1
|
Pearce A, Redfern-Nichols T, Wills E, Rosa M, Manulak I, Sisk C, Huang X, Atakpa-Adaji P, Prole DL, Ladds G. Quantitative approaches for studying G protein-coupled receptor signalling and pharmacology. J Cell Sci 2025; 138:JCS263434. [PMID: 39810711 PMCID: PMC11828474 DOI: 10.1242/jcs.263434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
G protein-coupled receptor (GPCR) signalling pathways underlie numerous physiological processes, are implicated in many diseases and are major targets for therapeutics. There are more than 800 GPCRs, which together transduce a vast array of extracellular stimuli into a variety of intracellular signals via heterotrimeric G protein activation and multiple downstream effectors. A key challenge in cell biology research and the pharmaceutical industry is developing tools that enable the quantitative investigation of GPCR signalling pathways to gain mechanistic insights into the varied cellular functions and pharmacology of GPCRs. Recent progress in this area has been rapid and extensive. In this Review, we provide a critical overview of these new, state-of-the-art approaches to investigate GPCR signalling pathways. These include novel sensors, Förster or bioluminescence resonance energy transfer assays, libraries of tagged G proteins and transcriptional reporters. These approaches enable improved quantitative studies of different stages of GPCR signalling, including GPCR activation, G protein activation, second messenger (cAMP and Ca2+) signalling, β-arrestin recruitment and the internalisation and intracellular trafficking of GPCRs.
Collapse
Affiliation(s)
- Abigail Pearce
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Theo Redfern-Nichols
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Edward Wills
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Matthew Rosa
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Iga Manulak
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Claudia Sisk
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Xianglin Huang
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Peace Atakpa-Adaji
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - David L. Prole
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| |
Collapse
|
2
|
Gillespie W, Zhang Y, Ruiz OE, Cerda J, Ortiz-Guzman J, Turner WD, Largoza G, Sherman M, Mosser LE, Fujimoto E, Chien CB, Kwan KM, Arenkiel BR, Devine WP, Wythe JD. Multisite Assembly of Gateway Induced Clones (MAGIC): a flexible cloning toolbox with diverse applications in vertebrate model systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603267. [PMID: 39026881 PMCID: PMC11257631 DOI: 10.1101/2024.07.13.603267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Here we present the Multisite Assembly of Gateway Induced Clones (MAGIC) system, which harnesses site-specific recombination-based cloning via Gateway technology for rapid, modular assembly of between 1 and 3 "Entry" vector components, all into a fourth, standard high copy "Destination" plasmid backbone. The MAGIC toolkit spans a range of in vitro and in vivo uses, from directing tunable gene expression, to driving simultaneous expression of microRNAs and fluorescent reporters, to enabling site-specific recombinase-dependent gene expression. All MAGIC system components are directly compatible with existing multisite gateway Tol2 systems currently used in zebrafish, as well as existing eukaryotic cell culture expression Destination plasmids, and available mammalian lentiviral and adenoviral Destination vectors, allowing rapid cross-species experimentation. Moreover, herein we describe novel vectors with flanking piggyBac transposon elements for stable genomic integration in vitro or in vivo when used with piggyBac transposase. Collectively, the MAGIC system facilitates transgenesis in cultured mammalian cells, electroporated mouse and chick embryos, as well as in injected zebrafish embryos, enabling the rapid generation of innovative DNA constructs for biological research due to a shared, common plasmid platform.
Collapse
|
3
|
Jensen GC, Janis MK, Nguyen HN, David OW, Zastrow ML. Fluorescent Protein-Based Sensors for Detecting Essential Metal Ions across the Tree of Life. ACS Sens 2024; 9:1622-1643. [PMID: 38587931 PMCID: PMC11073808 DOI: 10.1021/acssensors.3c02695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Genetically encoded fluorescent metal ion sensors are powerful tools for elucidating metal dynamics in living systems. Over the last 25 years since the first examples of genetically encoded fluorescent protein-based calcium indicators, this toolbox of probes has expanded to include other essential and non-essential metal ions. Collectively, these tools have illuminated fundamental aspects of metal homeostasis and trafficking that are crucial to fields ranging from neurobiology to human nutrition. Despite these advances, much of the application of metal ion sensors remains limited to mammalian cells and tissues and a limited number of essential metals. Applications beyond mammalian systems and in vivo applications in living organisms have primarily used genetically encoded calcium ion sensors. The aim of this Perspective is to provide, with the support of historical and recent literature, an updated and critical view of the design and use of fluorescent protein-based sensors for detecting essential metal ions in various organisms. We highlight the historical progress and achievements with calcium sensors and discuss more recent advances and opportunities for the detection of other essential metal ions. We also discuss outstanding challenges in the field and directions for future studies, including detecting a wider variety of metal ions, developing and implementing a broader spectral range of sensors for multiplexing experiments, and applying sensors to a wider range of single- and multi-species biological systems.
Collapse
Affiliation(s)
- Gary C Jensen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Makena K Janis
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Hazel N Nguyen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Ogonna W David
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
4
|
Zhang Y, Looger LL. Fast and sensitive GCaMP calcium indicators for neuronal imaging. J Physiol 2024; 602:1595-1604. [PMID: 36811153 DOI: 10.1113/jp283832] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
We review the principles of development and deployment of genetically encoded calcium indicators (GECIs) for the detection of neural activity. Our focus is on the popular GCaMP family of green GECIs, culminating in the recent release of the jGCaMP8 sensors, with dramatically improved kinetics relative to previous generations. We summarize the properties of GECIs in multiple colour channels (blue, cyan, green, yellow, red, far-red) and highlight areas for further improvement. With their low-millisecond rise-times, the jGCaMP8 indicators allow new classes of experiments following neural activity in time frames approaching the underlying computations.
Collapse
Affiliation(s)
- Yan Zhang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Loren L Looger
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Sanchez C, Ramirez A, Hodgson L. Unravelling molecular dynamics in living cells: Fluorescent protein biosensors for cell biology. J Microsc 2024. [PMID: 38357769 PMCID: PMC11324865 DOI: 10.1111/jmi.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Genetically encoded, fluorescent protein (FP)-based Förster resonance energy transfer (FRET) biosensors are microscopy imaging tools tailored for the precise monitoring and detection of molecular dynamics within subcellular microenvironments. They are characterised by their ability to provide an outstanding combination of spatial and temporal resolutions in live-cell microscopy. In this review, we begin by tracing back on the historical development of genetically encoded FP labelling for detection in live cells, which lead us to the development of early biosensors and finally to the engineering of single-chain FRET-based biosensors that have become the state-of-the-art today. Ultimately, this review delves into the fundamental principles of FRET and the design strategies underpinning FRET-based biosensors, discusses their diverse applications and addresses the distinct challenges associated with their implementation. We place particular emphasis on single-chain FRET biosensors for the Rho family of guanosine triphosphate hydrolases (GTPases), pointing to their historical role in driving our understanding of the molecular dynamics of this important class of signalling proteins and revealing the intricate relationships and regulatory mechanisms that comprise Rho GTPase biology in living cells.
Collapse
Affiliation(s)
- Colline Sanchez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Andrea Ramirez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Louis Hodgson
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
6
|
Liese A, Eichstädt B, Lederer S, Schulz P, Oehlschläger J, Matschi S, Feijó JA, Schulze WX, Konrad KR, Romeis T. Imaging of plant calcium-sensor kinase conformation monitors real time calcium-dependent decoding in planta. THE PLANT CELL 2024; 36:276-297. [PMID: 37433056 PMCID: PMC11210078 DOI: 10.1093/plcell/koad196] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/14/2023] [Accepted: 07/10/2023] [Indexed: 07/13/2023]
Abstract
Changes in cytosolic calcium (Ca2+) concentration are among the earliest reactions to a multitude of stress cues. While a plethora of Ca2+-permeable channels may generate distinct Ca2+ signatures and contribute to response specificities, the mechanisms by which Ca2+ signatures are decoded are poorly understood. Here, we developed a genetically encoded Förster resonance energy transfer (FRET)-based reporter that visualizes the conformational changes in Ca2+-dependent protein kinases (CDPKs/CPKs). We focused on two CDPKs with distinct Ca2+-sensitivities, highly Ca2+-sensitive Arabidopsis (Arabidopsis thaliana) AtCPK21 and rather Ca2+-insensitive AtCPK23, to report conformational changes accompanying kinase activation. In tobacco (Nicotiana tabacum) pollen tubes, which naturally display coordinated spatial and temporal Ca2+ fluctuations, CPK21-FRET, but not CPK23-FRET, reported oscillatory emission ratio changes mirroring cytosolic Ca2+ changes, pointing to the isoform-specific Ca2+-sensitivity and reversibility of the conformational change. In Arabidopsis guard cells, CPK21-FRET-monitored conformational dynamics suggest that CPK21 serves as a decoder of signal-specific Ca2+ signatures in response to abscisic acid and the flagellin peptide flg22. Based on these data, CDPK-FRET is a powerful approach for tackling real-time live-cell Ca2+ decoding in a multitude of plant developmental and stress responses.
