fibrosis across organ systems and fibrotic processes. We provide our opinion as to the potential roles of molecular imaging in human fibrotic diseases.
Collapse
Affiliation(s)
| | - Pauline Désogère
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Athinoula A. Martinos Center for Biomedical Imaging and.,Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bryan C Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Caravan
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Athinoula A. Martinos Center for Biomedical Imaging and.,Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Allen J, Zhang J, Quickel MD, Kennett M, Patterson AD, Hankey-Giblin PA. Ron Receptor Signaling Ameliorates Hepatic Fibrosis in a Diet-Induced Nonalcoholic Steatohepatitis Mouse Model. J Proteome Res 2018; 17:3268-3280. [PMID: 30091925 DOI: 10.1021/acs.jproteome.8b00379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Liver fibrosis is commonly observed in the terminal stages of nonalcoholic steatohepatitis (NASH) and with no specific and effective antifibrotic therapies available, this disease is a major global health burden. The MSP/Ron receptor axis has been shown to have anti-inflammatory properties in a number of mouse models, due at least in part, to its ability to limit pro-inflammatory responses in tissue-resident macrophages and hepatocytes. In this study, we established the role of the Ron receptor in steatohepatitis-induced hepatic fibrosis using Ron ligand domain knockout mice on an apolipoprotein E knockout background (DKO). After 18 weeks of high-fat high-cholesterol feeding, loss of Ron activation resulted in exacerbated NASH-associated steatosis which is precedent to hepatocellular injury, inflammation and fibrosis. 1H nuclear magnetic resonance (NMR)-based metabolomics identified significant changes in serum metabolites that can modulate the intrahepatic lipid pool in hepatic steatosis. Serum from DKO mice had higher concentrations of lipids, VLDL/LDL and pyruvate, whereas glycine levels were reduced. Parallel to the aggravated steatohepatitis, increased accumulation of collagen, inflammatory immune cells and collagen producing-myofibroblasts were seen in the livers of DKO mice. Gene expression profiling revealed that DKO mice exhibited elevated expression of genes encoding Ron receptor ligand MSP, collagens, ECM remodeling proteins and pro-fibrogenic cytokines in the liver. Our results demonstrate the protective effects of Ron receptor activation on NASH-induced hepatic fibrosis.
Collapse
Affiliation(s)
- Joselyn Allen
- Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania United States
| | - Jingtao Zhang
- Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania United States
| | - Michael D Quickel
- Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania United States
| | - Mary Kennett
- Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania United States
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania United States
| | - Pamela A Hankey-Giblin
- Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania United States
| |
Collapse
|
42
|
Ebrahimi H, Naderian M, Sohrabpour AA. New Concepts on Reversibility and Targeting of Liver Fibrosis; A Review Article. Middle East J Dig Dis 2018; 10:133-148. [PMID: 30186577 PMCID: PMC6119836 DOI: 10.15171/mejdd.2018.103] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/10/2018] [Indexed: 12/12/2022] Open
Abstract
Currently, liver fibrosis and its complications are regarded as critical health problems.
With the studies showing the reversible nature of liver fibrogenesis, scientists have focused
on understanding the underlying mechanism of this condition in order to develop new
therapeutic strategies. Although hepatic stellate cells are known as the primary cells
responsible for liver fibrogenesis, studies have shown contributing roles for other cells,
pathways, and molecules in the development of fibrosis depending on the etiology of
liver fibrosis. Hence, interventions could be directed in the proper way for each type of
liver diseases to better address this complication. There are two main approaches in clinical
reversion of liver fibrosis; eliminating the underlying insult and targeting the fibrosis
process, which have variable clinical importance in the treatment of this disease. In this
review, we present recent concepts in molecular pathways of liver fibrosis reversibility
and their clinical implications.
