1
|
Church FC. Suggestions on leading an academic research laboratory group. Open Life Sci 2022; 17:599-609. [PMID: 35800075 PMCID: PMC9202531 DOI: 10.1515/biol-2022-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/24/2022] [Accepted: 03/25/2022] [Indexed: 11/15/2022] Open
Abstract
This commentary is about running an academic research laboratory group, including some reflections, memories, and tips on effectively managing such a group of scientists focused on one’s research. The author’s academic career has spanned from 1982 to 2022, including postdoctoral research associate through the rank of professor with tenure. Currently, the author is in the final year of 3 years of phased retirement. One must be willing to work hard at running a research laboratory. Also, stay focused on funding the laboratory tasks and publishing one’s work. Recruit the best people possible with advice from the collective laboratory group. Laboratory group members felt more like they were a part of a collective family than simply employees; however, what works best for the researcher is what matters. Several other points to discuss will include managing university roles, recruiting laboratory personnel, getting recognition, dealing with intellectual property rights, and publishing work. In closing, there are many more positives than negatives to leading a research laboratory group. Finally, one cannot replace the unforgettable memories and the legacy of a research laboratory group.
Collapse
Affiliation(s)
- Frank C. Church
- Department of Pathology and Laboratory Medicine, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Fuentes-Prior P. Priming of SARS-CoV-2 S protein by several membrane-bound serine proteinases could explain enhanced viral infectivity and systemic COVID-19 infection. J Biol Chem 2020; 296:100135. [PMID: 33268377 PMCID: PMC7834812 DOI: 10.1074/jbc.rev120.015980] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
The ongoing COVID-19 pandemic has already caused over a million deaths worldwide, and this death toll will be much higher before effective treatments and vaccines are available. The causative agent of the disease, the coronavirus SARS-CoV-2, shows important similarities with the previously emerged SARS-CoV-1, but also striking differences. First, SARS-CoV-2 possesses a significantly higher transmission rate and infectivity than SARS-CoV-1 and has infected in a few months over 60 million people. Moreover, COVID-19 has a systemic character, as in addition to the lungs, it also affects the heart, liver, and kidneys among other organs of the patients and causes frequent thrombotic and neurological complications. In fact, the term "viral sepsis" has been recently coined to describe the clinical observations. Here I review current structure-function information on the viral spike proteins and the membrane fusion process to provide plausible explanations for these observations. I hypothesize that several membrane-associated serine proteinases (MASPs), in synergy with or in place of TMPRSS2, contribute to activate the SARS-CoV-2 spike protein. Relative concentrations of the attachment receptor, ACE2, MASPs, their endogenous inhibitors (the Kunitz-type transmembrane inhibitors, HAI-1/SPINT1 and HAI-2/SPINT2, as well as major circulating serpins) would determine the infection rate of host cells. The exclusive or predominant expression of major MASPs in specific human organs suggests a direct role of these proteinases in e.g., heart infection and myocardial injury, liver dysfunction, kidney damage, as well as neurological complications. Thorough consideration of these factors could have a positive impact on the control of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Pablo Fuentes-Prior
- Molecular Bases of Disease, Biomedical Research Institute (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| |
Collapse
|
3
|
Zhang C, Zhang Y, Zhang S, Wang Z, Sun S, Liu M, Chen Y, Dong N, Wu Q. Intracellular autoactivation of TMPRSS11A, an airway epithelial transmembrane serine protease. J Biol Chem 2020; 295:12686-12696. [PMID: 32675285 PMCID: PMC7476710 DOI: 10.1074/jbc.ra120.014525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/14/2020] [Indexed: 12/26/2022] Open
Abstract
Type II transmembrane serine proteases (TTSPs) are a group of enzymes participating in diverse biological processes. Some members of the TTSP family are implicated in viral infection. TMPRSS11A is a TTSP expressed on the surface of airway epithelial cells, which has been shown to cleave and activate spike proteins of the severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome coronaviruses (CoVs). In this study, we examined the mechanism underlying the activation cleavage of TMPRSS11A that converts the one-chain zymogen to a two-chain enzyme. By expression in human embryonic kidney 293, esophageal EC9706, and lung epithelial A549 and 16HBE cells, Western blotting, and site-directed mutagenesis, we found that the activation cleavage of human TMPRSS11A was mediated by autocatalysis. Moreover, we found that TMPRSS11A activation cleavage occurred before the protein reached the cell surface, as indicated by studies with trypsin digestion to remove cell surface proteins, treatment with cell organelle-disturbing agents to block intracellular protein trafficking, and analysis of a soluble form of TMPRSS11A without the transmembrane domain. We also showed that TMPRSS11A was able to cleave the SARS-CoV-2 spike protein. These results reveal an intracellular autocleavage mechanism in TMPRSS11A zymogen activation, which differs from the extracellular zymogen activation reported in other TTSPs. These findings provide new insights into the diverse mechanisms in regulating TTSP activation.
Collapse
Affiliation(s)
- Ce Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Yikai Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.,MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shengnan Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.,MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiting Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Shijin Sun
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.,MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Yue Chen
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China .,MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China .,Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Callies LK, Tadeo D, Simper J, Bugge TH, Szabo R. Iterative, multiplexed CRISPR-mediated gene editing for functional analysis of complex protease gene clusters. J Biol Chem 2019; 294:15987-15996. [PMID: 31501243 DOI: 10.1074/jbc.ra119.009773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
Elucidation of gene function by reverse genetics in animal models frequently is complicated by the functional redundancy of homologous genes. This obstacle often is compounded by the tight clustering of homologous genes, which precludes the generation of multigene-deficient animals through standard interbreeding of single-deficient animals. Here, we describe an iterative, multiplexed CRISPR-based approach for simultaneous gene editing in the complex seven-member human airway trypsin-like protease/differentially expressed in a squamous cell carcinoma (HAT/DESC) cluster of membrane-anchored serine proteases. Through four cycles of targeting, we generated a library of 18 unique congenic mouse strains lacking combinations of HAT/DESC proteases, including a mouse strain deficient in all seven proteases. Using this library, we demonstrate that HAT/DESC proteases are dispensable for term development, postnatal health, and fertility and that the recently described function of the HAT-like 4 protease in epidermal barrier formation is unique among all HAT/DESC proteases. The study demonstrates the potential of iterative, multiplexed CRISPR-mediated gene editing for functional analysis of multigene clusters, and it provides a large array of new congenic mouse strains for the study of HAT/DESC proteases in physiological and in pathophysiological processes.
