1
|
Nakano N, Tashiro E, Shimada T, Ebisawa M, Kojima S, Ayabe K, Yamamoto Y, Maeda S, Itoh F, Itoh S. Involvement of mitogen- and stress-activated protein kinase 1 in BMP-6-induced chondrocyte differentiation. J Biol Chem 2024; 300:107806. [PMID: 39307301 PMCID: PMC11541777 DOI: 10.1016/j.jbc.2024.107806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 10/27/2024] Open
Abstract
Bone morphogenetic proteins (BMPs) are involved in several cellular responsive actions, such as development, cell differentiation, and apoptosis, via their specific transmembrane receptors. In particular, BMPs promote the differentiation and maturation of bone and cartilage from mesenchymal stem cells. Based on comprehensive analyses performed with a large number of antibodies, mitogen- and stress-activated protein kinase (MSK)1 was found to be immediately phosphorylated in the mouse chondrocyte precursor cell line, ATDC5, upon BMP-6 stimulation. The overexpression and knockdown of MSK1 in ATDC5 cells also enhanced and suppressed BMP-6-induced chondrocyte differentiation, respectively. Similar to ATDC5 cells, an ex vivo organ culture system using mouse embryonic metatarsal bones also demonstrated that BMP-6-mediated MSK1 activation might play a role in chondrocyte differentiation. Using several inhibitors, the p38 kinase pathway was confirmed to be implicated in BMP-6-induced phosphorylation of MSK1. Furthermore, MSK1 mutants lacking kinase activities and those lacking serine/threonine residues targeted by p38 kinase severely impaired their ability to potentiate BMP-6-induced chondrogenic differentiation of ATDC5 cells. Interestingly, a loss-of-function study for Smad4 perturbed BMP-6-induced phosphorylation of p38 kinase to inhibit BMP-6-mediated chondrocyte differentiation via MSK1 activation. Overall, both Smad-dependent and independent pathways require BMP-6-induced chondrocyte differentiation via MSK1 activation in ATDC5 cells.
Collapse
Affiliation(s)
- Naoko Nakano
- Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Etsu Tashiro
- Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Takayuki Shimada
- Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Masayasu Ebisawa
- Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Sayaka Kojima
- Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Kaho Ayabe
- Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Yohei Yamamoto
- Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Shingo Maeda
- Department of Bone and Joint Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Fumiko Itoh
- Laboratory of Stem Cell Regulation, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Susumu Itoh
- Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo, Japan.
| |
Collapse
|
2
|
Aashaq S, Batool A, Mir SA, Beigh MA, Andrabi KI, Shah ZA. TGF-β signaling: A recap of SMAD-independent and SMAD-dependent pathways. J Cell Physiol 2021; 237:59-85. [PMID: 34286853 DOI: 10.1002/jcp.30529] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/06/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
Transforming growth factor-β (TGF-β) is a proinflammatory cytokine known to control a diverse array of pathological and physiological conditions during normal development and tumorigenesis. TGF-β-mediated physiological effects are heterogeneous and vary among different types of cells and environmental conditions. TGF-β serves as an antiproliferative agent and inhibits tumor development during primary stages of tumor progression; however, during the later stages, it encourages tumor development and mediates metastatic progression and chemoresistance. The fundamental elements of TGF-β signaling have been divulged more than a decade ago; however, the process by which the signals are relayed from cell surface to nucleus is very complex with additional layers added in tumor cell niches. Although the intricate understanding of TGF-β-mediated signaling pathways and their regulation are still evolving, we tried to make an attempt to summarize the TGF-β-mediated SMAD-dependent andSMAD-independent pathways. This manuscript emphasizes the functions of TGF-β as a metastatic promoter and tumor suppressor during the later and initial phases of tumor progression respectively.
Collapse
Affiliation(s)
- Sabreena Aashaq
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, JK, India
| | - Asiya Batool
- Division of Cancer Pharmacology, Indian Institute of Integrative Medicine, Srinagar, JK, India
| | | | | | | | - Zaffar Amin Shah
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, JK, India
| |
Collapse
|
3
|
Nemska S, Daubeuf F, Obrecht A, Israel-Biet D, Stern M, Kessler R, Roux A, Tavakoli R, Villa P, Tissot A, Danger R, Reber L, Durand E, Foureau A, Brouard S, Magnan A, Frossard N. Overexpression of the MSK1 Kinase in Patients With Chronic Lung Allograft Dysfunction and Its Confirmed Role in a Murine Model. Transplantation 2021; 105:1212-1224. [PMID: 33560725 DOI: 10.1097/tp.0000000000003606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chronic lung allograft dysfunction (CLAD) and its obstructive form, the obliterative bronchiolitis (OB), are the main long-term complications related to high mortality rate postlung transplantation. CLAD treatment lacks a significant success in survival. Here, we investigated a new strategy through inhibition of the proinflammatory mitogen- and stress-activated kinase 1 (MSK1) kinase. METHODS MSK1 expression was assessed in a mouse OB model after heterotopic tracheal allotransplantation. Pharmacological inhibition of MSK1 (H89, fasudil, PHA767491) was evaluated in the murine model and in a translational model using human lung primary fibroblasts in proinflammatory conditions. MSK1 expression was graded over time in biopsies from a cohort of CLAD patients. RESULTS MSK1 mRNA progressively increased during OB (6.4-fold at D21 posttransplantation). Inhibition of MSK1 allowed to counteract the damage to the epithelium (56% restoration for H89), and abolished the recruitment of MHCII+ (94%) and T cells (100%) at the early inflammatory phase of OB. In addition, it markedly decreased the late fibroproliferative obstruction in allografts (48%). MSK1 inhibitors decreased production of IL-6 (whose transcription is under the control of MSK1) released from human lung fibroblasts (96%). Finally, we confirmed occurrence of a 2.9-fold increased MSK1 mRNA expression in lung biopsies in patients at 6 months before CLAD diagnosis as compared to recipients with stable lung function. CONCLUSIONS These findings suggest the overall interest of the MSK1 kinase either as a marker or as a potential therapeutic target in lung dysfunction posttransplantation.
