1
|
Port JD. Dissecting Beta-Adrenergic Receptors: The Sum of Many Parts. JACC Basic Transl Sci 2023; 8:989-991. [PMID: 37719428 PMCID: PMC10504394 DOI: 10.1016/j.jacbts.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Affiliation(s)
- J. David Port
- Department of Medicine, Division of Cardiology, and the Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
2
|
Mitra A, Sarkar A, Borics A. Universal Properties and Specificities of the β 2-Adrenergic Receptor-G s Protein Complex Activation Mechanism Revealed by All-Atom Molecular Dynamics Simulations. Int J Mol Sci 2021; 22:10423. [PMID: 34638767 PMCID: PMC8508748 DOI: 10.3390/ijms221910423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are transmembrane proteins of high pharmacological relevance. It has been proposed that their activity is linked to structurally distinct, dynamically interconverting functional states and the process of activation relies on an interconnecting network of conformational switches in the transmembrane domain. However, it is yet to be uncovered how ligands with different extents of functional effect exert their actions. According to our recent hypothesis, based on indirect observations and the literature data, the transmission of the external stimulus to the intracellular surface is accompanied by the shift of macroscopic polarization in the transmembrane domain, furnished by concerted movements of highly conserved polar motifs and the rearrangement of polar species. In this follow-up study, we have examined the β2-adrenergic receptor (β2AR) to see if our hypothesis drawn from an extensive study of the μ-opioid receptor (MOP) is fundamental and directly transferable to other class A GPCRs. We have found that there are some general similarities between the two receptors, in agreement with previous studies, and there are some receptor-specific differences that could be associated with different signaling pathways.
Collapse
Affiliation(s)
- Argha Mitra
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, 62. Temesvári krt., H-6726 Szeged, Hungary; (A.M.); (A.S.)
- Theoretical Medicine Doctoral School, Faculty of Medicine, University of Szeged, 97. Tisza L. krt., H-6722 Szeged, Hungary
| | - Arijit Sarkar
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, 62. Temesvári krt., H-6726 Szeged, Hungary; (A.M.); (A.S.)
- Theoretical Medicine Doctoral School, Faculty of Medicine, University of Szeged, 97. Tisza L. krt., H-6722 Szeged, Hungary
| | - Attila Borics
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, 62. Temesvári krt., H-6726 Szeged, Hungary; (A.M.); (A.S.)
| |
Collapse
|
3
|
Yu Q, Gratzke C, Wang Y, Herlemann A, Strittmatter F, Rutz B, Stief CG, Hennenberg M. Inhibition of prostatic smooth muscle contraction by the inhibitor of G protein-coupled receptor kinase 2/3, CMPD101. Eur J Pharmacol 2018; 831:9-19. [DOI: 10.1016/j.ejphar.2018.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 12/25/2022]
|
4
|
Kozielewicz P, Alomar H, Yusof S, Grafton G, Cooper AJ, Curnow SJ, Ironside JW, Pall H, Barnes NM. N-glycosylation and expression in human tissues of the orphan GPR61 receptor. FEBS Open Bio 2017; 7:1982-1993. [PMID: 29226084 PMCID: PMC5715243 DOI: 10.1002/2211-5463.12339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 12/21/2022] Open
Abstract
A number of members of the G protein-coupled receptor class of cell surface receptors are 'orphans' with no known endogenous ligand. One of these orphan receptors is GPR61; there are little data about its expression in human cells and tissues. In this study, we investigated the post-translational modification of GPR61 by N-glycosylation at an identified consensus N-glycosylation site (N12) and the impact of this modification upon the subcellular expression of the protein. The N-glycosylation inhibitor tunicamycin reduced the apparent molecular weight of immunoreactivity associated with myc-tagged GPR61 by 1-2 kDa, which was comparable to the evident molecular weight of the myc-tagged N12S GPR61 mutant with disrupted consensus N-glycosylation site. Analysis of GPR61 expression demonstrated that tunicamycin treatment reduced considerably heterologous expression of GPR61 in the cell membrane despite the N12S GPR61 mutant being readily expressed at the cell surface. These results demonstrate that GPR61 is subject to N-glycosylation but suggest this is not a prerequisite for cell surface expression, although N-glycosylation of other proteins may be important for cell membrane expression of GPR61. Expression of GPR61 protein was demonstrated at the cellular level in human hippocampus and human peripheral blood mononuclear cells. In the latter, there was a significantly higher expression of GPR61 in the Th17 cell subset in comparison with resting CD4+ cells, which may point toward a potential role for the GPR61 receptor in autoimmune diseases. This is the first report that GPR61 protein is subject to post-translational modification and is expressed in immune cell subsets and the hippocampus. These findings will help guide studies to investigate the function of GPR61.
Collapse
Affiliation(s)
- Paweł Kozielewicz
- Institute of Clinical Sciences College of Medical and Dental Sciences University of Birmingham UK.,Present address: Department of Physiology and Pharmacology Karolinska Institutet Nanna Svartz väg 217 177 Stockholm Sweden
| | - Hatun Alomar
- Institute of Clinical Sciences College of Medical and Dental Sciences University of Birmingham UK.,Present address: Pharmacology and Toxicology Department College of Pharmacy King Saud University Riyadh 12372 Saudi Arabia
| | - Syaratul Yusof
- Institute of Clinical Sciences College of Medical and Dental Sciences University of Birmingham UK.,Present address: Faculty of Pharmacy Universiti Kebangsaan Malaysia 50300 Kuala Lumpur Malaysia
| | - Gillian Grafton
- Institute of Clinical Sciences College of Medical and Dental Sciences University of Birmingham UK
| | - Alison J Cooper
- Institute of Clinical Sciences College of Medical and Dental Sciences University of Birmingham UK
| | - S John Curnow
- Institute of Inflammation and Ageing College of Medical and Dental Sciences University of Birmingham UK
| | - James W Ironside
- National CJD Research and Surveillance Unit Centre for Clinical Brain Sciences University of Edinburgh UK
| | - Hardev Pall
- Neurology Department Queen Elizabeth Hospital Birmingham UK
| | - Nicholas M Barnes
- Institute of Clinical Sciences College of Medical and Dental Sciences University of Birmingham UK
| |
Collapse
|
5
|
Li X, Zhou M, Huang W, Yang H. N-glycosylation of the β2
adrenergic receptor regulates receptor function by modulating dimerization. FEBS J 2017; 284:2004-2018. [DOI: 10.1111/febs.14098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/10/2017] [Accepted: 04/28/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Xiaona Li
- Drug Discovery and Design Center; State Key Laboratory of Drug Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
- The University of Chinese Academy of Sciences; Beijing China
| | - Mang Zhou
- CAS Key Laboratory of Receptor Research; CAS Center for Excellence in Molecular Cell Science; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Pudong, Shanghai China
| | - Wei Huang
- CAS Key Laboratory of Receptor Research; CAS Center for Excellence in Molecular Cell Science; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Pudong, Shanghai China
| | - Huaiyu Yang
- Drug Discovery and Design Center; State Key Laboratory of Drug Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
- Shanghai Universities E-Institute for Chemical Biology; China
| |
Collapse
|
6
|
Manna M, Kulig W, Javanainen M, Tynkkynen J, Hensen U, Müller DJ, Rog T, Vattulainen I. How To Minimize Artifacts in Atomistic Simulations of Membrane Proteins, Whose Crystal Structure Is Heavily Engineered: β₂-Adrenergic Receptor in the Spotlight. J Chem Theory Comput 2016; 11:3432-45. [PMID: 26575777 DOI: 10.1021/acs.jctc.5b00070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atomistic molecular dynamics (MD) simulations are used extensively to elucidate membrane protein properties. These simulations are based on three-dimensional protein structures that in turn are often based on crystallography. The protein structures resolved in crystallographic studies typically do not correspond to pristine proteins, however. Instead the crystallized proteins are commonly engineered, including structural modifications (mutations, replacement of protein sequences by antibodies, bound ligands, etc.) whose impact on protein structure and dynamics is largely unknown. Here we explore this issue through atomistic MD simulations (∼5 μs in total), focusing on the β2-adrenergic receptor (β2AR) that is one of the most studied members of the G-protein coupled receptor superfamily. Starting from an inactive-state crystal structure of β2AR, we remove the many modifications in β2AR systematically one at a time, in six consecutive steps. After each step, we equilibrate the system and simulate it quite extensively. The results of this step-by-step approach highlight that the structural modifications used in crystallization can affect ligand and G-protein binding sites, packing at the transmembrane-helix interface region, and the dynamics of connecting loops in β2AR. When the results of the systematic step-by-step approach are compared to an all-at-once technique where all modifications done on β2AR are removed instantaneously at the same time, it turns out that the step-by-step method provides results that are superior in terms of maintaining protein structural stability. The results provide compelling evidence that for membrane proteins whose 3D structure is based on structural engineering, the preparation of protein structure for atomistic MD simulations is a delicate and sensitive process. The results show that most valid results are found when the structural modifications are reverted slowly, one at a time.