Collapse
Affiliation(s)
- Anja Liese
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Bernadette Eichstädt
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Sarah Lederer
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Philipp Schulz
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Jan Oehlschläger
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Susanne Matschi
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - José A Feijó
- Department of Cell Biology & Molecular Genetics, University of Maryland, 2136 Bioscience Research Bldg, College Park, MD 20742-5815, USA
| | - Waltraud X Schulze
- Plant Systems Biology, Universität Hohenheim, D-70593 Stuttgart, Germany
| | - Kai R Konrad
- Julius-Von-Sachs Institute for Biosciences, Julius Maximilians Universität Würzburg, D-97082 Würzburg, Germany
| | - Tina Romeis
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| |
Collapse
|
7
|
Demby A, Zaccolo M. Investigating G-protein coupled receptor signalling with light-emitting biosensors. Front Physiol 2024; 14:1310197. [PMID: 38260094 PMCID: PMC10801095 DOI: 10.3389/fphys.2023.1310197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are the most frequent target of currently approved drugs and play a central role in both physiological and pathophysiological processes. Beyond the canonical understanding of GPCR signal transduction, the importance of receptor conformation, beta-arrestin (β-arr) biased signalling, and signalling from intracellular locations other than the plasma membrane is becoming more apparent, along with the tight spatiotemporal compartmentalisation of downstream signals. Fluorescent and bioluminescent biosensors have played a pivotal role in elucidating GPCR signalling events in live cells. To understand the mechanisms of action of the GPCR-targeted drugs currently available, and to develop new and better GPCR-targeted therapeutics, understanding these novel aspects of GPCR signalling is critical. In this review, we present some of the tools available to interrogate each of these features of GPCR signalling, we illustrate some of the key findings which have been made possible by these tools and we discuss their limitations and possible developments.
Collapse
Affiliation(s)
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Somalo-Barranco G, Pagano Zottola AC, Abdulrahman AO, El Zein RM, Cannich A, Muñoz L, Serra C, Oishi A, Marsicano G, Masri B, Bellocchio L, Llebaria A, Jockers R. Mitochondria-targeted melatonin photorelease supports the presence of melatonin MT1 receptors in mitochondria inhibiting respiration. Cell Chem Biol 2023; 30:920-932.e7. [PMID: 37572668 DOI: 10.1016/j.chembiol.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/16/2023] [Accepted: 07/20/2023] [Indexed: 08/14/2023]
Abstract
The presence of signaling-competent G protein-coupled receptors in intracellular compartments is increasingly recognized. Recently, the presence of Gi/o protein-coupled melatonin MT1 receptors in mitochondria has been revealed, in addition to the plasma membrane. Melatonin is highly cell permeant, activating plasma membrane and mitochondrial receptors equally. Here, we present MCS-1145, a melatonin derivative bearing a triphenylphosphonium cation for specific mitochondrial targeting and a photocleavable o-nitrobenzyl group releasing melatonin upon illumination. MCS-1145 displayed low affinity for MT1 and MT2 but spontaneously accumulated in mitochondria, where it was resistant to washout. Uncaged MCS-1145 and exogenous melatonin recruited β-arrestin 2 to MT1 in mitochondria and inhibited oxygen consumption in mitochondria isolated from HEK293 cells only when expressing MT1 and from mouse cerebellum of WT mice but not from MT1-knockout mice. Overall, we developed the first mitochondria-targeted photoactivatable melatonin ligand and demonstrate that melatonin inhibits mitochondrial respiration through mitochondrial MT1 receptors.
Collapse
Affiliation(s)
- Gloria Somalo-Barranco
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 PARIS, France; MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | | | | | - Rami M El Zein
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 PARIS, France
| | - Astrid Cannich
- INSERM, U1215 NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, Bordeaux, France
| | - Lourdes Muñoz
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain; SIMChem, Synthesis of High Added Value Molecules, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Carme Serra
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain; SIMChem, Synthesis of High Added Value Molecules, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Atsuro Oishi
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 PARIS, France
| | - Giovanni Marsicano
- INSERM, U1215 NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, Bordeaux, France
| | - Bernard Masri
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 PARIS, France
| | - Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, Bordeaux, France
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain.
| | - Ralf Jockers
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 PARIS, France.
| |
Collapse
|
9
|
Subach OM, Varfolomeeva L, Vlaskina AV, Agapova YK, Nikolaeva AY, Piatkevich KD, Patrushev MV, Boyko KM, Subach FV. FNCaMP, ratiometric green calcium indicator based on mNeonGreen protein. Biochem Biophys Res Commun 2023; 665:169-177. [PMID: 37163937 DOI: 10.1016/j.bbrc.2023.04.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Neurobiologists widely use green genetically encoded calcium indicators (GECIs) for visualization of neuronal activity. Among them, ratiometric GECIs allow imaging of both active and non-active neuronal populations. However, they are not popular, since their properties are inferior to intensiometric GCaMP series of GECIs. The most characterized and developed ratiometric green GECI is FGCaMP7. However, the dynamic range and sensitivity of its large Stock's shift green (LSS-Green) form is significantly lower than its Green form and its molecular design is not optimal. To address these drawbacks, we engineered a ratiometric green calcium indicator, called FNCaMP, which is based on bright mNeonGreen protein and calmodulin from A. niger and has optimal NTnC-like design. We compared the properties of the FNCaMP and FGCaMP7 indicators in vitro, in mammalian cells, and in neuronal cultures. Finally, we obtained and analyzed X-ray structure of the FNCaMP indicator.
Collapse
Affiliation(s)
- Oksana M Subach
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Moscow, 123182, Russia.
| | - Larisa Varfolomeeva
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Anna V Vlaskina
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Moscow, 123182, Russia.
| | - Yulia K Agapova
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Moscow, 123182, Russia.
| | - Alena Y Nikolaeva
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Moscow, 123182, Russia; Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Kiryl D Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China.
| | - Maxim V Patrushev
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Moscow, 123182, Russia.
| | - Konstantin M Boyko
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Fedor V Subach
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Moscow, 123182, Russia.
| |
Collapse
|
10
|
Bansal S, Lin S. Transcriptional Genetically Encoded Calcium Indicators in Drosophila. Cold Spring Harb Protoc 2023; 2023:8-18. [PMID: 36167674 DOI: 10.1101/pdb.top107797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Knowing which neurons are active during behavior is a crucial step toward understanding how nervous systems work. Neuronal activation is generally accompanied by an increase in intracellular calcium levels. Therefore, intracellular calcium levels are widely used as a proxy for neuronal activity. Many types of synthetic components and bioluminescent or fluorescent proteins that report transient and long-term changes in intracellular calcium levels have been developed over the past 60 years. Calcium indicators that enable imaging of the dynamic activity of a large ensemble of neurons in behaving animals have revolutionized the field of neuroscience. Among these, transcription-based genetically encoded calcium indicators (transcriptional GECIs) have proven easy to use and do not depend on sophisticated imaging systems, offering unique advantages over other types of calcium indicators. Here, we describe the two currently available fly transcriptional GECIs-calcium-dependent nuclear import of LexA (CaLexA) and transcriptional reporter of intracellular calcium (TRIC)-and review studies that have used them. In the accompanying protocol, we present step-by-step details for generating CaLexA- and TRIC-ready flies and for imaging CaLexA and TRIC signals in dissected brains after experimental manipulations of intact free-moving flies.
Collapse
Affiliation(s)
- Sonia Bansal
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Suewei Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
11
|
Kim H, Choi G, Suk ME, Kim TJ. Resource for FRET-Based Biosensor Optimization. Front Cell Dev Biol 2022; 10:885394. [PMID: 35794864 PMCID: PMC9251444 DOI: 10.3389/fcell.2022.885394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
After the development of Cameleon, the first fluorescence resonance energy transfer (FRET)-based calcium indicator, a variety of FRET-based genetically encoded biosensors (GEBs) have visualized numerous target players to monitor their cell physiological dynamics spatiotemporally. Many attempts have been made to optimize GEBs, which require labor-intensive effort, novel approaches, and precedents to develop more sensitive and versatile biosensors. However, researchers face considerable trial and error in upgrading biosensors because examples and methods of improving FRET-based GEBs are not well documented. In this review, we organize various optimization strategies after assembling the existing cases in which the non-fluorescent components of biosensors are upgraded. In addition, promising areas to which optimized biosensors can be applied are briefly discussed. Therefore, this review could serve as a resource for researchers attempting FRET-based GEB optimization.
Collapse
Affiliation(s)
- Heonsu Kim
- Institute of Systems Biology, Pusan National University, Busan, South Korea
| | - Gyuho Choi
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Myung Eun Suk
- Department of Mechanical Engineering, IT Convergence College of Materials and Components Engineering, Dong-Eui University, Busan, South Korea
- *Correspondence: Myung Eun Suk, ; Tae-Jin Kim,
| | - Tae-Jin Kim
- Institute of Systems Biology, Pusan National University, Busan, South Korea
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
- Department of Biological Sciences, Pusan National University, Busan, South Korea
- *Correspondence: Myung Eun Suk, ; Tae-Jin Kim,
| |
Collapse
|
12
|
Kempmann A, Gensch T, Offenhäusser A, Tihaa I, Maybeck V, Balfanz S, Baumann A. The Functional Characterization of GCaMP3.0 Variants Specifically Targeted to Subcellular Domains. Int J Mol Sci 2022; 23:ijms23126593. [PMID: 35743038 PMCID: PMC9223625 DOI: 10.3390/ijms23126593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Calcium (Ca2+) ions play a pivotal role in physiology and cellular signaling. The intracellular Ca2+ concentration ([Ca2+]i) is about three orders of magnitude lower than the extracellular concentration, resulting in a steep transmembrane concentration gradient. Thus, the spatial and the temporal dynamics of [Ca2+]i are ideally suited to modulate Ca2+-mediated cellular responses to external signals. A variety of highly sophisticated methods have been developed to gain insight into cellular Ca2+ dynamics. In addition to electrophysiological measurements and the application of synthetic dyes that change their fluorescent properties upon interaction with Ca2+, the introduction and the ongoing development of genetically encoded Ca2+ indicators (GECI) opened a new era to study Ca2+-driven processes in living cells and organisms. Here, we have focused on one well-established GECI, i.e., GCaMP3.0. We have systematically modified the protein with sequence motifs, allowing localization of the sensor in the nucleus, in the mitochondrial matrix, at the mitochondrial outer membrane, and at the plasma membrane. The individual variants and a cytosolic version of GCaMP3.0 were overexpressed and purified from E. coli cells to study their biophysical properties in solution. All versions were examined to monitor Ca2+ signaling in stably transfected cell lines and in primary cortical neurons transduced with recombinant Adeno-associated viruses (rAAV). In this comparative study, we provide evidence for a robust approach to reliably trace Ca2+ signals at the (sub)-cellular level with pronounced temporal resolution.