Collapse
Affiliation(s)
- Simona Nemska
- Laboratoire d'Innovation Thérapeutique UMR 7200, LabEx Medalis, CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - François Daubeuf
- Laboratoire d'Innovation Thérapeutique UMR 7200, LabEx Medalis, CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
- Plateforme de Chimie Biologie Intégrative de Strasbourg (PCBIS) UMS 3286 CNRS, Université de Strasbourg, Labex Medalis, 300 Bld Brant, Illkirch, France
| | - Adeline Obrecht
- Plateforme de Chimie Biologie Intégrative de Strasbourg (PCBIS) UMS 3286 CNRS, Université de Strasbourg, Labex Medalis, 300 Bld Brant, Illkirch, France
| | | | - Marc Stern
- Hôpital Foch, Suresnes, INRAe UMR 0892, Université de Versailles Saint-Quentin Paris-Saclay, Paris, France
| | - Romain Kessler
- Service de Pneumologie, CHU Strasbourg, Strasbourg, France
| | - Antoine Roux
- Hôpital Foch, Suresnes, INRAe UMR 0892, Université de Versailles Saint-Quentin Paris-Saclay, Paris, France
| | - Reza Tavakoli
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Pascal Villa
- Plateforme de Chimie Biologie Intégrative de Strasbourg (PCBIS) UMS 3286 CNRS, Université de Strasbourg, Labex Medalis, 300 Bld Brant, Illkirch, France
| | - Adrien Tissot
- CHU Nantes, Inserm, UMR 1064, Centre de Recherche en Transplantation et Immunologie, Nantes Université, ITUN, Nantes, France
- Service de Pneumologie, L'institut du thorax, CHU Nantes, Nantes, France
| | - Richard Danger
- CHU Nantes, Inserm, UMR 1064, Centre de Recherche en Transplantation et Immunologie, Nantes Université, ITUN, Nantes, France
- Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), Labex IGO, Nantes, France
| | - Laurent Reber
- Laboratoire d'Innovation Thérapeutique UMR 7200, LabEx Medalis, CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Eugénie Durand
- CHU Nantes, Inserm, UMR 1064, Centre de Recherche en Transplantation et Immunologie, Nantes Université, ITUN, Nantes, France
| | - Aurore Foureau
- CHU Nantes, Inserm, UMR 1064, Centre de Recherche en Transplantation et Immunologie, Nantes Université, ITUN, Nantes, France
- Service de Pneumologie, L'institut du thorax, CHU Nantes, Nantes, France
| | - Sophie Brouard
- CHU Nantes, Inserm, UMR 1064, Centre de Recherche en Transplantation et Immunologie, Nantes Université, ITUN, Nantes, France
- Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), Labex IGO, Nantes, France
| | - Antoine Magnan
- Service de Pneumologie, L'institut du thorax, CHU Nantes, Nantes, France
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique UMR 7200, LabEx Medalis, CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| |
Collapse
|
4
|
Abdel Mouti M, Pauklin S. TGFB1/INHBA Homodimer/Nodal-SMAD2/3 Signaling Network: A Pivotal Molecular Target in PDAC Treatment. Mol Ther 2021; 29:920-936. [PMID: 33429081 PMCID: PMC7934636 DOI: 10.1016/j.ymthe.2021.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/17/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer remains a grueling disease that is projected to become the second-deadliest cancer in the next decade. Standard treatment of pancreatic cancer is chemotherapy, which mainly targets the differentiated population of tumor cells; however, it paradoxically sets the roots of tumor relapse by the selective enrichment of intrinsically chemoresistant pancreatic cancer stem cells that are equipped with an indefinite capacity for self-renewal and differentiation, resulting in tumor regeneration and an overall anemic response to chemotherapy. Crosstalk between pancreatic tumor cells and the surrounding stromal microenvironment is also involved in the development of chemoresistance by creating a supportive niche, which enhances the stemness features and tumorigenicity of pancreatic cancer cells. In addition, the desmoplastic nature of the tumor-associated stroma acts as a physical barrier, which limits the intratumoral delivery of chemotherapeutics. In this review, we mainly focus on the transforming growth factor beta 1 (TGFB1)/inhibin subunit beta A (INHBA) homodimer/Nodal-SMAD2/3 signaling network in pancreatic cancer as a pivotal central node that regulates multiple key mechanisms involved in the development of chemoresistance, including enhancement of the stem cell-like properties and tumorigenicity of pancreatic cancer cells, mediating cooperative interactions between pancreatic cancer cells and the surrounding stroma, as well as regulating the deposition of extracellular matrix proteins within the tumor microenvironment.
Collapse
Affiliation(s)
- Mai Abdel Mouti
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Headington, University of Oxford, Oxford OX3 7LD, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Headington, University of Oxford, Oxford OX3 7LD, UK.
| |
Collapse
|
5
|
Design, Synthesis and Biological Evaluation of Arylpyridin-2-yl Guanidine Derivatives and Cyclic Mimetics as Novel MSK1 Inhibitors. An Application in an Asthma Model. Molecules 2021; 26:molecules26020391. [PMID: 33450992 PMCID: PMC7828447 DOI: 10.3390/molecules26020391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/23/2023] Open
Abstract
Mitogen- and Stress-Activated Kinase 1 (MSK1) is a nuclear kinase, taking part in the activation pathway of the pro-inflammatory transcription factor NF-kB and is demonstrating a therapeutic target potential in inflammatory diseases such as asthma, psoriasis and atherosclerosis. To date, few MSK1 inhibitors were reported. In order to identify new MSK1 inhibitors, a screening of a library of low molecular weight compounds was performed, and the results highlighted the 6-phenylpyridin-2-yl guanidine (compound 1a, IC50~18 µM) as a starting hit for structure-activity relationship study. Derivatives, homologues and rigid mimetics of 1a were designed, and all synthesized compounds were evaluated for their inhibitory activity towards MSK1. Among them, the non-cytotoxic 2-aminobenzimidazole 49d was the most potent at inhibiting significantly: (i) MSK1 activity, (ii) the release of IL-6 in inflammatory conditions in vitro (IC50~2 µM) and (iii) the inflammatory cell recruitment to the airways in a mouse model of asthma.
Collapse
|
6
|
Aashaq S, Batool A, Andrabi KI. TAK1 mediates convergence of cellular signals for death and survival. Apoptosis 2020; 24:3-20. [PMID: 30288639 DOI: 10.1007/s10495-018-1490-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
TGF-β activated kinase 1, a MAPK kinase kinase family serine threonine kinase has been implicated in regulating diverse range of cellular processes that include embryonic development, differentiation, autophagy, apoptosis and cell survival. TAK1 along with its binding partners TAB1, TAB2 and TAB3 displays a complex pattern of regulation that includes serious crosstalk with major signaling pathways including the C-Jun N-terminal kinase (JNK), p38 MAPK, and I-kappa B kinase complex (IKK) involved in establishing cellular commitments for death and survival. This review also highlights how TAK1 orchestrates regulation of energy homeostasis via AMPK and its emerging role in influencing mTORC1 pathway to regulate death or survival in tandem.
Collapse
Affiliation(s)
- Sabreena Aashaq
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India.
| | - Asiya Batool
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Khurshid I Andrabi
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India
| |
Collapse
|
7
|
Forstner D, Maninger S, Nonn O, Guettler J, Moser G, Leitinger G, Pritz E, Strunk D, Schallmoser K, Marsche G, Heinemann A, Huppertz B, Gauster M. Platelet-derived factors impair placental chorionic gonadotropin beta-subunit synthesis. J Mol Med (Berl) 2019; 98:193-207. [PMID: 31863152 PMCID: PMC7007904 DOI: 10.1007/s00109-019-01866-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/08/2019] [Accepted: 12/06/2019] [Indexed: 02/03/2023]
Abstract
Abstract During histiotrophic nutrition of the embryo, maternal platelets may be the first circulating maternal cells that find their way into the placental intervillous space through narrow intertrophoblastic gaps within the plugs of spiral arteries. Activation of platelets at the maternal-fetal interface can influence trophoblast behavior and has been implicated in serious pregnancy pathologies. Here, we show that platelet-derived factors impaired expression and secretion of the human chorionic gonadotropin beta-subunit (βhCG) in human first trimester placental explants and the trophoblast cell line BeWo. Impaired βhCG synthesis was not the consequence of hampered morphological differentiation, as assessed by analysis of differentiation-associated genes and electron microscopy. Platelet-derived factors did not affect intracellular cAMP levels and phosphorylation of CREB, but activated Smad3 and its downstream-target plasminogen activator inhibitor (PAI)-1 in forskolin-induced BeWo cell differentiation. While TGF-β type I receptor inhibitor SB431542 did not restore impaired βhCG production in response to platelet-derived factors, Smad3 inhibitor SIS3 interfered with CREB activation, suggesting an interaction of cAMP/CREB and Smad3 signaling. Sequestration of transcription co-activators CBP/p300, known to bind both CREB and Smad3, may limit βhCG production, since CBP/p300 inhibitor C646 significantly restricted its forskolin-induced upregulation. In conclusion, our study suggests that degranulation of maternal platelets at the early maternal-fetal interface can impair placental βhCG production, without substantially affecting morphological and biochemical differentiation of villous trophoblasts. Key messages Maternal platelets can be detected on the surface of the placental villi and in intercellular gaps of trophoblast cell columns from gestational week 5 onwards. Platelet-derived factors impair hCG synthesis in human first trimester placenta. Platelet-derived factors activate Smad3 in trophoblasts. Smad3 inhibitor SIS3 interferes with forskolin-induced CREB signaling. Sequestration of CBP/p300 by activated Smad3 may limit placental hCG production.