Collapse
Affiliation(s)
- Moutusi Manna
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
| | - Waldemar Kulig
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
| | - Matti Javanainen
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
| | - Joona Tynkkynen
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
| | - Ulf Hensen
- Department of Biosystems Science and Engineering (D-BSSE), ETH-Zürich , 4058 Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering (D-BSSE), ETH-Zürich , 4058 Basel, Switzerland
| | - Tomasz Rog
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland.,MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark , Odense, Denmark
| |
Collapse
|
7
|
Yang L, Zheng J, Xiong Y, Meng R, Ma Q, Liu H, Shen H, Zheng S, Wang S, He J. Regulation of β2-adrenergic receptor cell surface expression by interaction with cystic fibrosis transmembrane conductance regulator-associated ligand (CAL). Amino Acids 2015; 47:1455-64. [PMID: 25876703 DOI: 10.1007/s00726-015-1965-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 03/13/2015] [Indexed: 10/23/2022]
Abstract
The beta-2 adrenergic receptor (β2AR), a member of GPCR, can activate multiple signaling pathways and is an important treatment target for cardiac failure. However, the molecular mechanism about β2AR signaling regulation is not fully understood. In this study, we found that cystic fibrosis transmembrane conductance regulator-associated ligand (CAL) overexpression reduced β2AR-mediated extracellular signal-regulated kinase-1/2 (ERK1/2) activation. Further study identified CAL as a novel binding partner of β2AR. CAL is associated with β2AR mainly via the third intracellular loop (ICL3) of receptor and the coiled-coil domains of CAL, which is distinct from CAL/β1AR interaction mediated by the carboxyl terminal (CT) of β1AR and PDZ domain of CAL. CAL overexpression retarded β2AR expression in Golgi apparatus and reduced the receptor expression in plasma membrane.
Collapse
Affiliation(s)
- Longyan Yang
- Department of Biochemistry and Molecular Biology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Exposure of MC4R to agonist in the endoplasmic reticulum stabilizes an active conformation of the receptor that does not desensitize. Proc Natl Acad Sci U S A 2013; 110:E4733-42. [PMID: 24248383 DOI: 10.1073/pnas.1219808110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Melanocortin-4 receptor (MC4R) is a G protein-coupled receptor expressed in neurons of the hypothalamus where it regulates food intake. MC4R responds to an agonist, α-melanocyte-stimulating hormone (α-MSH) and to an antagonist/inverse agonist, agouti-related peptide (AgRP), which are released by upstream neurons. Binding to α-MSH leads to stimulation of receptor activity and suppression of food intake, whereas AgRP has opposite effects. MC4R cycles constantly between the plasma membrane and endosomes and undergoes agonist-mediated desensitization by being routed to lysosomes. MC4R desensitization and increased AgRP expression are thought to decrease the effectiveness of MC4R agonists as an antiobesity treatment. In this study, α-MSH, instead of being delivered extracellularly, is targeted to the endoplasmic reticulum (ER) of neuronal cells and cultured hypothalamic neurons. We find that the ER-targeted agonist associates with MC4R at this location, is transported to the cell surface, induces constant cAMP and AMP kinase signaling at maximal amplitude, abolishes desensitization of the receptor, and promotes both cell-surface expression and constant signaling by an obesity-linked MC4R variant, I316S, that otherwise is retained in the ER. Formation of the MC4R/agonist complex in the ER stabilizes the receptor in an active conformation that at the cell surface is insensitive to antagonism by AgRP and at the endosomes is refractory to routing to the lysosomes. The data indicate that targeting agonists to the ER can stabilize an active conformation of a G protein-coupled receptor that does not become desensitized, suggesting a target for therapy.
Collapse
|
9
|
Effects of the β-agonist, isoprenaline, on the down-regulation, functional responsiveness and trafficking of β2-adrenergic receptors with N-terminal polymorphisms. Cell Biol Int 2013; 36:1171-83. [PMID: 22938397 DOI: 10.1042/cbi20120134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The β2-AR (β2-adrenergic receptor) is an important target for respiratory and CVD (cardiovascular disease) medications. Clinical studies suggest that N-terminal polymorphisms of β2-AR may act as disease modifiers. We hypothesized that polymorphisms at amino acids 16 and 27 result in differential trafficking and down-regulation of β2-AR variants following β-agonist exposure. The functional consequences of the four possible combinations of these polymorphisms in the human β2-AR (designated β2-AR-RE, β2-AR-GE, β2-AR-RQ and β2-AR-GQ) were studied using site-directed mutagenesis and recombinant expression in HEK-293 cells (human embryonic kidney cells). Ligand-binding assays demonstrated that after 24 h exposure to 1 μM isoprenaline, isoforms with Arg16 (β2-AR-RE and β2-AR-RQ) underwent increased down-regulation compared with isoforms with Gly16 (β2-AR-GE and β2-AR-GQ). Consistent with these differences in down-regulation between isoforms, prolonged isoprenaline treatment resulted in diminished cAMP response to subsequent isoprenaline challenge in β2-AR-RE relative to β2-AR-GE. Confocal microscopy revealed that the receptor isoforms had similar co-localization with the early endosomal marker EEA1 following isoprenaline treatment, suggesting that they had similar patterns of internalization. None of the isoforms exhibited significant co-localization with the recycling endosome marker Rab11 in response to isoprenaline treatment. Furthermore, we found that prolonged isoprenaline treatment led to a higher degree of co-localization of β2-AR-RE with the lysosomal marker LAMP1 (lysosome-associated membrane protein 1) compared with that of β2-AR-GE. Taken together, these results indicate that a mechanism responsible for differential responses of these receptor isoforms to the β-agonist involves differences in the efficiency with which agonist-activated receptors are trafficked to the lysosomes for degradation, or differences in degradation in the lysosomes.