Collapse
Affiliation(s)
- Annika Kempmann
- Institute of Biological Information Processing, IBI-1, Research Center Jülich, 52428 Jülich, Germany; (A.K.); (T.G.); (S.B.)
| | - Thomas Gensch
- Institute of Biological Information Processing, IBI-1, Research Center Jülich, 52428 Jülich, Germany; (A.K.); (T.G.); (S.B.)
| | - Andreas Offenhäusser
- Institute of Biological Information Processing, IBI-3, Research Center Jülich, 52428 Jülich, Germany; (A.O.); (I.T.); (V.M.)
| | - Irina Tihaa
- Institute of Biological Information Processing, IBI-3, Research Center Jülich, 52428 Jülich, Germany; (A.O.); (I.T.); (V.M.)
| | - Vanessa Maybeck
- Institute of Biological Information Processing, IBI-3, Research Center Jülich, 52428 Jülich, Germany; (A.O.); (I.T.); (V.M.)
| | - Sabine Balfanz
- Institute of Biological Information Processing, IBI-1, Research Center Jülich, 52428 Jülich, Germany; (A.K.); (T.G.); (S.B.)
| | - Arnd Baumann
- Institute of Biological Information Processing, IBI-1, Research Center Jülich, 52428 Jülich, Germany; (A.K.); (T.G.); (S.B.)
- Correspondence: ; Tel.: +49-2461-614014
| |
Collapse
|
13
|
Wu SY, Shen Y, Shkolnikov I, Campbell RE. Fluorescent Indicators For Biological Imaging of Monatomic Ions. Front Cell Dev Biol 2022; 10:885440. [PMID: 35573682 PMCID: PMC9093666 DOI: 10.3389/fcell.2022.885440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Monatomic ions play critical biological roles including maintaining the cellular osmotic pressure, transmitting signals, and catalyzing redox reactions as cofactors in enzymes. The ability to visualize monatomic ion concentration, and dynamic changes in the concentration, is essential to understanding their many biological functions. A growing number of genetically encodable and synthetic indicators enable the visualization and detection of monatomic ions in biological systems. With this review, we aim to provide a survey of the current landscape of reported indicators. We hope this review will be a useful guide to researchers who are interested in using indicators for biological applications and to tool developers seeking opportunities to create new and improved indicators.
Collapse
Affiliation(s)
- Sheng-Yi Wu
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Yi Shen
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Irene Shkolnikov
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Robert E. Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Serrat R, Oliveira-Pinto A, Marsicano G, Pouvreau S. Imaging mitochondrial calcium dynamics in the central nervous system. J Neurosci Methods 2022; 373:109560. [PMID: 35320763 DOI: 10.1016/j.jneumeth.2022.109560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 12/28/2022]
Abstract
Mitochondrial calcium handling is a particularly active research area in the neuroscience field, as it plays key roles in the regulation of several functions of the central nervous system, such as synaptic transmission and plasticity, astrocyte calcium signaling, neuronal activity… In the last few decades, a panel of techniques have been developed to measure mitochondrial calcium dynamics, relying mostly on photonic microscopy, and including synthetic sensors, hybrid sensors and genetically encoded calcium sensors. The goal of this review is to endow the reader with a deep knowledge of the historical and latest tools to monitor mitochondrial calcium events in the brain, as well as a comprehensive overview of the current state of the art in brain mitochondrial calcium signaling. We will discuss the main calcium probes used in the field, their mitochondrial targeting strategies, their key properties and major drawbacks. In addition, we will detail the main roles of mitochondrial calcium handling in neuronal tissues through an extended report of the recent studies using mitochondrial targeted calcium sensors in neuronal and astroglial cells, in vitro and in vivo.
Collapse
Affiliation(s)
- Roman Serrat
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Alexandre Oliveira-Pinto
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Giovanni Marsicano
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Sandrine Pouvreau
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France.
| |
Collapse
|
15
|
Ozbakir HF, Miller ADC, Fishman KB, Martins AF, Kippin TE, Mukherjee A. A Protein-Based Biosensor for Detecting Calcium by Magnetic Resonance Imaging. ACS Sens 2021; 6:3163-3169. [PMID: 34420291 DOI: 10.1021/acssensors.1c01085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium-responsive contrast agents for magnetic resonance imaging (MRI) offer a promising approach for noninvasive brain-wide monitoring of neural activity at any arbitrary depth. Current examples of MRI-based calcium probes involve synthetic molecules and nanoparticles, which cannot be used to examine calcium signaling in a genetically encoded form. Here, we describe a new MRI sensor for calcium, based entirely on a naturally occurring calcium-binding protein known as calprotectin. Calcium-binding causes calprotectin to sequester manganese ions, thereby limiting Mn2+ enhanced paramagnetic relaxation of nearby water molecules. We demonstrate that this mechanism allows calprotectin to alter T1 and T2 based MRI signals in response to biologically relevant calcium concentrations. The resulting response amplitude, i.e., change in relaxation time, is comparable to existing MRI-based calcium sensors as well as other reported protein-based MRI sensors. As a preliminary demonstration of its biological applicability, we used calprotectin to detect calcium in a lysed hippocampal cell preparation as well as in intact Chinese hamster ovary cells treated with a calcium ionophore. Calprotectin thus represents a promising path toward noninvasive imaging of calcium signaling by combining the molecular and cellular specificity of genetically encodable tools with the ability of MRI to image through scattering tissue of any size and depth.
Collapse
|
16
|
Emmons SW, Yemini E, Zimmer M. Methods for analyzing neuronal structure and activity in Caenorhabditis elegans. Genetics 2021; 218:6303616. [PMID: 34151952 DOI: 10.1093/genetics/iyab072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/20/2021] [Indexed: 11/12/2022] Open
Abstract
The model research animal Caenorhabditis elegans has unique properties making it particularly advantageous for studies of the nervous system. The nervous system is composed of a stereotyped complement of neurons connected in a consistent manner. Here, we describe methods for studying nervous system structure and function. The transparency of the animal makes it possible to visualize and identify neurons in living animals with fluorescent probes. These methods have been recently enhanced for the efficient use of neuron-specific reporter genes. Because of its simple structure, for a number of years, C. elegans has been at the forefront of connectomic studies defining synaptic connectivity by electron microscopy. This field is burgeoning with new, more powerful techniques, and recommended up-to-date methods are here described that encourage the possibility of new work in C. elegans. Fluorescent probes for single synapses and synaptic connections have allowed verification of the EM reconstructions and for experimental approaches to synapse formation. Advances in microscopy and in fluorescent reporters sensitive to Ca2+ levels have opened the way to observing activity within single neurons across the entire nervous system.
Collapse
Affiliation(s)
- Scott W Emmons
- Department of Genetics and Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 1041, USA
| | - Eviatar Yemini
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Manuel Zimmer
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria and.,Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna 1030, Austria
| |
Collapse
|
17
|
Lohr C, Beiersdorfer A, Fischer T, Hirnet D, Rotermund N, Sauer J, Schulz K, Gee CE. Using Genetically Encoded Calcium Indicators to Study Astrocyte Physiology: A Field Guide. Front Cell Neurosci 2021; 15:690147. [PMID: 34177468 PMCID: PMC8226001 DOI: 10.3389/fncel.2021.690147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/06/2021] [Indexed: 01/14/2023] Open
Abstract
Ca2+ imaging is the most frequently used technique to study glial cell physiology. While chemical Ca2+ indicators served to visualize and measure changes in glial cell cytosolic Ca2+ concentration for several decades, genetically encoded Ca2+ indicators (GECIs) have become state of the art in recent years. Great improvements have been made since the development of the first GECI and a large number of GECIs with different physical properties exist, rendering it difficult to select the optimal Ca2+ indicator. This review discusses some of the most frequently used GECIs and their suitability for glial cell research.
Collapse
Affiliation(s)
- Christian Lohr
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | | | - Timo Fischer
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Daniela Hirnet
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Natalie Rotermund
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Jessica Sauer
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Kristina Schulz
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Christine E Gee
- Institute of Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
18
|
Laskaratou D, Fernández GS, Coucke Q, Fron E, Rocha S, Hofkens J, Hendrix J, Mizuno H. Quantification of FRET-induced angular displacement by monitoring sensitized acceptor anisotropy using a dim fluorescent donor. Nat Commun 2021; 12:2541. [PMID: 33953187 PMCID: PMC8099864 DOI: 10.1038/s41467-021-22816-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/23/2021] [Indexed: 02/03/2023] Open
Abstract
Förster resonance energy transfer (FRET) between fluorescent proteins has become a common platform for designing genetically encoded biosensors. For live cell imaging, the acceptor-to-donor intensity ratio is most commonly used to readout FRET efficiency, which largely depends on the proximity between donor and acceptor. Here, we introduce an anisotropy-based mode of FRET detection (FADED: FRET-induced Angular Displacement Evaluation via Dim donor), which probes for relative orientation rather than proximity alteration. A key element in this technique is suppression of donor bleed-through, which allows measuring purer sensitized acceptor anisotropy. This is achieved by developing Geuda Sapphire, a low-quantum-yield FRET-competent fluorescent protein donor. As a proof of principle, Ca2+ sensors were designed using calmodulin as a sensing domain, showing sigmoidal dose response to Ca2+. By monitoring the anisotropy, a Ca2+ rise in living HeLa cells is observed upon histamine challenging. We conclude that FADED provides a method for quantifying the angular displacement via FRET.