Electronic supplementary material The online version of this article (10.1007/s00109-019-01866-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Désirée Forstner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, II, 8010, Graz, Austria
| | - Sabine Maninger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, II, 8010, Graz, Austria
| | - Olivia Nonn
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, II, 8010, Graz, Austria
| | - Jacqueline Guettler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, II, 8010, Graz, Austria
| | - Gerit Moser
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, II, 8010, Graz, Austria
| | - Gerd Leitinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, II, 8010, Graz, Austria
| | - Elisabeth Pritz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, II, 8010, Graz, Austria
| | - Dirk Strunk
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Katharina Schallmoser
- Department of Transfusion Medicine and Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, II, 8010, Graz, Austria
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, II, 8010, Graz, Austria.
| |
Collapse
|
8
|
Hu X, Kan H, Boye A, Jiang Y, Wu C, Yang Y. Mitogen-activated protein kinase inhibitors reduce the nuclear accumulation of phosphorylated Smads by inhibiting Imp 7 or Imp 8 in HepG2 cells. Oncol Lett 2018; 15:4867-4872. [PMID: 29552126 PMCID: PMC5840705 DOI: 10.3892/ol.2018.7926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/30/2018] [Indexed: 11/19/2022] Open
Abstract
The transforming growth factor (TGF)-β/Smad signaling pathway is involved in hepatocellular carcinoma development. Smad2 and Smad3 are phosphorylated following TGF-β1 stimulation and subsequently oligomerize with Smad4 to form the Smad2/3/4 complex, which translocates into the nucleus and regulates target genes, including plasminogen activator inhibitor type 1 (PAI1). Importin (Imp)7 and Imp8 are responsible for transporting phosphorylated (p)Smad2/3 and Smad4 into the nucleus. In our previous study, it was demonstrated that mitogen-activated protein kinase (MAPK) inhibitors, including inhibitors of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 could inhibit the transcription of PAI1, but ERK inhibitor had no significant effect on the phosphorylation of Smad2/3, and the formation of Smad2/3/4 complexes, which was different from the effect of JNK or p38 inhibitor. We hypothesized that MAPK inhibitors, particularly ERK inhibitor, reduced the transport of Smads into the nucleus by affecting Imp7 and Imp8. To confirm this hypothesis, HepG2 cells were incubated with different MAPK inhibitors for 5 h and subsequently stimulated with TGF-β1 for 1 h. Next, the intracellular locations of Smads (pSmad2C, pSmad2L, pSmad3C, pSmad3L and Smad4) and Imp7/8 were detected using immunofluorescence staining assays, and the expression of Imp7/8 was investigated using immunoblotting. It was revealed that JNK or p38 inhibitor decreased the phosphorylation of Smad2C, Smad2L and Smad3L, and affected their nuclear accumulation. Although only inhibiting the phosphorylation of Smad2C, ERK inhibitor affected the nuclear accumulation of pSmad2C, pSmad2L, pSmad3C and pSmad3L. The three MAPK inhibitors attenuated the nuclear distribution of Smad4, and the expression and nuclear accumulation of Imp7. ERK and JNK inhibitors attenuated the expression and nuclear accumulation of Imp8. Thus, the results of the present study suggest that MAPK inhibitors, particularly ERK inhibitor, modulate the nuclear accumulation of Smads via the inhibition of Imp 7/8.
Collapse
Affiliation(s)
- Xiangpeng Hu
- Department of Pharmacology, Institute of Natural Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Digestive Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Hongwei Kan
- Department of Pharmacology, Institute of Natural Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Alex Boye
- Department of Pharmacology, Institute of Natural Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yufeng Jiang
- Department of Pharmacology, Institute of Natural Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Chao Wu
- Department of Pharmacology, Institute of Natural Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yan Yang
- Department of Pharmacology, Institute of Natural Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
9
|
Manson SR, Austin PF, Guo Q, Moore KH. BMP-7 Signaling and its Critical Roles in Kidney Development, the Responses to Renal Injury, and Chronic Kidney Disease. VITAMINS AND HORMONES 2016; 99:91-144. [PMID: 26279374 DOI: 10.1016/bs.vh.2015.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD) is a significant health problem that most commonly results from congenital abnormalities in children and chronic renal injury in adults. The therapeutic potential of BMP-7 was first recognized nearly two decades ago with studies demonstrating its requirement for kidney development and ability to inhibit the pathogenesis of renal injury in models of CKD. Since this time, our understanding of CKD has advanced considerably and treatment strategies have evolved with the identification of many additional signaling pathways, cell types, and pathologic processes that contribute to disease progression. The purpose of this review is to revisit the seminal studies that initially established the importance of BMP-7, highlight recent advances in BMP-7 research, and then integrate this knowledge with current research paradigms. We will provide an overview of the evolutionarily conserved roles of BMP proteins and the features that allow BMP signaling pathways to function as critical signaling nodes for controlling biological processes, including those related to CKD. We will discuss the multifaceted functions of BMP-7 during kidney development and the potential for alterations in BMP-7 signaling to result in congenital abnormalities and pediatric kidney disease. We will summarize the renal protective effects of recombinant BMP-7 in experimental models of CKD and then propose a model to describe the potential physiological role of endogenous BMP-7 in the innate repair mechanisms of the kidneys that respond to renal injury. Finally, we will highlight emerging clinical approaches for applying our knowledge of BMP-7 toward improving the treatment of patients with CKD.
Collapse
Affiliation(s)
- Scott R Manson
- Department of Surgery, Division of Urology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA.
| | - Paul F Austin
- Department of Surgery, Division of Urology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Qiusha Guo
- Department of Surgery, Division of Urology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Katelynn H Moore
- Department of Surgery, Division of Urology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| |
Collapse
|
10
|
Wu S, Wang S, Zheng S, Verhaak R, Koul D, Yung WKA. MSK1-Mediated β-Catenin Phosphorylation Confers Resistance to PI3K/mTOR Inhibitors in Glioblastoma. Mol Cancer Ther 2016; 15:1656-68. [PMID: 27196759 DOI: 10.1158/1535-7163.mct-15-0857] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/15/2016] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) represents a compelling disease for kinase inhibitor therapy because most of these tumors harbor genetic alterations that result in aberrant activation of growth factor-signaling pathways. The PI3K/mammalian target of the rapamycin (mTOR) pathway is dysregulated in over 50% of human GBM but remains a challenging clinical target. Inhibitors against PI3K/mTOR mediators have limited clinical efficacy as single agents. We investigated potential bypass mechanisms to PI3K/mTOR inhibition using gene expression profiling before and after PI3K inhibitor treatment by Affymetrix microarrays. Mitogen- and stress-activated protein kinase 1 (MSK1) was markedly induced after PI3K/mTOR inhibitor treatment and disruption of MSK1 by specific shRNAs attenuated resistance to PI3K/mTOR inhibitors in glioma-initiating cells (GIC). Further investigation showed that MSK1 phosphorylates β-catenin and regulates its nuclear translocation and transcriptional activity. The depletion of β-catenin potentiated PI3K/mTOR inhibitor-induced cytotoxicity and the inhibition of MSK1 synergized with PI3K/mTOR inhibitors to extend survival in an intracranial animal model and decreased phosphorylation of β-catenin at Ser(552) These observations suggest that MSK1/β-catenin signaling serves as an escape survival signal upon PI3K/mTOR inhibition and provides a strong rationale for the combined use of PI3K/mTOR and MSK1/β-catenin inhibition to induce lethal growth inhibition in human GBM. Mol Cancer Ther; 15(7); 1656-68. ©2016 AACR.