Collapse
Affiliation(s)
- LuLu K Callies
- Proteases and Tissue Remodeling Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Daniel Tadeo
- Proteases and Tissue Remodeling Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Jan Simper
- Proteases and Tissue Remodeling Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Roman Szabo
- Proteases and Tissue Remodeling Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
5
|
Jeong J, Lee B, Kim J, Kim J, Hong SH, Kim D, Choi S, Cho BN, Cho C. Expressional and functional analyses of epididymal SPINKs in mice. Gene Expr Patterns 2019; 31:18-25. [DOI: 10.1016/j.gep.2018.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/05/2018] [Accepted: 12/24/2018] [Indexed: 02/07/2023]
|
6
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. Membrane-Anchored Serine Proteases: Host Cell Factors in Proteolytic Activation of Viral Glycoproteins. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122464 DOI: 10.1007/978-3-319-75474-1_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over one third of all known proteolytic enzymes are serine proteases. Among these, the trypsin-like serine proteases comprise one of the best characterized subfamilies due to their essential roles in blood coagulation, food digestion, fibrinolysis, or immunity. Trypsin-like serine proteases possess primary substrate specificity for basic amino acids. Most of the well-characterized trypsin-like proteases such as trypsin, plasmin, or urokinase are soluble proteases that are secreted into the extracellular environment. At the turn of the millennium, a number of novel trypsin-like serine proteases have been identified that are anchored in the cell membrane, either by a transmembrane domain at the N- or C-terminus or via a glycosylphosphatidylinositol (GPI) linkage. Meanwhile more than 20 membrane-anchored serine proteases (MASPs) have been identified in human and mouse, and some of them have emerged as key regulators of mammalian development and homeostasis. Thus, the MASP corin and TMPRSS6/matriptase-2 have been demonstrated to be the activators of the atrial natriuretic peptide (ANP) and key regulator of hepcidin expression, respectively. Furthermore, MASPs have been recognized as host cell factors activating respiratory viruses including influenza virus as well as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses. In particular, transmembrane protease serine S1 member 2 (TMPRSS2) has been shown to be essential for proteolytic activation and consequently spread and pathogenesis of a number of influenza A viruses in mice and as a factor associated with severe influenza virus infection in humans. This review gives an overview on the physiological functions of the fascinating and rapidly evolving group of MASPs and a summary of the current knowledge on their role in proteolytic activation of viral fusion proteins.
Collapse
Affiliation(s)
| | - Wolfgang Garten
- 0000 0004 1936 9756grid.10253.35Institut für Virologie, Philipps Universität, Marburg, Germany
| | - Hans Dieter Klenk
- 0000 0004 1936 9756grid.10253.35Institut für Virologie, Philipps-Universität, Marburg, Germany
| |
Collapse
|
7
|
Pérez-Patiño C, Parrilla I, Barranco I, Vergara-Barberán M, Simó-Alfonso EF, Herrero-Martínez JM, Rodriguez-Martínez H, Martínez EA, Roca J. New In-Depth Analytical Approach of the Porcine Seminal Plasma Proteome Reveals Potential Fertility Biomarkers. J Proteome Res 2018; 17:1065-1076. [DOI: 10.1021/acs.jproteome.7b00728] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cristina Pérez-Patiño
- Department
of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia 30100, Spain
| | - Inmaculada Parrilla
- Department
of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia 30100, Spain
| | - Isabel Barranco
- Department
of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia 30100, Spain
| | | | | | | | | | - Emilio A. Martínez
- Department
of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia 30100, Spain
| | - Jordi Roca
- Department
of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia 30100, Spain
| |
Collapse
|
8
|
Shi W, Fan W, Bai J, Tang Y, Wang L, Jiang Y, Tang L, Liu M, Cui W, Xu Y, Li Y. TMPRSS2 and MSPL Facilitate Trypsin-Independent Porcine Epidemic Diarrhea Virus Replication in Vero Cells. Viruses 2017; 9:E114. [PMID: 28524070 PMCID: PMC5454426 DOI: 10.3390/v9050114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 01/27/2023] Open
Abstract
Type II transmembrane serine proteases (TTSPs) facilitate the spread and replication of viruses such as influenza and human coronaviruses, although it remains unclear whether TTSPs play a role in the progression of animal coronavirus infections, such as that by porcine epidemic diarrhea virus (PEDV). In this study, TTSPs including TMPRSS2, HAT, DESC1, and MSPL were tested for their ability to facilitate PEDV replication in Vero cells. Our results showed that TMPRSS2 and MSPL played significant roles in the stages of cell-cell fusion and virus-cell fusion, whereas HAT and DESC1 exhibited weaker effects. This activation may be involved in the interaction between TTSPs and the PEDV S protein, as the S protein extensively co-localized with TMPRSS2 and MSPL and could be cleaved by co-expression with TMPRSS2 or MSPL. Moreover, the use of Vero cells expressing TMPRSS2 and MSPL facilitated PEDV replication in the absence of exogenous trypsin. In sum, we identified two host proteases, TMPRSS2 and MSPL, which may provide insights and a novel method for enhancing viral titers, expanding virus production, and improving the adaptability of PEDV isolates in vitro.
Collapse
Affiliation(s)
- Wen Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Wenlu Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Jing Bai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Yandong Tang
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Min Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Yigang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
9
|
Menou A, Duitman J, Flajolet P, Sallenave JM, Mailleux AA, Crestani B. Human airway trypsin-like protease, a serine protease involved in respiratory diseases. Am J Physiol Lung Cell Mol Physiol 2017; 312:L657-L668. [DOI: 10.1152/ajplung.00509.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 01/12/2023] Open
Abstract
More than 2% of all human genes are coding for a complex system of more than 700 proteases and protease inhibitors. Among them, serine proteases play extraordinary, diverse functions in different physiological and pathological processes. The human airway trypsin-like protease (HAT), also referred to as TMPRSS11D and serine 11D, belongs to the emerging family of cell surface proteolytic enzymes, the type II transmembrane serine proteases (TTSPs). Through the cleavage of its four major identified substrates, HAT triggers specific responses, notably in epithelial cells, within the pericellular and extracellular environment, including notably inflammatory cytokine production, inflammatory cell recruitment, or anticoagulant processes. This review summarizes the potential role of this recently described protease in mediating cell surface proteolytic events, to highlight the structural features, proteolytic activity, and regulation, including the expression profile of HAT, and discuss its possible roles in respiratory physiology and disease.
Collapse
Affiliation(s)
- Awen Menou
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - JanWillem Duitman
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - Pauline Flajolet
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - Jean-Michel Sallenave
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - Arnaud André Mailleux
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - Bruno Crestani
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
- APHP, Hôpital Bichat, Service de Pneumologie A, Paris, France
| |
Collapse
|
10
|
Martin EW, Buzza MS, Driesbaugh KH, Liu S, Fortenberry YM, Leppla SH, Antalis TM. Targeting the membrane-anchored serine protease testisin with a novel engineered anthrax toxin prodrug to kill tumor cells and reduce tumor burden. Oncotarget 2016; 6:33534-53. [PMID: 26392335 PMCID: PMC4741784 DOI: 10.18632/oncotarget.5214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/03/2015] [Indexed: 02/04/2023] Open
Abstract
The membrane-anchored serine proteases are a unique group of trypsin-like serine proteases that are tethered to the cell surface via transmembrane domains or glycosyl-phosphatidylinositol-anchors. Overexpressed in tumors, with pro-tumorigenic properties, they are attractive targets for protease-activated prodrug-like anti-tumor therapies. Here, we sought to engineer anthrax toxin protective antigen (PrAg), which is proteolytically activated on the cell surface by the proprotein convertase furin to instead be activated by tumor cell-expressed membrane-anchored serine proteases to function as a tumoricidal agent. PrAg's native activation sequence was mutated to a sequence derived from protein C inhibitor (PCI) that can be cleaved by membrane-anchored serine proteases, to generate the mutant protein PrAg-PCIS. PrAg-PCIS was resistant to furin cleavage in vitro, yet cytotoxic to multiple human tumor cell lines when combined with FP59, a chimeric anthrax toxin lethal factor-Pseudomonas exotoxin fusion protein. Molecular analyses showed that PrAg-PCIS can be cleaved in vitro by several serine proteases including the membrane-anchored serine protease testisin, and mediates increased killing of testisin-expressing tumor cells. Treatment with PrAg-PCIS also potently attenuated the growth of testisin-expressing xenograft tumors in mice. The data indicates PrAg can be engineered to target tumor cell-expressed membrane-anchored serine proteases to function as a potent tumoricidal agent.