Collapse
|
10
|
Arshad N, Ballal S, Visweswariah SS. Site-specific N-linked glycosylation of receptor guanylyl cyclase C regulates ligand binding, ligand-mediated activation and interaction with vesicular integral membrane protein 36, VIP36. J Biol Chem 2012; 288:3907-17. [PMID: 23269669 DOI: 10.1074/jbc.m112.413906] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Guanylyl cyclase C (GC-C) is a multidomain, membrane-associated receptor guanylyl cyclase. GC-C is primarily expressed in the gastrointestinal tract, where it mediates fluid-ion homeostasis, intestinal inflammation, and cell proliferation in a cGMP-dependent manner, following activation by its ligands guanylin, uroguanylin, or the heat-stable enterotoxin peptide (ST). GC-C is also expressed in neurons, where it plays a role in satiation and attention deficiency/hyperactive behavior. GC-C is glycosylated in the extracellular domain, and differentially glycosylated forms that are resident in the endoplasmic reticulum (130 kDa) and the plasma membrane (145 kDa) bind the ST peptide with equal affinity. When glycosylation of human GC-C was prevented, either by pharmacological intervention or by mutation of all of the 10 predicted glycosylation sites, ST binding and surface localization was abolished. Systematic mutagenesis of each of the 10 sites of glycosylation in GC-C, either singly or in combination, identified two sites that were critical for ligand binding and two that regulated ST-mediated activation. We also show that GC-C is the first identified receptor client of the lectin chaperone vesicular integral membrane protein, VIP36. Interaction with VIP36 is dependent on glycosylation at the same sites that allow GC-C to fold and bind ligand. Because glycosylation of proteins is altered in many diseases and in a tissue-dependent manner, the activity and/or glycan-mediated interactions of GC-C may have a crucial role to play in its functions in different cell types.
Collapse
Affiliation(s)
- Najla Arshad
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
11
|
Liu R, Wang D, Shi Q, Fu Q, Hizon S, Xiang YK. Palmitoylation regulates intracellular trafficking of β2 adrenergic receptor/arrestin/phosphodiesterase 4D complexes in cardiomyocytes. PLoS One 2012; 7:e42658. [PMID: 22912718 PMCID: PMC3415400 DOI: 10.1371/journal.pone.0042658] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/10/2012] [Indexed: 01/19/2023] Open
Abstract
β2 adrenergic receptor (β2AR) is a prototypical G-protein coupled receptor that stimulates the classic cAMP-protein kinase A (PKA) signaling pathway. Recent studies indicate that the cAMP-PKA activities are spatiotemporally regulated in part due to dynamic association of β2AR with phosphodiesterase 4D (PDE4D), a group of cAMP degradation enzymes. Here, we demonstrate that in cardiomyocytes, palmitoylation of β2AR, the covalent acylation of cysteine residue 341, plays a critical role in shaping subcellular cAMP-PKA activities in cardiomyocytes via regulating β2AR association with arrestin/PDE4D. Replacing cysteine 341 on β2AR with alanine (C341A) leads to an impaired binding to β arrestin 2. Surprisingly, the C341A mutant is able to internalize via an arrestin-independent pathway at saturated concentration of agonist stimulation; the internalization becomes caveolae-dependent and requires dynamin GTPase. However, the impaired binding to β arrestin 2 also leads to an impaired recruitment of PDE4D to the C341A mutant. Thus, the mutant C341A β2AR is transported alone from the plasma membrane to the endosome without recruiting PDE4D. This alteration leads to an enhanced cytoplasmic cAMP signal for PKA activation under β2AR stimulation. Functionally, Mutation of the C341 residue or inhibition of palmitoylation modification of β2AR enhances the receptor-induced PKA activities in the cytoplasm and increases in myocyte contraction rate. Our data reveal a novel function of palmitoylation in shaping subcellular cAMP-PKA signaling in cardiomyocytes via modulating the recruitment of β arrestin 2-PDE4D complexes to the agonist-stimulated β2AR.
Collapse
Affiliation(s)
- Ruijie Liu
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, Illinois, United States of America
| | - Dayong Wang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, Illinois, United States of America
| | - Qian Shi
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, Illinois, United States of America
| | - Qin Fu
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, Illinois, United States of America
| | - Steven Hizon
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, Illinois, United States of America
| | - Yang K. Xiang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, Illinois, United States of America
- Department of Pharmacology, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Selvam B, Wereszczynski J, Tikhonova IG. Comparison of dynamics of extracellular accesses to the β(1) and β(2) adrenoceptors binding sites uncovers the potential of kinetic basis of antagonist selectivity. Chem Biol Drug Des 2012; 80:215-26. [PMID: 22530954 DOI: 10.1111/j.1747-0285.2012.01390.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
From the molecular mechanism of antagonist unbinding in the β(1) and β(2) adrenoceptors investigated by steered molecular dynamics, we attempt to provide further possibilities of ligand subtype and subspecies selectivity. We have simulated unbinding of β(1)-selective Esmolol and β(2)-selective ICI-118551 from both receptors to the extracellular environment and found distinct molecular features of unbinding. By calculating work profiles, we show different preference in antagonist unbinding pathways between the receptors, in particular, perpendicular to the membrane pathway is favourable in the β(1) adrenoceptor, whereas the lateral pathway involving helices 5, 6 and 7 is preferable in the β(2) adrenoceptor. The estimated free energy change of unbinding based on the preferable pathway correlates with the experimental ligand selectivity. We then show that the non-conserved K347 (6.58) appears to facilitate in guiding Esmolol to the extracellular surface via hydrogen bonds in the β(1) adrenoceptor. In contrast, hydrophobic and aromatic interactions dominate in driving ICI-118551 through the easiest pathway in the β(2) adrenoceptor. We show how our study can stimulate design of selective antagonists and discuss other possible molecular reasons of ligand selectivity, involving sequential binding of agonists and glycosylation of the receptor extracellular surface.