Collapse
Affiliation(s)
- Hedyeh Ebrahimi
- The Liver, Pancreatic, and Biliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Naderian
- The Liver, Pancreatic, and Biliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Sohrabpour
- Associate Professor, The Liver, Pancreatic, and Biliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Yan C, Yang Q, Gong Z. Activation of Hepatic Stellate Cells During Liver Carcinogenesis Requires Fibrinogen/Integrin αvβ5 in Zebrafish. Neoplasia 2018; 20:533-542. [PMID: 29649779 PMCID: PMC5915969 DOI: 10.1016/j.neo.2018.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers and it usually develops from a background of liver fibrosis or inflammation. The crosstalk between tumor cells and stromal cells plays an important and stimulating role during tumor progression. Previously we found in a krasV12-induced zebrafish HCC model that oncogenic hepatocytes activate hepatic stellate cells (HSCs) by up-regulation of serotonin and activate neutrophils and macrophages by up-regulation of cortisol. In the present study, we found a novel signaling transduction mechanism between oncogenic hepatocytes and HSCs. After krasV12 induction, fibrinogen was up-regulated in oncogenic hepatocytes. We reasoned that fibrinogen may bind to integrin αvβ5 on HSCs to activate HSCs. Consistent with this notion, pharmaceutical treatment using an antagonist of integrin αvβ5, cilengitide, significantly blocked HSC activation and function, accompanied by attenuated proliferation of oncogenic hepatocytes and progression of liver fibrosis. On the contrary, adenosine 5'-diphosphate, an agonist of αvβ5, activated HSCs significantly that further stimulated the tumor progression and liver fibrosis. Interestingly, in human liver disease samples, we detected an increased level of fibrinogen during tumor progression which indicated the potential role of fibrinogen signaling in HCC progression. Thus, we concluded a novel interaction between oncogenic hepatocytes and HSCs through the fibrinogen related pathway in both the zebrafish HCC model and human liver disease samples.
Collapse
Key Words
- a-sma, alpha-smooth muscle actin
- dox, doxycycline
- dpf, day post fertilization
- dpi, day post induction
- facs, fluorescence-activated cell sorting
- gfap, glial fibrillary acidic protein
- h&e, hematoxylin and eosin
- hcc, hepatocellular carcinoma
- hsc, hepatic stellate cell
- if, immunofluorescence
- ihc, immunohistochemistry
- oh, oncogenic hepatocyte
- tme, tumor microenvironment
- wt, wild type
Collapse
Affiliation(s)
- Chuan Yan
- Department of Biological Sciences, National University of Singapore, Singapore; National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Qiqi Yang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore; National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.
| |
Collapse
|
44
|
Schnittert J, Bansal R, Storm G, Prakash J. Integrins in wound healing, fibrosis and tumor stroma: High potential targets for therapeutics and drug delivery. Adv Drug Deliv Rev 2018; 129:37-53. [PMID: 29414674 DOI: 10.1016/j.addr.2018.01.020] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/16/2018] [Accepted: 01/29/2018] [Indexed: 12/20/2022]
Abstract
Wound healing is a complex process, which ultimately leads to fibrosis if not repaired well. Pathologically very similar to fibrosis is the tumor stroma, found in several solid tumors which are regarded as wounds that do not heal. Integrins are heterodimeric surface receptors which control various physiological cellular functions. Additionally, integrins also sense ECM-induced extracellular changes during pathological events, leading to cellular responses, which influence ECM remodeling. The purpose and scope of this review is to introduce integrins as key targets for therapeutics and drug delivery within the scope of wound healing, fibrosis and the tumor stroma. This review provides a general introduction to the biology of integrins including their types, ligands, means of signaling and interaction with growth factor receptors. Furthermore, we highlight integrins as key targets for therapeutics and drug delivery, based on their biological role, expression pattern within human tissues and at cellular level. Next, therapeutic approaches targeting integrins, with a focus on clinical studies, and targeted drug delivery strategies based on ligands are described.