Collapse
Affiliation(s)
- Danai Laskaratou
- Laboratory for Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, Department of Chemistry, KU Leuven, Heverlee, Belgium
| | | | - Quinten Coucke
- Chem & Tech-Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Eduard Fron
- Chem & Tech-Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Heverlee, Belgium
- KU Leuven Core Facility for Advanced Spectroscopy, KU Leuven, Heverlee, Belgium
| | - Susana Rocha
- Chem & Tech-Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Johan Hofkens
- Chem & Tech-Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Jelle Hendrix
- Chem & Tech-Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Heverlee, Belgium
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute, Hasselt University, Agoralaan C (BIOMED), Diepenbeek, Belgium
| | - Hideaki Mizuno
- Laboratory for Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, Department of Chemistry, KU Leuven, Heverlee, Belgium.
| |
Collapse
|
19
|
Bi X, Beck C, Gong Y. Genetically Encoded Fluorescent Indicators for Imaging Brain Chemistry. BIOSENSORS 2021; 11:116. [PMID: 33920418 PMCID: PMC8069469 DOI: 10.3390/bios11040116] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Genetically encoded fluorescent indicators, combined with optical imaging, enable the detection of physiologically or behaviorally relevant neural activity with high spatiotemporal resolution. Recent developments in protein engineering and screening strategies have improved the dynamic range, kinetics, and spectral properties of genetically encoded fluorescence indicators of brain chemistry. Such indicators have detected neurotransmitter and calcium dynamics with high signal-to-noise ratio at multiple temporal and spatial scales in vitro and in vivo. This review summarizes the current trends in these genetically encoded fluorescent indicators of neurotransmitters and calcium, focusing on their key metrics and in vivo applications.
Collapse
Affiliation(s)
| | | | - Yiyang Gong
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; (X.B.); (C.B.)
| |
Collapse
|
20
|
Keyes J, Mehta S, Zhang J. Strategies for Multiplexed Biosensor Imaging to Study Intracellular Signaling Networks. Methods Mol Biol 2021; 2350:1-20. [PMID: 34331275 PMCID: PMC8580745 DOI: 10.1007/978-1-0716-1593-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Signal transduction processes are a necessary component of multicellular life, and their dysregulation is the basis for a host of syndromes and diseases. Thus, it is imperative that we discover the complex details of how signal transduction processes result in specific cellular outcomes. One of the primary mechanisms of regulation over signaling pathways is through spatiotemporal control. However, traditional methods are limited in their ability to reveal such details. To overcome these limitations, researchers have developed a variety of genetically encodable, fluorescent protein-based biosensors to study these dynamic processes in real time in living cells. Due to the complexities and interconnectedness of signaling pathways, it is thus desirable to use multiple biosensors in individual cells to better elucidate the relationships between signaling pathways. However, multiplexed imaging with such biosensors has been historically difficult. Nevertheless, recent developments in designs and multiplexing strategies have led to vast improvements in our capabilities. In this review, we provide perspectives on the recently developed biosensor designs and multiplexing strategies that are available for multiplexed imaging of signal transduction pathways.
Collapse
Affiliation(s)
- Jeremiah Keyes
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Intrinsically disordered protein domain of human ameloblastin in synthetic fusion with calmodulin increases calmodulin stability and modulates its function. Int J Biol Macromol 2020; 168:1-12. [PMID: 33290768 DOI: 10.1016/j.ijbiomac.2020.11.216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 11/21/2022]
Abstract
Constantly increasing attention to bioengineered proteins has led to the rapid development of new functional targets. Here we present the biophysical and functional characteristics of the newly designed CaM/AMBN-Ct fusion protein. The two-domain artificial target consists of calmodulin (CaM) and ameloblastin C-terminus (AMBN-Ct). CaM as a well-characterized calcium ions (Ca2+) binding protein offers plenty of options in terms of Ca2+ detection in biomedicine and biotechnologies. Highly negatively charged AMBN-Ct belongs to intrinsically disordered proteins (IDPs). CaM/AMBN-Ct was designed to open new ways of communication synergies between the domains with potential functional improvement. The character and function of CaM/AMBN-Ct were explored by biophysical and molecular modelling methods. Experimental studies have revealed increased stability and preserved CaM/AMBN-Ct function. The results of molecular dynamic simulations (MDs) outlined different interface patterns between the domains with potential allosteric communication within the fusion.
Collapse
|
22
|
Liput DJ, Nguyen TA, Augustin SM, Lee JO, Vogel SS. A Guide to Fluorescence Lifetime Microscopy and Förster's Resonance Energy Transfer in Neuroscience. CURRENT PROTOCOLS IN NEUROSCIENCE 2020; 94:e108. [PMID: 33232577 PMCID: PMC8274369 DOI: 10.1002/cpns.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fluorescence lifetime microscopy (FLIM) and Förster's resonance energy transfer (FRET) are advanced optical tools that neuroscientists can employ to interrogate the structure and function of complex biological systems in vitro and in vivo using light. In neurobiology they are primarily used to study protein-protein interactions, to study conformational changes in protein complexes, and to monitor genetically encoded FRET-based biosensors. These methods are ideally suited to optically monitor changes in neurons that are triggered optogenetically. Utilization of this technique by neuroscientists has been limited, since a broad understanding of FLIM and FRET requires familiarity with the interactions of light and matter on a quantum mechanical level, and because the ultra-fast instrumentation used to measure fluorescent lifetimes and resonance energy transfer are more at home in a physics lab than in a biology lab. In this overview, we aim to help neuroscientists overcome these obstacles and thus feel more comfortable with the FLIM-FRET method. Our goal is to aid researchers in the neuroscience community to achieve a better understanding of the fundamentals of FLIM-FRET and encourage them to fully leverage its powerful ability as a research tool. Published 2020. U.S. Government.
Collapse
Affiliation(s)
- Daniel J. Liput
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Tuan A. Nguyen
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Shana M. Augustin
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Jeong Oen Lee
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Steven S. Vogel
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
- Corresponding author:
| |
Collapse
|
23
|
Liu L, He F, Yu Y, Wang Y. Application of FRET Biosensors in Mechanobiology and Mechanopharmacological Screening. Front Bioeng Biotechnol 2020; 8:595497. [PMID: 33240867 PMCID: PMC7680962 DOI: 10.3389/fbioe.2020.595497] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
Extensive studies have shown that cells can sense and modulate the biomechanical properties of the ECM within their resident microenvironment. Thus, targeting the mechanotransduction signaling pathways provides a promising way for disease intervention. However, how cells perceive these mechanical cues of the microenvironment and transduce them into biochemical signals remains to be answered. Förster or fluorescence resonance energy transfer (FRET) based biosensors are a powerful tool that can be used in live-cell mechanotransduction imaging and mechanopharmacological drug screening. In this review, we will first introduce FRET principle and FRET biosensors, and then, recent advances on the integration of FRET biosensors and mechanobiology in normal and pathophysiological conditions will be discussed. Furthermore, we will summarize the current applications and limitations of FRET biosensors in high-throughput drug screening and the future improvement of FRET biosensors. In summary, FRET biosensors have provided a powerful tool for mechanobiology studies to advance our understanding of how cells and matrices interact, and the mechanopharmacological screening for disease intervention.
Collapse
Affiliation(s)
| | | | | | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
24
|
Gasterstädt I, Jack A, Stahlhut T, Rennau LM, Gonda S, Wahle P. Genetically Encoded Calcium Indicators Can Impair Dendrite Growth of Cortical Neurons. Front Cell Neurosci 2020; 14:570596. [PMID: 33192315 PMCID: PMC7606991 DOI: 10.3389/fncel.2020.570596] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
A battery of genetically encoded calcium indicators (GECIs) with different binding kinetics and calcium affinities was developed over the recent years to permit long-term calcium imaging. GECIs are calcium buffers and therefore, expression of GECIs may interfere with calcium homeostasis and signaling pathways important for neuronal differentiation and survival. Our objective was to investigate if the biolistically induced expression of five commonly used GECIs at two postnatal time points (days 14 and 22–25) could affect the morphological maturation of cortical neurons in organotypic slice cultures of rat visual cortex. Expression of GCaMP3 in both time windows, and of GCaMP5G and TN-XXL in the later time window impaired apical and /or basal dendrite growth of pyramidal neurons. With time, the proportion of GECI transfectants with nuclear filling increased, but an only prolonged expression of TN-XXL caused higher levels of neurodegeneration. In multipolar interneurons, only GCaMP3 evoked a transient growth delay during the early time window. GCaMP6m and GCaMP6m-XC were quite “neuron-friendly.” Since growth-impaired neurons might not have the physiological responses typical of age-matched wildtype neurons the results obtained after prolonged developmental expression of certain GECIs might need to be interpreted with caution.
