1
|
Yu J, Han W, Xu Y, Shen L, Zhao H, Zhang J, Xiao Y, Guo Y, Yu F. Biofilm-producing ability of methicillin-resistant Staphylococcus aureus clinically isolated in China. BMC Microbiol 2024; 24:241. [PMID: 38961344 PMCID: PMC11223284 DOI: 10.1186/s12866-024-03380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Staphylococcus aureus, a commensal bacterium, colonizes the skin and mucous membranes of approximately 30% of the human population. Apart from conventional resistance mechanisms, one of the pathogenic features of S. aureus is its ability to survive in a biofilm state on both biotic and abiotic surfaces. Due to this characteristic, S. aureus is a major cause of human infections, with Methicillin-Resistant Staphylococcus aureus (MRSA) being a significant contributor to both community-acquired and hospital-acquired infections. RESULTS Analyzing non-repetitive clinical isolates of MRSA collected from seven provinces and cities in China between 2014 and 2020, it was observed that 53.2% of the MRSA isolates exhibited varying degrees of ability to produce biofilm. The biofilm positivity rate was notably high in MRSA isolates from Guangdong, Jiangxi, and Hubei. The predominant MRSA strains collected in this study were of sequence types ST59, ST5, and ST239, with the biofilm-producing capability mainly distributed among moderate and weak biofilm producers within these ST types. Notably, certain sequence types, such as ST88, exhibited a high prevalence of strong biofilm-producing strains. The study found that SCCmec IV was the predominant type among biofilm-positive MRSA, followed by SCCmec II. Comparing strains with weak and strong biofilm production capabilities, the positive rates of the sdrD and sdrE were higher in strong biofilm producers. The genetic determinants ebp, icaA, icaB, icaC, icaD, icaR, and sdrE were associated with strong biofilm production in MRSA. Additionally, biofilm-negative MRSA isolates showed higher sensitivity rates to cefalotin (94.8%), daptomycin (94.5%), mupirocin (86.5%), teicoplanin (94.5%), fusidic acid (81.0%), and dalbavancin (94.5%) compared to biofilm-positive MRSA isolates. The biofilm positivity rate was consistently above 50% in all collected specimen types. CONCLUSIONS MRSA strains with biofilm production capability warrant increased vigilance.
Collapse
Affiliation(s)
- Jingyi Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weihua Han
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanlei Xu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Shen
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huilin Zhao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiao Zhang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanghua Xiao
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Yinjuan Guo
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Aboelnaga N, Elsayed SW, Abdelsalam NA, Salem S, Saif NA, Elsayed M, Ayman S, Nasr M, Elhadidy M. Deciphering the dynamics of methicillin-resistant Staphylococcus aureus biofilm formation: from molecular signaling to nanotherapeutic advances. Cell Commun Signal 2024; 22:188. [PMID: 38519959 PMCID: PMC10958940 DOI: 10.1186/s12964-024-01511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/01/2024] [Indexed: 03/25/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) represents a global threat, necessitating the development of effective solutions to combat this emerging superbug. In response to selective pressures within healthcare, community, and livestock settings, MRSA has evolved increased biofilm formation as a multifaceted virulence and defensive mechanism, enabling the bacterium to thrive in harsh conditions. This review discusses the molecular mechanisms contributing to biofilm formation across its developmental stages, hence representing a step forward in developing promising strategies for impeding or eradicating biofilms. During staphylococcal biofilm development, cell wall-anchored proteins attach bacterial cells to biotic or abiotic surfaces; extracellular polymeric substances build scaffolds for biofilm formation; the cidABC operon controls cell lysis within the biofilm, and proteases facilitate dispersal. Beside the three main sequential stages of biofilm formation (attachment, maturation, and dispersal), this review unveils two unique developmental stages in the biofilm formation process for MRSA; multiplication and exodus. We also highlighted the quorum sensing as a cell-to-cell communication process, allowing distant bacterial cells to adapt to the conditions surrounding the bacterial biofilm. In S. aureus, the quorum sensing process is mediated by autoinducing peptides (AIPs) as signaling molecules, with the accessory gene regulator system playing a pivotal role in orchestrating the production of AIPs and various virulence factors. Several quorum inhibitors showed promising anti-virulence and antibiofilm effects that vary in type and function according to the targeted molecule. Disrupting the biofilm architecture and eradicating sessile bacterial cells are crucial steps to prevent colonization on other surfaces or organs. In this context, nanoparticles emerge as efficient carriers for delivering antimicrobial and antibiofilm agents throughout the biofilm architecture. Although metal-based nanoparticles have been previously used in combatting biofilms, its non-degradability and toxicity within the human body presents a real challenge. Therefore, organic nanoparticles in conjunction with quorum inhibitors have been proposed as a promising strategy against biofilms. As nanotherapeutics continue to gain recognition as an antibiofilm strategy, the development of more antibiofilm nanotherapeutics could offer a promising solution to combat biofilm-mediated resistance.
Collapse
Affiliation(s)
- Nirmeen Aboelnaga
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Salma W Elsayed
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nehal Adel Abdelsalam
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Salma Salem
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Nehal A Saif
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Manar Elsayed
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Shehab Ayman
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed Elhadidy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
3
|
Bogut A, Koper P, Marczak M, Całka P. The first genomic characterization of a stable, hemin-dependent small colony variant strain of Staphylococcus epidermidis isolated from a prosthetic-joint infection. Front Microbiol 2023; 14:1289844. [PMID: 37928677 PMCID: PMC10620731 DOI: 10.3389/fmicb.2023.1289844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Phenotype switching from a wild type (WT) to a slow-growing subpopulation, referred to as small colony variants (SCVs), supports an infectious lifestyle of Staphylococcus epidermidis, the leading cause of medical device-related infections. Specific mechanisms underlying formation of SCVs and involved in the shaping of their pathogenic potential are of particular interest for stable strains as they have been only rarely cultured from clinical specimens. As the SCV phenotype stability implies the existence of genetic changes, the whole genome sequence of a stable, hemin-dependent S. epidermidis SCV strain (named 49SCV) involved in a late prosthetic joint infection was analyzed. The strain was isolated in a monoculture without a corresponding WT clone, therefore, its genome was compared against five reference S. epidermidis strains (ATCC12228, ATCC14990, NBRC113846, O47, and RP62A), both at the level of the genome structure and coding sequences. According to the Multilocus Sequence Typing analysis, the 49SCV strain represented the sequence type 2 (ST2) regarded as the most prominent infection-causing lineage with a worldwide dissemination. Genomic features unique to 49SCV included the absence of the Staphylococcal Cassette Chromosome (SCC), ~12 kb deletion with the loss of genes involved in the arginine deiminase pathway, and frameshift-generating mutations within the poly(A) and poly(T) homopolymeric tracts. Indels were identified in loci associated with adherence, metabolism, stress response, virulence, and cell wall synthesis. Of note, deletion in the poly(A) of the hemA gene has been considered a possible trigger factor for the phenotype transition and hemin auxotrophy in the strain. To our knowledge, the study represents the first genomic characterization of a clinical, stable and hemin-dependent S. epidermidis SCV strain. We propose that previously unreported indels in the homopolymeric tracts can constitute a background of the SCV phenotype due to a resulting truncation of the corresponding proteins and their possible biological dysfunction. Streamline of genetic content evidenced by the loss of the SCC and a large genomic deletion can represent a possible strategy associated both with the SCV phenotype and its adaptation to chronicity.
Collapse
Affiliation(s)
- Agnieszka Bogut
- Chair and Department of Medical Microbiology, Medical University of Lublin, Lublin, Poland
| | - Piotr Koper
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Małgorzata Marczak
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Paulina Całka
- Chair and Department of Forensic Medicine, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
4
|
Vo LH, Hong S, Stepler KE, Liyanaarachchi SM, Yang J, Nemes P, Poulin MB. Mapping protein-exopolysaccharide binding interaction in Staphylococcus epidermidis biofilms by live cell proximity labeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555326. [PMID: 37693546 PMCID: PMC10491226 DOI: 10.1101/2023.08.29.555326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Bacterial biofilms consist of cells encased in an extracellular polymeric substance (EPS) composed of exopolysaccharides, extracellular DNA, and proteins that are critical for cell-cell adhesion and protect the cells from environmental stress, antibiotic treatments, and the host immune response. Degrading EPS components or blocking their production have emerged as promising strategies for prevention or dispersal of bacterial biofilms, but we still have little information about the specific biomolecular interactions that occur between cells and EPS components and how those interactions contribute to biofilm production. Staphylococcus epidermidis is a leading cause of nosocomial infections as a result of producing biofilms that use the exopolysaccharide poly-(1→6)-β-N-acetylglucosamine (PNAG) as a major structural component. In this study, we have developed a live cell proximity labeling approach combined with quantitative mass spectrometry-based proteomics to map the PNAG interactome of live S. epidermidis biofilms. Through these measurements we discovered elastin-binding protein (EbpS) as a major PNAG-interacting protein. Using live cell binding measurements, we found that the lysin motif (LysM) domain of EbpS specifically binds to PNAG present in S. epidermidis biofilms. Our work provides a novel method for the rapid identification of exopolysaccharide-binding proteins in live biofilms that will help to extend our understanding of the biomolecular interactions that are required for bacterial biofilm formation.
Collapse
Affiliation(s)
- Luan H. Vo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Steven Hong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Kaitlyn E. Stepler
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Sureshee M. Liyanaarachchi
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jack Yang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Peter Nemes
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Myles B. Poulin
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
5
|
Motta C, Pellegrini A, Camaione S, Geoghegan J, Speziale P, Barbieri G, Pietrocola G. von Willebrand factor-binding protein (vWbp)-activated factor XIII and transglutaminase 2 (TG2) promote cross-linking between FnBPA from Staphylococcus aureus and fibrinogen. Sci Rep 2023; 13:11683. [PMID: 37468579 DOI: 10.1038/s41598-023-38972-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/18/2023] [Indexed: 07/21/2023] Open
Abstract
The secreted von Willebrand factor-binding protein (vWbp) from Staphylococcus aureus interacts with the coagulation factors prothrombin and fibrinogen (Fbg), leading to the non-proteolytic transglutaminase activation of Factor XIII (FXIII). In this study we found that vWbp-activated FXIII catalyses the incorporation of amino-donor dansylcadaverine into region A of fibronectin-binding protein A (FnBPA). Incubation of Fbg with recombinant region A of S. aureus Fbg-binding proteins FnBPA, FnBPB, ClfA or ClfB in presence of vWbp-activated FXIII resulted in the formation of high molecular heteropolymers with FnBPA only, suggesting a specificity of the cross-linking reaction between fibrin(ogen) and the staphylococcal surface. As previously observed, cross-linking sites were mapped to the α-chain and the N1 subdomain of fibrin(ogen) and region A of FnBPA, respectively. Comparable results were obtained when tissue tranglutaminase-2 (TG2) was tested for cross-linking of FnBPA and Fbg. Of note, FnBPA-mediated covalent cross-linking promoted by vWbp-activated FXIII was also observed when bacteria were allowed to attach to fibrin(ogen). Together these findings suggest a novel pathogenetic mechanism by which the transglutaminase action of FXIII and/or TG2 contributes to entrapment and persistence of S. aureus in blood and host tissues.