Collapse
Affiliation(s)
- Erik W Martin
- Center for Vascular and Inflammatory Diseases and the Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Marguerite S Buzza
- Center for Vascular and Inflammatory Diseases and the Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kathryn H Driesbaugh
- Center for Vascular and Inflammatory Diseases and the Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shihui Liu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yolanda M Fortenberry
- Division of Pediatric Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephen H Leppla
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Toni M Antalis
- Center for Vascular and Inflammatory Diseases and the Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
11
|
Duhaime MJ, Page KO, Varela FA, Murray AS, Silverman ME, Zoratti GL, List K. Cell Surface Human Airway Trypsin-Like Protease Is Lost During Squamous Cell Carcinogenesis. J Cell Physiol 2016; 231:1476-83. [PMID: 26297835 PMCID: PMC4933652 DOI: 10.1002/jcp.25173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/21/2015] [Indexed: 11/17/2022]
Abstract
Cancer progression is accompanied by increased levels of extracellular proteases that are capable of remodeling the extracellular matrix, as well as cleaving and activating growth factors and receptors that are involved in pro‐cancerous signaling pathways. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression, however, the expression or function of the TTSP Human Airway Trypsin‐like protease (HAT) in carcinogenesis has not been examined. In the present study we aimed to determine the expression of HAT during squamous cell carcinogenesis. HAT transcript is present in several tissues containing stratified squamous epithelium and decreased expression is observed in carcinomas. We determined that HAT protein is consistently expressed on the cell surface in suprabasal/apical layers of squamous cells in healthy cervical and esophageal epithelia. To assess whether HAT protein is differentially expressed in normal tissue versus tissue in different stages of carcinogenesis, we performed a comprehensive immunohistochemical analysis of HAT protein expression levels and localization in arrays of paraffin embedded human cervical and esophageal carcinomas compared to the corresponding normal tissue. We found that HAT protein is expressed in the non‐proliferating, differentiated cellular strata and is lost during the dedifferentiation of epithelial cells, a hallmark of squamous cell carcinogenesis. Thus, HAT expression may potentially be useful as a marker for clinical grading and assessment of patient prognosis in squamous cell carcinomas. J. Cell. Physiol. 231: 1476–1483, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael J Duhaime
- Department of Pharmacology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Khaliph O Page
- Department of Pharmacology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Fausto A Varela
- Department of Pharmacology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Andrew S Murray
- Department of Pharmacology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.,Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.,Department of Cancer Biology Graduate Program, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Michael E Silverman
- Department of Pharmacology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Gina L Zoratti
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Karin List
- Department of Pharmacology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.,Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| |
Collapse
|
12
|
Yang H, Wahlmüller FC, Sarg B, Furtmüller M, Geiger M. A+-helix of protein C inhibitor (PCI) is a cell-penetrating peptide that mediates cell membrane permeation of PCI. J Biol Chem 2014; 290:3081-91. [PMID: 25488662 PMCID: PMC4317013 DOI: 10.1074/jbc.m114.581736] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Protein C inhibitor (PCI) is a serpin with broad protease reactivity. It binds glycosaminoglycans and certain phospholipids that can modulate its inhibitory activity. PCI can penetrate through cellular membranes via binding to phosphatidylethanolamine. The exact mechanism of PCI internalization and the intracellular role of the serpin are not well understood. Here we showed that testisin, a glycosylphosphatidylinositol-anchored serine protease, cleaved human PCI and mouse PCI (mPCI) at their reactive sites as well as at sites close to their N terminus. This cleavage was observed not only with testisin in solution but also with cell membrane-anchored testisin on U937 cells. The cleavage close to the N terminus released peptides rich in basic amino acids. Synthetic peptides corresponding to the released peptides of human PCI (His1–Arg11) and mPCI (Arg1–Ala18) functioned as cell-penetrating peptides. Because intact mPCI but not testisin-cleaved mPCI was internalized by Jurkat T cells, a truncated mPCI mimicking testisin-cleaved mPCI was created. The truncated mPCI lacking 18 amino acids at the N terminus was not taken up by Jurkat T cells. Therefore our model suggests that testisin or other proteases could regulate the internalization of PCI by removing its N terminus. This may represent one of the mechanisms regulating the intracellular functions of PCI.
Collapse
Affiliation(s)
- Hanjiang Yang
- From the Center of Physiology and Pharmacology, Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Felix Christof Wahlmüller
- From the Center of Physiology and Pharmacology, Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Bettina Sarg
- Biocenter, Division of Clinical Biochemistry, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Margareta Furtmüller
- From the Center of Physiology and Pharmacology, Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Margarethe Geiger
- From the Center of Physiology and Pharmacology, Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, A-1090 Vienna, Austria and
| |
Collapse
|
13
|
Serine proteases as candidates for proteolytic processing of angiotensin-I converting enzyme. Int J Biol Macromol 2014; 72:673-9. [PMID: 25263467 DOI: 10.1016/j.ijbiomac.2014.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 11/21/2022]
Abstract
Somatic angiotensin-I converting enzyme (sACE) is a broadly distributed peptidase which plays a role in blood pressure and electrolyte homeostasis by the conversion of angiotensin I into angiotensin II. N-domain isoforms (nACE) with 65 and 90 kDa have been described in body fluids, tissues and mesangial cells (MC), and a 90 kDa nACE has been described only in spontaneously hypertensive rats. The aim of this study was to investigate the existence of proteolytic enzymes that may act in the hydrolysis of sACE generating nACEs in MC. After the confirmation of the presence of ACE sheddases in Immortalized MC (IMC), we purified and characterized these enzymes using fluorogenic substrates specifically designed for ACE sheddases. Purified enzyme identified as a serine protease by N-terminal sequence was able to generate nACE. In the present study, we described for the first time the presence of ACE sheddases in IMC, identified as serine proteases able to hydrolyze sACE in vitro. Further investigations are necessary to elucidate the mechanisms responsible for the expression and regulation of ACE sheddases in MC and their roles in the generation of nACEs, especially the 90 kDa form possibly related to hypertension.
Collapse
|
14
|
Barré O, Dufour A, Eckhard U, Kappelhoff R, Béliveau F, Leduc R, Overall CM. Cleavage specificity analysis of six type II transmembrane serine proteases (TTSPs) using PICS with proteome-derived peptide libraries. PLoS One 2014; 9:e105984. [PMID: 25211023 PMCID: PMC4161349 DOI: 10.1371/journal.pone.0105984] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/31/2014] [Indexed: 01/08/2023] Open
Abstract
Background Type II transmembrane serine proteases (TTSPs) are a family of cell membrane tethered serine proteases with unclear roles as their cleavage site specificities and substrate degradomes have not been fully elucidated. Indeed just 52 cleavage sites are annotated in MEROPS, the database of proteases, their substrates and inhibitors. Methodology/Principal Finding To profile the active site specificities of the TTSPs, we applied Proteomic Identification of protease Cleavage Sites (PICS). Human proteome-derived database searchable peptide libraries were assayed with six human TTSPs (matriptase, matriptase-2, matriptase-3, HAT, DESC and hepsin) to simultaneously determine sequence preferences on the N-terminal non-prime (P) and C-terminal prime (P’) sides of the scissile bond. Prime-side cleavage products were isolated following biotinylation and identified by tandem mass spectrometry. The corresponding non-prime side sequences were derived from human proteome databases using bioinformatics. Sequencing of 2,405 individual cleaved peptides allowed for the development of the family consensus protease cleavage site specificity revealing a strong specificity for arginine in the P1 position and surprisingly a lysine in P1′ position. TTSP cleavage between R↓K was confirmed using synthetic peptides. By parsing through known substrates and known structures of TTSP catalytic domains, and by modeling the remainder, structural explanations for this strong specificity were derived. Conclusions Degradomics analysis of 2,405 cleavage sites revealed a similar and characteristic TTSP family specificity at the P1 and P1′ positions for arginine and lysine in unfolded peptides. The prime side is important for cleavage specificity, thus making these proteases unusual within the tryptic-enzyme class that generally has overriding non-prime side specificity.