Collapse
Affiliation(s)
- Ina Gasterstädt
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Alexander Jack
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Tobias Stahlhut
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Lisa-Marie Rennau
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Steffen Gonda
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Petra Wahle
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
25
|
Mapping Calcium Dynamics in the Heart of Zebrafish Embryos with Ratiometric Genetically Encoded Calcium Indicators. Int J Mol Sci 2020; 21:ijms21186610. [PMID: 32927644 PMCID: PMC7555812 DOI: 10.3390/ijms21186610] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022] Open
Abstract
Zebrafish embryos have been proposed as a cost-effective vertebrate model to study heart function. Many fluorescent genetically encoded Ca2+ indicators (GECIs) have been developed, but those with ratiometric readout seem more appropriate to image a moving organ such as the heart. Four ratiometric GECIs based on troponin C, TN-XXL, Twitch-1, Twitch-2B, and Twitch-4 were expressed transiently in the heart of zebrafish embryos. Their emission ratio reported the Ca2+ levels in both the atrium and the ventricle. We measured several kinetic parameters of the Ca2+ transients: systolic and diastolic ratio, the amplitude of the systolic Ca2+ rise, the heart rate, as well as the rise and decay times and slopes. The systolic ratio change decreased in cells expressing high biosensor concentration, possibly caused by Ca2+ buffering. The GECIs were able to report the effect of nifedipine and propranolol on the heart, which resulted in changes in heart rate, diastolic and systolic Ca2+ levels, and Ca2+ kinetics. As a result, Twitch-1 and Twitch-4 (Kd 0.25 and 2.8 µM, respectively) seem the most promising GECIs for generating transgenic zebrafish lines, which could be used for modeling heart disorders, for drug screening, and for cardiotoxicity assessment during drug development.
Collapse
|
26
|
Qiao J, Hwang YH, Kim DP, Qi L. Simultaneous Monitoring of Temperature and Ca2+ Concentration Variation by Fluorescent Polymer during Intracellular Heat Production. Anal Chem 2020; 92:8579-8583. [DOI: 10.1021/acs.analchem.0c01534] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Juan Qiao
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yoon-Ho Hwang
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology, Nam-Gu, Pohang-Si, Gyungsangbuk-do 37673, South Korea
| | - Dong-Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology, Nam-Gu, Pohang-Si, Gyungsangbuk-do 37673, South Korea
| | - Li Qi
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Tang S, Deng X, Jiang J, Kirberger M, Yang JJ. Design of Calcium-Binding Proteins to Sense Calcium. Molecules 2020; 25:molecules25092148. [PMID: 32375353 PMCID: PMC7248937 DOI: 10.3390/molecules25092148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 01/25/2023] Open
Abstract
Calcium controls numerous biological processes by interacting with different classes of calcium binding proteins (CaBP’s), with different affinities, metal selectivities, kinetics, and calcium dependent conformational changes. Due to the diverse coordination chemistry of calcium, and complexity associated with protein folding and binding cooperativity, the rational design of CaBP’s was anticipated to present multiple challenges. In this paper we will first discuss applications of statistical analysis of calcium binding sites in proteins and subsequent development of algorithms to predict and identify calcium binding proteins. Next, we report efforts to identify key determinants for calcium binding affinity, cooperativity and calcium dependent conformational changes using grafting and protein design. Finally, we report recent advances in designing protein calcium sensors to capture calcium dynamics in various cellular environments.
Collapse
Affiliation(s)
- Shen Tang
- Department of Chemistry, Center for Diagnostics and Therapeutics and Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA; (S.T.); (X.D.); (J.J.)
| | - Xiaonan Deng
- Department of Chemistry, Center for Diagnostics and Therapeutics and Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA; (S.T.); (X.D.); (J.J.)
| | - Jie Jiang
- Department of Chemistry, Center for Diagnostics and Therapeutics and Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA; (S.T.); (X.D.); (J.J.)
| | - Michael Kirberger
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA;
| | - Jenny J. Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics and Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA; (S.T.); (X.D.); (J.J.)
- Correspondence: ; Tel.: +1-404-413-5520
| |
Collapse
|
28
|
Reza AM, Tavakoli J, Zhou Y, Qin J, Tang Y. Synthetic fluorescent probes to apprehend calcium signalling in lipid droplet accumulation in microalgae—an updated review. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9664-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
29
|
Greotti E, Pozzan T. Live Mitochondrial or Cytosolic Calcium Imaging Using Genetically-encoded Cameleon Indicator in Mammalian Cells. Bio Protoc 2020; 10:e3504. [PMID: 33654731 DOI: 10.21769/bioprotoc.3504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/04/2023] Open
Abstract
Calcium (Ca2+) imaging aims at investigating the dynamic changes in live cells of its concentration ([Ca2+]) in different pathophysiological conditions. Ca2+ is an ubiquitous and versatile intracellular signal that modulates a large variety of cellular functions thanks to a cell type-specific toolkit and a complex subcellular compartmentalization. Many Ca2+ sensors are presently available (chemical and genetically encoded) that can be specifically targeted to different cellular compartments. Using these probes, it is now possible to monitor Ca2+ dynamics of living cells not only in the cytosol but also within specific organelles. The choice of a specific sensor depends on the experimental design and the spatial and temporal resolution required. Here we describe the use of novel Förster resonance energy transfer (FRET)-based fluorescent Ca2+ probes to dynamically and quantitatively monitor the changes in cytosolic and mitochondrial [Ca2+] in a variety of cell types and experimental conditions. FRET-based sensors have the enormous advantage of being ratiometric, a feature that makes them particularly suitable for quantitative and in vivo applications.
Collapse
Affiliation(s)
- Elisa Greotti
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Tullio Pozzan
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy.,Venetian Institute of Molecular Medicine (VIMM), 35129 Padua, Italy
| |
Collapse
|
30
|
Galla L, Redolfi N, Pozzan T, Pizzo P, Greotti E. Intracellular Calcium Dysregulation by the Alzheimer's Disease-Linked Protein Presenilin 2. Int J Mol Sci 2020; 21:E770. [PMID: 31991578 PMCID: PMC7037278 DOI: 10.3390/ijms21030770] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Even though most AD cases are sporadic, a small percentage is familial due to autosomal dominant mutations in amyloid precursor protein (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2) genes. AD mutations contribute to the generation of toxic amyloid β (Aβ) peptides and the formation of cerebral plaques, leading to the formulation of the amyloid cascade hypothesis for AD pathogenesis. Many drugs have been developed to inhibit this pathway but all these approaches currently failed, raising the need to find additional pathogenic mechanisms. Alterations in cellular calcium (Ca2+) signaling have also been reported as causative of neurodegeneration. Interestingly, Aβ peptides, mutated presenilin-1 (PS1), and presenilin-2 (PS2) variously lead to modifications in Ca2+ homeostasis. In this contribution, we focus on PS2, summarizing how AD-linked PS2 mutants alter multiple Ca2+ pathways and the functional consequences of this Ca2+ dysregulation in AD pathogenesis.
Collapse
Affiliation(s)
- Luisa Galla
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (L.G.); (N.R.); (T.P.); (E.G.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| | - Nelly Redolfi
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (L.G.); (N.R.); (T.P.); (E.G.)
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (L.G.); (N.R.); (T.P.); (E.G.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), 35131 Padua, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (L.G.); (N.R.); (T.P.); (E.G.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| | - Elisa Greotti
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (L.G.); (N.R.); (T.P.); (E.G.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| |
Collapse
|
31
|
|
32
|
Wu N, Nishioka WK, Derecki NC, Maher MP. High-throughput-compatible assays using a genetically-encoded calcium indicator. Sci Rep 2019; 9:12692. [PMID: 31481721 PMCID: PMC6722131 DOI: 10.1038/s41598-019-49070-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Measurement of intracellular calcium in live cells is a key component of a wide range of basic life science research, and crucial for many high-throughput assays used in modern drug discovery. Synthetic calcium indicators have become the industry standard, due their ease of use, high reliability, wide dynamic range, and availability of a large variety of spectral and chemical properties. Genetically-encoded calcium indicators (GECIs) have been optimized to the point where their performance rivals that of synthetic calcium indicators in many applications. Stable expression of a GECI has distinct advantages over synthetic calcium indicators in terms of reagent cost and simplification of the assay process. We generated a clonal cell line constitutively expressing GCaMP6s; high expression of the GECI was driven by coupling to a blasticidin resistance gene with a self-cleaving cis-acting hydrolase element (CHYSEL) 2A peptide. Here, we compared the performance of the GECI GCaMP6s to the synthetic calcium indicator fluo-4 in a variety of assay formats. We demonstrate that the pharmacology of ion channel and GPCR ligands as determined using the two indicators is highly similar, and that GCaMP6s is viable as a direct replacement for a synthetic calcium indicator.
Collapse
Affiliation(s)
- Nyantsz Wu
- Janssen Research & Development, LLC, San Diego, CA, 92121, USA
| | | | - Noël C Derecki
- Janssen Research & Development, LLC, San Diego, CA, 92121, USA
| | - Michael P Maher
- Janssen Research & Development, LLC, San Diego, CA, 92121, USA.
| |
Collapse
|
33
|
Oh J, Lee C, Kaang BK. Imaging and analysis of genetically encoded calcium indicators linking neural circuits and behaviors. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:237-249. [PMID: 31297008 PMCID: PMC6609268 DOI: 10.4196/kjpp.2019.23.4.237] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
Confirming the direct link between neural circuit activity and animal behavior has been a principal aim of neuroscience. The genetically encoded calcium indicator (GECI), which binds to calcium ions and emits fluorescence visualizing intracellular calcium concentration, enables detection of in vivo neuronal firing activity. Various GECIs have been developed and can be chosen for diverse purposes. These GECI-based signals can be acquired by several tools including two-photon microscopy and microendoscopy for precise or wide imaging at cellular to synaptic levels. In addition, the images from GECI signals can be analyzed with open source codes including constrained non-negative matrix factorization for endoscopy data (CNMF_E) and miniscope 1-photon-based calcium imaging signal extraction pipeline (MIN1PIPE), and considering parameters of the imaged brain regions (e.g., diameter or shape of soma or the resolution of recorded images), the real-time activity of each cell can be acquired and linked with animal behaviors. As a result, GECI signal analysis can be a powerful tool for revealing the functions of neuronal circuits related to specific behaviors.