Collapse
Affiliation(s)
- Shaofang Wu
- Brain Tumor Center, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shuzhen Wang
- Brain Tumor Center, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Siyuan Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roel Verhaak
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dimpy Koul
- Brain Tumor Center, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - W K Alfred Yung
- Brain Tumor Center, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
11
|
Abstract
In progressive kidney diseases, fibrosis represents the common pathway to end-stage kidney failure. Transforming growth factor-β1 (TGF-β1) is a pleiotropic cytokine that has been established as a central mediator of kidney fibrosis. Emerging evidence shows a complex scheme of signaling networks that enable multifunctionality of TGF-β1 actions. Specific targeting of the TGF-β signaling pathway is seemingly critical and an attractive molecular therapeutic strategy. TGF-β1 signals through the interaction of type I and type II receptors to activate distinct intracellular pathways involving the Smad and the non-Smad. The Smad signaling axis is known as the canonical pathway induced by TGF-β1. Importantly, recent investigations have shown that TGF-β1 also induces various non-Smad signaling pathways. In this review, we focus on current insights into the mechanism and function of the Smad-independent signaling pathway via TGF-β-activated kinase 1 and its role in mediating the profibrotic effects of TGF-β1.
Collapse
Affiliation(s)
- Mary E Choi
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
12
|
Yeatts AB, Choquette DT, Fisher JP. Bioreactors to influence stem cell fate: augmentation of mesenchymal stem cell signaling pathways via dynamic culture systems. Biochim Biophys Acta Gen Subj 2012; 1830:2470-80. [PMID: 22705676 DOI: 10.1016/j.bbagen.2012.06.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/03/2012] [Accepted: 06/07/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are a promising cell source for bone and cartilage tissue engineering as they can be easily isolated from the body and differentiated into osteoblasts and chondrocytes. A cell based tissue engineering strategy using MSCs often involves the culture of these cells on three-dimensional scaffolds; however the size of these scaffolds and the cell population they can support can be restricted in traditional static culture. Thus dynamic culture in bioreactor systems provides a promising means to culture and differentiate MSCs in vitro. SCOPE OF REVIEW This review seeks to characterize key MSC differentiation signaling pathways and provides evidence as to how dynamic culture is augmenting these pathways. Following an overview of dynamic culture systems, discussion will be provided on how these systems can effectively modify and maintain important culture parameters including oxygen content and shear stress. Literature is reviewed for both a highlight of key signaling pathways and evidence for regulation of these signaling pathways via dynamic culture systems. MAJOR CONCLUSIONS The ability to understand how these culture systems are affecting MSC signaling pathways could lead to a shear or oxygen regime to direct stem cell differentiation. In this way the efficacy of in vitro culture and differentiation of MSCs on three-dimensional scaffolds could be greatly increased. GENERAL SIGNIFICANCE Bioreactor systems have the ability to control many key differentiation stimuli including mechanical stress and oxygen content. The further integration of cell signaling investigations within dynamic culture systems will lead to a quicker realization of the promise of tissue engineering and regenerative medicine. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- Andrew B Yeatts
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
13
|
TGF-β-activated kinase-1: New insights into the mechanism of TGF-β signaling and kidney disease. Kidney Res Clin Pract 2012; 31:94-105. [PMID: 26889415 PMCID: PMC4715161 DOI: 10.1016/j.krcp.2012.04.322] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 04/13/2012] [Accepted: 04/18/2012] [Indexed: 01/06/2023] Open
Abstract
Transforming growth factor-β (TGF-β) is a multifunctional cytokine that regulates a wide variety of cellular functions, including cell growth, cellular differentiation, apoptosis, and wound healing. TGF-β1, the prototype member of the TGF-β superfamily, is well established as a central mediator of renal fibrosis. In chronic kidney disease, dysregulation of expression and activation of TGF-β1 results in the relentless synthesis and accumulation of extracellular matrix proteins that lead to the development of glomerulosclerosis and tubulointerstitial fibrosis, and ultimately to end-stage renal disease. Therefore, specific targeting of the TGF-β signaling pathway is seemingly an attractive molecular therapeutic strategy in chronic kidney disease. Accumulating evidence demonstrates that the multifunctionality of TGF-β1 is connected with the complexity of its cell signaling networks. TGF-β1 signals through the interaction of type I and type II receptors to activate distinct intracellular pathways. Although the Smad signaling pathway is known as a canonical pathway induced by TGF-β1, and has been the focus of many previous reviews, importantly TGF-β1 also induces various Smad-independent signaling pathways. In this review, we describe evidence that supports current insights into the mechanism and function of TGF-β-activated kinase 1 (TAK1), which has emerged as a critical signaling molecule in TGF-β-induced Smad-independent signaling pathways. We also discuss the functional role of TAK1 in mediating the profibrotic effects of TGF-β1.
Collapse
|
14
|
Kasten-Jolly J, Heo Y, Lawrence DA. Central nervous system cytokine gene expression: modulation by lead. J Biochem Mol Toxicol 2011; 25:41-54. [PMID: 21322097 DOI: 10.1002/jbt.20358] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The environmental heavy metal toxicant, lead (Pb) has been shown to be more harmful to the central nervous system (CNS) of children than to adults, given that Pb exposure affects the neural system during development. Because growth factors and cytokines play very important roles in development of the CNS, we have examined the impact of Pb exposure on the expression of cytokines during CNS development. Cytokine expression was studied in post-natal-day 21 (pnd21) mice by microarray, real-time RT-PCR, Luminex, and ELISA methodologies. BALB/c mouse pups were exposed to Pb through the dam's drinking water (0.1 mM Pb acetate), from gestation-day 8 (gd8) to pnd21. Two cytokines, interleukin-6 (IL-6) and transforming growth factor-β1 (TGF-β1), displayed significantly changed transcript levels in the presence of Pb. IL-6 and TGF-β1 both have signal transduction cascades that can cooperatively turn on the gene for the astrocyte marker glial-fibrillary acidic protein (GFAP). Microarray results indicated that Pb exposure significantly increased expression of GFAP. Pb also modulated IL-6, TGF-β1, and IL-18 protein expression in select brain regions. The deleterious effects of Pb on learning and long-term memory are posited to result from excessive astrocyte growth and/or activation with concomitant interference with neural connections. Differential neural expression of cytokines in brain regions needs to be further investigated to mechanistically associate Pb and neuroinflammation with behavioral and cognitive changes.
Collapse
Affiliation(s)
- Jane Kasten-Jolly
- Laboratory of Clinical and Experimental Endocrinology and Immunology, Wadsworth Center, 120 New Scotland Avenue, Albany, NY 12208, USA
| | | | | |
Collapse
|
15
|
Desterke C, Bilhou-Nabéra C, Guerton B, Martinaud C, Tonetti C, Clay D, Guglielmelli P, Vannucchi A, Bordessoule D, Hasselbalch H, Dupriez B, Benzoubir N, Bourgeade MF, Pierre-Louis O, Lazar V, Vainchenker W, Bennaceur-Griscelli A, Gisslinger H, Giraudier S, Le Bousse-Kerdilès MC. FLT3-mediated p38-MAPK activation participates in the control of megakaryopoiesis in primary myelofibrosis. Cancer Res 2011; 71:2901-15. [PMID: 21487043 DOI: 10.1158/0008-5472.can-10-1731] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Primary myelofibrosis (PMF) is characterized by increased number of hematopoietic progenitors and a dysmegakaryopoiesis which supports the stromal reaction defining this disease. We showed that increased ligand (FL) levels in plasma, hematopoietic progenitors, and stromal cells from PMF patients were associated with upregulation of the cognate Flt3 receptor on megakaryocytic (MK) cells. This connection prompted us to study a functional role for the FL/Flt3 couple in PMF dysmegakaryopoiesis, as a route to reveal insights into pathobiology and therapy in this disease. Analysis of PMF CD34(+) and MK cell transcriptomes revealed deregulation of the mitogen-activated protein kinase (MAPK) pathway along with Flt3 expression. In PMF patients, a higher proportion of circulating Flt3(+)CD34(+)CD41(+) cells exhibited an increased MAPK effector phosphorylation independently of Jak2(V617F) mutation. Activation of FL/Flt3 axis in PMF MK cell cultures, in response to FL, induced activation of the p38-MAPK cascade, which is known to be involved in inflammation, also increasing expression of its target genes (NFATC4, p53, AP-1, IL-8). Inhibiting Flt3 or MAPK or especially p38 by chemical, antibody, or silencing strategies restored megakaryopoiesis and reduced phosphorylation of Flt3 and p38 pathway effectors, confirming the involvement of Flt3 in PMF dysmegakaryopoiesis via p38 activation. In addition, in contrast to healthy donors, MK cells derived from PMF CD34(+) cells exhibited an FL-induced migration that could be reversed by p38 inhibition. Taken together, our results implicate the FL/Flt3 ligand-receptor complex in PMF dysmegakaryopoiesis through persistent p38-MAPK activation, with implications for therapeutic prospects to correct altered megakaryopoiesis in an inflammatory context.