Collapse
Affiliation(s)
- Balaji Selvam
- Molecular Therapeutics, School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast BT9 7BL, UK
| | | | | |
Collapse
|
13
|
Whitaker GM, Lynn FC, McIntosh CHS, Accili EA. Regulation of GIP and GLP1 receptor cell surface expression by N-glycosylation and receptor heteromerization. PLoS One 2012; 7:e32675. [PMID: 22412906 PMCID: PMC3296735 DOI: 10.1371/journal.pone.0032675] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/02/2012] [Indexed: 12/25/2022] Open
Abstract
In response to a meal, Glucose-dependent Insulinotropic Polypeptide (GIP) and Glucagon-like Peptide-1 (GLP-1) are released from gut endocrine cells into the circulation and interact with their cognate G-protein coupled receptors (GPCRs). Receptor activation results in tissue-selective pleiotropic responses that include augmentation of glucose-induced insulin secretion from pancreatic beta cells. N-glycosylation and receptor oligomerization are co-translational processes that are thought to regulate the exit of functional GPCRs from the ER and their maintenance at the plasma membrane. Despite the importance of these regulatory processes, their impact on functional expression of GIP and GLP-1 receptors has not been well studied. Like many family B GPCRs, both the GIP and GLP-1 receptors possess a large extracellular N-terminus with multiple consensus sites for Asn-linked (N)-glycosylation. Here, we show that each of these Asn residues is glycosylated when either human receptor is expressed in Chinese hamster ovary cells. N-glycosylation enhances cell surface expression and function in parallel but exerts stronger control over the GIP receptor than the GLP-1 receptor. N-glycosylation mainly lengthens receptor half-life by reducing degradation in the endoplasmic reticulum. N-glycosylation is also required for expression of the GIP receptor at the plasma membrane and efficient GIP potentiation of glucose-induced insulin secretion from the INS-1 pancreatic beta cell line. Functional expression of a GIP receptor mutant lacking N-glycosylation is rescued by co-expressed wild type GLP1 receptor, which, together with data obtained using Bioluminescence Resonance Energy Transfer, suggests formation of a GIP-GLP1 receptor heteromer.
Collapse
Affiliation(s)
- Gina M. Whitaker
- Cardiovascular Research Group, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Francis C. Lynn
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher H. S. McIntosh
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Diabetes Research Group, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric A. Accili
- Cardiovascular Research Group, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
14
|
Salom D, Wang B, Dong Z, Sun W, Padayatti P, Jordan S, Salon JA, Palczewski K. Post-translational modifications of the serotonin type 4 receptor heterologously expressed in mouse rod cells. Biochemistry 2011; 51:214-24. [PMID: 22145929 DOI: 10.1021/bi201707v] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
G-protein-coupled serotonin receptor type 4 (5-HT(4)R) is a pharmacological target implicated in a variety of gastrointestinal and nervous system disorders. As for many other integral membrane proteins, structural and functional studies of this receptor could be facilitated by its heterologous overexpression in eukaryotic systems that can perform appropriate post-translational modifications (PTMs) on the protein. We previously reported the development of an expression system that employs rhodopsin's biosynthetic machinery in rod cells of the retina to express heterologous G-protein-coupled receptors (GPCRs) in a pharmacologically functional form. In this study, we analyzed the glycosylation, phosphorylation, and palmitoylation of 5-HT(4)R heterologously expressed in rod cells of transgenic mice. We found that the glycosylation pattern in 5-HT(4)R was more complex than in murine and bovine rhodopsin. Moreover, overexpression of this exogenous GPCR in rod cells also affected the glycosylation pattern of coexisting native rhodopsin. These results highlight not only the occurrence of heterogeneous PTMs on transgenic proteins but also the complications that non-native PTMs can cause in the structural and functional characterization of both endogenous and heterologous protein targets.
Collapse
Affiliation(s)
- David Salom
- Polgenix Inc., Cleveland, Ohio 44106, United States
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Murray DR, Mummidi S, Valente AJ, Yoshida T, Somanna NK, Delafontaine P, Dinarello CA, Chandrasekar B. β2 adrenergic activation induces the expression of IL-18 binding protein, a potent inhibitor of isoproterenol induced cardiomyocyte hypertrophy in vitro and myocardial hypertrophy in vivo. J Mol Cell Cardiol 2011; 52:206-18. [PMID: 22004899 DOI: 10.1016/j.yjmcc.2011.09.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/03/2011] [Accepted: 09/25/2011] [Indexed: 11/25/2022]
Abstract
Both the sympathetic nervous system and the proinflammatory cytokine interleukin-18 (IL-18) play key roles in the pathophysiology of the hypertrophied failing heart. IL-18 binding protein (IL-18BP), a natural inhibitor of IL-18, counters its biological effects. β-AR stimulation induces IL-18 expression, but whether it also regulates IL-18BP is not known. Here we demonstrate that the β-AR agonist isoproterenol (ISO) increases steady state IL-18BP mRNA and protein levels in adult mouse cardiomyocytes in a β(2)-AR-dependent manner. We cloned mouse Il18bp 5'cis-regulatory region, and identified putative CREB and C/EBPβ transcription factor-binding sites. Forced expression of mutant CREB or C/EBPβ knockdown markedly attenuated ISO-induced Il18bp transcription and deletion or mutation of CREB and C/EBP motifs in the Il18bp promoter reduced ISO-induced promoter-reporter gene activity. ISO induced CREB and C/EBPβ activation in cardiomyocytes via PI3K/Akt and ERK1/2. Importantly, ISO-induced hypertrophy in vitro was dependent on IL-18 induction as it was blunted by IL-18 neutralizing antibodies and forced expression of IL-18BP. Moreover, ISO-induced hypertrophy was markedly attenuated in IL-18 null and IL-18BP transgenic mice. These data support the novel concept that β-AR activation, in addition to inducing cardiomyocyte hypertrophy via IL-18, concomitantly induces a countering effect by stimulating IL-18BP expression, and that ISO-induced cardiomyocyte hypertrophy may result from a net effect of IL-18 and IL-18BP induction.
Collapse
Affiliation(s)
- David R Murray
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, United States
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Panebra A, Wang WC, Malone MM, Pitter DRG, Weiss ST, Hawkins GA, Liggett SB. Common ADRB2 haplotypes derived from 26 polymorphic sites direct beta2-adrenergic receptor expression and regulation phenotypes. PLoS One 2010; 5:e11819. [PMID: 20686604 PMCID: PMC2912278 DOI: 10.1371/journal.pone.0011819] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 07/06/2010] [Indexed: 11/22/2022] Open
Abstract
Background The β2-adrenergic receptor (β2AR) is expressed on numerous cell-types including airway smooth muscle cells and cardiomyocytes. Drugs (agonists or antagonists) acting at these receptors for treatment of asthma, chronic obstructive pulmonary disease, and heart failure show substantial interindividual variability in response. The ADRB2 gene is polymorphic in noncoding and coding regions, but virtually all ADRB2 association studies have utilized the two common nonsynonymous coding SNPs, often reaching discrepant conclusions. Methodology/Principal Findings We constructed the 8 common ADRB2 haplotypes derived from 26 polymorphisms in the promoter, 5′UTR, coding, and 3′UTR of the intronless ADRB2 gene. These were cloned into an expression construct lacking a vector-based promoter, so that β2AR expression was driven by its promoter, and steady state expression could be modified by polymorphisms throughout ADRB2 within a haplotype. “Whole-gene” transfections were performed with COS-7 cells and revealed 4 haplotypes with increased cell surface β2AR protein expression compared to the others. Agonist-promoted downregulation of β2AR protein expression was also haplotype-dependent, and was found to be increased for 2 haplotypes. A phylogenetic tree of the haplotypes was derived and annotated by cellular phenotypes, revealing a pattern potentially driven by expression. Conclusions/Significance Thus for obstructive lung disease, the initial bronchodilator response from intermittent administration of β-agonist may be influenced by certain β2AR haplotypes (expression phenotypes), while other haplotypes may influence tachyphylaxis during the response to chronic therapy (downregulation phenotypes). An ideal clinical outcome of high expression and less downregulation was found for two haplotypes. Haplotypes may also affect heart failure antagonist therapy, where β2AR increase inotropy and are anti-apoptotic. The haplotype-specific expression and regulation phenotypes found in this transfection-based system suggest that the density of genetic information in the form of these haplotypes, or haplotype-clusters with similar phenotypes can potentially provide greater discrimination of phenotype in human disease and pharmacogenomic association studies.