Collapse
Affiliation(s)
- Jihae Oh
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Chiwoo Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
34
|
Abstract
Calcium ion (Ca2+) is a ubiquitous intracellular messenger able to generate versatile intracellular signals that modulate a large variety of functions in virtually every cell type. Chemical and genetic biosensors, targeted to different subcellular compartments, have been developed and continuously improved to monitor Ca2+ dynamics in living cells. Here we describe the usage of Förster resonance energy transfer (FRET)-based Cameleon probes to investigate Ca2+ influx across the plasma membrane (PM) or Ca2+ release from the main intracellular Ca2+ store, the endoplasmic reticulum (ER).
Collapse
|
35
|
Bischof H, Burgstaller S, Waldeck-Weiermair M, Rauter T, Schinagl M, Ramadani-Muja J, Graier WF, Malli R. Live-Cell Imaging of Physiologically Relevant Metal Ions Using Genetically Encoded FRET-Based Probes. Cells 2019; 8:E492. [PMID: 31121936 PMCID: PMC6562680 DOI: 10.3390/cells8050492] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 01/02/2023] Open
Abstract
Essential biochemical reactions and processes within living organisms are coupled to subcellular fluctuations of metal ions. Disturbances in cellular metal ion homeostasis are frequently associated with pathological alterations, including neurotoxicity causing neurodegeneration, as well as metabolic disorders or cancer. Considering these important aspects of the cellular metal ion homeostasis in health and disease, measurements of subcellular ion signals are of broad scientific interest. The investigation of the cellular ion homeostasis using classical biochemical methods is quite difficult, often even not feasible or requires large cell numbers. Here, we report of genetically encoded fluorescent probes that enable the visualization of metal ion dynamics within individual living cells and their organelles with high temporal and spatial resolution. Generally, these probes consist of specific ion binding domains fused to fluorescent protein(s), altering their fluorescent properties upon ion binding. This review focuses on the functionality and potential of these genetically encoded fluorescent tools which enable monitoring (sub)cellular concentrations of alkali metals such as K+, alkaline earth metals including Mg2+ and Ca2+, and transition metals including Cu+/Cu2+ and Zn2+. Moreover, we discuss possible approaches for the development and application of novel metal ion biosensors for Fe2+/Fe3+, Mn2+ and Na+.
Collapse
Affiliation(s)
- Helmut Bischof
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Sandra Burgstaller
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Markus Waldeck-Weiermair
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Thomas Rauter
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Maximilian Schinagl
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Jeta Ramadani-Muja
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Wolfgang F Graier
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| | - Roland Malli
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| |
Collapse
|
36
|
Vicario M, Calì T. Measuring Ca 2+ Levels in Subcellular Compartments with Genetically Encoded GFP-Based Indicators. Methods Mol Biol 2019; 1925:31-42. [PMID: 30674014 DOI: 10.1007/978-1-4939-9018-4_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Ca2+ homeostasis is crucial for the entire life of eukaryotic cells from the beginning to the end. Mishandling in Ca2+ homeostasis is indeed linked with a large number of pathological conditions. Thus, the possibility to specifically monitor cellular calcium fluxes in different subcellular compartments represents a key tool to deeply understand the mechanisms involved in cellular dysfunctions. To cope with this need, several Ca2+ indicators have been developed allowing to accurately measure both basal Ca2+ concentration and agonist-induced Ca2+ signals in a wide spectrum of organelles. Among these, the genetically encoded GFP-based indicators are routinely used to measure Ca2+ transients thanks to their ability to change their spectral properties in response to Ca2+ binding. In this chapter, we will describe a protocol that utilizes the GCaMP6f probe targeted to mitochondria (4mtGCaMP) to measure mitochondrial calcium levels in resting conditions in HeLa cells. This method allows to easily and quickly register alterations of mitochondrial Ca2+ homeostasis in different cell populations and experimental settings, representing a precious tool to unravel the pathological pathways leading to pathogenic conditions.
Collapse
Affiliation(s)
- Mattia Vicario
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Tito Calì
- Department of Biomedical Sciences, University of Padua, Padua, Italy.
| |
Collapse
|
37
|
Liu Z, Jing X, Zhang S, Tian Y. A Copper Nanocluster-Based Fluorescent Probe for Real-Time Imaging and Ratiometric Biosensing of Calcium Ions in Neurons. Anal Chem 2019; 91:2488-2497. [DOI: 10.1021/acs.analchem.8b05360] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
| | - Xia Jing
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, P. R. China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, P. R. China
| |
Collapse
|
38
|
Greenwald EC, Mehta S, Zhang J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem Rev 2018; 118:11707-11794. [PMID: 30550275 PMCID: PMC7462118 DOI: 10.1021/acs.chemrev.8b00333] [Citation(s) in RCA: 349] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular signaling networks are the foundation which determines the fate and function of cells as they respond to various cues and stimuli. The discovery of fluorescent proteins over 25 years ago enabled the development of a diverse array of genetically encodable fluorescent biosensors that are capable of measuring the spatiotemporal dynamics of signal transduction pathways in live cells. In an effort to encapsulate the breadth over which fluorescent biosensors have expanded, we endeavored to assemble a comprehensive list of published engineered biosensors, and we discuss many of the molecular designs utilized in their development. Then, we review how the high temporal and spatial resolution afforded by fluorescent biosensors has aided our understanding of the spatiotemporal regulation of signaling networks at the cellular and subcellular level. Finally, we highlight some emerging areas of research in both biosensor design and applications that are on the forefront of biosensor development.
Collapse
Affiliation(s)
- Eric C Greenwald
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Sohum Mehta
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Jin Zhang
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| |
Collapse
|
39
|
Luo F, Wei Y, Wang Z, Luo M, Hu J. Genetically Encoded Neural Activity Indicators. BRAIN SCIENCE ADVANCES 2018. [DOI: 10.26599/bsa.2018.9050007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recent years have witnessed the fascinating development of imaging approaches to studying neural activities; this progress has been based on an influx of ideas and methods from molecular biology and optical engineering. Here we review the design and application of genetically encoded indicators for calcium ions, membrane potential and neurotransmitters. We also summarize common strategies for the design and optimization of genetically encoded neural activity indicators.
Collapse
Affiliation(s)
- Fang Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yin Wei
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ziyue Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Minmin Luo
- National Institute of Biological Sciences, Beijing 102206, China
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
40
|
NTnC-like genetically encoded calcium indicator with a positive and enhanced response and fast kinetics. Sci Rep 2018; 8:15233. [PMID: 30323302 PMCID: PMC6189086 DOI: 10.1038/s41598-018-33613-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 10/03/2018] [Indexed: 12/16/2022] Open
Abstract
The NTnC genetically encoded calcium indicator has an advantageous design because of its smaller size, GFP-like N- and C-terminal ends and two-fold reduced number of calcium binding sites compared with widely used indicators from the GCaMP family. However, NTnC has an inverted and modest calcium response and a low temporal resolution. By replacing the mNeonGreen fluorescent part in NTnC with EYFP, we engineered an NTnC-like indicator, referred to as YTnC, that had a positive and substantially improved calcium response and faster kinetics. YTnC had a 3-fold higher calcium response and 13.6-fold lower brightness than NTnC in vitro. According to stopped-flow experiments performed in vitro, YTnC had 4-fold faster calcium-dissociation kinetics than NTnC. In HeLa cells, YTnC exhibited a 3.3-fold lower brightness and 4.9-fold increased response to calcium transients than NTnC. The spontaneous activity of neuronal cultures induced a 3.6-fold larger ΔF/F response of YTnC than previously shown for NTnC. On patched neurons, YTnC had a 2.6-fold lower ΔF/F than GCaMP6s. YTnC successfully visualized calcium transients in neurons in the cortex of anesthetized mice and the hippocampus of awake mice using single- and two-photon microscopy. Moreover, YTnC outperformed GCaMP6s in the mitochondria and endoplasmic reticulum of cultured HeLa and neuronal cells.
Collapse
|
41
|
Walia A, Waadt R, Jones AM. Genetically Encoded Biosensors in Plants: Pathways to Discovery. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:497-524. [PMID: 29719164 DOI: 10.1146/annurev-arplant-042817-040104] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Genetically encoded biosensors that directly interact with a molecule of interest were first introduced more than 20 years ago with fusion proteins that served as fluorescent indicators for calcium ions. Since then, the technology has matured into a diverse array of biosensors that have been deployed to improve our spatiotemporal understanding of molecules whose dynamics have profound influence on plant physiology and development. In this review, we address several types of biosensors with a focus on genetically encoded calcium indicators, which are now the most diverse and advanced group of biosensors. We then consider the discoveries in plant biology made by using biosensors for calcium, pH, reactive oxygen species, redox conditions, primary metabolites, phytohormones, and nutrients. These discoveries were dependent on the engineering, characterization, and optimization required to develop a successful biosensor; they were also dependent on the methodological developments required to express, detect, and analyze the readout of such biosensors.