Collapse
Affiliation(s)
- Chiara Motta
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Stefano Camaione
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Joan Geoghegan
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Pietro Speziale
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | | |
Collapse
|
6
|
Patel H, Rawat S. A genetic regulatory see-saw of biofilm and virulence in MRSA pathogenesis. Front Microbiol 2023; 14:1204428. [PMID: 37434702 PMCID: PMC10332168 DOI: 10.3389/fmicb.2023.1204428] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023] Open
Abstract
Staphylococcus aureus is one of the most common opportunistic human pathogens causing several infectious diseases. Ever since the emergence of the first methicillin-resistant Staphylococcus aureus (MRSA) strain decades back, the organism has been a major cause of hospital-acquired infections (HA-MRSA). The spread of this pathogen across the community led to the emergence of a more virulent subtype of the strain, i.e., Community acquired Methicillin resistant Staphylococcus aureus (CA-MRSA). Hence, WHO has declared Staphylococcus aureus as a high-priority pathogen. MRSA pathogenesis is remarkable because of the ability of this "superbug" to form robust biofilm both in vivo and in vitro by the formation of polysaccharide intercellular adhesin (PIA), extracellular DNA (eDNA), wall teichoic acids (WTAs), and capsule (CP), which are major components that impart stability to a biofilm. On the other hand, secretion of a diverse array of virulence factors such as hemolysins, leukotoxins, enterotoxins, and Protein A regulated by agr and sae two-component systems (TCS) aids in combating host immune response. The up- and downregulation of adhesion genes involved in biofilm formation and genes responsible for synthesizing virulence factors during different stages of infection act as a genetic regulatory see-saw in the pathogenesis of MRSA. This review provides insight into the evolution and pathogenesis of MRSA infections with a focus on genetic regulation of biofilm formation and virulence factors secretion.
Collapse
Affiliation(s)
| | - Seema Rawat
- Microbiology Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| |
Collapse
|
7
|
Risser F, López-Morales J, Nash MA. Adhesive Virulence Factors of Staphylococcus aureus Resist Digestion by Coagulation Proteases Thrombin and Plasmin. ACS BIO & MED CHEM AU 2022; 2:586-599. [PMID: 36573096 PMCID: PMC9782320 DOI: 10.1021/acsbiomedchemau.2c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 12/30/2022]
Abstract
Staphylococcus aureus (S. aureus) is an invasive and life-threatening pathogen that has undergone extensive coevolution with its mammalian hosts. Its molecular adaptations include elaborate mechanisms for immune escape and hijacking of the coagulation and fibrinolytic pathways. These capabilities are enacted by virulence factors including microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) and the plasminogen-activating enzyme staphylokinase (SAK). Despite the ability of S. aureus to modulate coagulation, until now the sensitivity of S. aureus virulence factors to digestion by proteases of the coagulation system was unknown. Here, we used protein engineering, biophysical assays, and mass spectrometry to study the susceptibility of S. aureus MSCRAMMs to proteolytic digestion by human thrombin, plasmin, and plasmin/SAK complexes. We found that MSCRAMMs were highly resistant to proteolysis, and that SAK binding to plasmin enhanced this resistance. We mapped thrombin, plasmin, and plasmin/SAK cleavage sites of nine MSCRAMMs and performed biophysical, bioinformatic, and stability analysis to understand structural and sequence features common to protease-susceptible sites. Overall, our study offers comprehensive digestion patterns of S. aureus MSCRAMMs by thrombin, plasmin, and plasmin/SAK complexes and paves the way for new studies into this resistance and virulence mechanism.
Collapse
Affiliation(s)
- Fanny Risser
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland,Department
of Biosystems Sciences and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Joanan López-Morales
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland,Department
of Biosystems Sciences and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Michael A. Nash
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland,Department
of Biosystems Sciences and Engineering, ETH Zurich, 4058 Basel, Switzerland,E-mail:
| |
Collapse
|
8
|
Rodrigues RA, Pizauro LJL, Varani ADM, de Almeida CC, Silva SR, Cardozo MV, MacInnes JI, Kropinski AM, Melo PDC, Ávila FA. Comparative genomics study of Staphylococcus aureus isolated from cattle and humans reveals virulence patterns exclusively associated with bovine clinical mastitis strains. Front Microbiol 2022; 13:1033675. [PMID: 36419431 PMCID: PMC9676464 DOI: 10.3389/fmicb.2022.1033675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/17/2022] [Indexed: 12/08/2023] Open
Abstract
Staphylococcus aureus causes nosocomial and intramammary infections in humans and cattle, respectively. A large number of virulence factors are thought to play important roles in the pathogenesis of this bacterium. Currently, genome-wide and data-analysis studies are being used to better understand its epidemiology. In this study, we conducted a genome wide comparison and phylogenomic analyses of S. aureus to find specific virulence patterns associated with clinical and subclinical mastitis strains in cattle and compare them with those of human origin. The presence/absence of key virulence factors such as adhesin, biofilm, antimicrobial resistance, and toxin genes, as well as the phylogeny and sequence type of the isolates were evaluated. A total of 248 genomes (27 clinical mastitis, 43 subclinical mastitis, 21 milk, 53 skin-related abscesses, 49 skin infections, and 55 pus from cellulitis) isolated from 32 countries were evaluated. We found that the cflA, fnbA, ebpS, spa, sdrC, coa, emp, vWF, atl, sasH, sasA, and sasF adhesion genes, as well as the aur, hglA, hglB, and hglC toxin genes were highly associated in clinical mastitis strains. The strains had diverse genetic origins (72 protein A and 48 sequence types with ST97, ST8 and ST152 being frequent in isolates from clinical mastitis, abscess, and skin infection, respectively). Further, our phylogenomic analyses suggested that zoonotic and/or zooanthroponotic transmission may have occurred. These findings contribute to a better understanding of S. aureus epidemiology and the relationships between adhesion mechanisms, biofilm formation, antimicrobial resistance, and toxins and could aid in the development of improved vaccines and strain genotyping methods.
Collapse
Affiliation(s)
- Romário Alves Rodrigues
- Department of Reproduction Pathology and One Health, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Lucas José Luduverio Pizauro
- Department of Agricultural and Environmental Sciences, Santa Cruz State University, Ilhéus, Bahia, Brazil
- Department of Agricultural and Environmental Biotechnology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Alessandro de Mello Varani
- Department of Agricultural and Environmental Biotechnology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Camila Chioda de Almeida
- Department of Reproduction Pathology and One Health, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Saura Rodrigues Silva
- Department of Agricultural and Environmental Biotechnology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Marita Vedovelli Cardozo
- Laboratory of Microorganism Physiology, Minas Gerais State University, Passos, Minas Gerais, Brazil
| | - Janet I. MacInnes
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Andrew M. Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Poliana de Castro Melo
- Department of Agricultural and Environmental Sciences, Santa Cruz State University, Ilhéus, Bahia, Brazil
| | - Fernando Antonio Ávila
- Department of Reproduction Pathology and One Health, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
9
|
Diversity and pathogenesis of Staphylococcus aureus from bovine mastitis: current understanding and future perspectives. BMC Vet Res 2022; 18:115. [PMID: 35331225 PMCID: PMC8944054 DOI: 10.1186/s12917-022-03197-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/03/2022] [Indexed: 11/10/2022] Open
Abstract
Staphylococcus aureus is a leading cause of bovine mastitis worldwide. Despite some improved understanding of disease pathogenesis, progress towards new methods for the control of intramammary infections (IMI) has been limited, particularly in the field of vaccination. Although herd management programs have helped to reduce the number of clinical cases, S. aureus mastitis remains a major disease burden. This review summarizes the past 16 years of research on bovine S. aureus population genetics, and molecular pathogenesis that have been conducted worldwide. We describe the diversity of S. aureus associated with bovine mastitis and the geographical distribution of S. aureus clones in different continents. We also describe studies investigating the evolution of bovine S. aureus and the importance of host-adaptation in its emergence as a mastitis pathogen. The available information on the prevalence of virulence determinants and their functional relevance during the pathogenesis of bovine mastitis are also discussed. Although traits such as biofilm formation and innate immune evasion are critical for the persistence of bacteria, the current understanding of the key host-pathogen interactions that determine the outcome of S. aureus IMI is very limited. We suggest that greater investment in research into the genetic and molecular basis of bovine S. aureus pathogenesis is essential for the identification of novel therapeutic and vaccine targets.
Collapse
|
10
|
Le Masters T, Johnson S, Jeraldo PR, Greenwood-Quaintance KE, Cunningham SA, Abdel MP, Chia N, Patel R. Comparative Transcriptomic Analysis of Staphylococcus aureus Associated with Periprosthetic Joint Infection under in Vivo and in Vitro Conditions. J Mol Diagn 2021; 23:986-999. [PMID: 34098085 PMCID: PMC8351120 DOI: 10.1016/j.jmoldx.2021.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/25/2021] [Accepted: 05/06/2021] [Indexed: 11/15/2022] Open
Abstract
Transcriptomic analysis can provide insight as to how Staphylococcus aureus adapts to the environmental niche of periprosthetic joint infection (PJI), a challenging clinical infection. Here, in vivo RNA expression of eight S. aureus PJIs was compared with expression of the corresponding isolates in planktonic culture using a total RNA-sequencing approach. Expression varied among isolates, with a common trend showing increased expression of several ica-independent biofilm formation genes, including sdr, fnb, ebpS, and aaa; genes encoding enzymes and toxins, including coa, nuc, hlb, and hlgA/B/C; and genes facilitating acquisition of iron via the iron-binding molecule siderophore B (snb) and heme consumption protein (isd) pathways in PJI. Several antimicrobial resistance determinants were detected; although their presence correlated with phenotypic susceptibility of the associated isolates, no difference in expression between in vivo and in vitro conditions was identified.
Collapse
Affiliation(s)
- Thao Le Masters
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Stephen Johnson
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Patricio R Jeraldo
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota; Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Kerryl E Greenwood-Quaintance
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Scott A Cunningham
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Matthew P Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Nicholas Chia
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota; Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota; Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
11
|
Ma Z, Yin X, Wu P, Hu R, Wang Y, Yi J, Wang Z, Chen C. The Recombinant Expression Proteins FnBP and ClfA From Staphylococcus aureus in Addition to GapC and Sip From Streptococcus agalactiae Can Protect BALB/c Mice From Bacterial Infection. Front Vet Sci 2021; 8:666098. [PMID: 34250059 PMCID: PMC8263938 DOI: 10.3389/fvets.2021.666098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Dairy cow mastitis is a serious disease that is mainly caused by intramammary infection with Staphylococcus aureus and Streptococcus agalactiae [group B streptococcus (GBS)]. FnBP and ClfA are the virulence factors of S. aureus, while GapC is the respective factor for S. agalactiae. Sip is a highly immunogenic protein, and it is conserved in all GBS serotypes. In this study, we analyzed the abovementioned four genes prepared a FnBP+ClfA chimeric protein (FC), a GapC+Sip chimeric protein (GS), and a FnBP+ClfA+GapC+Sip chimeric protein (FCGS) based on the antigenic sites to evaluate their use in vaccine development. After expression and purification of the recombinant proteins in Escherichia coli, BALB/c mice were immunized with them to examine resistance effects. The total lethal and half lethal doses of S. aureus and S. agalactiae were then measured, and the immunoprotective effects of the fusion proteins were evaluated. The FC and FCGS chimeric proteins could induce mice to produce high levels of antibodies, and bacterial loads were significantly reduced in the spleens and livers after challenge. After immunization with FCGS, the recipients resisted the attacks of both S. aureus and S. agalactiae, indicating the potential of the fusion protein as a mastitis vaccine.