Collapse
|
45
|
Lampi MC, Reinhart-King CA. Targeting extracellular matrix stiffness to attenuate disease: From molecular mechanisms to clinical trials. Sci Transl Med 2018; 10:10/422/eaao0475. [DOI: 10.1126/scitranslmed.aao0475] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/08/2017] [Indexed: 12/11/2022]
Abstract
Tissues stiffen during aging and during the pathological progression of cancer, fibrosis, and cardiovascular disease. Extracellular matrix stiffness is emerging as a prominent mechanical cue that precedes disease and drives its progression by altering cellular behaviors. Targeting extracellular matrix mechanics, by preventing or reversing tissue stiffening or interrupting the cellular response, is a therapeutic approach with clinical potential. Major drivers of changes to the mechanical properties of the extracellular matrix include phenotypically converted myofibroblasts, transforming growth factor β (TGFβ), and matrix cross-linking. Potential pharmacological interventions to overcome extracellular matrix stiffening are emerging clinically. Aside from targeting stiffening directly, alternative approaches to mitigate the effects of increased matrix stiffness aim to identify and inhibit the downstream cellular response to matrix stiffness. Therapeutic interventions that target tissue stiffening are discussed in the context of their limitations, preclinical drug development efforts, and clinical trials.
Collapse
|
46
|
Li Y, Shang W, Liang X, Zeng C, Liu M, Wang S, Li H, Tian J. The diagnosis of hepatic fibrosis by magnetic resonance and near-infrared imaging using dual-modality nanoparticles. RSC Adv 2018; 8:6699-6708. [PMID: 35540380 PMCID: PMC9078292 DOI: 10.1039/c7ra10847h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 01/24/2018] [Indexed: 12/13/2022] Open
Abstract
Hepatic fibrosis (HF), as the only reversible process of chronic liver disease, remains a big diagnostic challenge. Development of noninvasive and effective methods to assess quantitatively early-stage HF is of great clinical importance. Compared with conventional diagnostic methods, near-infrared fluorescence imaging (NIR) and magnetic resonance imaging (MRI) could offer highly sensitive and spatial resolution signals for HF detection. However, precise detection using contrast agents is not possible. Superparamagnetic iron oxide (SPIO) nanoparticles have low toxicity, high sensitivity and excellent biocompatibility. Integration of Fe3O4 nanoparticles and indocyanine green (ICG), coupled with targeting ligand of integrin αvβ3, arginine–glycine–aspartic acid (RGD) expressed on hepatic stellate cells (HSCs), were used to detect HF. Both in vivo and in vitro results showed that the SPIO@SiO2–ICG–RGD had high stability and low cytotoxicity. The biodistribution of SPIO@SiO2–ICG–RGD was significantly different between mice with HF and healthy controls. SPIO@SiO2–ICG–RGD was characterized and the results of imaging in vitro and in vivo demonstrated the expression of integrin αvβ3 on activated HSCs. These data suggest that our SPIO@SiO2–ICG–RGD probe could be used for the diagnosis of early-stage HF. This new nanoprobe with a dual-modality imaging approach holds great potential for the diagnosis and classification of HF. Schematic diagram for the synthesis of SPIO@SiO2–ICG–RGD.![]()
Collapse
Affiliation(s)
- Yunfang Li
- Department of Radiology
- Beijing YouAn Hospital
- Capital Medical University
- Beijing
- China
| | - Wenting Shang
- Key Laboratory of Molecular Imaging
- Institute of Automation
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Xiaoyuan Liang
- Key Laboratory of Molecular Imaging
- Institute of Automation
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Chaoting Zeng
- Key Laboratory of Molecular Imaging
- Institute of Automation
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Mingming Liu
- Department of Radiology
- Beijing YouAn Hospital
- Capital Medical University
- Beijing
- China
| | - Sudan Wang
- Department of Radiology
- Beijing YouAn Hospital
- Capital Medical University
- Beijing
- China
| | - Hongjun Li
- Department of Radiology
- Beijing YouAn Hospital
- Capital Medical University
- Beijing
- China
| | - Jie Tian
- Key Laboratory of Molecular Imaging
- Institute of Automation