Collapse
Affiliation(s)
- Ankit Walia
- Sainsbury Laboratory, Cambridge University, Cambridge CB2 1LR, United Kingdom;
| | - Rainer Waadt
- Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, Heidelberg 69120, Germany
| | - Alexander M Jones
- Sainsbury Laboratory, Cambridge University, Cambridge CB2 1LR, United Kingdom;
| |
Collapse
|
42
|
Yang Y, Liu N, He Y, Liu Y, Ge L, Zou L, Song S, Xiong W, Liu X. Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP. Nat Commun 2018; 9:1504. [PMID: 29666364 PMCID: PMC5904127 DOI: 10.1038/s41467-018-03719-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 03/09/2018] [Indexed: 01/09/2023] Open
Abstract
GCaMP, one popular type of genetically-encoded Ca2+ indicator, has been associated with various side-effects. Here we unveil the intrinsic problem prevailing over different versions and applications, showing that GCaMP containing CaM (calmodulin) interferes with both gating and signaling of L-type calcium channels (CaV1). GCaMP acts as an impaired apoCaM and Ca2+/CaM, both critical to CaV1, which disrupts Ca2+ dynamics and gene expression. We then design and implement GCaMP-X, by incorporating an extra apoCaM-binding motif, effectively protecting CaV1-dependent excitation–transcription coupling from perturbations. GCaMP-X resolves the problems of detrimental nuclear accumulation, acute and chronic Ca2+ dysregulation, and aberrant transcription signaling and cell morphogenesis, while still demonstrating excellent Ca2+-sensing characteristics partly inherited from GCaMP. In summary, CaM/CaV1 gating and signaling mechanisms are elucidated for GCaMP side-effects, while allowing the development of GCaMP-X to appropriately monitor cytosolic, submembrane or nuclear Ca2+, which is also expected to guide the future design of CaM-based molecular tools. The popular genetically-encoded Ca2+ indicator, GCaMP, has several side-effects. Here the authors show that GCaMP containing CaM interferes with gating and signaling of L-type calcium channels, which disrupts Ca2+ dynamics and gene expression, and develop GCaMP-X to overcome these limitations.
Collapse
Affiliation(s)
- Yaxiong Yang
- Department of Biomedical Engineering, School of Medicine, X-Lab for Transmembrane Signaling Research, Tsinghua University, Beijing, 100084, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 102402, China.,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Nan Liu
- Department of Biomedical Engineering, School of Medicine, X-Lab for Transmembrane Signaling Research, Tsinghua University, Beijing, 100084, China.,School of Life Sciences, Yunan University, Kunming, 650091, China
| | - Yuanyuan He
- Department of Biomedical Engineering, School of Medicine, X-Lab for Transmembrane Signaling Research, Tsinghua University, Beijing, 100084, China
| | - Yuxia Liu
- Department of Biomedical Engineering, School of Medicine, X-Lab for Transmembrane Signaling Research, Tsinghua University, Beijing, 100084, China
| | - Lin Ge
- Department of Biomedical Engineering, School of Medicine, X-Lab for Transmembrane Signaling Research, Tsinghua University, Beijing, 100084, China
| | - Linzhi Zou
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sen Song
- Department of Biomedical Engineering, School of Medicine, X-Lab for Transmembrane Signaling Research, Tsinghua University, Beijing, 100084, China.,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Wei Xiong
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaodong Liu
- Department of Biomedical Engineering, School of Medicine, X-Lab for Transmembrane Signaling Research, Tsinghua University, Beijing, 100084, China. .,School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China. .,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 102402, China. .,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China. .,School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
43
|
Kudla J, Becker D, Grill E, Hedrich R, Hippler M, Kummer U, Parniske M, Romeis T, Schumacher K. Advances and current challenges in calcium signaling. THE NEW PHYTOLOGIST 2018; 218:414-431. [PMID: 29332310 DOI: 10.1111/nph.14966] [Citation(s) in RCA: 344] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/21/2017] [Indexed: 05/21/2023]
Abstract
Content Summary 414 I. Introduction 415 II. Ca2+ importer and exporter in plants 415 III. The Ca2+ decoding toolkit in plants 415 IV. Mechanisms of Ca2+ signal decoding 417 V. Immediate Ca2+ signaling in the regulation of ion transport 418 VI. Ca2+ signal integration into long-term ABA responses 419 VII Integration of Ca2+ and hormone signaling through dynamic complex modulation of the CCaMK/CYCLOPS complex 420 VIII Ca2+ signaling in mitochondria and chloroplasts 422 IX A view beyond recent advances in Ca2+ imaging 423 X Modeling approaches in Ca2+ signaling 424 XI Conclusions: Ca2+ signaling a still young blooming field of plant research 424 Acknowledgements 425 ORCID 425 References 425 SUMMARY: Temporally and spatially defined changes in Ca2+ concentration in distinct compartments of cells represent a universal information code in plants. Recently, it has become evident that Ca2+ signals not only govern intracellular regulation but also appear to contribute to long distance or even organismic signal propagation and physiological response regulation. Ca2+ signals are shaped by an intimate interplay of channels and transporters, and during past years important contributing individual components have been identified and characterized. Ca2+ signals are translated by an elaborate toolkit of Ca2+ -binding proteins, many of which function as Ca2+ sensors, into defined downstream responses. Intriguing progress has been achieved in identifying specific modules that interconnect Ca2+ decoding proteins and protein kinases with downstream target effectors, and in characterizing molecular details of these processes. In this review, we reflect on recent major advances in our understanding of Ca2+ signaling and cover emerging concepts and existing open questions that should be informative also for scientists that are currently entering this field of ever-increasing breath and impact.
Collapse
Affiliation(s)
- Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7/8, 48149, Münster, Germany
| | - Dirk Becker
- Department of Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Erwin Grill
- Lehrstuhl für Botanik, Technische Universität München, Am Hochanger 4, D-85354, Freising, Germany
| | - Rainer Hedrich
- Department of Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Michael Hippler
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7/8, 48149, Münster, Germany
| | - Ursula Kummer
- Department of Modeling of Biological Processes, COS Heidelberg/Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Martin Parniske
- Institute of Genetics, Biocenter University of Munich (LMU), Großhaderner Straße 4, 82152, Martinsried, Germany
| | - Tina Romeis
- Department of Plant Biochemistry, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195, Berlin, Germany
| | - Karin Schumacher
- Department of Developmental Biology, Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| |
Collapse
|
44
|
Dong TX, Othy S, Jairaman A, Skupsky J, Zavala A, Parker I, Dynes JL, Cahalan MD. T-cell calcium dynamics visualized in a ratiometric tdTomato-GCaMP6f transgenic reporter mouse. eLife 2017; 6:32417. [PMID: 29239725 PMCID: PMC5747524 DOI: 10.7554/elife.32417] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/11/2017] [Indexed: 11/13/2022] Open
Abstract
Calcium is an essential cellular messenger that regulates numerous functions in living organisms. Here, we describe development and characterization of ‘Salsa6f’, a fusion of GCaMP6f and tdTomato optimized for cell tracking while monitoring cytosolic Ca2+, and a transgenic Ca2+ reporter mouse with Salsa6f targeted to the Rosa26 locus for Cre-dependent expression in specific cell types. The development and function of T cells was unaffected in Cd4-Salsa6f mice. We describe Ca2+ signals reported by Salsa6f during T cell receptor activation in naive T cells, helper Th17 T cells and regulatory T cells, and Ca2+ signals mediated in T cells by an activator of mechanosensitive Piezo1 channels. Transgenic expression of Salsa6f enables ratiometric imaging of Ca2+ signals in complex tissue environments found in vivo. Two-photon imaging of migrating T cells in the steady-state lymph node revealed both cell-wide and localized sub-cellular Ca2+ transients (‘sparkles’) as cells migrate. To help protect the body from disease, small immune cells called T lymphocytes move rapidly, searching for signs of infection. These signs are antigens – processed pieces of proteins from invading bacteria and viruses – which are displayed on the surface of so-called antigen-presenting cells. To visit as many different antigen-presenting cells as possible, T cells move quickly from one to the next in an apparently random manner. How T cells are programmed to move in this way is largely unknown. The entry of calcium ions into cells, through channel proteins, triggers characteristic actions in many cells throughout the body. As such it is possible that the T cells’ movements are related to calcium signals too. However, it was technically challenging to directly measure the amount of calcium in moving cells within the body. To overcome this issue, Dong, Othy et al. genetically engineered mice to produce a new calcium-sensitive reporter protein in their T cells. The reporter, which was named Salsa6f, consisted of a red fluorescent protein fused to another protein that glows green when it binds to calcium ions. Measuring the ratio of red and green fluorescence gives a measure of the concentration of calcium ions inside the cell. In the absence of calcium signaling, the cells can still be tracked via the red fluorescence of Salsa6f. Importantly, the reporter did not affect the development or activity of the T cells in the mice. In a related study, Dong, Othy et al. then used their transgenic mice to ask whether calcium signals guide moving T cells as they search for antigens. Future studies could use these transgenic mice to track the calcium ion concentration in numerous cell types. This would enable new approaches to relate the inner workings of cells to their behaviors in many different organ systems throughout the body.
Collapse
Affiliation(s)
- Tobias X Dong
- Department of Physiology and Biophysics, University of California, Irvine, United States
| | - Shivashankar Othy
- Department of Physiology and Biophysics, University of California, Irvine, United States
| | - Amit Jairaman
- Department of Physiology and Biophysics, University of California, Irvine, United States
| | - Jonathan Skupsky
- Department of Physiology and Biophysics, University of California, Irvine, United States.,Department of Medicine, University of California, Irvine, United States
| | - Angel Zavala
- Department of Physiology and Biophysics, University of California, Irvine, United States
| | - Ian Parker
- Department of Physiology and Biophysics, University of California, Irvine, United States.,Department of Neurobiology & Behavior, University of California, Irvine, United States
| | - Joseph L Dynes
- Department of Physiology and Biophysics, University of California, Irvine, United States
| | - Michael D Cahalan
- Department of Physiology and Biophysics, University of California, Irvine, United States.,Institute for Immunology, University of California, Irvine, United States
| |
Collapse
|
45
|
Abstract
Fluorescent protein-based biosensors are indispensable molecular tools for life science research. The invention and development of high-fidelity biosensors for a particular molecule or molecular event often catalyze important scientific breakthroughs. Understanding the structural and functional organization of brain activities remain a subject for which optical sensors are in desperate need and of growing interest. Here, we review genetically encoded fluorescent sensors for imaging neuronal activities with a focus on the design principles and optimizations of various sensors. New bioluminescent sensors useful for deep-tissue imaging are also discussed. By highlighting the protein engineering efforts and experimental applications of these sensors, we can consequently analyze factors influencing their performance. Finally, we remark on how future developments can fill technological gaps and lead to new discoveries.