Collapse
|
16
|
Susperregui ARG, Gamell C, Rodríguez-Carballo E, Ortuño MJ, Bartrons R, Rosa JL, Ventura F. Noncanonical BMP signaling regulates cyclooxygenase-2 transcription. Mol Endocrinol 2011; 25:1006-17. [PMID: 21436263 DOI: 10.1210/me.2010-0515] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Activation of p38 MAPK has been shown to be relevant for a number of bone morphogenetic protein (BMP) physiological effects. We report here the involvement of noncanonical phosphorylated mothers against decapentaplegic (Smad) signaling in the transcriptional induction of Cox2 (Ptgs2) by BMP-2 in mesenchymal cells and organotypic calvarial cultures. We demonstrate that different regulatory elements are required for regulation of Cox2 expression by BMP-2: Runt-related transcription factor-2 and cAMP response element sites are essential, whereas a GC-rich Smad binding element is important for full responsiveness. Efficient transcriptional activation requires cooperation between transcription factors because mutation of any element results in a strong decrease of BMP-2 responsiveness. BMP-2 activation of p38 leads to increased recruitment of activating transcription factor-2, Runx2, Smad, and coactivators such as p300 at the responsive sites in the Cox2 proximal promoter. We demonstrate, by either pharmacological or genetic analysis, that maximal BMP-2 effects on Cox2 and JunB expression require the function of p38 and its downstream effector mitogen/stress-activated kinase 1. Altogether our results strongly suggest that cooperative effects between canonical and noncanonical BMP signaling allow the fine-tuning of BMP transcriptional responses on specific target genes.
Collapse
Affiliation(s)
- Antonio R G Susperregui
- Departament de Ciències Fisiològiques II, Bellvitge Biomedical Research Institute, C/ Feixa Llarga s/n., L'Hospitalet de Llobregat, Universitat de Barcelona, E-08907 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
17
|
van der Heide LP, van Dinther M, Moustakas A, ten Dijke P. TGFbeta activates mitogen- and stress-activated protein kinase-1 (MSK1) to attenuate cell death. J Biol Chem 2010; 286:5003-11. [PMID: 21106525 DOI: 10.1074/jbc.m110.167379] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor-β (TGFβ) binding to its receptor leads to intracellular phosphorylation of Smad2 and Smad3, which oligomerize with Smad4. These complexes accumulate in the nucleus and induce gene transcription. Here we describe mitogen- and stress-activated kinase 1 (MSK1) as an antagonist of TGFβ-induced cell death. Induction of MSK1 activity by TGFβ depends on Smad4 and p38 MAPK activation. Knockdown of GADD45, a Smad4-induced upstream regulator of p38 MAPK prevents TGFβ-induced p38 and MSK1 activity. MSK1 functionally regulates pro-apoptotic BH3-only BCL2 proteins, as MSK1 knockdown reduces Bad phosphorylation and enhances Noxa and Bim expression, leading to enhanced TGFβ-induced caspase-3 activity and cell death. This finding suggests that MSK1 represents a pro-survival pathway bifurcating downstream of p38 and antagonizes the established pro-apoptotic p38 MAPK function. Furthermore, EGF could reverse all the effects observed after MSK1 knockdown. Monitoring the status of MSK1 activity in cancer promises new therapeutic targets as inactivating both MSK1 and EGF signaling may (re)-sensitize cells to TGFβ-induced cell death.
Collapse
Affiliation(s)
- Lars P van der Heide
- Department of Molecular Cell Biology, and Centre for Biomedical Genetics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | |
Collapse
|
18
|
Hold GL, Untiveros P, Saunders KA, El-Omar EM. Role of host genetics in fibrosis. FIBROGENESIS & TISSUE REPAIR 2009; 2:6. [PMID: 19961576 PMCID: PMC2796989 DOI: 10.1186/1755-1536-2-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 12/04/2009] [Indexed: 01/18/2023]
Abstract
Fibrosis can occur in tissues in response to a variety of stimuli. Following tissue injury, cells undergo transformation or activation from a quiescent to an activated state resulting in tissue remodelling. The fibrogenic process creates a tissue environment that allows inflammatory and matrix-producing cells to invade and proliferate. While this process is important for normal wound healing, chronicity can lead to impaired tissue structure and function. This review examines the major factors involved in transforming or activating tissues towards fibrosis. The role of genetic variation within individuals affected by fibrosis has not been well described and it is in this context that we have examined the mediators of remodelling, including transforming growth factor-beta, T helper 2 cytokines and matrix metalloproteinases. Finally we examine the role of Toll-like receptors in fibrosis. The inflammatory phenotype that precedes fibrosis has been associated with Toll-like receptor activation. This is particularly important when considering gastrointestinal and hepatic disease, where inappropriate Toll-like receptor signalling, in response to the local microbe-rich environment, is thought to play an important role.
Collapse
Affiliation(s)
- Georgina L Hold
- Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | | | | | | |
Collapse
|
19
|
Vermeulen L, Vanden Berghe W, Beck IME, De Bosscher K, Haegeman G. The versatile role of MSKs in transcriptional regulation. Trends Biochem Sci 2009; 34:311-8. [PMID: 19464896 DOI: 10.1016/j.tibs.2009.02.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 02/10/2009] [Accepted: 02/10/2009] [Indexed: 10/20/2022]
Abstract
Among the mitogen-activated protein kinase (MAPK) targets, MSKs (mitogen- and stress-activated protein kinases) comprise a particularly interesting protein family. Because MSKs can be activated by both extracellular-signal-regulated kinase and p38 MAPKs, they are activated by many physiological and pathological stimuli. About ten years after their original discovery, they have been recognized as versatile kinases regulating gene transcription at multiple levels. MSKs directly target transcription factors, such as cAMP-response-element-binding protein and nuclear factor-kappaB, thereby enhancing their transcriptional activity. They also induce histone phosphorylation, which is accompanied by chromatin relaxation and facilitated binding of additional regulatory proteins. Here, we review the current knowledge on MSK activation and its molecular targets, focusing on recent insights into the role of MSKs at multiple levels of transcriptional regulation.