Collapse
Affiliation(s)
- Zhongchen Ma
- International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China.,College of Life Sciences, Shihezi University, Shihezi, China
| | - Xinyue Yin
- International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China.,College of Life Sciences, Shihezi University, Shihezi, China
| | - Peng Wu
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Ruirui Hu
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Yong Wang
- International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China.,College of Life Sciences, Shihezi University, Shihezi, China
| | - Jihai Yi
- International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China.,College of Life Sciences, Shihezi University, Shihezi, China
| | - Zhen Wang
- International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China.,College of Life Sciences, Shihezi University, Shihezi, China
| | - Chuangfu Chen
- International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China.,College of Life Sciences, Shihezi University, Shihezi, China
| |
Collapse
|
12
|
Plichta DR, Somani J, Pichaud M, Wallace ZS, Fernandes AD, Perugino CA, Lähdesmäki H, Stone JH, Vlamakis H, Chung DC, Khanna D, Pillai S, Xavier RJ. Congruent microbiome signatures in fibrosis-prone autoimmune diseases: IgG4-related disease and systemic sclerosis. Genome Med 2021; 13:35. [PMID: 33648559 PMCID: PMC7919092 DOI: 10.1186/s13073-021-00853-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Immunoglobulin G4-related disease (IgG4-RD) and systemic sclerosis (SSc) are rare autoimmune diseases characterized by the presence of CD4+ cytotoxic T cells in the blood as well as inflammation and fibrosis in various organs, but they have no established etiologies. Similar to other autoimmune diseases, the gut microbiome might encode disease-triggering or disease-sustaining factors. METHODS The gut microbiomes from IgG4-RD and SSc patients as well as healthy individuals with no recent antibiotic treatment were studied by metagenomic sequencing of stool DNA. De novo assembly-based taxonomic and functional characterization, followed by association and accessory gene set enrichment analysis, were applied to describe microbiome changes associated with both diseases. RESULTS Microbiomes of IgG4-RD and SSc patients distinctly separated from those of healthy controls: numerous opportunistic pathogenic Clostridium and typically oral Streptococcus species were significantly overabundant, while Alistipes, Bacteroides, and butyrate-producing species were depleted in the two diseases compared to healthy controls. Accessory gene content analysis in these species revealed an enrichment of Th17-activating Eggerthella lenta strains in IgG4-RD and SSc and a preferential colonization of a homocysteine-producing strain of Clostridium bolteae in SSc. Overabundance of the classical mevalonate pathway, hydroxyproline dehydratase, and fibronectin-binding protein in disease microbiomes reflects potential functional differences in host immune recognition and extracellular matrix utilization associated with fibrosis. Strikingly, the majority of species that were differentially abundant in IgG4-RD and SSc compared to controls showed the same directionality in both diseases. Compared with multiple sclerosis and rheumatoid arthritis, the gut microbiomes of IgG4-RD and SSc showed similar signatures; in contrast, the most differentially abundant taxa were not the facultative anaerobes consistently identified in inflammatory bowel diseases, suggesting the microbial signatures of IgG4-RD and SSc do not result from mucosal inflammation and decreased anaerobism. CONCLUSIONS These results provide an initial characterization of gut microbiome ecology in fibrosis-prone IgG4-RD and SSc and reveal microbial functions that offer insights into the pathophysiology of these rare diseases.
Collapse
Affiliation(s)
| | - Juhi Somani
- Department of Computer Science, Aalto University, 02150, Espoo, Finland
| | | | - Zachary S Wallace
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA
- Clinical Epidemiology Program and Rheumatology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ana D Fernandes
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA
| | - Cory A Perugino
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Harri Lähdesmäki
- Department of Computer Science, Aalto University, 02150, Espoo, Finland
| | - John H Stone
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel C Chung
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Cancer Risk Assessment, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dinesh Khanna
- University of Michigan Scleroderma Program, Ann Arbor, MI, USA
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.
| |
Collapse
|
13
|
Abstract
Streptococcus parasanguinis is a dominant isolate of dental plaque and an opportunistic pathogen associated with subacute endocarditis. As the expression of collagen binding proteins (CBPs) could promote the establishment of S. parasanguinis in the host, the functions of three putative CBP-encoding loci, Spaf_0420, Spaf_1570, and Spaf_1573, were analyzed using isogenic mutant strains. It was revealed that S. parasanguinis FW213 bound effectively to fibronectin and type I collagen, but the strain's affinity for laminin and type IV collagen was quite low. By using various deletion derivatives, it was found that these three loci mediated the binding of S. parasanguinis to multiple extracellular matrix molecules, with type I collagen as the common substrate. Derivative strains with a deletion in any of the three loci expressed reduced binding to trypsin-treated swine heart valves. The deletion of these loci also reduced the viable count of S. parasanguinis bacteria within macrophages, especially the loss of Spaf_0420, but only strains with deletions in Spaf_0420 and Spaf_1570 expressed reduced virulence in the Galleria mellonella larva model. The deletion of Spaf_1570 and Spaf_1573 affected mainly the structure, but not the overall mass, of biofilm cultures in a flow cell system. Thus, CBPs are likely to be more critical for the initial colonization of S. parasanguinis on host tissues during the development of endocarditis.IMPORTANCE Bacteria generally can utilize multiple adhesins to establish themselves in the host. We found that Streptococcus parasanguinis, a dominant oral commensal and an opportunistic pathogen for subacute endocarditis, possesses at least three collagen-binding proteins that enable S. parasanguinis to successfully colonize damaged heart tissues and escape innate immune clearance. The binding specificities of these three proteins for extracellular matrix molecules differ, although all three proteins participate in biofilm formation by S. parasanguinis The "multiligand for multisubstrate" feature of these adhesins may explain the high adaptability of this microbe to different tissue sites.
Collapse
|
14
|
The Effects of Silver Sulfadiazine on Methicillin-Resistant Staphylococcus aureus Biofilms. Microorganisms 2020; 8:microorganisms8101551. [PMID: 33050001 PMCID: PMC7600712 DOI: 10.3390/microorganisms8101551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 11/16/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), the most commonly detected drug-resistant microbe in hospitals, adheres to substrates and forms biofilms that are resistant to immunological responses and antimicrobial drugs. Currently, there is a need to develop alternative approaches for treating infections caused by biofilms to prevent delays in wound healing. Silver has long been used as a disinfectant, which is non-specific and has relatively low cytotoxicity. Silver sulfadiazine (SSD) is a chemical complex clinically used for the prevention of wound infections after injury. However, its effects on biofilms are still unclear. In this study, we aimed to analyze the mechanisms underlying SSD action on biofilms formed by MRSA. The antibacterial effects of SSD were a result of silver ions and not sulfadiazine. Ionized silver from SSD in culture media was lower than that from silver nitrate; however, SSD, rather than silver nitrate, eradicated mature biofilms by bacterial killing. In SSD, sulfadiazine selectively bound to biofilms, and silver ions were then liberated. Consequently, the addition of an ion-chelator reduced the bactericidal effects of SSD on biofilms. These results indicate that SSD is an effective compound for the eradication of biofilms; thus, SSD should be used for the removal of biofilms formed on wounds.
Collapse
|
15
|
Speziale P, Pietrocola G. The Multivalent Role of Fibronectin-Binding Proteins A and B (FnBPA and FnBPB) of Staphylococcus aureus in Host Infections. Front Microbiol 2020; 11:2054. [PMID: 32983039 PMCID: PMC7480013 DOI: 10.3389/fmicb.2020.02054] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/05/2020] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus, one of the most important human pathogens, is the causative agent of several infectious diseases including sepsis, pneumonia, osteomyelitis, endocarditis and soft tissue infections. This pathogenicity is due to a multitude of virulence factors including several cell wall-anchored proteins (CWA). CWA proteins have modular structures with distinct domains binding different ligands. The majority of S. aureus strains express two CWA fibronectin (Fn)-binding adhesins FnBPA and FnBPB (Fn-binding proteins A and B), which are encoded by closely related genes. The N-terminus of FnBPA and FnBPB comprises an A domain which binds ligands such as fibrinogen, elastin and plasminogen. The A domain of FnBPB also interacts with histones and this binding results in the neutralization of the antimicrobial activity of these molecules. The C-terminal moiety of these adhesins comprises a long, intrinsically disordered domain composed of 11/10 fibronectin-binding repeats. These repetitive motifs of FnBPs promote invasion of cells that are not usually phagocytic via a mechanism by which they interact with integrin α5β1 through a Fn mediated-bridge. The FnBPA and FnBPB A domains engage in homophilic cell-cell interactions and promote biofilm formation and enhance platelet aggregation. In this review we update the current understanding of the structure and functional properties of FnBPs and emphasize the role they may have in the staphylococcal infections.
Collapse
Affiliation(s)
- Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| |
Collapse
|
16
|
Hewitt OH, Díez-Vives C, Taboada S. Microbial insights from Antarctic and Mediterranean shallow-water bone-eating worms. Polar Biol 2020. [DOI: 10.1007/s00300-020-02731-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractBone-eating worms of the genus Osedax (Annelida, Siboglinidae) form unique holobionts (functional entity comprising host and associated microbiota), highly adapted to inhabit bone tissue of marine vertebrates. These gutless worms have developed nutritional symbioses housing intracellular, horizontally acquired, heterotrophic bacteria hypothesised to harness nutrients from organic compounds, sequestered within the bone. Despite previous efforts, critical mechanisms mediating activity and acquisition of diverse bacterial assemblages remain unclear. Using 16S rRNA amplicon sequencing, we performed detailed taxonomic and predicted functional analyses shedding light on the microbial communities of two shallow-water Osedax species (Osedax deceptionensis and Osedax ‘mediterranea’) from contrasting habitats (Antarctic and Mediterranean Sea), in two tissue types (roots and palps). Comparative assessments between host species revealed distinct microbial assemblages whilst, within host species and body tissue, relative symbiont frequencies retained high variability. We reported relatively high abundances of microbes previously classified as primary endosymbionts, Ribotype 1 (order Oceanospirillales), and diverse likely secondary epibionts warranting further exploration as recurrent Osedax associates. Surprisingly, O. ‘mediterranea’ exhibited relatively low abundance of Oceanospirillales, but increased abundance of other potentially hydrocarbon degrading bacteria from the family Alteromonadaceae. We hypothesise the presence of functionally similar, non-Oceanospirillales primary endosymbionts within O. ‘mediterranea’. Functional metagenomic profiling (using 16S rRNA sequences) predicted broad metabolic capabilities, encompassing relatively large abundances of genes associated with amino acid metabolism. Comparative analyses between host body tissue communities highlighted several genes potentially providing critical functions to the Osedax host or that confer adaptations for intracellular life, housed within bone embedded host root tissues.
Collapse
|
17
|
Mathelié-Guinlet M, Chantraine C, Viela F, Pietrocola G, Speziale P, Dufrêne YF. Nanomechanics of the molecular complex between staphylococcal adhesin SpsD and elastin. NANOSCALE 2020; 12:13996-14003. [PMID: 32578656 DOI: 10.1039/d0nr02745f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Staphylococcus pseudintermedius surface protein SpsD binds to extracellular matrix proteins to invade canine epithelial cells. Using single-molecule experiments, we show that SpsD engages in two modes of interaction with elastin that are tightly controlled by physical stress. Binding is weak (∼100 pN) at low tensile force (i.e. loading rate), but is dramatically enhanced (up to ∼1500 pN) by mechanical tension. Consistent with a "dock, lock, and latch" (DLL) mechanism, this force represents among the highest mechanical strengths known for a non-covalent biological interaction. The transition from weak to strong binding correlates with an increase in molecular stiffness but, surprisingly, with a decrease in molecular extension. This unanticipated mechanical behavior indicates that the adhesin is engaged in two distinct interaction mechanisms. Our results emphasize the crucial role of protein nanomechanics in the adhesion of staphylococci, and illustrate their wide diversity of force-dependent ligand-binding activities. These single-molecule mechanical experiments may contribute to the development of antiadhesion approaches to treat infections caused by S. pseudintermedius and other bacterial pathogens engaged in DLL interactions.