Collapse
Affiliation(s)
- Olivier Barré
- Centre for Blood Research, Department of Oral Biological & Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Antoine Dufour
- Centre for Blood Research, Department of Oral Biological & Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ulrich Eckhard
- Centre for Blood Research, Department of Oral Biological & Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Reinhild Kappelhoff
- Centre for Blood Research, Department of Oral Biological & Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - François Béliveau
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Richard Leduc
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christopher M. Overall
- Centre for Blood Research, Department of Oral Biological & Medical Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
15
|
Miller GS, Zoratti GL, Murray AS, Bergum C, Tanabe LM, List K. HATL5: a cell surface serine protease differentially expressed in epithelial cancers. PLoS One 2014; 9:e87675. [PMID: 24498351 PMCID: PMC3912027 DOI: 10.1371/journal.pone.0087675] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/28/2013] [Indexed: 01/15/2023] Open
Abstract
Over the last two decades, cell surface proteases belonging to the type II transmembrane serine protease (TTSP) family have emerged as important enzymes in the mammalian degradome, playing critical roles in epithelial biology, regulation of metabolic homeostasis, and cancer. Human airway trypsin-like protease 5 (HATL5) is one of the few family members that remains uncharacterized. Here we demonstrate that HATL5 is a catalytically active serine protease that is inhibited by the two Kunitz type serine protease inhibitors, hepatocyte growth factor activator inhibitor (HAI)-1 and 2, as well as by serpinA1. Full-length HATL5 is localized on the cell surface of cultured mammalian cells as demonstrated by confocal microscopy. HATL5 displays a relatively restricted tissue expression profile, with both transcript and protein present in the cervix, esophagus, and oral cavity. Immunohistochemical analysis revealed an expression pattern where HATL5 is localized on the cell surface of differentiated epithelial cells in the stratified squamous epithelia of all three of these tissues. Interestingly, HATL5 is significantly decreased in cervical, esophageal, and head and neck carcinomas as compared to normal tissue. Analysis of cervical and esophageal cancer tissue arrays demonstrated that the squamous epithelial cells lose their expression of HATL5 protein upon malignant transformation.
Collapse
Affiliation(s)
- Gregory S. Miller
- Department of Pharmacology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Gina L. Zoratti
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Andrew S. Murray
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Christopher Bergum
- Department of Pharmacology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Lauren M. Tanabe
- Department of Pharmacology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Karin List
- Department of Pharmacology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
- * E-mail:
| |
Collapse
|
16
|
Ma L, Yu H, Ni Z, Hu S, Ma W, Chu C, Liu Q, Zhang Y. Spink13, an epididymis-specific gene of the Kazal-type serine protease inhibitor (SPINK) family, is essential for the acrosomal integrity and male fertility. J Biol Chem 2013; 288:10154-10165. [PMID: 23430248 DOI: 10.1074/jbc.m112.445866] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sperm maturation involves numerous surface modifications by a variety of secreted proteins from epididymal epithelia. The sperm surface architecture depends on correct localization of its components and highlights the importance of the sequence of the proteolytic processing of the sperm surface in the epididymal duct. The presence of several protease inhibitors from different families is consistent with the hypothesis that correctly timed epididymal protein processing is essential for proper sperm maturation. Here we show that the rat (Rattus norvegicus) epididymis-specific gene Spink13, an androgen-responsive serine protease inhibitor, could bind to the sperm acrosome region. Furthermore, knockdown of Spink13 in vivo dramatically enhanced the acrosomal exocytosis during the process of capacitation and thus led to a significant reduction in male fertility, indicating that Spink13 was essential for sperm maturation. We conclude that blockade of SPINK13 may provide a new putative target for post-testicular male contraceptives.
Collapse
Affiliation(s)
- Li Ma
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China; Graduate University of the Chinese Academy of Sciences, 200031 Shanghai, China
| | - Heguo Yu
- National Population and Family Planning Commission Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, 200032 Shanghai, China
| | - Zimei Ni
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Shuanggang Hu
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China; Graduate University of the Chinese Academy of Sciences, 200031 Shanghai, China
| | - Wubin Ma
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China; Graduate University of the Chinese Academy of Sciences, 200031 Shanghai, China
| | - Chen Chu
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China; Graduate University of the Chinese Academy of Sciences, 200031 Shanghai, China
| | - Qiang Liu
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China.
| | - Yonglian Zhang
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China; National Population and Family Planning Commission Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, 200032 Shanghai, China.
| |
Collapse
|
17
|
Antalis TM. DESC1 and HAT Peptidases. HANDBOOK OF PROTEOLYTIC ENZYMES 2013. [PMCID: PMC7150303 DOI: 10.1016/b978-0-12-382219-2.00654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Prohaska TA, Wahlmüller FC, Furtmüller M, Geiger M. Interaction of protein C inhibitor with the type II transmembrane serine protease enteropeptidase. PLoS One 2012; 7:e39262. [PMID: 22723979 PMCID: PMC3378520 DOI: 10.1371/journal.pone.0039262] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/22/2012] [Indexed: 11/18/2022] Open
Abstract
The serine protease inhibitor protein C inhibitor (PCI) is expressed in many human tissues and exhibits broad protease reactivity. PCI binds glycosaminoglycans and certain phospholipids, which modulate its inhibitory activity. Enteropeptidase (EP) is a type II transmembrane serine protease mainly found on the brush border membrane of epithelial cells in the duodenum, where it activates trypsinogen to initiate the digestion of food proteins. Some active EP is also present in duodenal fluid and has been made responsible for causing pancreatitis in case of duodeno-pancreatic reflux. Together with its substrate trypsinogen, EP is furthermore present in the epidermis and in some cancer cells. In this report, we show that PCI inhibited EP with an apparent 2nd order rate constant of 4.48 × 10(4) M(-1) s(-1). Low molecular weight (LMWH) and unfractionated heparin (UFH) slightly reduced the inhibitory effect of PCI. The SI (stoichiometry of inhibition) value for the inhibition of EP by PCI was 10.8 in the absence and 17.9 in the presence of UFH (10 U/ml). By inhibiting trypsin, chymotrypsin, and additionally EP, PCI might play a role in the protection of the pancreas from autodigestion. Furthermore the interaction of PCI with EP may influence the regulation of epithelial differentiation.