Collapse
Affiliation(s)
- Alfredo Panebra
- Cardiopulmonary Genomics Program, University of Maryland, Baltimore, Maryland, United States of America
| | - Wayne C. Wang
- Cardiopulmonary Genomics Program, University of Maryland, Baltimore, Maryland, United States of America
| | - Molly M. Malone
- Cardiopulmonary Genomics Program, University of Maryland, Baltimore, Maryland, United States of America
| | - Demar R. G. Pitter
- Cardiopulmonary Genomics Program, University of Maryland, Baltimore, Maryland, United States of America
| | - Scott T. Weiss
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gregory A. Hawkins
- Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Stephen B. Liggett
- Cardiopulmonary Genomics Program, University of Maryland, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Roy S, Perron B, Gallo-Payet N. Role of asparagine-linked glycosylation in cell surface expression and function of the human adrenocorticotropin receptor (melanocortin 2 receptor) in 293/FRT cells. Endocrinology 2010; 151:660-70. [PMID: 20022931 DOI: 10.1210/en.2009-0826] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Asparagine-linked glycosylation (N-glycosylation) of G protein-coupled receptors may be necessary for functions ranging from agonist binding, folding, maturation, stability, and internalization. Human melanocortin 2 receptor (MC2R) possesses putative N-glycosylation sites in its N-terminal extracellular domain; however, to date, the role of MC2R N-glycosylation has yet to be investigated. The objective of the present study is to examine whether N-glycosylation is essential or not for cell surface expression and cAMP production in native and MC2R accessory protein (MRAP alpha, -beta, or -dCT)-expressing cells using 293/FRT transfected with Myc-MC2R. Western blot analyses performed with or without endoglycosidase H, peptide:N-glycosidase F or tunicamycin treatments and site-directed mutagenesis revealed that MC2R was glycosylated in the N-terminal domain at its two putative N-glycosylation sites (Asn(12)-Asn(13)-Thr(14) and Asn(17)-Asn(18)-Ser(19)). In the absence of human MRAP coexpression, N-glycosylation of at least one of the two sites was necessary for MC2R cell surface expression. However, when MRAP was present, cell surface expression of MC2R mutants was either rescued entirely with the N17-18Q (QQNN) and N12-13Q (NNQQ) mutants or partially with the unglycosylated N12-13, 17-18Q (QQQQ) mutant. Functional and expression analyses revealed a discrepancy between wild-type (WT) and QQQQ cell surface receptor levels and maximal cAMP production with a 4-fold increase in EC(50) values. Taken together, these results indicate that the absence of MC2R N-glycosylation abrogates to a large extent MC2R cell surface expression in the absence of MRAPs, whereas when MC2R is N-glycosylated, it can be expressed at the plasma membrane without MRAP assistance.
Collapse
Affiliation(s)
- Simon Roy
- Service d'Endocrinologie, Département de Médecine, Université de Sherbrooke, 3001, 12 Avenue Nord, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
18
|
Reichling C, Meyerhof W, Behrens M. Functions of human bitter taste receptors depend on N-glycosylation. J Neurochem 2008; 106:1138-48. [DOI: 10.1111/j.1471-4159.2008.05453.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Li H, Armando I, Yu P, Escano C, Mueller SC, Asico L, Pascua A, Lu Q, Wang X, Villar VAM, Jones JE, Wang Z, Periasamy A, Lau YS, Soares-da-Silva P, Creswell K, Guillemette G, Sibley DR, Eisner G, Gildea JJ, Felder RA, Jose PA. Dopamine 5 receptor mediates Ang II type 1 receptor degradation via a ubiquitin-proteasome pathway in mice and human cells. J Clin Invest 2008; 118:2180-9. [PMID: 18464932 DOI: 10.1172/jci33637] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 03/19/2008] [Indexed: 12/12/2022] Open
Abstract
Hypertension is a multigenic disorder in which abnormal counterregulation between dopamine and Ang II plays a role. Recent studies suggest that this counterregulation results, at least in part, from regulation of the expression of both the antihypertensive dopamine 5 receptor (D5R) and the prohypertensive Ang II type 1 receptor (AT1R). In this report, we investigated the in vivo and in vitro interaction between these GPCRs. Disruption of the gene encoding D5R in mice increased both blood pressure and AT1R protein expression, and the increase in blood pressure was reversed by AT1R blockade. Activation of D5R increased the degradation of glycosylated AT1R in proteasomes in HEK cells and human renal proximal tubule cells heterologously and endogenously expressing human AT1R and D5R. Confocal microscopy, Förster/fluorescence resonance energy transfer microscopy, and fluorescence lifetime imaging microscopy revealed that activation of D5R initiated ubiquitination of the glycosylated AT1R at the plasma membrane. The regulated degradation of AT1R via a ubiquitin/proteasome pathway by activation of D5R provides what we believe to be a novel mechanism whereby blood pressure can be regulated by the interaction of 2 counterregulatory GPCRs. Our results therefore suggest that treatments for hypertension might be optimized by designing compounds that can target the AT1R and the D5R.
Collapse
Affiliation(s)
- Hewang Li
- Department of Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang Y, De Arcangelis V, Gao X, Ramani B, Jung YS, Xiang Y. Norepinephrine- and Epinephrine-induced Distinct β2-Adrenoceptor Signaling Is Dictated by GRK2 Phosphorylation in Cardiomyocytes. J Biol Chem 2008; 283:1799-807. [DOI: 10.1074/jbc.m705747200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
21
|
Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 2007; 318:1258-65. [PMID: 17962520 PMCID: PMC2583103 DOI: 10.1126/science.1150577] [Citation(s) in RCA: 2560] [Impact Index Per Article: 150.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors constitute the largest family of eukaryotic signal transduction proteins that communicate across the membrane. We report the crystal structure of a human beta2-adrenergic receptor-T4 lysozyme fusion protein bound to the partial inverse agonist carazolol at 2.4 angstrom resolution. The structure provides a high-resolution view of a human G protein-coupled receptor bound to a diffusible ligand. Ligand-binding site accessibility is enabled by the second extracellular loop, which is held out of the binding cavity by a pair of closely spaced disulfide bridges and a short helical segment within the loop. Cholesterol, a necessary component for crystallization, mediates an intriguing parallel association of receptor molecules in the crystal lattice. Although the location of carazolol in the beta2-adrenergic receptor is very similar to that of retinal in rhodopsin, structural differences in the ligand-binding site and other regions highlight the challenges in using rhodopsin as a template model for this large receptor family.