Collapse
Affiliation(s)
- Marion Mathelié-Guinlet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium.
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Staphylococcus aureus continues to be a common pathogen from community-acquired infections and for infections after surgical procedures. A review of the history of this pathogen indicates that it will likely continue to develop new virulence characteristics and that it will continue to develop new patterns of resistance. This presentation addresses the three major areas for surgeons in the future. First, vancomycin is losing its effectiveness against methicillin-resistant S. aureus (MRSA). The future antibiotic choices for treating this pathogen are discussed. Second, vancomycin is losing its effectiveness for prevention of MRSA infections at the surgical site, and another antibiotic choice needs to be developed for prevention of both methicillin-sensitive and methicillin-resistant staphylococci. Third, decolonization of staphylococci from the nasopharynx is discussed commonly in the literature, but valid evidence for this practice is limited. Controlled clinical trials to prevent surgical site infection by decolonization with mupirocin or other agents are needed. In summary, S. aureus will continue to challenge surgeons as an adaptable pathogen that can defy all of our treatment efforts.
Collapse
Affiliation(s)
- Donald E. Fry
- From the Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and the Department of Surgery, University of New Mexico School of Medicine, Albuquerque, New Mexico
| |
Collapse
|
19
|
Fibronectin and Its Role in Human Infective Diseases. Cells 2019; 8:cells8121516. [PMID: 31779172 PMCID: PMC6952806 DOI: 10.3390/cells8121516] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 01/25/2023] Open
Abstract
Fibronectin is a multidomain glycoprotein ubiquitously detected in extracellular fluids and matrices of a variety of animal and human tissues where it functions as a key link between matrices and cells. Fibronectin has also emerged as the target for a large number of microorganisms, particularly bacteria. There are clear indications that the binding of microorganism’ receptors to fibronectin promotes attachment to and infection of host cells. Each bacterium may use different receptors which recognize specific fibronectin domains, mostly the N-terminal domain and the central cell-binding domain. In many cases, fibronectin receptors have actions over and above that of simple adhesion: In fact, adhesion is often the prerequisite for invasion and internalization of microorganisms in the cells of colonized tissues. This review updates the current understanding of fibronectin receptors of several microorganisms with emphasis on their biochemical and structural properties and the role they can play in the onset and progression of host infection diseases. Furthermore, we describe the antigenic profile and discuss the possibility of designing adhesion inhibitors based on the structure of the fibronectin-binding site in the receptor or the receptor-binding site in fibronectin.
Collapse
|
20
|
Chen Q, Xie S, Lou X, Cheng S, Liu X, Zheng W, Zheng Z, Wang H. Biofilm formation and prevalence of adhesion genes among Staphylococcus aureus isolates from different food sources. Microbiologyopen 2019; 9:e00946. [PMID: 31769202 PMCID: PMC6957440 DOI: 10.1002/mbo3.946] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 09/06/2019] [Accepted: 09/19/2019] [Indexed: 11/25/2022] Open
Abstract
To assess biofilm formation ability and identify differences in the prevalence of genes involved in biofilm formation among Staphylococcus aureus strains isolated from different food samples, the ability of biofilm formation among 97 S. aureus strains was evaluated using a colorimetric microtiter plate assay. Thirteen genes encoding microbial surface components recognizing adhesive matrix molecules, and the intracellular adhesion genes were detected by PCR using specific primers. Approximately 72% of the isolates produced biofilms. Among these isolates, 54.64% were weak biofilm producers, while 14.43% and 3.09% produced moderate and strong biofilms, respectively. The icaADBC, clfA/B, cidA, and fib genes were detected in all the S. aureus strains, whereas the bap gene was not present in any of the strains. The occurrence of other adhesin genes varied greatly between biofilm‐producing and nonbiofilm‐producing strains. However, a significant difference was observed between these two groups with respect to the fnbpB, cna, ebps, and sdrC genes. No obvious evidence was found to support the link between PFGE strain typing and the capacity for biofilm formation. Considerable variation in biofilm formation ability was observed among S. aureus strains isolated from food samples. The prevalence of adhesin‐encoding genes also varied greatly within strains. This study highlights the importance of biofilm formation and the adhesins of S. aureus strains in food samples.
Collapse
Affiliation(s)
- Qi Chen
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Sangma Xie
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Xiuqin Lou
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Shi Cheng
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Xiaodong Liu
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Wei Zheng
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Zhibei Zheng
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Haoqiu Wang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
21
|
Chang Q, Abuelaish I, Biber A, Jaber H, Callendrello A, Andam CP, Regev-Yochay G, Hanage WP, On Behalf Of The Picr Study Group. Genomic epidemiology of meticillin-resistant Staphylococcus aureus ST22 widespread in communities of the Gaza Strip, 2009. ACTA ACUST UNITED AC 2019; 23. [PMID: 30153881 PMCID: PMC6113745 DOI: 10.2807/1560-7917.es.2018.23.34.1700592] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Remarkably high carriage prevalence of a community-associated meticillin-resistant Staphylococcus aureus (MRSA) strain of sequence type (ST) 22 in the Gaza strip was reported in 2012. This strain is linked to the pandemic hospital-associated EMRSA-15. The origin and evolutionary history of ST22 in Gaza communities and the genomic elements contributing to its widespread predominance are unknown. Methods: We generated high-quality draft genomes of 61 ST22 isolates from Gaza communities and, along with 175 ST22 genomes from global sources, reconstructed the ST22 phylogeny and examined genotypes unique to the Gaza isolates. Results: The Gaza isolates do not exhibit a close relationship with hospital-associated ST22 isolates, but rather with a basal population from which EMRSA-15 emerged. There were two separate resistance acquisitions by the same MSSA lineage, followed by diversification of other genetic determinants. Nearly all isolates in the two distinct clades, one characterised by staphylococcal cassette chromosome mec (SCCmec) IVa and the other by SCCmec V and MSSA isolates, contain the toxic shock syndrome toxin-1 gene. Discussion: The genomic diversity of Gaza ST22 isolates is not consistent with recent emergence in the region. The results indicate that two divergent Gaza clones evolved separately from susceptible isolates. Researchers should not assume that isolates identified as ST22 in the community are examples of EMRSA-15 that have escaped their healthcare roots. Future surveillance of MRSA is essential to the understanding of ST22 evolutionary dynamics and to aid efforts to slow the further spread of this lineage.
Collapse
Affiliation(s)
- Qiuzhi Chang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Izzeldin Abuelaish
- Global Health Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Asaf Biber
- Infectious Disease Unit, Sheba Medical Center, affiliated to the Sackler School of Medicine, Tel Aviv University, Ramat Gan, Israel
| | - Hanaa Jaber
- Infectious Disease Unit, Sheba Medical Center, affiliated to the Sackler School of Medicine, Tel Aviv University, Ramat Gan, Israel
| | - Alanna Callendrello
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Cheryl P Andam
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Gili Regev-Yochay
- These authors contributed equally.,Infectious Disease Epidemiology Section, the Gertner Institute for Epidemiology and Health Policy Research, Ramat Gan, Israel.,Infectious Disease Unit, Sheba Medical Center, affiliated to the Sackler School of Medicine, Tel Aviv University, Ramat Gan, Israel
| | - William P Hanage
- These authors contributed equally.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, United States
| | - On Behalf Of The Picr Study Group
- These authors contributed equally.,Infectious Disease Epidemiology Section, the Gertner Institute for Epidemiology and Health Policy Research, Ramat Gan, Israel.,Infectious Disease Unit, Sheba Medical Center, affiliated to the Sackler School of Medicine, Tel Aviv University, Ramat Gan, Israel.,Global Health Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, United States
| |
Collapse
|
22
|
Inhibitory effects of polysorbate 80 on MRSA biofilm formed on different substrates including dermal tissue. Sci Rep 2019; 9:3128. [PMID: 30816342 PMCID: PMC6395670 DOI: 10.1038/s41598-019-39997-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/04/2019] [Indexed: 12/04/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) forms biofilms on necrotic tissues and medical devices, and causes persistent infections. Surfactants act on biofilms, but their mode of action is still unknown. If used in the clinic, cytotoxicity in tissues should be minimized. In this study, we investigated the inhibitory effect of four different surfactants on MRSA biofilm formation, and found that a nonionic surfactant, polysorbate 80 (PS80), was the most suitable. The biofilm inhibitory effects resulted from the inhibition of bacterial adhesion to substrates rather than biofilm disruption, and the effective dose was less cytotoxic for 3T3 fibroblasts. However, the effects were substrate-dependent: positive for plastic, silicon, and dermal tissues, but negative for stainless-steel. These results indicate that PS80 is effective for prevention of biofilms formed by MRSA on tissues and foreign bodies. Therefore, PS80 could be used in medical practice as a washing solution for wounds and/or pretreatment of indwelling catheters.
Collapse
|
23
|
Pietrocola G, Nobile G, Alfeo MJ, Foster TJ, Geoghegan JA, De Filippis V, Speziale P. Fibronectin-binding protein B (FnBPB) from Staphylococcus aureus protects against the antimicrobial activity of histones. J Biol Chem 2019; 294:3588-3602. [PMID: 30622139 DOI: 10.1074/jbc.ra118.005707] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/17/2018] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterium that can cause both superficial and deep-seated infections. Histones released by neutrophils kill bacteria by binding to the bacterial cell surface and causing membrane damage. We postulated that cell wall-anchored proteins protect S. aureus from the bactericidal effects of histones by binding to and sequestering histones away from the cell envelope. Here, we focused on S. aureus strain LAC and by using an array of biochemical assays, including surface plasmon resonance and ELISA, discovered that fibronectin-binding protein B (FnBPB) is the main histone receptor. FnBPB bound all types of histones, but histone H3 displayed the highest affinity and bactericidal activity and was therefore investigated further. H3 bound specifically to the A domain of recombinant FnBPB with a KD of 86 nm, ∼20-fold lower than that for fibrinogen. Binding apparently occurred by the same mechanism by which FnBPB binds to fibrinogen, because FnBPB variants defective in fibrinogen binding also did not bind H3. An FnBPB-deletion mutant of S. aureus LAC bound less H3 and was more susceptible to its bactericidal activity and to neutrophil extracellular traps, whereas an FnBPB-overexpressing mutant bound more H3 and was more resistant than the WT. FnBPB bound simultaneously to H3 and plasminogen, which after activation by tissue plasminogen activator cleaved the bound histone. We conclude that FnBPB provides a dual immune-evasion function that captures histones and prevents them from reaching the bacterial membrane and simultaneously binds plasminogen, thereby promoting its conversion to plasmin to destroy the bound histone.