Collapse
Affiliation(s)
- Linda Vermeulen
- Laboratory of Eukaryotic Gene Expression & Signal Transduction (LEGEST), Department of Physiology, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium.
| | | | | | | | | |
Collapse
|
20
|
Kim SI, Kwak JH, Wang L, Choi ME. Protein phosphatase 2A is a negative regulator of transforming growth factor-beta1-induced TAK1 activation in mesangial cells. J Biol Chem 2008; 283:10753-63. [PMID: 18299321 DOI: 10.1074/jbc.m801263200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TAK1 (transforming growth factor (TGF)-beta-activated kinase 1) is a serine/threonine kinase that is rapidly activated by TGF-beta1 and plays a vital function in its signal transduction. Once TAK1 is activated, efficient down-regulation of TAK1 activity is important to prevent excessive TGF-beta1 responses. The regulatory mechanism of TAK1 inactivation following TGF-beta1 stimulation has not been elucidated. Here we demonstrate that protein phosphatase 2A (PP2A) plays a pivotal role as a negative regulator of TAK1 activation in response to TGF-beta1 in mesangial cells. Treatment with okadaic acid (OA) induces autophosphorylation of Thr-187 in the activation loop of TAK1. In vitro dephosphorylation assay suggests that Thr-187 in TAK1 is a major dephosphorylation target of PP2A. TGF-beta1 stimulation rapidly activates TAK1 in a biphasic manner, indicating that TGF-beta1-induced TAK1 activation is tightly regulated. The association of PP2A(C) with TAK1 is enhanced in response to TGF-beta1 stimulation and closely parallels TGF-beta1-induced TAK1 activity. Attenuation of PP2A activity by OA treatment or targeted knockdown of PP2A(C) with small interfering RNA enhances TGF-beta1-induced phosphorylation of TAK1 at Thr-187 and MKK3 (MAPK kinase 3). Endogenous TAK1 co-precipitates with PP2A(C) but not PP6(C), another OA-sensitive protein phosphatase, and knockdown of PP6(C) by small interfering RNA does not affect TGF-beta1-induced phosphorylation of TAK1 at Thr-187 and MKK3. Moreover, ectopic expression of phosphatase-deficient PP2A(C) enhances TAK1-mediated MKK3 phosphorylation by TGF-beta1 stimulation, whereas the expression of wild-type PP2A(C) suppresses the MKK3 phosphorylation. Taken together, our data indicate that PP2A functions as a negative regulator in TGF-beta1-induced TAK1 activation.
Collapse
Affiliation(s)
- Sung Il Kim
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
21
|
Fachin AL, Mello SS, Sandrin-Garcia P, Junta CM, Donadi EA, Passos GAS, Sakamoto-Hojo ET. Gene expression profiles in human lymphocytes irradiated in vitro with low doses of gamma rays. Radiat Res 2008; 168:650-65. [PMID: 18088177 DOI: 10.1667/rr0487.1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 07/26/2007] [Indexed: 11/03/2022]
Abstract
The molecular mechanisms underlying responses to low radiation doses are still unknown, especially in normal lymphocytes, despite the evidence suggesting specific changes that may characterize cellular responses. Our purpose was to analyze gene expression profiles by DNA microarrays in human lymphocytes after in vitro irradiation (10, 25 and 50 cGy) with gamma rays. A cytogenetic analysis was also carried out for different radiation doses. G 0 lymphocytes were irradiated and induced to proliferate for 48 h; then RNA samples were collected for gene expression analysis. ANOVA was applied to data obtained in four experiments with four healthy donors, followed by SAM analysis and hierarchical clustering. For 10, 25 and 50 cGy, the numbers of significantly (FDR <or= 0.05) modulated genes were 86, 130 and 142, respectively, and 25, 35 and 33 genes were exclusively modulated for each dose, respectively. We found CYP4X1, MAPK10 and ATF6 (10 cGy), DUSP16 and RAD51L1 (25 cGy), and RAD50, REV3L and DCLRE1A (50 cGy). A set of 34 significant genes was common for all doses; while SERPINB2 and C14orf104 were up-regulated, CREB3L2, DDX49, STK25 and XAB2 were down-regulated. Chromosome damage was significantly induced for doses >or=10 cGy (total aberrations) and >or=50 cGy (dicentrics/ rings). Therefore, low to moderate radiation doses induced qualitative and/or quantitative differences and similarities in transcript profiles, reflecting the type and extent of DNA lesions. The main biological processes associated with modulated genes were metabolism, stress response/DNA repair, cell growth/differentiation, and transcription regulation. The results indicate a potential risk to humans regarding the development of genetic instability and acquired diseases.
Collapse
Affiliation(s)
- Ana L Fachin
- Departamento de Genética e, Universidade de São Paulo, Ribeirao Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
22
|
El Mchichi B, Hadji A, Vazquez A, Leca G. p38 MAPK and MSK1 mediate caspase-8 activation in manganese-induced mitochondria-dependent cell death. Cell Death Differ 2007; 14:1826-36. [PMID: 17585337 DOI: 10.1038/sj.cdd.4402187] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Heavy metals are important regulators of cell apoptosis. Manganese (Mn(2+)) is a potent inducer of apoptosis in different cell types, but the precise mechanisms that mediate such effects are not well defined. We previously reported that Mn(2+) was a potent apoptotic agent in human B cells, including lymphoma B cell lines. We show here that Mn(2+)-induced cell death in human B cells is associated with caspase-8-dependent mitochondrial activation leading to caspase-3 activity and apoptosis. We used specific caspase-8 interfering shRNAs to reduce caspase-8 expression, and this also reduced Mn(2+)-induced caspase-3 activation and apoptosis. Mn(2+)-triggered caspase-8 activation is associated with a specific pathway, which is independent of Fas-associated death domain protein, and dependent on the sequential activation of p38-mitogen-activated protein kinase (p38 MAPK) and mitogen- and stress-response kinase 1 (MSK1). Inhibition of p38 activity using either pharmacological inhibitors or dominant-negative mutant forms of p38 blocked Mn(2+)-mediated phosphorylation of MSK1 and blocked subsequent caspase-8 activation. However, specific inhibitors and the expression of a dominant-interfering mutant of MSK1 only inhibited caspase-8 activation, but not p38 activity. These findings suggest a novel model for the regulation of caspase-8 during Mn(2+)-induced apoptosis based on the sequential activation of p38 MAPK, MSK1, caspase-8 and mitochondria, respectively.
Collapse
Affiliation(s)
- B El Mchichi
- INSERM, UMR 542, Université Paris-Sud, Hôpital Paul Brousse, 14 avenue Paul Vaillant Couturier, 94807 Villejuif, France
| | | | | | | |
Collapse
|
23
|
Kolf CM, Cho E, Tuan RS. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 2007; 9:204. [PMID: 17316462 PMCID: PMC1860068 DOI: 10.1186/ar2116] [Citation(s) in RCA: 645] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Recent advances in understanding the cellular and molecular signaling pathways and global transcriptional regulators of adult mesenchymal stem cells have provided new insights into their biology and potential clinical applications, particularly for tissue repair and regeneration. This review focuses on these advances, specifically in the context of self-renewal and regulation of lineage-specific differentiation of mesenchymal stem cells. In addition we review recent research on the concept of stem cell niche, and its relevance to adult mesenchymal stem cells.