Collapse
Affiliation(s)
- Vadim Cherezov
- Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Huang P, Chen C, Xu W, Yoon SI, Unterwald EM, Pintar JE, Wang Y, Chong PLG, Liu-Chen LY. Brain region-specific N-glycosylation and lipid rafts association of the rat mu opioid receptor. Biochem Biophys Res Commun 2007; 365:82-8. [PMID: 17980152 DOI: 10.1016/j.bbrc.2007.10.128] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 10/23/2007] [Indexed: 12/11/2022]
Abstract
The mu opioid receptor (MOR) in the rat and mouse caudate putamen (CPu) and thalamus was demonstrated as diffuse and broad bands by Western blot with a polyclonal antibody against a C-terminal peptide of MOR, which were absent in the cerebellum and brains of MOR-knockout mice. The electrophoretic mobility of MOR differed in the two brain regions with median relative molecular masses (Mr's) of 75 kDa (CPu) vs. 66 kDa (thalamus) for the rat, and 74 kDa (CPu) vs. 63 kDa (thalamus) for the mouse, which was due to its differential N-glycosylation. Rat MOR in CPu was found mainly associated with low-density cholesterol- and ganglioside M1 (GM1)-enriched membrane subdomains (lipid rafts), while the MOR in the thalamus was present in rafts and non-rafts without preference. Cholesterol reduction by methyl-beta-cyclodextrin decreased DAGMO-induced [35S]GTPgammaS binding in rat CPu membranes to a greater extent than in the thalamus membranes.
Collapse
Affiliation(s)
- Peng Huang
- Department of Pharmacology, Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Soleimani L, Roder JC, Dennis JW, Lipina T. Beta N-acetylglucosaminyltransferase V (Mgat5) deficiency reduces the depression-like phenotype in mice. GENES BRAIN AND BEHAVIOR 2007; 7:334-43. [PMID: 17883406 DOI: 10.1111/j.1601-183x.2007.00358.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The central nervous system (CNS) is rich in glycoconjugates, located on cell surface and in extracellular matrix. The products of Golgi UDP-GlcNAc:N-acetylglucosaminyltransferases (encoded by Mgat1, Mgat2, Mgat4 and Mgat5) act sequentially to generate the GlcNAc-branched complex-type N-glycans on glycoprotein receptors. While elimination of all the branched N-glycans in Mgat1(-/-) mouse embryos is lethal at neural tube fold stage, decreased branching is associated with late developmental defects similar to type 2 of congenital disorders of glycosylation, with developmental and psychomotor abnormalities. To study the role of complex-type N-glycans in brain function, we tested Mgat5(-/-) mice in a battery of neurological and behavioral tests. Despite the absence of tri- and tetra-antennary products, Mgat5(-/-) mice were not different from their wild-type littermates in physical and neurological assessments, anxiety level, startle reactivity and sensorimotor gating. However, they displayed a robust decrease in the immobility time in the forced swim test and the tail suspension test independent of locomotor activity, interpreted as a change in depression-like behavior. This effect was accentuated after chronic mild stress. Comparable increase in plasma corticosterone of Mgat5(+/+) and Mgat5(-/-) mice in response to acute stress shows an intact function of the hypothalamus-pituitary-adrenal axis. A change in social interactions was also observed. Our results indicate that Mgat5 modification of complex-type N-glycans on CNS glycoproteins is involved in the regulation of depression-like behavior.
Collapse
Affiliation(s)
- L Soleimani
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
24
|
Li JG, Chen C, Liu-Chen LY. N-Glycosylation of the human kappa opioid receptor enhances its stability but slows its trafficking along the biosynthesis pathway. Biochemistry 2007; 46:10960-70. [PMID: 17711303 DOI: 10.1021/bi700443j] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We examined glycosylation of FLAG-hKOR expressed in CHO cells and determined its functional significance. FLAG-hKOR was resolved as a broad and diffuse 55-kDa band and a less diffuse 45-kDa band by immunoblotting, indicating that the receptor is glycosylated. Endoglycosidase H cleaved the 45-kDa band to approximately 38 kDa but did not change the 55-kDa band, demonstrating that the 45-kDa band is N-glycosylated with high-mannose or hybrid-type glycan. Peptide-N-glycosidase F digestion of solubilized hKOR or incubation of cells with tunicamycin resulted in two species of 43 and 38 kDa, suggesting that the 43-kDa band is O-glycosylated. FLAG-hKOR was reduced to lower Mr bands by neuraminidase and O-glycosidase, indicating that the hKOR contains O-linked glycan. Mutation of Asn25 or Asn39 to Gln in the N-terminal domain reduced the Mr by approximately 5 kDa, indicating that both residues were glycosylated. The double mutant hKOR-N25/39Q was resolved as a 43-kDa (mature form) and a 38-kDa (intermediate form) band. When transiently expressed, hKOR-N25/39Q had a lower expression level than the wild type. In CHO cells stably expressing the hKOR-N25/39Q, pulse-chase experiments revealed that the turnover rate constants (ke) of the intermediate and mature forms were approximately 3 times those of the wild type. In addition, the maturation rate constant (ka) of the 43-kDa form of hKOR-N25/39Q was 6 times that of the mature form of the wild type. The hKOR-N25/39Q mutant showed increased agonist-induced receptor phosphorylation, desensitization, internalization, and downregulation, without changing ligand binding affinity or receptor-G protein coupling. Thus, N-glycosylation of the hKOR plays important roles in stability and trafficking along the biosynthesis pathway of the receptor protein as well as agonist-induced receptor regulation.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Amino Acid Substitution
- Analgesics, Non-Narcotic/pharmacology
- Animals
- CHO Cells
- Cricetinae
- Cricetulus
- Diprenorphine/pharmacology
- Down-Regulation
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation/physiology
- Glycoside Hydrolases/antagonists & inhibitors
- Glycoside Hydrolases/metabolism
- Glycosylation
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Humans
- Immunoprecipitation
- Kinetics
- Mutagenesis, Site-Directed
- Protein Processing, Post-Translational/physiology
- Protein Structure, Tertiary
- Protein Transport/physiology
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/metabolism
- Receptors, Opioid, kappa/biosynthesis
- Receptors, Opioid, kappa/metabolism
- Recombinant Fusion Proteins/drug effects
- Recombinant Fusion Proteins/metabolism
- Signal Transduction
- Sulfur Radioisotopes
- Tritium
- Tunicamycin/pharmacology
Collapse
Affiliation(s)
- Jian-Guo Li
- Department of Pharmacology and Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
25
|
Dutton AC, Massoura AN, Dover TJ, Andrews NA, Barnes NM. Identification and functional significance of N-glycosylation of the 5-ht5A receptor. Neurochem Int 2007; 52:419-25. [PMID: 17881091 DOI: 10.1016/j.neuint.2007.07.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 07/16/2007] [Accepted: 07/25/2007] [Indexed: 10/23/2022]
Abstract
The presence and roles of N-glycosylation of the human (h) 5-ht(5A) receptor were investigated using a heterologous expression system. Following transient transfection of COS-7 cells with h5-ht(5A) receptor cDNA, SDS-PAGE/Western blot analysis of immunoreactivity demonstrated two protein species; a predominant species with a molecular weight of approximately 35-45 kDa and a minor species of approximately 45-55 kDa. Transfected cells grown in the presence of the N-glycosylation inhibitor tunicamycin, failed to express the minor immunoreactive species indicating this represented the N-glycosylated form of the h5-ht(5A) receptor. Comparison of the molecular weights of immunoreactive bands arising from the wild-type and each of the mutant 5-ht(5A) receptors with disruption of the predicted N-glycosylation sites (N6S and N21S) demonstrated that both identified asparagines were N-glycosylated. Immunocytochemical and ELISA studies demonstrated that the [N6S]h5-ht(5A) receptor mutation, but not the [N21S]h5-ht(5A) receptor mutation, reduced protein expression in the cell membrane, indicating that N-glycosylation of the N6 residue is important for the membrane expression of this neurotransmitter receptor; a requirement for receptor function.