Collapse
Affiliation(s)
- Giampiero Pietrocola
- From the Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy,
| | - Giulia Nobile
- From the Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy
| | - Mariangela J Alfeo
- From the Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy
| | - Timothy J Foster
- the Microbiology Department, Trinity College Dublin, Dublin 2, Ireland
| | - Joan A Geoghegan
- the Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin, Dublin 2, Ireland
| | - Vincenzo De Filippis
- the Laboratory of Protein Chemistry and Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 36131 Padova, Italy, and
| | - Pietro Speziale
- From the Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy, .,the Department of Industrial and Information Engineering, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
24
|
Watanabe S, Aiba Y, Tan XE, Li FY, Boonsiri T, Thitiananpakorn K, Cui B, Sato'o Y, Kiga K, Sasahara T, Cui L. Complete genome sequencing of three human clinical isolates of Staphylococcus caprae reveals virulence factors similar to those of S. epidermidis and S. capitis. BMC Genomics 2018; 19:810. [PMID: 30409159 PMCID: PMC6225691 DOI: 10.1186/s12864-018-5185-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022] Open
Abstract
Background Staphylococcus caprae is an animal-associated bacterium regarded as part of goats’ microflora. Recently, S. caprae has been reported to cause human nosocomial infections such as bacteremia and bone and joint infections. However, the mechanisms responsible for the development of nosocomial infections remain largely unknown. Moreover, the complete genome sequence of S. caprae has not been determined. Results We determined the complete genome sequences of three methicillin-resistant S. caprae strains isolated from humans and compared these sequences with the genomes of S. epidermidis and S. capitis, both of which are closely related to S. caprae and are inhabitants of human skin capable of causing opportunistic infections. The genomes showed that S. caprae JMUB145, JMUB590, and JMUB898 strains contained circular chromosomes of 2,618,380, 2,629,173, and 2,598,513 bp, respectively. JMUB145 carried type V SCCmec, while JMUB590 and JMUB898 had type IVa SCCmec. A genome-wide phylogenetic SNP tree constructed using 83 complete genome sequences of 24 Staphylococcus species and 2 S. caprae draft genome sequences confirmed that S. caprae is most closely related to S. epidermidis and S. capitis. Comparative complete genome analysis of eight S. epidermidis, three S. capitis and three S. caprae strains revealed that they shared similar virulence factors represented by biofilm formation genes. These factors include wall teichoic acid synthesis genes, poly-gamma-DL-glutamic acid capsule synthesis genes, and other genes encoding nonproteinaceous adhesins. The 17 proteinases/adhesins and extracellular proteins known to be associated with biofilm formation in S. epidermidis were also conserved in these three species, and their biofilm formation could be detected in vitro. Moreover, two virulence-associated gene clusters, the type VII secretion system and capsular polysaccharide biosynthesis gene clusters, identified in S. aureus were present in S. caprae but not in S. epidermidis and S. capitis genomes. Conclusion The complete genome sequences of three methicillin-resistant S. caprae isolates from humans were determined for the first time. Comparative genome analysis revealed that S. caprae is closely related to S. epidermidis and S. capitis at the species level, especially in the ability to form biofilms, which may lead to increased virulence during the development of S. caprae infections. Electronic supplementary material The online version of this article (10.1186/s12864-018-5185-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Yoshifumi Aiba
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Xin-Ee Tan
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Feng-Yu Li
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Tanit Boonsiri
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Kanate Thitiananpakorn
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Bintao Cui
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Yusuke Sato'o
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Kotaro Kiga
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Teppei Sasahara
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan.
| |
Collapse
|
25
|
Stanborough T, Suryadinata R, Fegan N, Powell SM, Tamplin M, Nuttall SD, Chandry PS. Characterisation of the Brochothrix thermosphacta sortase A enzyme. FEMS Microbiol Lett 2018; 365:5056718. [PMID: 30052925 DOI: 10.1093/femsle/fny184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022] Open
Abstract
Gram-positive bacteria utilise class A sortases to coat the surface of their cells with a diversity of proteins that facilitate interactions with their environment and play fundamental roles in cell physiology and virulence. A putative sortase A gene was identified in the genome of the poorly studied meat spoilage bacterium Brochothrix thermosphacta. To understand how this bacterium mediates interactions with its environment, an N-terminal truncated, His-tagged variant of this protein (His6-BtSrtA) was expressed and purified. Catalytic activity of recombinant His6-BtSrtA was investigated, including sorting motif recognition of target proteins and bioconjugation activity. Further, the B. thermosphacta genome was examined for the presence of sortase A (SrtA) protein substrates. His6-BtSrtA readily formed intermediate complexes with LPXTG-tagged proteins. Although the reaction was inefficient, nucleophilic attack of the resultant thioacyl intermediates by tri-glycine was observed. Genome examination identified 11 potential SrtA substrates, two of which contained protein domains associated with adherence of pathogens to host extracellular matrix proteins and cells, suggesting the B. thermosphacta SrtA may be indirectly involved in its attachment to meat surfaces. Thus, further work in this area could provide crucial insight into molecular mechanisms involved in the colonisation of meat by B. thermosphacta.
Collapse
Affiliation(s)
- Tamsyn Stanborough
- CSIRO Agriculture and Food, Werribee, VIC 3030, Australia.,CSIRO Manufacturing, Parkville, VIC 3030, Australia
| | | | - Narelle Fegan
- CSIRO Agriculture and Food, Werribee, VIC 3030, Australia
| | - Shane M Powell
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| | - Mark Tamplin
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| | | | | |
Collapse
|
26
|
Human Immunoglobulin G Cannot Inhibit Fibrinogen Binding by the Genetically Diverse A Domain of Staphylococcus aureus Fibronectin-Binding Protein A. mSphere 2018; 3:mSphere00590-17. [PMID: 29564394 PMCID: PMC5853482 DOI: 10.1128/msphere.00590-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/14/2018] [Indexed: 11/20/2022] Open
Abstract
The fibronectin-binding protein A (FnBPA) is a cell surface-associated protein of Staphylococcus aureus which mediates adherence to the host extracellular matrix and is important for bacterial virulence. Previously, substantial sequence diversity was found among strains in the fibrinogen-binding A domain of this protein, and 7 different isotypes were described. The effect of this sequence diversity on the human antibody response, in terms of both antibody production and antibody function, remains unclear. In this study, we identify five different FnBPA A domain isotypes based on the sequence results of 22 clinical S. aureus isolates, obtained from the same number of patients suffering from bacteremia. Using a bead-based Luminex technique, we measure the patients' total immunoglobulin G (IgG) against the 7 FnBPA isotypes at the onset and during the time course of bacteremia (median of 10 serum samples per patient over a median of 35 days). A significant increase in IgG against the FnBPA A domain, including the isotype carried by the infecting strain, is observed in only three out of 22 patients (14%) after the onset of bacteremia. Using a Luminex-based FnBPA-fibrinogen-binding assay, we find that preincubation of recombinant FnBPA isotypes with IgG from diverse patients does not interfere with binding to fibrinogen. This observation is confirmed using an alternative Luminex-based assay and enzyme-linked immunosorbent assay (ELISA). IMPORTANCE Despite the many in vitro and murine in vivo studies involving FnBPA, the actual presence of this virulence factor during human infection is less well established. Furthermore, it is currently unknown to what extent sequence variation in such a virulence factor affects the human antibody response and the ability of antibodies to interfere with FnBPA function. This study sheds new light on these issues. First, the uniform presence of a patient's IgG against FnBPA indicates the presence and importance of this virulence factor during S. aureus pathogenesis. Second, the absence of an increase in antibody production in most patients following bacteremia indicates the complexity of S. aureus-host interactions, possibly involving immune evasion or lack of expression of FnBPA during invasive infection. Finally, we provide new insights into the inability of human antibodies to interfere with FnBPA-fibrinogen binding. These observations should be taken into account during the development of novel vaccination approaches.
Collapse
|
27
|
Solanki V, Tiwari M, Tiwari V. Host-bacteria interaction and adhesin study for development of therapeutics. Int J Biol Macromol 2018; 112:54-64. [PMID: 29414732 DOI: 10.1016/j.ijbiomac.2018.01.151] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 12/15/2022]
Abstract
Host-pathogen interaction is one of the most important areas of study to understand the adhesion of the pathogen to the host organisms. To adhere on the host cell surface, bacteria assemble the diverse adhesive structures on its surface, which play a foremost role in targeting to the host cell. We have highlighted different bacterial adhesins which are either protein mediated or glycan mediated. The present article listed examples of different bacterial adhesin proteins involved in the interactions with their host, types and subtypes of the fimbriae and non-fimbriae bacterial adhesins. Different bacterial surface adhesin subunits interact with host via different host surface biomolecules. We have also discussed the interactome of some of the pathogens with their host. Therefore, the present study will help researchers to have a detailed understanding of different interacting bacterial adhesins and henceforth, develop new therapies, adhesin specific antibodies and vaccines, which can effectively control pathogenicity of the pathogens.
Collapse
Affiliation(s)
- Vandana Solanki
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India.
| |
Collapse
|
28
|
Ma J, Wei Y, Zhang L, Wang X, Yao D, Liu D, Liu W, Yu S, Yu Y, Wu Z, Yu L, Zhu Z, Cui Y. Identification of a novel linear B-cell epitope as a vaccine candidate in the N2N3 subdomain of Staphylococcus aureus fibronectin-binding protein A. J Med Microbiol 2018; 67:423-431. [PMID: 29458526 DOI: 10.1099/jmm.0.000633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To explore an epitope-based vaccine against Staphylococcus aureus, we screened the epitopes in the N2N3 subdomain of fibronectin-binding protein A (FnBPA) as a surface component of S. aureus. METHODOLOGY We expressed N2N3 proteins and prepared monoclonal antibodies (mAbs) against N2N3 by the hybridoma technique, before screening the B-cell epitopes in N2N3 using a phage-displayed random 12-mer peptide library with these mAbs against N2N3. Finally, we analysed the characters of the screened epitopes using immunofluorescence and an S. aureus infection assay. RESULTS In this paper, we identified a linear B-cell epitope in N2N3 through screening a phage-displayed peptide library with a 3C3 mAb against the N2N3. The 3C3 mAb recognized the 159IETFNKANNRFSH171 sequence of the N2N3 subdomain. Subsequently, site-directed mutagenic analysis demonstrated that residues F162, K164, N167, R168 and F169 formed the core of 159IETFNKANNRFSH171, and this core motif was the minimal determinant of the B-cell epitope recognized by the 3C3 mAb. The epitope 159IETFNKANNRFSH171 showed high homology among different S. aureus strains. Moreover, this epitope was exposed on the surface of the S. aureus by using an enzyme-linked immunosorbent assay (ELISA) assay and an indirect immunofluorescence assay. As expected, the epitope peptide evoked a protective immune response against S. aureus infection in immunized mice. CONCLUSION We identified a novel linear B-cell epitope, 159IETFNKANNRFSH171, in the N2N3 subdomain of S. aureus fibronectin-binding protein A that is recognized by 3C3 mAb, which will contribute to the further study of an epitope-based vaccine candidate against S. aureus.
Collapse
Affiliation(s)
- Jinzhu Ma
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Yuhua Wei
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Limeng Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Xintong Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Di Yao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Daolong Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Wei Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Simiao Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Yongzhong Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Zhijun Wu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Liquan Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Zhanbo Zhu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Yudong Cui
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| |
Collapse
|
29
|
Campoccia D, Montanaro L, Ravaioli S, Cangini I, Speziale P, Arciola CR. Description of a New Group of Variants of the Staphylococcus Aureus Elastin-Binding Protein that Lacks an Entire DNA Segment of 180 bp. Int J Artif Organs 2018; 32:621-9. [DOI: 10.1177/039139880903200911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The elastin-binding protein (EbpS) is a microbial surface component recognizing adhesive matrix molecule (MSCRAMM) found in Staphylococcus aureus that mediates bacterial cell binding to soluble elastin and tropoelastin. In scientific literature it is well established that the gene encoding for the elastin-binding protein (ebpS) is present in the vast majority of Staphylococcus aureus clinical isolates. The present study aimed at investigating a group of new variant forms of ebpS gene identified in S. aureus clinical strains isolated from implant-related orthopedic infections. A PCR screening for the ebpS gene, conducted on over two hundred S. aureus clinical isolates from implant-related infections revealed the detection of six strains exhibiting an altered amplicon size, shorter than expected. In order to elucidate the sequence changes present in these gene variants, the trait comprised between the primers was analyzed in all six isolates bearing the modification and in four isolates exhibiting the regular amplicon size. A similar form of the ebpS gene, lacking a DNA trait of 180 bp, was confirmed in all six isolates independently of their clonal origin. Interestingly, only three of these isolates, all with type IV polymorphism of the accessory genes regulator (agr) locus, showed exactly the same sequence and, thus, the same pattern of point mutations with respect to reference strains. From nucleotide translation, the corresponding encoded protein was found to lack an entire peptide segment of 60 amino acids. From nucleotide sequence translation, this modification was found to implicate the disappearance of an entire hydrophobic domain, whose functional significance needs to be further investigated.