Collapse
Affiliation(s)
- Catherine M Kolf
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, 50 South Drive, Bethesda, MD 20892, USA
| | - Elizabeth Cho
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, 50 South Drive, Bethesda, MD 20892, USA
| | - Rocky S Tuan
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
24
|
Kim SI, Kwak JH, Zachariah M, He Y, Wang L, Choi ME. TGF-beta-activated kinase 1 and TAK1-binding protein 1 cooperate to mediate TGF-beta1-induced MKK3-p38 MAPK activation and stimulation of type I collagen. Am J Physiol Renal Physiol 2007; 292:F1471-8. [PMID: 17299140 DOI: 10.1152/ajprenal.00485.2006] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We have previously demonstrated that transforming growth factor-beta(1) (TGF-beta(1)) rapidly activates the mitogen-activated protein kinase kinase 3 (MKK3)-p38 MAPK signaling cascade, leading to the induction of type I collagen synthesis in mouse glomerular mesangial cells (Wang L, Ma R, Flavell RA, Choi ME. J Biol Chem 277: 47257-47262, 2002). In the present study, we investigated the functional role of upstream TGF-beta-activated kinase 1 (TAK1) and TAK1-binding protein 1 (TAB1) in the TGF-beta(1) signaling cascade. Rapid activation of endogenous TAK1 activity by TGF-beta(1) was observed in mouse mesangial cells. Transient overexpression of TAK1 with TAB1 enhanced the activation of MKK3 and p38 MAPK with or without TGF-beta(1) stimulation, whereas a dominant-negative mutant of TAK1 (TAK1DN) suppressed TGF-beta(1)-induced activation of MKK3 and p38 MAPK. Moreover, constitutive expression of TAK1DN reduced steady-state protein levels of MKK3 and p38 MAPK as well as MKK3 phosphorylation. Increased p38alpha MAPK activity by ectopic expression of either TAB1 or wild-type p38alpha MAPK resulted in enhanced TGF-beta(1)-induced type I collagen expression. In contrast, constitutive expression of TAK1DN inhibited collagen induction. Taken together, our data indicate that TAK1 and TAB1 play a pivotal role as upstream signal transducers activating the MKK3-p38 MAPK signaling cascade that leads to the induction of type I collagen expression by TGF-beta(1). In addition, our findings also suggest that TAK1 has a novel function in regulation of the steady-state protein levels of MKK3 and p38 MAPK.
Collapse
Affiliation(s)
- Sung Il Kim
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Mortimer HJ, Peacock AJ, Kirk A, Welsh DJ. p38 MAP kinase: essential role in hypoxia-mediated human pulmonary artery fibroblast proliferation. Pulm Pharmacol Ther 2006; 20:718-25. [PMID: 17055760 DOI: 10.1016/j.pupt.2006.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 08/26/2006] [Accepted: 08/30/2006] [Indexed: 10/24/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a disease that results in thickening of the vascular wall. Some of the most prominent changes are seen in the adventitia as a result of fibroblast proliferation and increased extracellular matrix deposition. Previous work from this laboratory using animal models has shown that pulmonary but not systemic artery fibroblasts proliferate to hypoxic exposure and that this response is dependent on activation of p38 mitogen-activated protein kinase (p38MAPK). In this study, we wished to determine whether human pulmonary artery fibroblasts (HPAFs) behaved similarly under conditions of acute hypoxic exposure (35 mmHg for 24 h). Fibroblast proliferation was assessed by [(3)H]thymidine uptake and protein assays performed using Western blotting techniques. HPAFs proliferated in response to acute hypoxic exposure, human systemic artery fibroblasts did not. This hypoxia-mediated proliferation was p38 MAPK dependent and could be blocked using a specific p38 MAPK inhibitor. Hypoxia-inducible factor-1 (HIF-1) expression was increased in hypoxic pulmonary but not systemic cells and could be partially abrogated with the p38 inhibitor. This work in man confirmed our previous findings in animals that significant differences exist between the pulmonary and systemic circulations in response to hypoxic exposure. This study highlights the importance of p38 MAPK and HIF-1 in hypoxia-mediated proliferation of pulmonary artery adventitial fibroblasts.
Collapse
Affiliation(s)
- Heather J Mortimer
- Scottish Pulmonary Vascular Unit, Level 8, Western Infirmary, Glasgow, G11 6NT, Scotland, UK
| | | | | | | |
Collapse
|
27
|
Rogier E, Durrbach A, Abecassis L, Ferlicot S, Snanoudj R, Baudreuil S, Arzouk N, Vazquez A, Charpentier B, Bourgeade MF. A novel biological assay to detect the active form of TGF-beta in urine to monitor renal allograft rejection. Kidney Int 2005; 68:1875-83. [PMID: 16164666 DOI: 10.1111/j.1523-1755.2005.00607.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Transforming growth factor-beta (TGF-beta) plays an important role in renal fibrosis. Measurement of the concentration of the active form of TGF-beta particularly in urine may help our understanding of the mechanism of chronic allograft nephropathy and could be used as a diagnostic tool. However, TGF-beta release and activation are complex and, consequently, there is currently no accurate way to measure TGF-beta activity. METHODS TGF-beta-sensitive BL41 cells were stably transfected with a reporter plasmid harboring a synthetic TGF-beta-inducible DNA sequence upstream from the luciferase gene. Cells were incubated with urine samples from normal donors or transplanted recipients with or without patent nephropathy, and the active form of TGF-beta was determined as luciferase activity. RESULTS We have established a cell line which expresses luciferase activity in response to active TGF-beta in a dose-dependent manner. Moreover, the use of a histone deacetylase inhibitor greatly increased sensitivity to TGF-beta and also stabilized luciferase inductibility. This test is highly specific to active TGF-beta. Detectable levels of TGF-beta were found in urine from patients with renal dysfunction due to acute or chronic renal allograft rejection (P < 0.001), but not in that from patients with stable, correctly functional kidneys. CONCLUSION We describe a highly sensitive and specific assay for active TGF-beta. We also show that, in cases of renal allograft, TGF-beta expression is highly and significantly correlated with acute or chronic rejections.
Collapse
Affiliation(s)
- Edith Rogier
- INSERM Unité 542, Hôpital Paul Brousse, Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sturrock A, Cahill B, Norman K, Huecksteadt TP, Hill K, Sanders K, Karwande SV, Stringham JC, Bull DA, Gleich M, Kennedy TP, Hoidal JR. Transforming growth factor-beta1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2005; 290:L661-L673. [PMID: 16227320 DOI: 10.1152/ajplung.00269.2005] [Citation(s) in RCA: 315] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transforming growth factor-beta1 (TGF-beta1) is abundantly expressed in pulmonary hypertension, but its effect on the pulmonary circulation remains unsettled. We studied the consequences of TGF-beta1 stimulation on freshly isolated human pulmonary artery smooth muscle cells (HPASMC). TGF-beta1 initially promoted differentiation, with upregulated expression of smooth muscle contractile proteins. TGF-beta1 also induced expression of Nox4, the only NAD(P)H oxidase membrane homolog found in HPASMC, through a signaling pathway involving Smad 2/3 but not mitogen-activated protein (MAP) kinases. TGF-beta1 likewise increased production of reactive oxygen species (ROS), an effect significantly reduced by the NAD(P)H oxidase flavoprotein inhibitor diphenylene iodonium (DPI) and by Nox4 siRNAs. In the absence of TGF-beta1, Nox4 was present in freshly cultured cells but progressively lost with each passage in culture, paralleling a decrease in ROS production by HPASMC over time. At a later time point (72 h), TGF-beta1 promoted HPASMC proliferation in a manner partially inhibited by Nox4 small interfering RNA and dominant negative Smad 2/3, indicating that TGF-beta1 stimulates HPASMC growth in part by a redox-dependent mechanism mediated through induction of Nox4. HPASMC activation of the MAP kinases ERK1/2 was reduced by the NAD(P)H oxidase inhibitors DPI and 4-(2-aminoethyl)benzenesulfonyl fluoride, suggesting that TGF-beta1 may facilitate proliferation by upregulating Nox4 and ROS production, with transient oxidative inactivation of phosphatases and augmentation of growth signaling cascades. These findings suggest that Nox4 is the relevant Nox homolog in HPASMC. This is the first observation that TGF-beta1 regulates Nox4, with important implications for mechanisms of pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Anne Sturrock
- Div. of Respiratory, Critical Care and Occupational Pulmonary Medicine, Wintrobe 701, Univ. of Utah Medical Center, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Atfi A, Abécassis L, Bourgeade MF. Bcr-Abl activates the AKT/Fox O3 signalling pathway to restrict transforming growth factor-beta-mediated cytostatic signals. EMBO Rep 2005; 6:985-91. [PMID: 16113647 PMCID: PMC1369182 DOI: 10.1038/sj.embor.7400501] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 07/06/2005] [Accepted: 07/07/2005] [Indexed: 11/09/2022] Open
Abstract
The fusion of Abl with either Bcr or Tel in human leukaemia leads to the constitutive activation of Abl tyrosine kinase, which in turn induces growth-factor-independent proliferation and cell survival. However, the mechanism by which Bcr-Abl induces cellular transformation has not yet been well characterized. Here, we show that Bcr-Abl-expressing cells are resistant to growth inhibition and apoptosis mediated by transforming growth factor-beta (TGF-beta). Interestingly, we observed that the suppressive effects of Bcr-Abl on TGF-beta responses were not mediated by an impairment of Smad signalling, which is believed to act as the principal mediator of TGF-beta responses. In contrast, we found that Bcr-Abl can target the protein kinase AKT and the transcription factor Fox O3 to interfere with growth inhibition and apoptosis in response to TGF-beta. Our results show a novel mechanism of cellular transformation by the oncogenic fusion protein Bcr-Abl through suppression of the cytostatic actions of TGF-beta.