Collapse
Affiliation(s)
- Alice C Dutton
- Cellular and Molecular Neuropharmacology Research Group, Division of Neuroscience, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | |
Collapse
|
26
|
Panebra A, Schwarb MR, Glinka CB, Liggett SB. Heterogeneity of transcription factor expression and regulation in human airway epithelial and smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2007; 293:L453-62. [PMID: 17557803 PMCID: PMC6092943 DOI: 10.1152/ajplung.00084.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transcription factors represent a major mechanism by which cells establish basal and conditional expression of proteins, the latter potentially being adaptive or maladaptive in disease. The complement of transcription factors in two major structural cells of the lung relevant to asthma, airway epithelial and smooth muscle cells, is not known. A plate-based platform using nuclear extracts from these cells was used to assess potential expression by binding to oligonucleotide consensus sequences representing >300 transcription factors. Four conditions were studied: basal, beta-agonist exposure, culture under proasthmatic conditions (IL-13, IL-4, TGF-beta, and leukotriene D(4)), and the dual setting of beta-agonist with proasthmatic culture. Airway epithelial cells expressed 70 transcription factors, whereas airway smooth muscle expressed 110. High levels of multiple transcription factors not previously recognized as being expressed in these cells were identified. Moreover, expression/ binding patterns under these conditions revealed extreme discordance in the direction and magnitude of change between the cell types. Singular (one cell type displayed regulation) and antithetic (both cell types underwent expression changes but in opposite directions) regulation dominated these patterns, with concomitant regulation in both cell types being rare (<10%). beta-Agonist evoked up- and downregulation of transcription factors, which was highly influenced by the proasthmatic condition, with little overlap of factors regulated by beta-agonists under both conditions. Together, these results reveal complex, cell type-dependent networks of transcription factors in human airway epithelium and smooth muscle that are dynamically regulated in unique ways by beta-agonists and inflammation. These factors may represent additional components in asthma pathophysiology or potential new drug targets.
Collapse
Affiliation(s)
- Alfredo Panebra
- Cardiopulmonary Genomics Program, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
27
|
Wang Y, Lauffer B, Von Zastrow M, Kobilka BK, Xiang Y. N-ethylmaleimide-sensitive factor regulates beta2 adrenoceptor trafficking and signaling in cardiomyocytes. Mol Pharmacol 2007; 72:429-39. [PMID: 17510209 DOI: 10.1124/mol.107.037747] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recycling of G protein-coupled receptors determines the functional resensitization of receptors and is implicated in switching beta2 adrenoceptor (beta2AR) G protein specificity in cardiomyocytes. The human beta2AR carboxyl end binds to the N-ethylmaleimide-sensitive factor (NSF), an ATPase integral to membrane trafficking machinery. It is interesting that the human beta2AR (hbeta2AR) carboxyl end pulled down NSF from mouse heart lysates, whereas the murine one did not. Despite this difference, both beta2ARs exhibited substantial agonist-induced internalization, recycling, and Gi coupling in cardiomyocytes. The hbeta2AR, however, displayed faster rates of agonist-induced internalization and recycling compared with the murine beta2AR (mbeta2AR) and a more profound Gi component in its contraction response. Replacing the mbeta2AR proline (-1) with a leucine generated a gain-of-function mutation, mbeta2AR-P417L, with a rescued ability to bind NSF, faster internalization and recycling than the mbeta2AR, and a significant enhancement in Gi signaling, which mimics the hbeta2AR. Selective disruption of the mbeta2AR-P417L binding to NSF inhibited the receptor coupling to Gi. Mean-while, inhibiting NSF with N-ethylmaleimide blocked the mbeta2AR recycling after agonist-induced endocytosis. Expressing the NSF-E329Q mutant lacking ATPase activity inhibited the mbeta2AR coupling to Gi in cardiomyocytes. Our results revealed a dual regulation on hbeta2AR trafficking and signaling by NSF through direct binding to cargo receptor and its ATPase activity and uncovered an unprecedented role for the receptor binding to NSF in regulating G protein specificity that has diverged between mouse and human beta2ARs.
Collapse
Affiliation(s)
- Yongyu Wang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, B523 Burrill Hall, MC-114, 407 S. Goodwin Avenue, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
28
|
Noguchi S, Satow Y. Purification of human beta2-adrenergic receptor expressed in methylotrophic yeast Pichia pastoris. J Biochem 2006; 140:799-804. [PMID: 17050613 DOI: 10.1093/jb/mvj211] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human beta2-adrenergic receptor is a G-protein-coupled receptor with seven transmembrane helices, and is important in pharmaceutical targeting on pulmonary and cardiovascular diseases. N-terminal histidine-tagged gene constructs with optimized codon usage were designed so as to obtain Pichia pastoris transformants with a high expression level. The constructs were inserted into the pPIC9 vector, and then electroporated into the SMD1168 strains. The highest expression level obtained was about 4 mg/liter-culture broth. The dissociation constant of the receptor in the membrane fraction was 1.2 nM toward CGP-12177 antagonist. The receptor was solubilized with sucrose monolaurate and purified with a series of chromatography steps including anion-exchange, Ni-Sepharose, alprenolol-Agarose, and hydroxyapatite columns. The receptor was heterogeneously glycosylated, showing broad SDS-PAGE bands around 70-90 kDa. After endoglycosidase treatment, the receptor appeared as a single band around 45 kDa, and was further purified with hydroxyapatite and gel-filtration columns. The receptor was eluted as a sharp peak at the gel-filtration elution volume corresponding to a molecular mass of 117 kDa. The saccharide-trimmed receptor thus purified is homogeneous as analyzed with SDS-PAGE, shows the dissociation constant of 4.7 nM toward CGP-12177 antagonist, and is suitable for crystallization experiments.