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|
47
|
Li ZQ, Wu WR, Zhao C, Zhao C, Zhang XL, Yang Z, Pan J, Si WK. CCN1/Cyr61 enhances the function of hepatic stellate cells in promoting the progression of hepatocellular carcinoma. Int J Mol Med 2017; 41:1518-1528. [PMID: 29286082 PMCID: PMC5819939 DOI: 10.3892/ijmm.2017.3356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 11/28/2017] [Indexed: 01/27/2023] Open
Abstract
Hepatic stellate cells (HSCs) are the main extracellular matrix (ECM)-producing cells in liver fibrosis. Activated HSCs stimulate the proliferation and migration of hepatocellular carcinoma (HCC) cells. Cysteine-rich 61 (CCN1/Cyr61) is an ECM protein. Our previous studies demonstrated that the expression of CCN1 was significantly higher in benign hepatic cirrhosis tissue and cancer-adjacent hepatic cirrhosis tissues. CCN1 is a target gene of β-catenin in HCC and promotes the proliferation of HCC cells. The present study aimed to examine whether CCN1 can activate HSCs and affect the function of activated HSCs in promoting the progression of HCC. CCN1 expression was determined during the progression of liver fibrosis in a mouse model. LX-2 cells, which were infected with adenoviruses AdCCN1 or AdRFP, and HepG2 cells were co-cultured or subcutaneously co-implanted into in nude mice. MTT assay, Crystal Violet staining, Boyden chamber, matrigel invasion and monolayer scratch assays were used to analyze the proliferation, migration and invasion capability of HepG2 cells. Xenograft sizes were measured and histological analyses were performed by hematoxylin and eosin, immunohistochemical, immunefluorescence and Sirius Red staining. It was demonstrated that the expression of CCN1 was continually increased in liver fibrosis and the that expression may be correlated with the progression of liver fibrosis. CCN1 affected the function of LX-2 and enhanced the effect of LX-2 on promoting the viability, migration and invasion of HepG2 cells in vitro. CCN1 enhanced the effect of LX-2 on promoting the growth of HepG2 xenografts in vivo. CCN1 also affected the function of activated HSCs and regulated the formation of the xenograft microenvironment, including fibrogenesis and angiogenesis, which are beneficial for the progression of HCC. These findings demonstrated that CCN1 may be involved in the progression of the hepatic cirrhosis-HCC axis through regulating HSCs.
Collapse
Affiliation(s)
- Zhi-Qiang Li
- Department of Clinical Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Wei-Ru Wu
- Department of Clinical Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Chen Zhao
- The First Affiliated Hospital, Chongqing Medical University, Chongqing 400042, P.R. China
| | - Chen Zhao
- Department of Clinical Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Xiao-Li Zhang
- Department of Clinical Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Zhong Yang
- Department of Clinical Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Jing Pan
- Department of Clinical Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Wei-Ke Si
- Department of Clinical Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| |
Collapse
|
48
|
Matrix metalloproteinases and liver fibrosis (translational aspects). Matrix Biol 2017; 68-69:463-473. [PMID: 29289644 DOI: 10.1016/j.matbio.2017.12.012] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023]
Abstract
Liver fibrosis, a reversible wound-healing response to chronic cellular injury, reflects a balance between liver repair and progressive substitution of the liver parenchyma by scar tissue. Complex mechanisms that underlie liver fibrogenesis are summarized to provide the basis for generating targeted therapies to reverse fibrogenesis and improve the outcomes of patients with chronic liver disease. This minireview presents some pathophysiological aspects of liver fibrosis as a dynamic process and elucidates matrix metalloproteinases (MMPs) and their role within as well as beyond matrix degradation. Open questions remain, whether inhibition of fibrogenesis or induction of fibrolysis is the key mechanism to resolve fibrosis. And a point of principle might be whether regeneration of liver cirrhosis is possible. Will we ever cure fibrosis?