Collapse
Affiliation(s)
- Davide Campoccia
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna - Italy
| | - Lucio Montanaro
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna - Italy
- Department of Experimental Pathology, University of Bologna, Bologna - Italy
| | - Stefano Ravaioli
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna - Italy
- Department of Experimental Pathology, University of Bologna, Bologna - Italy
| | - Ilaria Cangini
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna - Italy
- Department of Experimental Pathology, University of Bologna, Bologna - Italy
| | - Pietro Speziale
- Department of Biochemistry, University of Pavia, Pavia - Italy
| | - Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna - Italy
- Department of Experimental Pathology, University of Bologna, Bologna - Italy
| |
Collapse
|
30
|
Arciola CR, Speziale P, Montanaro L. Perspectives on DNA Vaccines. Targeting Staphylococcal Adhesins to Prevent Implant Infections. Int J Artif Organs 2018; 32:635-41. [DOI: 10.1177/039139880903200913] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA vaccines consist of a plasmid DNA genetically engineered to produce one or more proteins able to elicit protective immune responses against virulence factors of infectious pathogens. Once introduced into the cells of the host, a DNA vaccine induces a high production of antigens by the endogenous presence of the peptide codifying gene; improves antigen processing and presentation; may be able to simultaneously co-express multiple antigenic molecules; and, lastly, switches on both humoral and cellular immune responses. In this mini-review, we underscore the advantageous characteristics of DNA vaccines compared with traditional ones and provide summaries of some of the more recent studies on them, mainly focusing the possibility of their use in targeting the staphylococcal adhesins that play a key role in the first adhesive phase of implant infections.
Collapse
Affiliation(s)
- Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopedic Institute, Bologna - Italy
- Experimental Pathology Department, University of Bologna, Bologna - Italy
| | - Pietro Speziale
- Department of Biochemistry, University of Pavia, Pavia - Italy
| | - Lucio Montanaro
- Research Unit on Implant Infections, Rizzoli Orthopedic Institute, Bologna - Italy
- Experimental Pathology Department, University of Bologna, Bologna - Italy
| |
Collapse
|
31
|
Josse J, Laurent F, Diot A. Staphylococcal Adhesion and Host Cell Invasion: Fibronectin-Binding and Other Mechanisms. Front Microbiol 2017; 8:2433. [PMID: 29259603 PMCID: PMC5723312 DOI: 10.3389/fmicb.2017.02433] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/23/2017] [Indexed: 02/02/2023] Open
Abstract
Opportunistic bacteria from the genus Staphylococcus can cause life-threatening infections such as pneumonia, endocarditis, bone and joint infections, and sepsis. This pathogenicity is closely related to their capacity to bind directly to the extracellular matrix or to host cells. Adhesion is indeed the first step in the formation of biofilm or the invasion of host cells, which protect the bacteria from the host immune system and facilitate chronic infection. Adhesion relies on the expression of a repertoire of surface proteins called adhesins, notably microbial surface components recognizing adhesive matrix molecules. In this short review, we discuss the main pathway (FnBP-Fn-α5β1 integrin), as well as alternatives, through which Staphylococcus aureus adheres to and then invades non-professional phagocytic cells. We then examine the corresponding mechanisms for coagulase negative staphylococci. There is currently a little understanding of the molecular mechanisms that lead to internalization. Filling this gap in the literature would therefore be an important step toward limiting the duration of staphylococci infections in clinical practice.
Collapse
Affiliation(s)
- Jérôme Josse
- International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, ENS Lyon, Lyon 1 University, Lyon, France
| | - Frédéric Laurent
- International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, ENS Lyon, Lyon 1 University, Lyon, France.,Institute for Infectious Agents, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France.,French National Reference Centre for Staphylococci, Lyon, France.,Microbiology-Mycology Department, Institut des Sciences Pharmaceutiques et Biologiques de Lyon, Lyon, France
| | - Alan Diot
- International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, ENS Lyon, Lyon 1 University, Lyon, France
| |
Collapse
|
32
|
O'Gara JP. Into the storm: Chasing the opportunistic pathogen Staphylococcus aureus from skin colonisation to life-threatening infections. Environ Microbiol 2017. [PMID: 28631399 DOI: 10.1111/1462-2920.13833] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Colonisation of the human skin by Staphylococcus aureus is a precursor for a variety of infections ranging from boils to sepsis and pneumonia. The rapid emergence of methicillin-resistant S. aureus following the clinical introduction of this antimicrobial drug and reports of resistance to all currently used anti-staphylococcal drugs has added to its formidable reputation. S. aureus survival on the skin and in vivo virulence is underpinned by a remarkable environmental adaptability, made possible by highly orchestrated regulation of gene expression and a capacity to undertake genome remodelling. Depending on the ecological or infection niche, controlled expression of a variety of adhesins can be initiated to facilitate adherence to extracellular matrix proteins, survival against desiccation or biofilm accumulation on implanted medical devices and host tissue. These adherence mechanisms complement toxin and enzyme production, immune evasion strategies, and antibiotic resistance and tolerance to collectively thwart efforts to develop reliable antimicrobial drug regimens and an effective S. aureus vaccine.
Collapse
Affiliation(s)
- James P O'Gara
- Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
33
|
Abstract
The staphylococci comprise a diverse genus of Gram-positive, nonmotile commensal organisms that inhabit the skin and mucous membranes of humans and other mammals. In general, staphylococci are benign members of the natural flora, but many species have the capacity to be opportunistic pathogens, mainly infecting individuals who have medical device implants or are otherwise immunocompromised. Staphylococcus aureus and Staphylococcus epidermidis are major sources of hospital-acquired infections and are the most common causes of surgical site infections and medical device-associated bloodstream infections. The ability of staphylococci to form biofilms in vivo makes them highly resistant to chemotherapeutics and leads to chronic diseases. These biofilm infections include osteomyelitis, endocarditis, medical device infections, and persistence in the cystic fibrosis lung. Here, we provide a comprehensive analysis of our current understanding of staphylococcal biofilm formation, with an emphasis on adhesins and regulation, while also addressing how staphylococcal biofilms interact with the immune system. On the whole, this review will provide a thorough picture of biofilm formation of the staphylococcus genus and how this mode of growth impacts the host.
Collapse
|
34
|
Murai M, Moriyama H, Hata E, Takeuchi F, Amemura-Maekawa J. Variation and association of fibronectin-binding protein genes fnbA and fnbB in Staphylococcus aureus Japanese isolates. Microbiol Immunol 2017; 60:312-25. [PMID: 26990092 DOI: 10.1111/1348-0421.12377] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/28/2016] [Accepted: 03/10/2016] [Indexed: 01/02/2023]
Abstract
Fibronectin-binding proteins A and B (FnBPA and FnBPB) mediate adhesion of Staphylococcus aureus to fibrinogen, elastin and fibronectin. FnBPA and FnBPB are encoded by two closely linked genes, fnbA and fnbB, respectively. With the exception of the N-terminal regions, the amino acid sequences of FnBPA and FnBPB are highly conserved. To investigate the genetics and evolution of fnbA and fnbB, the most variable regions, which code for the 67th amino acids of the A through B regions (A67-B) of fnbA and fnbB, were focused upon. Eighty isolates of S. aureus in Japan were sequenced and 19 and 18 types in fnbA and fnbB, respectively, identified. Although the phylogeny of fnbA and fnbB were found to be quite different, each fnbA type connected with a specific fnbB type, indicating that fnbA and fnbB mutate independently, whereas the combination of both genes after recombination is stable. Hence those fnbA-fnbB combinations were defined as FnBP sequence types (FnSTs). Representative isolates of each FnST were assigned distinct STs by multilocus sequence typing, suggesting correspondence of FnST with genome lineage. Linkage disequilibrium (LD) analysis of the A67-B region revealed that subdomains N2, N3 and FnBR1 form a LD block in fnbA, whereas N2 and N3 form two independent LD blocks in fnbB. N2-N3 three-dimensional structural models indicated that not only the variable amino acid residues, but also well-conserved amino acid residues between FnBPA and FnBPB, are located on the surface of the protein. These results highlight a molecular process of the FnBP that has evolved by mingled mutation and recombination with retention of functions.
Collapse
Affiliation(s)
- Miyo Murai
- Department of Health Sciences, Saitama Prefectural University,820, Sannomiya, Koshigaya-shi, Saitama 343-8540
| | - Hideaki Moriyama
- School of Biological Sciences, University of Nebraska-Lincoln, 243 Manter Hall, Lincoln, Nebraska 68588, USA
| | - Eiji Hata
- Dairy Hygiene Research Division, National Institute of Animal Health, 4 Hitsujigaoka, Toyohira-ku, Sapporo, Hokkaido 062-0045
| | - Fumihiko Takeuchi
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640
| | - Junko Amemura-Maekawa
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
35
|
The Spl Serine Proteases Modulate Staphylococcus aureus Protein Production and Virulence in a Rabbit Model of Pneumonia. mSphere 2016; 1:mSphere00208-16. [PMID: 27747296 PMCID: PMC5061998 DOI: 10.1128/msphere.00208-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/23/2016] [Indexed: 01/09/2023] Open
Abstract
Staphylococcus aureus is a versatile human pathogen that produces an array of virulence factors, including several proteases. Of these, six proteases called the Spls are the least characterized. Previous evidence suggests that the Spls are expressed during human infection; however, their function is unknown. Our study shows that the Spls are required for S. aureus to cause disseminated lung damage during pneumonia. Further, we present the first example of a human protein cut by an Spl protease. Although the Spls were predicted not to cut staphylococcal proteins, we also show that an spl mutant has altered abundance of both secreted and surface-associated proteins. This work provides novel insight into the function of Spls during infection and their potential ability to degrade both staphylococcal and human proteins. The Spl proteases are a group of six serine proteases that are encoded on the νSaβ pathogenicity island and are unique to Staphylococcus aureus. Despite their interesting biochemistry, their biological substrates and functions in virulence have been difficult to elucidate. We found that an spl operon mutant of the community-associated methicillin-resistant S. aureus USA300 strain LAC induced localized lung damage in a rabbit model of pneumonia, characterized by bronchopneumonia observed histologically. Disease in the mutant-infected rabbits was restricted in distribution compared to that in wild-type USA300-infected rabbits. We also found that SplA is able to cleave the mucin 16 glycoprotein from the surface of the CalU-3 lung cell line, suggesting a possible mechanism for wild-type USA300 spreading pneumonia to both lungs. Investigation of the secreted and surface proteomes of wild-type USA300 and the spl mutant revealed multiple alterations in metabolic proteins and virulence factors. This study demonstrates that the Spls modulate S. aureus physiology and virulence, identifies a human target of SplA, and suggests potential S. aureus targets of the Spl proteases. IMPORTANCEStaphylococcus aureus is a versatile human pathogen that produces an array of virulence factors, including several proteases. Of these, six proteases called the Spls are the least characterized. Previous evidence suggests that the Spls are expressed during human infection; however, their function is unknown. Our study shows that the Spls are required for S. aureus to cause disseminated lung damage during pneumonia. Further, we present the first example of a human protein cut by an Spl protease. Although the Spls were predicted not to cut staphylococcal proteins, we also show that an spl mutant has altered abundance of both secreted and surface-associated proteins. This work provides novel insight into the function of Spls during infection and their potential ability to degrade both staphylococcal and human proteins.