Collapse
Affiliation(s)
- Azeddine Atfi
- INSERM U482, 184 Rue du Faubourg St-Antoine, 75571 Paris, France.
| | | | | |
Collapse
|
30
|
Abstract
During the past 10 years, it has been firmly established that Smad pathways are central mediators of signals from the receptors for transforming growth factor β (TGF-β) superfamily members to the nucleus. However, growing biochemical and developmental evidence supports the notion that alternative, non-Smad pathways also participate in TGF-β signalling. Non-Smad signalling proteins have three general mechanisms by which they contribute to physiological responses to TGF-β: (1) non-Smad signalling pathways directly modify (e.g. phosphorylate) the Smads and thus modulate the activity of the central effectors; (2) Smads directly interact and modulate the activity of other signalling proteins (e.g. kinases), thus transmitting signals to other pathways; and (3) the TGF-β receptors directly interact with or phosphorylate non-Smad proteins, thus initiating parallel signalling that cooperates with the Smad pathway in eliciting physiological responses. Thus, non-Smad signal transducers under the control of TGF-β provide quantitative regulation of the signalling pathway, and serve as nodes for crosstalk with other major signalling pathways, such as tyrosine kinase, G-protein-coupled or cytokine receptors.
Collapse
Affiliation(s)
- Aristidis Moustakas
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, Box 595, SE 751 24 Uppsala, Sweden.
| | | |
Collapse
|
31
|
Ding W, Tang Q, Espina V, Liotta LA, Mauger DT, Mulder KM. A Transforming Growth Factor-β Receptor–Interacting Protein Frequently Mutated in Human Ovarian Cancer. Cancer Res 2005; 65:6526-33. [PMID: 16061631 DOI: 10.1158/0008-5472.can-04-4385] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ovarian carcinomas, particularly recurrent forms, are frequently resistant to transforming growth factor-beta (TGF-beta)-mediated growth inhibition. However, mutations in the TGF-beta receptor I and receptor II (TbetaR-I and TbetaR-II) genes have only been reported in a minority of ovarian carcinomas, suggesting that alterations in TGF-beta-signaling components may play an important role in the loss of TGF-beta responsiveness. Using laser-capture microdissection and nested reverse-transcription-PCR, we found that km23, which interacts with the TGF-beta receptor complex, is altered at a high frequency in human ovarian cancer patients. A novel form of km23, missing exon 3 (Deltaexon3-km23), was found in 2 of 19 tumor tissues from patients with ovarian cancer. In addition to this alteration, a stop codon mutation (TAA --> CAC) was detected in two patients. This alteration results in an elongated protein, encoding 107-amino-acid residues (Delta107km23), instead of the wild-type 96-amino-acid form of km23. Furthermore, five missense mutations (T38I, S55G, T56S, I89V, and V90A) were detected in four patients, providing a total alteration rate of 42.1% (8 of 19 cases) in ovarian cancer. No km23 alterations were detected in 15 normal tissues. Such a high alteration rate in ovarian cancer suggests that km23 may play an important role in either TGF-beta resistance or tumor progression in this disease. In keeping with these findings, the functional studies described herein indicate that both the Deltaexon3-km23 and S55G/I89V-km23 mutants displayed a disruption in binding to the dynein intermediate chain in vivo, suggesting a defect in cargo recruitment to the dynein motor complex. In addition, the Deltaexon3-km23 resulted in an inhibition of TGF-beta-dependent transcriptional activation of both the p3TP-lux and activin responsive element reporters. Collectively, our results suggest that km23 alterations found in ovarian cancer patients result in altered dynein motor complex formation and/or aberrant transcriptional regulation by TGF-beta.
Collapse
Affiliation(s)
- Wei Ding
- Department of Pharmacology and Health Evaluation Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Transforming growth factor family members (TGF-beta) are secretory polypeptides that have dual tumor-suppressor and oncogenic effects. They signal through kinase receptor complexes on the cell surface, which phosphorylate cytoplasmic mediators (SMADs). Upon phosphorylation, SMADs march to the nucleus and interact with coactivators or corepressors to mediate the transcriptional regulation of several genes resulting in diverse effects. In tumorigenesis, malignant cells escape from the tumor-suppressive effects of TGF-beta by mutational inactivation or dysregulated expression of the molecular components in TGF-beta signaling pathway. Although melanoma cells are resistant to the tumor-suppressive effects of TGF-beta, there are no detectable defects at the receptor/SMAD level. Therefore, in these lesions, it is possible that TGF-beta effects occur independently of TGF-beta receptor/SMAD pathway. This review seeks to examine the present knowledge about TGF-beta receptor/SMAD signaling pathway and its related genes (SMADs, SKI, Filamin, endoglin, Follistatin, and other molecules) in melanomas.
Collapse
Affiliation(s)
- Mahmoud R Hussein
- Department of Pathology, School of Medicine, Assuit University, Assuit, Egypt.
| |
Collapse
|
33
|
Dunn KL, Espino PS, Drobic B, He S, Davie JR. The Ras-MAPK signal transduction pathway, cancer and chromatin remodeling. Biochem Cell Biol 2005; 83:1-14. [PMID: 15746962 DOI: 10.1139/o04-121] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Stimulation of the Ras-mitogen-activated protein kinase (MAPK) signal transduction pathway results in a multitude of events including expression of the immediate-early genes, c-fos and c-myc. Downstream targets of this stimulated pathway are the mitogen- and stress-activated protein kinases (MSK) 1 and 2, which are histone H3 kinases. In chromatin immunoprecipitation assays, it has been shown that the mitogen-induced phosphorylated H3 is associated with the immediate-early genes and that MSK1/2 activity and H3 phosphorylation have roles in chromatin remodeling and transcription of these genes. In oncogene-transformed fibroblasts in which the Ras-MAPK pathway is constitutively active, histone H1 and H3 phosphorylation is increased and the chromatin of these cells has a more relaxed structure than the parental cells. In this review we explore the deregulation of the Ras-MAPK pathway in cancer, with an emphasis on breast cancer. We discuss the features of MSK1 and 2 and the impact of a constitutively activated Ras-MAPK pathway on chromatin remodeling and gene expression.Key words: Ras, mitogen-activated protein kinase signal transduction pathway, histone H3 phosphorylation, MSK1, breast cancer.
Collapse
Affiliation(s)
- Katherine L Dunn
- Manitoba Institute of Cell Biology, University of Manitoba, 675 McDermot Avenue, Winnipeg, MB R3E 0V9, Canada
| | | | | | | | | |
Collapse
|