Collapse
Affiliation(s)
- Thomas A. Prohaska
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Felix C. Wahlmüller
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Margareta Furtmüller
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Margarethe Geiger
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
19
|
Sales KU, Hobson JP, Wagenaar-Miller R, Szabo R, Rasmussen AL, Bey A, Shah MF, Molinolo AA, Bugge TH. Expression and genetic loss of function analysis of the HAT/DESC cluster proteases TMPRSS11A and HAT. PLoS One 2011; 6:e23261. [PMID: 21853097 PMCID: PMC3154331 DOI: 10.1371/journal.pone.0023261] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/09/2011] [Indexed: 11/18/2022] Open
Abstract
Genome mining at the turn of the millennium uncovered a new family of type II transmembrane serine proteases (TTSPs) that comprises 17 members in humans and 19 in mice. TTSPs phylogenetically belong to one of four subfamilies: matriptase, hepsin/TMPRSS, corin and HAT/DESC. Whereas a wealth of information now has been gathered as to the physiological functions of members of the hepsin/TMPRSS, matriptase, and corin subfamilies of TTSPs, comparatively little is known about the functions of the HAT/DESC subfamily of proteases. Here we perform a combined expression and functional analysis of this TTSP subfamily. We show that the five human and seven murine HAT/DESC proteases are coordinately expressed, suggesting a level of functional redundancy. We also perform a comprehensive phenotypic analysis of mice deficient in two of the most widely expressed HAT/DESC proteases, TMPRSS11A and HAT, and show that the two proteases are dispensable for development, health, and long-term survival in the absence of external challenges or additional genetic deficits. Our comprehensive expression analysis and generation of TMPRSS11A- and HAT-deficient mutant mouse strains provide a valuable resource for the scientific community for further exploration of the HAT/DESC subfamily proteases in physiological and pathological processes.
Collapse
Affiliation(s)
- Katiuchia Uzzun Sales
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John P. Hobson
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rebecca Wagenaar-Miller
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- Division of Extramural Activities, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Roman Szabo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Amber L. Rasmussen
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexandra Bey
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Maham F. Shah
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alfredo A. Molinolo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas H. Bugge
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
20
|
Antalis TM, Bugge TH, Wu Q. Membrane-anchored serine proteases in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 99:1-50. [PMID: 21238933 PMCID: PMC3697097 DOI: 10.1016/b978-0-12-385504-6.00001-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Serine proteases of the trypsin-like family have long been recognized to be critical effectors of biological processes as diverse as digestion, blood coagulation, fibrinolysis, and immunity. In recent years, a subgroup of these enzymes has been identified that are anchored directly to plasma membranes, either by a carboxy-terminal transmembrane domain (Type I), an amino-terminal transmembrane domain with a cytoplasmic extension (Type II or TTSP), or through a glycosylphosphatidylinositol (GPI) linkage. Recent biochemical, cellular, and in vivo analyses have now established that membrane-anchored serine proteases are key pericellular contributors to processes vital for development and the maintenance of homeostasis. This chapter reviews our current knowledge of the biological and physiological functions of these proteases, their molecular substrates, and their contributions to disease.
Collapse
Affiliation(s)
- Toni M Antalis
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
21
|
Hashimoto T, Kato M, Shimomura T, Kitamura N. TMPRSS13, a type II transmembrane serine protease, is inhibited by hepatocyte growth factor activator inhibitor type 1 and activates pro-hepatocyte growth factor. FEBS J 2010; 277:4888-900. [PMID: 20977675 DOI: 10.1111/j.1742-4658.2010.07894.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Type II transmembrane serine proteases (TTSPs) are structurally defined by the presence of a transmembrane domain located near the N-terminus and a C-terminal extracellular serine protease domain. The human TTSP family consists of 17 members. Some members of the family have pivotal functions in development and homeostasis, and are involved in tumorigenesis and viral infections. The activities of TTSPs are regulated by endogenous protease inhibitors. However, protease inhibitors of most TTSPs have not yet been identified. In this study, we investigated the inhibitory effect of hepatocyte growth factor activator inhibitor type 1 (HAI-1), a Kunitz-type serine protease inhibitor, on several members of the TTSP family. We found that the protease activity of a member, TMPRSS13, was inhibited by HAI-1. A detailed analysis revealed that a soluble form of HAI-1 with one Kunitz domain (NK1) more strongly inhibited TMPRSS13 than another soluble form of HAI-1 with two Kunitz domains (NK1LK2). In addition, an in vitro protein binding assay showed that NK1 formed complexes with TMPRSS13, but NK1LK2 did not. TMPRSS13 converted single-chain pro-hepatocyte growth factor (pro-HGF) to a two-chain form in vitro, and the pro-HGF converting activity of TMPRSS13 was inhibited by NK1. The two-chain form of HGF exhibited biological activity, assessed by phosphorylation of the HGF receptor (c-Met) and extracellular signal-regulated kinase, and scattered morphology in human hepatocellular carcinoma cell line HepG2. These results suggest that TMPRSS13 functions as an HGF-converting protease, the activity of which may be regulated by HAI-1.
Collapse
Affiliation(s)
- Tomio Hashimoto
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
| | | | | | | |
Collapse
|
22
|
Cesari A, Monclus MDLA, Tejón GP, Clementi M, Fornes MW. Regulated serine proteinase lytic system on mammalian sperm surface: There must be a role. Theriogenology 2010; 74:699-711.e1-5. [DOI: 10.1016/j.theriogenology.2010.03.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 03/25/2010] [Accepted: 03/27/2010] [Indexed: 11/28/2022]
|
23
|
The cutting edge: membrane-anchored serine protease activities in the pericellular microenvironment. Biochem J 2010; 428:325-46. [PMID: 20507279 DOI: 10.1042/bj20100046] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The serine proteases of the trypsin-like (S1) family play critical roles in many key biological processes including digestion, blood coagulation, and immunity. Members of this family contain N- or C-terminal domains that serve to tether the serine protease catalytic domain directly to the plasma membrane. These membrane-anchored serine proteases are proving to be key components of the cell machinery for activation of precursor molecules in the pericellular microenvironment, playing vital functions in the maintenance of homoeostasis. Substrates activated by membrane-anchored serine proteases include peptide hormones, growth and differentiation factors, receptors, enzymes, adhesion molecules and viral coat proteins. In addition, new insights into our understanding of the physiological functions of these proteases and their involvement in human pathology have come from animal models and patient studies. The present review discusses emerging evidence for the diversity of this fascinating group of membrane serine proteases as potent modifiers of the pericellular microenvironment through proteolytic processing of diverse substrates. We also discuss the functional consequences of the activities of these proteases on mammalian physiology and disease.
Collapse
|
24
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 5: intercellular junctions and contacts between germs cells and Sertoli cells and their regulatory interactions, testicular cholesterol, and genes/proteins associated with more than one germ cell generation. Microsc Res Tech 2010; 73:409-94. [PMID: 19941291 DOI: 10.1002/jemt.20786] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the testis, cell adhesion and junctional molecules permit specific interactions and intracellular communication between germ and Sertoli cells and apposed Sertoli cells. Among the many adhesion family of proteins, NCAM, nectin and nectin-like, catenins, and cadherens will be discussed, along with gap junctions between germ and Sertoli cells and the many members of the connexin family. The blood-testis barrier separates the haploid spermatids from blood borne elements. In the barrier, the intercellular junctions consist of many proteins such as occludin, tricellulin, and claudins. Changes in the expression of cell adhesion molecules are also an essential part of the mechanism that allows germ cells to move from the basal compartment of the seminiferous tubule to the adluminal compartment thus crossing the blood-testis barrier and well-defined proteins have been shown to assist in this process. Several structural components show interactions between germ cells to Sertoli cells such as the ectoplasmic specialization which are more closely related to Sertoli cells and tubulobulbar complexes that are processes of elongating spermatids embedded into Sertoli cells. Germ cells also modify several Sertoli functions and this also appears to be the case for residual bodies. Cholesterol plays a significant role during spermatogenesis and is essential for germ cell development. Lastly, we list genes/proteins that are expressed not only in any one specific generation of germ cells but across more than one generation.