Collapse
|
36
|
Foster TJ. The remarkably multifunctional fibronectin binding proteins of Staphylococcus aureus. Eur J Clin Microbiol Infect Dis 2016; 35:1923-1931. [PMID: 27604831 DOI: 10.1007/s10096-016-2763-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/16/2016] [Indexed: 12/01/2022]
Abstract
Staphylococcus aureus expresses two distinct but closely related multifunctional cell wall-anchored (CWA) proteins that bind to the host glycoprotein fibronectin. The fibronectin binding proteins FnBPA and FnBPB comprise two distinct domains. The C-terminal domain comprises a tandem array of repeats that bind to the N-terminal type I modules of fibronectin by the tandem β-zipper mechanism. This causes allosteric activation of a cryptic integrin binding domain, allowing fibronectin to act as a bridge between bacterial cells and the α5β1 integrin on host cells, triggering bacterial uptake by endocytosis. Variants of FnBPA with polymorphisms in fibronectin binding repeats (FnBRs) that increase affinity for the ligand are associated with strains that infect cardiac devices and cause endocarditis, suggesting that binding affinity is particularly important in intravascular infections. The N-terminal A domains of FnBPA and FnBPB have diverged into seven antigenically distinct isoforms. Each binds fibrinogen by the 'dock, lock and latch' mechanism characteristic of clumping factor A. However, FnBPs can also bind to elastin, which is probably important in adhesion to connective tissue in vivo. In addition, they can capture plasminogen from plasma, which can be activated to plasmin by host and bacterial plasminogen activators. The bacterial cells become armed with a host protease which destroys opsonins, contributing to immune evasion and promotes spreading during skin infection. Finally, some methicillin-resistant S. aureus (MRSA) strains form biofilm that depends on the elaboration of FnBPs rather than polysaccharide. The A domains of the FnBPs can interact homophilically, allowing cells to bind together as the biofilm accumulates.
Collapse
Affiliation(s)
- T J Foster
- Microbiology Department, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
37
|
Crosby HA, Kwiecinski J, Horswill AR. Staphylococcus aureus Aggregation and Coagulation Mechanisms, and Their Function in Host-Pathogen Interactions. ADVANCES IN APPLIED MICROBIOLOGY 2016; 96:1-41. [PMID: 27565579 DOI: 10.1016/bs.aambs.2016.07.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human commensal bacterium Staphylococcus aureus can cause a wide range of infections ranging from skin and soft tissue infections to invasive diseases like septicemia, endocarditis, and pneumonia. Muticellular organization almost certainly contributes to S. aureus pathogenesis mechanisms. While there has been considerable focus on biofilm formation and its role in colonizing prosthetic joints and indwelling devices, less attention has been paid to nonsurface-attached group behavior like aggregation and clumping. S. aureus is unique in its ability to coagulate blood, and it also produces multiple fibrinogen-binding proteins that facilitate clumping. Formation of clumps, which are large, tightly packed groups of cells held together by fibrin(ogen), has been demonstrated to be important for S. aureus virulence and immune evasion. Clumps of cells are able to avoid detection by the host's immune system due to a fibrin(ogen) coat that acts as a shield, and the size of the clumps facilitates evasion of phagocytosis. In addition, clumping could be an important early step in establishing infections that involve tight clusters of cells embedded in host matrix proteins, such as soft tissue abscesses and endocarditis. In this review, we discuss clumping mechanisms and regulation, as well as what is known about how clumping contributes to immune evasion.
Collapse
Affiliation(s)
- H A Crosby
- University of Iowa, Iowa City, IA, United States
| | - J Kwiecinski
- University of Iowa, Iowa City, IA, United States
| | - A R Horswill
- University of Iowa, Iowa City, IA, United States
| |
Collapse
|
38
|
Pietrocola G, Nobile G, Gianotti V, Zapotoczna M, Foster TJ, Geoghegan JA, Speziale P. Molecular Interactions of Human Plasminogen with Fibronectin-binding Protein B (FnBPB), a Fibrinogen/Fibronectin-binding Protein from Staphylococcus aureus. J Biol Chem 2016; 291:18148-62. [PMID: 27387503 DOI: 10.1074/jbc.m116.731125] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus is a commensal bacterium that has the ability to cause superficial and deep-seated infections. Like several other invasive pathogens, S. aureus can capture plasminogen from the human host where it can be converted to plasmin by host plasminogen activators or by endogenously expressed staphylokinase. This study demonstrates that sortase-anchored cell wall-associated proteins are responsible for capturing the bulk of bound plasminogen. Two cell wall-associated proteins, the fibrinogen- and fibronectin-binding proteins A and B, were found to bind plasminogen, and one of them, FnBPB, was studied in detail. Plasminogen captured on the surface of S. aureus- or Lactococcus lactis-expressing FnBPB could be activated to the potent serine protease plasmin by staphylokinase and tissue plasminogen activator. Plasminogen bound to recombinant FnBPB with a KD of 0.532 μm as determined by surface plasmon resonance. Plasminogen binding did not to occur by the same mechanism through which FnBPB binds to fibrinogen. Indeed, FnBPB could bind both ligands simultaneously indicating that their binding sites do not overlap. The N3 subdomain of FnBPB contains the full plasminogen-binding site, and this includes, at least in part, two conserved patches of surface-located lysine residues that were recognized by kringle 4 of the host protein.
Collapse
Affiliation(s)
- Giampiero Pietrocola
- From the Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy and
| | - Giulia Nobile
- From the Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy and
| | - Valentina Gianotti
- From the Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy and
| | - Marta Zapotoczna
- the Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, University of Dublin, Dublin 2, Ireland
| | - Timothy J Foster
- the Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, University of Dublin, Dublin 2, Ireland
| | - Joan A Geoghegan
- the Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, University of Dublin, Dublin 2, Ireland
| | - Pietro Speziale
- From the Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy and
| |
Collapse
|
39
|
Which are important targets in development of S. aureus mastitis vaccine? Res Vet Sci 2015; 100:88-99. [DOI: 10.1016/j.rvsc.2015.03.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/04/2015] [Accepted: 03/14/2015] [Indexed: 12/21/2022]
|
40
|
Hildebrandt JP. Pore-forming virulence factors of Staphylococcus aureus destabilize epithelial barriers-effects of alpha-toxin in the early phases of airway infection. AIMS Microbiol 2015. [DOI: 10.3934/microbiol.2015.1.11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
41
|
Durante-Mangoni E, Molaro R, Iossa D. The role of hemostasis in infective endocarditis. Curr Infect Dis Rep 2014; 16:435. [PMID: 25230604 DOI: 10.1007/s11908-014-0435-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Infective endocarditis (IE) is a thromboinflammatory disease of the endocardium, with pathophysiology mostly the result of the interplay between microorganisms and modifiers of the hemostasis system. In this setting, the evidence gathered so far warrants a more systematic appraisal. In this review article, experimental and clinical data on the role of hemostasis in IE are summarized. Starting from the current pathogenetic model of IE, we discuss the dual role of platelets in this condition, the microbial interaction with the hemostasis system, also describing nonspecific hemostasis changes during sepsis. We finally propose our hypothesis of thrombophilia as a possible trigger of IE, highlighting the challenges that the study of hemostasis in IE presents. The role of hemostasis in IE appears to be an exciting field of research. The activity of the hemostasis system is highly relevant in terms of susceptibility, progression, and treatment of IE. Pharmacologic modulation of hemostasis before and after IE onset is possible and represents still a largely unexplored area of study.
Collapse
Affiliation(s)
- Emanuele Durante-Mangoni
- Internal Medicine, University of Naples S.U.N., Monaldi Hospital, Via L. Bianchi snc, 80131, Naples, Italy,
| | | | | |
Collapse
|
42
|
Jaglic Z, Desvaux M, Weiss A, Nesse LL, Meyer RL, Demnerova K, Schmidt H, Giaouris E, Sipailiene A, Teixeira P, Kačániová M, Riedel CU, Knøchel S. Surface adhesins and exopolymers of selected foodborne pathogens. MICROBIOLOGY-SGM 2014; 160:2561-2582. [PMID: 25217529 DOI: 10.1099/mic.0.075887-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ability of bacteria to bind different compounds and to adhere to biotic and abiotic surfaces provides them with a range of advantages, such as colonization of various tissues, internalization, avoidance of an immune response, and survival and persistence in the environment. A variety of bacterial surface structures are involved in this process and these promote bacterial adhesion in a more or less specific manner. In this review, we will focus on those surface adhesins and exopolymers in selected foodborne pathogens that are involved mainly in primary adhesion. Their role in biofilm development will also be considered when appropriate. Both the clinical impact and the implications for food safety of such adhesion will be discussed.
Collapse
Affiliation(s)
- Zoran Jaglic
- Veterinary Research Institute, Brno, Czech Republic
| | - Mickaël Desvaux
- INRA, UR454 Microbiologie, F-63122 Saint-Genès Champanelle, France
| | - Agnes Weiss
- Department of Food Microbiology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | | | - Rikke L Meyer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Katerina Demnerova
- Institute of Chemical Technology, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 5, Prague, 166 28, Czech Republic
| | - Herbert Schmidt
- Department of Food Microbiology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Efstathios Giaouris
- Department of Food Science and Nutrition, Faculty of the Environment, University of the Aegean, 81400 Myrina, Lemnos Island, Greece
| | | | - Pilar Teixeira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | | | - Christian U Riedel
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Susanne Knøchel
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, Frederiksberg C 1958, Denmark
| |
Collapse
|
43
|
Vaccine protection of leukopenic mice against Staphylococcus aureus bloodstream infection. Infect Immun 2014; 82:4889-98. [PMID: 25183728 DOI: 10.1128/iai.02328-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The risk for Staphylococcus aureus bloodstream infection (BSI) is increased in immunocompromised individuals, including patients with hematologic malignancy and/or chemotherapy. Due to the emergence of antibiotic-resistant strains, designated methicillin-resistant S. aureus (MRSA), staphylococcal BSI in cancer patients is associated with high mortality; however, neither a protective vaccine nor pathogen-specific immunotherapy is currently available. Here, we modeled staphylococcal BSI in leukopenic CD-1 mice that had been treated with cyclophosphamide, a drug for leukemia and lymphoma patients. Cyclophosphamide-treated mice were highly sensitive to S. aureus BSI and developed infectious lesions lacking immune cell infiltrates. Virulence factors of S. aureus that are key for disease establishment in immunocompetent hosts-α-hemolysin (Hla), iron-regulated surface determinants (IsdA and IsdB), coagulase (Coa), and von Willebrand factor binding protein (vWbp)-are dispensable for the pathogenesis of BSI in leukopenic mice. In contrast, sortase A mutants, which cannot assemble surface proteins, display delayed time to death and increased survival in this model. A vaccine with four surface antigens (ClfA, FnBPB, SdrD, and SpAKKAA), which was identified by genetic vaccinology using sortase A mutants, raised antigen-specific immune responses that protected leukopenic mice against staphylococcal BSI.