Collapse
Affiliation(s)
- Zhijie Chen
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA 94720, USA
| | - Tan M. Truong
- Center for Membrane and Cell Physiology, and Biomedical Sciences (BIMS) Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
| | - Hui-wang Ai
- Center for Membrane and Cell Physiology, and Biomedical Sciences (BIMS) Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
- Correspondence:
| |
Collapse
|
46
|
Waadt R, Krebs M, Kudla J, Schumacher K. Multiparameter imaging of calcium and abscisic acid and high-resolution quantitative calcium measurements using R-GECO1-mTurquoise in Arabidopsis. THE NEW PHYTOLOGIST 2017; 216:303-320. [PMID: 28850185 DOI: 10.1111/nph.14706] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/15/2017] [Indexed: 05/17/2023]
Abstract
Calcium signals occur in specific spatio-temporal patterns in response to various stimuli and are coordinated with, for example, hormonal signals, for physiological and developmental adaptations. Quantification of calcium together with other signalling molecules is required for correlative analyses and to decipher downstream calcium-decoding mechanisms. Simultaneous in vivo imaging of calcium and abscisic acid has been performed here to investigate the interdependence of the respective signalling processes in Arabidopsis thaliana roots. Advanced ratiometric genetically encoded calcium indicators have been generated and in vivo calcium calibration protocols were established to determine absolute calcium concentration changes in response to auxin and ATP. In roots, abscisic acid induced long-term basal calcium concentration increases, while auxin triggered rapid signals in the elongation zone. The advanced ratiometric calcium indicator R-GECO1-mTurquoise exhibited an increased calcium signal resolution compared to commonly used Förster resonance energy transfer-based indicators. Quantitative calcium measurements in Arabidopsis root tips using R-GECO1-mTurquoise revealed detailed maps of absolute calcium concentration changes in response to auxin and ATP. Calcium calibration protocols using R-GECO1-mTurquoise enabled high-resolution quantitative imaging of resting cytosolic calcium concentrations and their dynamic changes that revealed distinct hormonal and ATP responses in roots.
Collapse
Affiliation(s)
- Rainer Waadt
- Entwicklungsbilogie der Pflanzen, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 230, Heidelberg, 69120, Germany
| | - Melanie Krebs
- Entwicklungsbilogie der Pflanzen, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 230, Heidelberg, 69120, Germany
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, Münster, 48149, Germany
| | - Karin Schumacher
- Entwicklungsbilogie der Pflanzen, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 230, Heidelberg, 69120, Germany
| |
Collapse
|
47
|
Koopman CD, Zimmermann WH, Knöpfel T, de Boer TP. Cardiac optogenetics: using light to monitor cardiac physiology. Basic Res Cardiol 2017; 112:56. [PMID: 28861604 PMCID: PMC5579185 DOI: 10.1007/s00395-017-0645-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022]
Abstract
Our current understanding of cardiac excitation and its coupling to contraction is largely based on ex vivo studies utilising fluorescent organic dyes to assess cardiac action potentials and signal transduction. Recent advances in optogenetic sensors open exciting new possibilities for cardiac research and allow us to answer research questions that cannot be addressed using the classic organic dyes. Especially thrilling is the possibility to use optogenetic sensors to record parameters of cardiac excitation and contraction in vivo. In addition, optogenetics provide a high spatial resolution, as sensors can be coupled to motifs and targeted to specific cell types and subcellular domains of the heart. In this review, we will give a comprehensive overview of relevant optogenetic sensors, how they can be utilised in cardiac research and how they have been applied in cardiac research up to now.
Collapse
Affiliation(s)
- Charlotte D Koopman
- Department of Medical Physiology, University Medical Center Utrecht, Yalelaan 50, 3584CM, Utrecht, The Netherlands.,Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Centre Utrecht, 3584CT, Utrecht, The Netherlands
| | - Wolfram H Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DHZK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany
| | - Thomas Knöpfel
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London, UK.,Centre for Neurotechnology, Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Teun P de Boer
- Department of Medical Physiology, University Medical Center Utrecht, Yalelaan 50, 3584CM, Utrecht, The Netherlands.
| |
Collapse
|
48
|
Ni Q, Mehta S, Zhang J. Live-cell imaging of cell signaling using genetically encoded fluorescent reporters. FEBS J 2017; 285:203-219. [PMID: 28613457 DOI: 10.1111/febs.14134] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/19/2017] [Accepted: 06/09/2017] [Indexed: 12/31/2022]
Abstract
Synergistic advances in fluorescent protein engineering and live-cell imaging techniques in recent years have fueled the concurrent development and application of genetically encoded fluorescent reporters that are tailored for tracking signaling dynamics in living systems over multiple length and time scales. These biosensors are uniquely suited for this challenging task, owing to their specificity, sensitivity, and versatility, as well as to the noninvasive and nondestructive nature of fluorescence and the power of genetic encoding. Over the past 10 years, a growing number of fluorescent reporters have been developed for tracking a wide range of biological signals in living cells and animals, including second messenger and metabolite dynamics, enzyme activation and activity, and cell cycle progression and neuronal activity. Many of these biosensors are gaining wide use and are proving to be indispensable for unraveling the complex biological functions of individual signaling molecules in their native environment, the living cell, shedding new light on the structural and molecular underpinnings of cell signaling. In this review, we highlight recent advances in protein engineering that are likely to help expand and improve the design and application of these valuable tools. We then turn our focus to specific examples of live-cell imaging using genetically encoded fluorescent reporters as an important platform for advancing our understanding of G protein-coupled receptor signaling and neuronal activity.
Collapse
Affiliation(s)
- Qiang Ni
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
49
|
Rivnay J, Wang H, Fenno L, Deisseroth K, Malliaras GG. Next-generation probes, particles, and proteins for neural interfacing. SCIENCE ADVANCES 2017; 3:e1601649. [PMID: 28630894 PMCID: PMC5466371 DOI: 10.1126/sciadv.1601649] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 04/18/2017] [Indexed: 05/18/2023]
Abstract
Bidirectional interfacing with the nervous system enables neuroscience research, diagnosis, and therapy. This two-way communication allows us to monitor the state of the brain and its composite networks and cells as well as to influence them to treat disease or repair/restore sensory or motor function. To provide the most stable and effective interface, the tools of the trade must bridge the soft, ion-rich, and evolving nature of neural tissue with the largely rigid, static realm of microelectronics and medical instruments that allow for readout, analysis, and/or control. In this Review, we describe how the understanding of neural signaling and material-tissue interactions has fueled the expansion of the available tool set. New probe architectures and materials, nanoparticles, dyes, and designer genetically encoded proteins push the limits of recording and stimulation lifetime, localization, and specificity, blurring the boundary between living tissue and engineered tools. Understanding these approaches, their modality, and the role of cross-disciplinary development will support new neurotherapies and prostheses and provide neuroscientists and neurologists with unprecedented access to the brain.
Collapse
Affiliation(s)
- Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Palo Alto Research Center, Palo Alto, CA 94304, USA
- Corresponding author.
| | - Huiliang Wang
- Departments of Bioengineering and Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - Lief Fenno
- Departments of Bioengineering and Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Departments of Bioengineering and Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - George G. Malliaras
- Department of Bioelectronics, École Nationale Supérieure des Mines, CMP-EMSE, MOC, Gardanne 13541, France
| |
Collapse
|
50
|
Reddish FN, Miller CL, Gorkhali R, Yang JJ. Monitoring ER/SR Calcium Release with the Targeted Ca2+ Sensor CatchER. J Vis Exp 2017. [PMID: 28570539 DOI: 10.3791/55822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Intracellular calcium (Ca2+) transients evoked by extracellular stimuli initiate a multitude of biological processes in living organisms. At the center of intracellular calcium release are the major intracellular calcium storage organelles, the endoplasmic reticulum (ER) and the more specialized sarcoplasmic reticulum (SR) in muscle cells. The dynamic release of calcium from these organelles is mediated by the ryanodine receptor (RyR) and the inositol 1,4,5-triphosphate receptor (IP3R) with refilling occurring through the sarco/endoplasmic reticulum calcium ATPase (SERCA) pump. A genetically encoded calcium sensor (GECI) called CatchER was created to monitor the rapid calcium release from the ER/SR. Here, the detailed protocols for the transfection and expression of the improved, ER/SR-targeted GECI CatchER+ in HEK293 and C2C12 cells and its application in monitoring IP3R, RyR, and SERCA pump-mediated calcium transients in HEK293 cells using fluorescence microscopy is outlined. The receptor agonist or inhibitor of choice is dispersed in the chamber solution and the intensity changes are recorded in real time. With this method, a decrease in ER calcium is seen with RyR activation with 4-chloro-m-cresol (4-cmc), the indirect activation of IP3R with adenosine triphosphate (ATP), and inhibition of the SERCA pump with cyclopiazonic acid (CPA). We also discuss protocols for determining the in situ Kd and quantifying basal [Ca2+] in C2C12 cells. In summary, these protocols, used in conjunction with CatchER+, can elicit receptor mediated calcium release from the ER with future application in studying ER/SR calcium related pathologies.
Collapse
Affiliation(s)
- Florence N Reddish
- Department of Chemistry, Center of Diagnostics and Therapeutics (CDT), Georgia State University
| | - Cassandra L Miller
- Department of Chemistry, Center of Diagnostics and Therapeutics (CDT), Georgia State University
| | - Rakshya Gorkhali
- Department of Chemistry, Center of Diagnostics and Therapeutics (CDT), Georgia State University
| | - Jenny J Yang
- Department of Chemistry, Center of Diagnostics and Therapeutics (CDT), Georgia State University;
| |
Collapse
|