Collapse
Affiliation(s)
- Louis Hermo
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
25
|
Abstract
Analysis of genome and expressed sequence tag data bases at the turn of the millennium unveiled a new protease family named the type II transmembrane serine proteases (TTSPs) in a Journal of Biological Chemistry minireview (Hooper, J. D., Clements, J. A., Quigley, J. P., and Antalis, T. M. (2001) J. Biol. Chem. 276, 857-860). Since then, the number of known TTSPs has more than doubled, and more importantly, our understanding of the physiological functions of individual TTSPs and their contribution to human disease has greatly increased. Progress has also been made in identifying molecular substrates and endogenous inhibitors. This minireview summarizes the current knowledge of the rapidly advancing TTSP field.
Collapse
Affiliation(s)
- Thomas H Bugge
- Proteases and Tissue Remodeling Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
26
|
Béliveau F, Désilets A, Leduc R. Probing the substrate specificities of matriptase, matriptase-2, hepsin and DESC1 with internally quenched fluorescent peptides. FEBS J 2009; 276:2213-26. [PMID: 19302215 DOI: 10.1111/j.1742-4658.2009.06950.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Type II transmembrane serine proteases are an emerging class of proteolytic enzymes involved in tissue homeostasis and a number of human disorders such as cancer. To better define the biochemical functions of a subset of these proteases, we compared the enzymatic properties of matriptase, matriptase-2, hepsin and DESC1 using a series of internally quenched fluorogenic peptide substrates containing o-aminobenzoyl and 3-nitro-tyrosine. We based the sequence of the peptides on the P4 to P4' activation sequence of matriptase (RQAR-VVGG). Positions P4, P3, P2 and P1' were substituted with nonpolar (Ala, Leu), aromatic (Tyr), acid (Glu) and basic (Arg) amino acids, whereas P1 was fixed to Arg. Of the four type II transmembrane serine proteases studied, matriptase-2 was the most promiscuous, and matriptase was the most discriminating, with a distinct specificity for Arg residues at P4, P3 and P2. DESC1 had a preference similar to that of matriptase, but with a propensity for small nonpolar amino acids (Ala) at P1'. Hepsin shared similarities with matriptase and DESC1, but was markedly more permissive at P2. Matriptase-2 manifested broader specificities, as well as substrate inhibition, for selective internally quenched fluorescent substrates. Lastly, we found that antithrombin III has robust inhibitory properties toward matriptase, matriptase-2, hepsin and DESC1, whereas plasminogen activator inhibitor-1 and alpha(2)-antiplasmin inhibited matriptase-2, hepsin and DESC1, and to a much lesser extent, matriptase. In summary, our studies revealed that these enzymes have distinct substrate preferences.
Collapse
|
27
|
Membrane-bound serine protease matriptase-2 (Tmprss6) is an essential regulator of iron homeostasis. Blood 2008; 112:2539-45. [PMID: 18523150 DOI: 10.1182/blood-2008-04-149773] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Proteolytic events at the cell surface are essential in the regulation of signal transduction pathways. During the past years, the family of type II transmembrane serine proteases (TTSPs) has acquired an increasing relevance because of their privileged localization at the cell surface, although our current understanding of the biologic function of most TTSPs is limited. Here we show that matriptase-2 (Tmprss6), a recently described member of the TTSP family, is an essential regulator of iron homeostasis. Thus, Tmprss6(-/-) mice display an overt phenotype of alopecia and a severe iron deficiency anemia. These hematologic alterations found in Tmprss6(-/-) mice are accompanied by a marked up-regulation of hepcidin, a negative regulator of iron export into plasma. Likewise, Tmprss6(-/-) mice have reduced ferroportin expression in the basolateral membrane of enterocytes and accumulate iron in these cells. Iron-dextran therapy rescues both alopecia and hematologic alterations of Tmprss6(-/-) mice, providing causal evidence that the anemic phenotype of these mutant mice results from the blockade of intestinal iron export into plasma after dietary absorption. On the basis of these findings, we conclude that matriptase-2 activity represents a novel and relevant step in hepcidin regulation and iron homeostasis.
Collapse
|
28
|
Neurobin/TMPRSS11c, a novel type II transmembrane serine protease that cleaves fibroblast growth factor-2 in vitro. Biochem J 2008; 412:81-91. [PMID: 18215125 DOI: 10.1042/bj20071432] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TTSPs [type II TMPRSSs (transmembrane serine proteases)] are a growing family of trypsin-like enzymes with, in some cases, restricted tissue distribution. To investigate the expression of TTSPs in the nervous system, we performed a PCR-based screening approach with P10 (postnatal day 10) mouse spinal cord mRNA. We detected the expression of five known TTSPs and identified a novel TTSP, which we designated neurobin. Neurobin consists of 431 amino acids. In the extracellular part, neurobin contains a single SEA (sea-urchin sperm protein, enterokinase and agrin) domain and a C-terminal serine protease domain. RT-PCR (reverse transcription-PCR) analysis indicated the expression of neurobin in spinal cord and cerebellum. Histochemical analysis of brain sections revealed distinct staining of Purkinje neurons of the cerebellum. Transiently overexpressed neurobin was autocatalytically processed and inserted into the plasma membrane. Autocatalytic activation could be suppressed by mutating Ser(381) in the catalytic pocket to an alanine residue. The protease domain of neurobin, produced in Escherichia coli and refolded from inclusion bodies, cleaved chromogenic peptides with an arginine residue in position P(1). Serine protease inhibitors effectively suppressed the proteolytic activity of recombinant neurobin. Ca2+ or Na+ ions did not significantly modulate the catalytic activity of the protease. Recombinant neurobin processed 17-kDa FGF-2 (fibroblast growth factor-2) at several P(1) lysine and arginine positions to distinct fragments, in a heparin-inhibitable manner, but did not cleave FGF-7, laminin or fibronectin. These results indicate that neurobin is an authentic TTSP with trypsin-like activity and is able to process FGF-2 in vitro.
Collapse
|
29
|
List K, Currie B, Scharschmidt TC, Szabo R, Shireman J, Molinolo A, Cravatt BF, Segre J, Bugge TH. Autosomal ichthyosis with hypotrichosis syndrome displays low matriptase proteolytic activity and is phenocopied in ST14 hypomorphic mice. J Biol Chem 2007; 282:36714-23. [PMID: 17940283 DOI: 10.1074/jbc.m705521200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human autosomal recessive ichthyosis with hypotrichosis (ARIH) is an inherited disorder recently linked to homozygosity for a point mutation in the ST14 gene that causes a G827R mutation in the matriptase serine protease domain (G216 in chymotrypsin numbering). Here we show that human G827R matriptase has strongly reduced proteolytic activity toward small molecule substrates, as well as toward its candidate epidermal target, prostasin. To further investigate the possible contribution of low matriptase activity to ARIH, we generated an ST14 hypomorphic mouse strain that displays a 100-fold reduction in epidermal matriptase mRNA levels. Interestingly, unlike ST14 null mice, ST14 hypomorphic mice were viable and fertile but displayed a spectrum of abnormalities that strikingly resembled ARIH. Thus, ST14 hypomorphic mice developed hyperproliferative and retention ichthyosis with impaired desquamation, hypotrichosis with brittle, thin, uneven, and sparse hair, and tooth defects. Biochemical analysis of ST14 hypomorphic epidermis revealed reduced prostasin proteolytic activation and profilaggrin proteolytic processing, compatible with a primary role of matriptase in this process. This work strongly indicates that reduced activity of a matriptase-prostasin proteolytic cascade is the etiological origin of human ARIH and provides an important mouse model for the exploration of matriptase function in ARIH, as well as multiple other physiological and pathological processes.