Collapse
|
44
|
Baumstummler A, Lehmann D, Janjic N, Ochsner UA. Specific capture and detection of Staphylococcus aureus with high-affinity modified aptamers to cell surface components. Lett Appl Microbiol 2014; 59:422-31. [PMID: 24935714 PMCID: PMC4299505 DOI: 10.1111/lam.12295] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 01/15/2023]
Abstract
Slow off-rate modified aptamer (SOMAmer) reagents were generated to several Staphylococcus aureus cell surface-associated proteins via SELEX with multiple modified DNA libraries using purified recombinant or native proteins. High-affinity binding agents with sub-nanomolar Kd 's were obtained for staphylococcal protein A (SpA), clumping factors (ClfA, ClfB), fibronectin-binding proteins (FnbA, FnbB) and iron-regulated surface determinants (Isd). Further screening revealed several SOMAmers that specifically bound to Staph. aureus cells from all strains that were tested, but not to other staphylococci or other bacteria. SpA and ClfA SOMAmers proved useful for the selective capture and enrichment of Staph. aureus cells, as shown by culture and PCR, leading to improved limits of detection and efficient removal of PCR inhibitors. Detection of Staph. aureus cells was enhanced by several orders of magnitude when the bacterial cell surface was coated with SOMAmers followed by qPCR of the SOMAmers. Furthermore, fluorescence-labelled SpA SOMAmers demonstrated their utility as direct detection agents in flow cytometry. Significance and impact of the study: Monitoring for microbial contamination of food, water, nonsterile products or the environment is typically based on culture, PCR or antibodies. Aptamers that bind with high specificity and affinity to well-conserved cell surface epitopes represent a promising novel type of reagents to detect bacterial cells without the need for culture or cell lysis, including for the capture and enrichment of bacteria present at low cell densities and for the direct detection via qPCR or fluorescent staining.
Collapse
Affiliation(s)
- A Baumstummler
- Merck Millipore, Lab Solutions, BioMonitoring, Molsheim, France
| | | | | | | |
Collapse
|
45
|
Septic arthritis: immunopathogenesis, experimental models and therapy. J Venom Anim Toxins Incl Trop Dis 2014; 20:19. [PMID: 24822058 PMCID: PMC4017707 DOI: 10.1186/1678-9199-20-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/22/2014] [Indexed: 11/16/2022] Open
Abstract
Septic arthritis is an inflammatory disease of the joints that is started by an infection whose most common agent is Staphylococcus aureus. In this review we discuss some of the most arthritogenic bacterial factors and the contribution of innate and specific immune mechanisms to joint destruction. Special emphasis is given to the induction of experimental arthritis by S. aureus in mice. The improvement of therapy by association of antibiotics with down-modulation of immunity is also included.
Collapse
|
46
|
Stemberk V, Jones RPO, Moroz O, Atkin KE, Edwards AM, Turkenburg JP, Leech AP, Massey RC, Potts JR. Evidence for steric regulation of fibrinogen binding to Staphylococcus aureus fibronectin-binding protein A (FnBPA). J Biol Chem 2014; 289:12842-51. [PMID: 24627488 PMCID: PMC4007472 DOI: 10.1074/jbc.m113.543546] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The adjacent fibrinogen (Fg)- and fibronectin (Fn)-binding sites on Fn-binding protein A (FnBPA), a cell surface protein from Staphylococcus aureus, are implicated in the initiation and persistence of infection. FnBPA contains a single Fg-binding site (that also binds elastin) and multiple Fn-binding sites. Here, we solved the structure of the N2N3 domains containing the Fg-binding site of FnBPA in the apo form and in complex with a Fg peptide. The Fg binding mechanism is similar to that of homologous bacterial proteins but without the requirement for "latch" strand residues. We show that the Fg-binding sites and the most N-terminal Fn-binding sites are nonoverlapping but in close proximity. Although Fg and a subdomain of Fn can form a ternary complex on an FnBPA protein construct containing a Fg-binding site and single Fn-binding site, binding of intact Fn appears to inhibit Fg binding, suggesting steric regulation. Given the concentrations of Fn and Fg in the plasma, this mechanism might result in targeting of S. aureus to fibrin-rich thrombi or elastin-rich tissues.
Collapse
Affiliation(s)
| | | | - Olga Moroz
- Chemistry, University of York, York YO10 5DD, United Kingdom and
| | | | - Andrew M. Edwards
- the Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | | | | | - Ruth C. Massey
- the Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Jennifer R. Potts
- From the Departments of Biology and , Recipient of British Heart Foundation Senior Basic Science Research Fellowship FS/12/36/29588. To whom correspondence should be addressed. Tel.: 44-1904-328679; E-mail:
| |
Collapse
|
47
|
Nakakido M, Aikawa C, Nakagawa I, Tsumoto K. The staphylococcal elastin-binding protein regulates zinc-dependent growth/biofilm formation. J Biochem 2014; 156:155-62. [PMID: 24787448 DOI: 10.1093/jb/mvu027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Staphylococcus aureus is one of the most important human pathogens because it is a common cause of nosocomial infections. The elastin-binding protein of Staphylococcus aureus (EbpS) is an adhesin that is responsible for attachment to host cells via its binding to elastin. Despite its relatively weak contribution to adhesion, the ebpS gene is highly conserved among S. aureus isolates, suggesting that EbpS may have other crucial functions. Here, we found that EbpS binds Zn(2+) with its N-terminal region, which leads to local conformational changes that result in the assembly of the EbpS protein. The growth rate of the EbpS-deficient strain was considerably decreased. Zn(2+) chelation decreased the growth rate of the wild-type strain but did not alter that of the EbpS-deficient strain. Furthermore, biofilm formation by the EbpS-deficient strain was abnormally enhanced in the Zn(2+) concentration-dependent manner. All the results suggest that ebpS deficiency led to a zinc concentration-dependent inability to modulate the growth/biofilm maturation phase appropriately. Given the high conservation of ebpS and that appropriate regulation of biofilm formation is thought to be essential for effective staphylococcal infection, inhibition of EbpS binding to Zn(2+) could lead to the development of novel therapeutic strategies for controlling S. aureus infections.
Collapse
Affiliation(s)
- Makoto Nakakido
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562, Japan; Division of Bacteriology, International Research Center for infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Section of Bacterial Pathogenesis, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; and Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562, Japan; Division of Bacteriology, International Research Center for infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Section of Bacterial Pathogenesis, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; and Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Chihiro Aikawa
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562, Japan; Division of Bacteriology, International Research Center for infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Section of Bacterial Pathogenesis, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; and Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562, Japan; Division of Bacteriology, International Research Center for infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Section of Bacterial Pathogenesis, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; and Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-
| | - Ichiro Nakagawa
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562, Japan; Division of Bacteriology, International Research Center for infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Section of Bacterial Pathogenesis, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; and Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562, Japan; Division of Bacteriology, International Research Center for infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Section of Bacterial Pathogenesis, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; and Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kouhei Tsumoto
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562, Japan; Division of Bacteriology, International Research Center for infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Section of Bacterial Pathogenesis, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; and Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562, Japan; Division of Bacteriology, International Research Center for infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Section of Bacterial Pathogenesis, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; and Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-
| |
Collapse
|
48
|
Zuo QF, Cai CZ, Ding HL, Wu Y, Yang LY, Feng Q, Yang HJ, Wei ZB, Zeng H, Zou QM. Identification of the immunodominant regions of Staphylococcus aureus fibronectin-binding protein A. PLoS One 2014; 9:e95338. [PMID: 24736634 PMCID: PMC3988184 DOI: 10.1371/journal.pone.0095338] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/26/2014] [Indexed: 12/25/2022] Open
Abstract
Staphylococcus aureus is an opportunistic bacterial pathogen responsible for a diverse spectrum of human diseases and a leading cause of nosocomial and community-acquired infections. Development of a vaccine against this pathogen is an important goal. The fibronectin binding protein A (FnBPA) of S. aureus is one of multifunctional ‘microbial surface components recognizing adhesive matrix molecules' (MSCRAMMs). It is one of the most important adhesin molecules involved in the initial adhesion steps of S. aureus infection. It has been studied as potential vaccine candidates. However, FnBPA is a high-molecular-weight protein of 106 kDa and difficulties in achieving its high-level expression in vitro limit its vaccine application in S. aureus infection diseases control. Therefore, mapping the immunodominant regions of FnBPA is important for developing polyvalent subunit fusion vaccines against S. aureus infections. In the present study, we cloned and expressed the N-terminal and C-terminal of FnBPA. We evaluated the immunogenicity of the two sections of FnBPA and the protective efficacy of the two truncated fragments vaccines in a murine model of systemic S. aureus infection. The results showed recombinant truncated fragment F130-500 had a strong immunogenicity property and survival rates significantly increased in the group of mice immunized with F130-500 than the control group. We futher identified the immunodominant regions of FnBPA. The mouse antisera reactions suggest that the region covering residues 110 to 263 (F1B110-263) is highly immunogenic and is the immunodominant regions of FnBPA. Moreover, vaccination with F1B110-263 can generate partial protection against lethal challenge with two different S. aureus strains and reduced bacterial burdens against non-lethal challenge as well as that immunization with F130-500. This information will be important for further developing anti- S. aureus polyvalent subunit fusion vaccines.
Collapse
Affiliation(s)
- Qian-Fei Zuo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Chang-Zhi Cai
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Hong-Lei Ding
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Yi Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Liu-Yang Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Qiang Feng
- Department of Biological Engineering and Chemical Engineering, Chongqing University of Education, Chongqing, PR China
| | - Hui-Jie Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Zhen-Bo Wei
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
- * E-mail: (HZ); (QMZ)
| | - Quan-Ming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
- * E-mail: (HZ); (QMZ)
| |
Collapse
|
49
|
Bäsell K, Otto A, Junker S, Zühlke D, Rappen GM, Schmidt S, Hentschker C, Macek B, Ohlsen K, Hecker M, Becher D. The phosphoproteome and its physiological dynamics in Staphylococcus aureus. Int J Med Microbiol 2014; 304:121-32. [DOI: 10.1016/j.ijmm.2013.11.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
50
|
Pietrocola G, Geoghegan JA, Rindi S, Di Poto A, Missineo A, Consalvi V, Foster TJ, Speziale P. Molecular Characterization of the Multiple Interactions of SpsD, a Surface Protein from Staphylococcus pseudintermedius, with Host Extracellular Matrix Proteins. PLoS One 2013; 8:e66901. [PMID: 23805283 PMCID: PMC3689669 DOI: 10.1371/journal.pone.0066901] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/12/2013] [Indexed: 12/03/2022] Open
Abstract
Staphylococcus pseudintermedius, a commensal and pathogen of dogs and occasionally of humans, expresses surface proteins potentially involved in host colonization and pathogenesis. Here, we describe the cloning and characterization of SpsD, a surface protein of S. pseudintermedius reported as interacting with extracellular matrix proteins and corneocytes. A ligand screen and Western immunoblotting revealed that the N-terminal A domain of SpsD bound fibrinogen, fibronectin, elastin and cytokeratin 10. SpsD also interfered with thrombin-induced fibrinogen coagulation and blocked ADP-induced platelet aggregation. The binding site for SpsD was mapped to residues 395–411 in the fibrinogen γ-chain, while binding sites in fibronectin were localized to the N- and C-terminal regions. SpsD also bound to glycine- and serine-rich omega loops within the C-terminal tail region of cytokeratin 10. Ligand binding studies using SpsD variants lacking the C-terminal segment or containing an amino-acid substitution in the putative ligand binding site provided insights into interaction mechanism of SpsD with the different ligands. Together these data demonstrate the multi-ligand binding properties of SpsD and illustrate some interesting differences in the variety of ligands bound by SpsD and related proteins from S. aureus.
Collapse
Affiliation(s)
| | - Joan A. Geoghegan
- Department Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | - Simonetta Rindi
- Department of Molecular Medicine, Institute of Biochemistry, Pavia, Italy
| | - Antonella Di Poto
- Department of Molecular Medicine, Institute of Biochemistry, Pavia, Italy
| | - Antonino Missineo
- Department of Molecular Medicine, Institute of Biochemistry, Pavia, Italy
| | - Valerio Consalvi
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, Roma, Italy
| | - Timothy J. Foster
- Department Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | - Pietro Speziale
- Department of Molecular Medicine, Institute of Biochemistry, Pavia, Italy
- * E-mail:
| |
Collapse
|