Collapse
|
49
|
Roderfeld M. Matrix metalloproteinase functions in hepatic injury and fibrosis. Matrix Biol 2017; 68-69:452-462. [PMID: 29221811 DOI: 10.1016/j.matbio.2017.11.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 01/18/2023]
Abstract
Liver fibrosis is the most common final outcome for chronic liver diseases. The complex pathogenesis includes hepatic parenchymal damage as a result of a persistent noxe, activation and recruitment of immune cells, activation of hepatic stellate cells, and the synthesis of fibrotic extracellular matrix (ECM) components leading to scar formation. Clinical studies and animal models demonstrated that fibrosis can be reversible. In this regard matrix metalloproteinases (MMPs) have been focused as therapeutic targets due to their ability to modulate tissue turnover during fibrogenesis as well as regeneration and, of special interest, due to their influence on cellular behavior like proliferation, gene expression, and apoptosis that, in turn, impact fibrosis and regeneration. The current review aims to summarize and update the knowledge about expression pattern and the central roles of MMPs in hepatic fibrosis.
Collapse
Affiliation(s)
- Martin Roderfeld
- Department of Gastroenterology, Justus-Liebig-University Giessen, Gaffkystr. 11c, D-35392 Giessen, Germany.
| |
Collapse
|
50
|
Xuan J, Chen Y, Zhu L, Guo Y, Deng L, Zheng Y, Wang Z, Wang Z, Ao M. Ultrasound molecular imaging with cRGD-PLGA-PFOB nanoparticles for liver fibrosis staging in a rat model. Oncotarget 2017; 8:108676-108691. [PMID: 29312560 PMCID: PMC5752473 DOI: 10.18632/oncotarget.21358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/28/2017] [Indexed: 12/15/2022] Open
Abstract
Hepatic fibrosis is the only chronic liver disease process that can be reversed. Developing non-invasive and effective methods to quantitatively assess the degree of liver fibrosis is of great clinical significance and remains a major challenge. The key factors in hepatic fibrosis pathogenesis are the activation and proliferation of hepatic stellate cells that subsequently express integrin αvβ3. An ultrasound (US) agent combined with a targeting peptide may be used for the early and non-invasive diagnosis of hepatic fibrosis. Herein, we report the synthesis of core-shell nanoparticles (NPs) successfully engineered by conjugation with cyclic arginine-glycine-aspartic acid (cRGD) octapeptide, allowing hepatic integrin αvβ3 targeting for liver fibrosis staging. This system consists of a perfluorooctyl bromide (PFOB) liquid in the core that is stabilized with a Poly (lactic-co-glycolic acid) (PLGA) polymer shell and modified with a cRGD. These core-shell NPs (cRGD-PLGA-PFOB NPs) exhibited useful US molecular imaging features including high imaging contrast among liver fibrotic stages and the adjacent tissues. Our results indicate that the cRGD-PLGA-PFOB NPs have significant potential to distinguish different liver fibrotic stages and could be used in clinical applications.
Collapse
Affiliation(s)
- Jiqing Xuan
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing 400010, China.,Department of Ultrasound, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yuli Chen
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing 400010, China
| | - Leilei Zhu
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing 400010, China
| | - Yuan Guo
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing 400010, China
| | - Liming Deng
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing 400010, China
| | - Yuanyi Zheng
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing 400010, China.,Institute of Ultrasound in Medicine, Shanghai Jiaotong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Zhaoxia Wang
- Department of Ultrasound, The Children's Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhigang Wang
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing 400010, China
| | - Meng Ao
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing 400010, China
| |
Collapse
|