Collapse
Affiliation(s)
- Karin List
- Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gladysheva IP, Robinson BR, Houng AK, Kováts T, King SM. Corin is co-expressed with pro-ANP and localized on the cardiomyocyte surface in both zymogen and catalytically active forms. J Mol Cell Cardiol 2007; 44:131-42. [PMID: 17996891 DOI: 10.1016/j.yjmcc.2007.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Revised: 08/30/2007] [Accepted: 10/01/2007] [Indexed: 11/29/2022]
Abstract
The multi-domain transmembrane serine protease corin cleaves pro-atrial natriuretic peptide (pro-ANP) in vitro to generate an active hormone, ANP. Corin may also contribute to the regulation of the natriuretic peptide system in vivo, and might be an attractive target for treatment of cardiovascular diseases. In order for corin to cleave its substrate pro-ANP, it should be catalytically active and located proximally. However, because knowledge of native corin is limited, we examined the expression, cardiac localization and molecular forms of the native corin protein. Immunofluorescence studies using a series of anti-corin antibodies directed against the stem and protease domains reveal that corin is present on the cell-surface of rat neonatal cardiomyocytes and murine HL-1 cardiomyocyte-like cells. Furthermore, we immunolocalized native corin in pro-ANP expressing cardiomyocytes. Immunoprecipitation of the membrane fraction of mouse heart extract showed that native corin had a relative mass of 205-210 kDa. Under reducing conditions native corin migrates as several different molecular weight forms corresponding to zymogen (uncleaved) and active (cleaved) forms. Studies using a FITC-tagged chloromethyl ketone that mimics the corin cleavage sequence in pro-ANP, suggest that an enzymatically active form of corin is localized to the cell surface of myocardial cells in vivo. Additionally, we showed that the 205-210 kDa form of corin is a glycosylated protein. Treatment of HL-1 cells with tunicamycin reduced the relative mass of expressed corin. We conclude that native corin is a glycosylated protease that is localized on the cell surface of pro-ANP-expressing cardiomyocytes in both zymogen and catalytically active forms.
Collapse
Affiliation(s)
- Inna P Gladysheva
- Cardiovascular Research Center, Division of Cardiology, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | | | | | |
Collapse
|
31
|
Uhrin P, Schöfer C, Zaujec J, Ryban L, Hilpert M, Weipoltshammer K, Jerabek I, Pirtzkall I, Furtmüller M, Dewerchin M, Binder BR, Geiger M. Male fertility and protein C inhibitor/plasminogen activator inhibitor-3 (PCI): localization of PCI in mouse testis and failure of single plasminogen activator knockout to restore spermatogenesis in PCI-deficient mice. Fertil Steril 2007; 88:1049-57. [PMID: 17434507 DOI: 10.1016/j.fertnstert.2006.11.193] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 11/24/2006] [Accepted: 11/30/2006] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the mechanisms responsible for the testicular abnormalities and infertility of previously generated male protein C inhibitor (PCI)-deficient mice. DESIGN Determination of the localization of PCI in the reproductive organs of wild-type males. Generation of double knockout mice lacking the protease inhibitor PCI and one plasminogen activator, either urokinase (uPA) or tissue plasminogen activator (tPA), both of which are PCI-target proteases. SETTING Animal research and histologic analysis. ANIMAL(S) Male mice of desired genotype. INTERVENTION(S) Fertility testing of double knockout mice. MAIN OUTCOME MEASURE(S) Infertility of PCI(-/-)uPA(-/-) and PCI(-/-)tPA(-/-) double knockout mice. RESULT(S) In the testes of wild-type males PCI was detected in spermatocytes of prophase I, as well as in late spermatids and mature spermatozoa, but absent from somatic cells. All PCI(-/-) uPA(-/-) and PCI(-/-) tPA(-/-) male mice were infertile and histologic analysis of testis showed similar alterations as previously described for PCI(-/-) mice. CONCLUSION(S) The abnormal spermatogenesis of PCI (plasminogen activator inhibitor-3)-deficient mice cannot be rescued by single plasminogen activator knockout.
Collapse
Affiliation(s)
- Pavel Uhrin
- Department of Vascular Biology and Thrombosis Research, Center for Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Viloria CG, Peinado JR, Astudillo A, García-Suárez O, González MV, Suárez C, Cal S. Human DESC1 serine protease confers tumorigenic properties to MDCK cells and it is upregulated in tumours of different origin. Br J Cancer 2007; 97:201-9. [PMID: 17579619 PMCID: PMC2360300 DOI: 10.1038/sj.bjc.6603856] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Proteolysis of the extracellular matrix components plays a crucial role in the regulation of the cellular and physiological processes, and different pathologies have been associated with the loss or gain of function of proteolytic enzymes. DESC1 (differentially expressed in squamous cell carcinoma gene 1), a member of the TTSP (type II transmembrane serine protease) family of serine proteases, is an epithelial-specific enzyme that has been found downregulated in squamous cell carcinoma of the head and neck region. We describe new properties of DESC1 suggesting that this protease may be involved in the progression of some type of tumours. Thus, this enzyme hydrolyses some extracellular matrix components, such as fibronectin, gelatin or fibrinogen. Moreover, Madin–Darby canine kidney (MDCK) cells expressing exogenous human DESC1 acquire properties associated with tumour growth such as enhanced motility and an increase of tubular forms in a 3D collagen lattice following HGF treatment. Finally, we generated polyclonal anti-DESC1 antibodies and immunohistochemical analysis in tissues different from head and neck region indicated that this protease was overexpressed in tumours of diverse origins. Taken together, our results suggest that DESC1 could be considered as a potential therapeutic target in some type of tumours.
Collapse
Affiliation(s)
- C G Viloria
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, 33006, Asturias, Spain
| | - J R Peinado
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, 33006, Asturias, Spain
| | - A Astudillo
- Departamentos de Anatomia Patologica, Hospital Universitario Central de Asturias, Instituto Universitario de Oncología, Oviedo, 33006, Asturias, Spain
| | - O García-Suárez
- Departamentos de Anatomia Patologica, Hospital Universitario Central de Asturias, Instituto Universitario de Oncología, Oviedo, 33006, Asturias, Spain
| | - M V González
- y Otorrinolaringología, Hospital Universitario Central de Asturias, Instituto Universitario de Oncología, Oviedo, 33006, Asturias, Spain
| | - C Suárez
- y Otorrinolaringología, Hospital Universitario Central de Asturias, Instituto Universitario de Oncología, Oviedo, 33006, Asturias, Spain
| | - S Cal
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, 33006, Asturias, Spain
- E-mail:
| |
Collapse
|
33
|
Kyrieleis OJP, Huber R, Ong E, Oehler R, Hunter M, Madison EL, Jacob U. Crystal structure of the catalytic domain of DESC1, a new member of the type II transmembrane serine proteinase family. FEBS J 2007; 274:2148-60. [PMID: 17388811 DOI: 10.1111/j.1742-4658.2007.05756.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DESC1 was identified using gene-expression analysis between squamous cell carcinoma of the head and neck and normal tissue. It belongs to the type II transmembrane multidomain serine proteinases (TTSPs), an expanding family of serine proteinases, whose members are differentially expressed in several tissues. The biological role of these proteins is currently under investigation, although in some cases their participation in specific functions has been reported. This is the case for enteropeptidase, hepsin, matriptase and corin. Some members, including DESC1, are associated with cell differentiation and have been described as tumor markers. TTSPs belong to the type II transmembrane proteins that display, in addition to a C-terminal trypsin-like serine proteinase domain, a differing set of stem domains, a transmembrane segment and a short N-terminal cytoplasmic region. Based on sequence analysis, the TTSP family is subdivided into four subfamilies: hepsin/transmembrane proteinase, serine (TMPRSS); matriptase; corin; and the human airway trypsin (HAT)/HAT-like/DESC subfamily. Members of the hepsin and matriptase subfamilies are known structurally and here we present the crystal structure of DESC1 as a first member of the HAT/HAT-like/DESC subfamily in complex with benzamidine. The proteinase domain of DESC1 exhibits a trypsin-like serine proteinase fold with a thrombin-like S1 pocket, a urokinase-type plasminogen activator-type S2 pocket, to accept small residues, and an open hydrophobic S3/S4 cavity to accept large hydrophobic residues. The deduced substrate specificity for DESC1 differs markedly from that of other structurally known TTSPs. Based on surface analysis, we propose a rigid domain association for the N-terminal SEA domain with the back site of the proteinase domain.
Collapse
|
34
|
Okumura Y, Hayama M, Takahashi E, Fujiuchi M, Shimabukuro A, Yano M, Kido H. Serase-1B, a new splice variant of polyserase-1/TMPRSS9, activates urokinase-type plasminogen activator and the proteolytic activation is negatively regulated by glycosaminoglycans. Biochem J 2006; 400:551-61. [PMID: 16872279 PMCID: PMC1698595 DOI: 10.1042/bj20060212] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polyserase-1 (polyserine protease-1)/TMPRSS9 (transmembrane serine protease 9) is a type II transmembrane serine protease (TTSP) that possesses unique three tandem serine protease domains. However, the physiological function of each protease domain remains poorly understood. We discovered a new splice variant of polyserase-1, termed Serase-1B, which contains 34 extra amino acids consisting a SEA module (a domain found in sea urchin sperm protein, enterokinase and agrin) adjacent to the transmembrane domain and the first protease domain with a mucin-like box at the C-terminus. The tissue distribution of this enzyme by RT (reverse transcription)-PCR analysis revealed high expression in the liver, small intestine, pancreas, testis and peripheral blood CD14+ and CD8+ cells. To investigate the role of Serase-1B, a full-length form recombinant protein was produced. Interestingly, recombinant Serase-1B was partly secreted as a soluble inactive precursor and it was also activated by trypsin. This activated enzyme selectively cleaved synthetic peptides for trypsin and activated protein C, and it was inhibited by several natural serine protease inhibitors, such as aprotinin, alpha2-antiplasmin and plasminogen activator inhibitor 1. In addition, Serase-1B efficiently converted pro-uPA (urokinase-type plasminogen activator) into active uPA and this activation was strongly inhibited by these natural inhibitors. Furthermore, this activation was also negatively regulated by glycosaminoglycans. Our results indicate that Serase-1B is a novel member of TTSPs that might be involved in uPA/plasmin-mediated proteolysis and possibly implicated in biological events such as fibrinolysis and tumour progression.
Collapse
Affiliation(s)
- Yuushi Okumura
- *Division of Enzyme Chemistry, Institute for Enzyme Research, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Masaki Hayama
- *Division of Enzyme Chemistry, Institute for Enzyme Research, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
- †Department of Otolaryngology and Sensory Organ Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- ‡Department of Otolaryngology, University of Tokushima, 2-50-1 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Etsuhisa Takahashi
- *Division of Enzyme Chemistry, Institute for Enzyme Research, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Mieko Fujiuchi
- *Division of Enzyme Chemistry, Institute for Enzyme Research, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Aki Shimabukuro
- *Division of Enzyme Chemistry, Institute for Enzyme Research, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Mihiro Yano
- *Division of Enzyme Chemistry, Institute for Enzyme Research, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hiroshi Kido
- *Division of Enzyme Chemistry, Institute for Enzyme Research, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
35
|
List K, Bugge TH, Szabo R. Matriptase: potent proteolysis on the cell surface. Mol Med 2006; 12:1-7. [PMID: 16838070 PMCID: PMC1514551 DOI: 10.2119/2006-00022.list] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 04/04/2006] [Indexed: 11/06/2022] Open
Abstract
Matriptase is a type II transmembrane serine protease expressed in most human epithelia, where it is coexpressed with its cognate transmembrane inhibitor, hepatocyte growth factor activator inhibitor (HAI)-1. Activation of the matriptase zymogen requires sequential N-terminal cleavage, activation site autocleavage, and transient association with HAI-1. Matriptase has an essential physiological role in profilaggrin processing, corneocyte maturation, and lipid matrix formation associated with terminal differentiation of the oral epithelium and the epidermis, and is also critical for hair follicle growth. Matriptase and HAI expression are frequently dysregulated in human cancer, and matriptase expression that is unopposed by HAI-1 potently promotes carcinogenesis and metastatic dissemination in animal models.
Collapse
Affiliation(s)
- Karin List
- Proteases and Tissue Remodeling Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
36
|
Szabo R, Netzel-Arnett S, Hobson J, Antalis T, Bugge T. Matriptase-3 is a novel phylogenetically preserved membrane-anchored serine protease with broad serpin reactivity. Biochem J 2005; 390:231-42. [PMID: 15853774 PMCID: PMC1188268 DOI: 10.1042/bj20050299] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report in the present study the bioinformatic identification, molecular cloning and biological characterization of matriptase-3, a novel membrane-anchored serine protease that is phylogenetically preserved in fish, birds, rodents, canines and primates. The gene encoding matriptase-3 is located on syntenic regions of human chromosome 3q13.2, mouse chromosome 16B5, rat chromosome 11q21 and chicken chromosome 1. Bioinformatic analysis combined with cDNA cloning predicts a functional TTSP (type II transmembrane serine protease) with 31% amino acid identity with both matriptase/MT-SP1 and matriptase-2. This novel protease is composed of a short N-terminal cytoplasmic region followed by a transmembrane domain, a stem region with one SEA, two CUB and three LDLRa (low-density lipoprotein receptor domain class A) domains and a C-terminal catalytic serine protease domain. Transcript analysis revealed restricted, species-conserved expression of matriptase-3, with the highest mRNA levels in brain, skin, reproductive and oropharyngeal tissues. The full-length matriptase-3 cDNA directed the expression of a 90 kDa N-glycosylated protein that localized to the cell surface, as assessed by cell-surface biotin labelling. The purified activated matriptase-3 serine protease domain expressed in insect cells hydrolysed synthetic peptide substrates, with a strong preference for Arg at position P(1), and showed proteolytic activity towards several macromolecular substrates, including gelatin, casein and albumin. Interestingly, activated matriptase-3 formed stable inhibitor complexes with an array of serpins, including plasminogen activator inhibitor-1, protein C inhibitor, alpha1-proteinase inhibitor, alpha2-antiplasmin and antithrombin III. Our study identifies matriptase-3 as a novel biologically active TTSP of the matriptase subfamily having a unique expression pattern and post-translational regulation.
Collapse
Affiliation(s)
- Roman Szabo
- *Proteases and Tissue Remodeling Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, U.S.A
| | - Sarah Netzel-Arnett
- †Departments of Physiology and Surgery, University of Maryland School of Medicine, Rockville, MD 20855, U.S.A
| | - John P. Hobson
- *Proteases and Tissue Remodeling Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, U.S.A
| | - Toni M. Antalis
- †Departments of Physiology and Surgery, University of Maryland School of Medicine, Rockville, MD 20855, U.S.A
| | - Thomas H. Bugge
- *Proteases and Tissue Remodeling Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|