Collapse
Affiliation(s)
- Shuji Noguchi
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033
| | | |
Collapse
|
29
|
Mager PP, Illes P. The h-P2X3 glycoprotein receptor as an example of integrating bioinformatics and structural research. Expert Opin Drug Discov 2006; 1:303-9. [DOI: 10.1517/17460441.1.4.303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
McGraw DW, Mihlbachler KA, Schwarb MR, Rahman FF, Small KM, Almoosa KF, Liggett SB. Airway smooth muscle prostaglandin-EP1 receptors directly modulate beta2-adrenergic receptors within a unique heterodimeric complex. J Clin Invest 2006; 116:1400-9. [PMID: 16670773 PMCID: PMC1451203 DOI: 10.1172/jci25840] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 01/17/2006] [Indexed: 12/19/2022] Open
Abstract
Multiple and paradoxical effects of airway smooth muscle (ASM) 7-transmembrane-spanning receptors activated during asthma, or by treatment with bronchodilators such as beta(2)-adrenergic receptor (beta(2)AR) agonists, indicate extensive receptor crosstalk. We examined the signaling of the prostanoid-EP(1) receptor, since its endogenous agonist prostaglandin E(2) is abundant in the airway, but its functional implications are poorly defined. Activation of EP(1) failed to elicit ASM contraction in mouse trachea via this G(alphaq)-coupled receptor. However, EP(1) activation markedly reduced the bronchodilatory function of beta(2)AR agonist, but not forskolin, indicating an early pathway interaction. Activation of EP(1) reduced beta(2)AR-stimulated cAMP in ASM but did not promote or augment beta(2)AR phosphorylation or alter beta(2)AR trafficking. Bioluminescence resonant energy transfer showed EP(1) and beta(2)AR formed heterodimers, which were further modified by EP(1) agonist. In cell membrane [(35)S]GTPgammaS binding studies, the presence of the EP(1) component of the dimer uncoupled beta(2)AR from G(alphas), an effect accentuated by EP(1) agonist activation. Thus alone, EP(1) does not appear to have a significant direct effect on airway tone but acts as a modulator of the beta(2)AR, altering G(alphas) coupling via steric interactions imposed by the EP(1):beta(2)AR heterodimeric signaling complex and ultimately affecting beta(2)AR-mediated bronchial relaxation. This mechanism may contribute to beta-agonist resistance found in asthma.
Collapse
Affiliation(s)
- Dennis W. McGraw
- Pulmonary Division, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
Cardiopulmonary Genomics Program, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kathryn A. Mihlbachler
- Pulmonary Division, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
Cardiopulmonary Genomics Program, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mary Rose Schwarb
- Pulmonary Division, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
Cardiopulmonary Genomics Program, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Fahema F. Rahman
- Pulmonary Division, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
Cardiopulmonary Genomics Program, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kersten M. Small
- Pulmonary Division, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
Cardiopulmonary Genomics Program, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Khalid F. Almoosa
- Pulmonary Division, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
Cardiopulmonary Genomics Program, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stephen B. Liggett
- Pulmonary Division, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
Cardiopulmonary Genomics Program, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Bautista DL, Morris DH, Stein L, Asher W, Hammitt T. A two model receptor system of the alpha1D adrenergic receptor to describe interactions with epinephrine and BMY7378. J Chem Inf Model 2006; 46:334-44. [PMID: 16426068 DOI: 10.1021/ci050116k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we have developed a two receptor model system to describe the R and R states of G-protein coupled receptors, specifically the alpha(1D) adrenergic receptor. The two models interact with agonist (epinephrine) and antagonist (BMY7378) differently. The active model has increased interactions with epinephrine. The inactive model has increased interactions with BMY7378. We also explored the protonation state of the ligands. When the most basic amine was protonated, we found increased hydrogen bonding and increased aromatic interactions. Protonated epinephrine hydrogen bonds with Asp176 and has aromatic residues Trp172, Trp235, Trp361, and Phe388 within 3 Angstroms. Protonated BMY7378 hydrogen bonds with Trp172 and Lys236 and has aromatic residues Trp172, Trp254, Phe364, Phe384, and Phe388 within 3 Angstroms. We conclude that the two model system is required to represent the two states of the receptor and that protonation of the ligand is also critical.
Collapse
Affiliation(s)
- Debra L Bautista
- Chemistry Department, Eastern Kentucky University, Richmond, 40475, USA.
| | | | | | | | | |
Collapse
|
32
|
McGraw DW, Liggett SB. Molecular mechanisms of beta2-adrenergic receptor function and regulation. Ann Am Thorac Soc 2006; 2:292-6; discussion 311-2. [PMID: 16267351 PMCID: PMC2713324 DOI: 10.1513/pats.200504-027sr] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is now clear that the beta2-adrenergic receptor continuously oscillates between various conformations in the basal state, and that agonists act to stabilize one or more conformations. It is conceivable that synthetic agonists might be engineered to preferentially confine the receptor to certain conformations deemed clinically important while having a less stabilizing effect on unwanted conformations. In addition, studies of genetically engineered mice have revealed previously unrecognized cross-talk between the beta2-receptor and phospholipase C, such that removal of the primary dilating pathway results in downregulation of constrictive pathways and overactivity of the dilating pathway increases the contractile response. These results indicate a dynamic interaction between beta2-receptor activity and Gq-coupled receptors that constrict the airway. Potentially, then, during chronic beta-agonist therapy, expression of phospholipase C is increased, the functions of Gq-coupled constrictive receptors are enhanced, and there may be an increased tendency for clinical decompensation due to asthma and chronic obstructive pulmonary disease triggers. Antagonists to these receptors might be able to act synergistically with chronic beta-agonists to block the effect of phospholipase C. Alternatively, perhaps novel phospholipase C antagonists would provide the most efficacious approach to blocking the physiologic sequelae of cross-talk between the beta2-receptor and phospholipase C.
Collapse
Affiliation(s)
- Dennis W McGraw
- CardioPulmonary Research Center, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML 0564, Cincinnati, OH 45267-0564, USA
| | | |
Collapse
|
33
|
Duvernay MT, Filipeanu CM, Wu G. The regulatory mechanisms of export trafficking of G protein-coupled receptors. Cell Signal 2005; 17:1457-65. [PMID: 16014327 DOI: 10.1016/j.cellsig.2005.05.020] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 05/10/2005] [Accepted: 05/17/2005] [Indexed: 10/25/2022]
Abstract
G protein-coupled receptors (GPCRs) are a superfamily of cell-surface receptors that regulate a variety of cell functions by responding to a myriad of ligands. The magnitude of the response elicited by a ligand is dictated by the level of receptor available at the plasma membrane. GPCR expression levels at the cell surface are a balance of three highly regulated, dynamic intracellular trafficking processes, namely export, internalization and degradation. This review will cover recent advances in understanding the mechanism underlying GPCR export trafficking by focusing on specific motifs required for ER export and the role of the Ras-like Rab1 GTPase and glycosylation in regulating ER-Golgi-cell-surface transport. The manifestation of diseases due to the disruption of GPCR export is also discussed.
Collapse
Affiliation(s)
- Matthew T Duvernay
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido St, New Orleans, LA 70112, United States
| | | | | |
Collapse
|
34
|
Clouser CL, Menon KMJ. N-linked glycosylation facilitates processing and cell surface expression of rat luteinizing hormone receptor. Mol Cell Endocrinol 2005; 235:11-9. [PMID: 15866423 DOI: 10.1016/j.mce.2005.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 02/22/2005] [Indexed: 11/27/2022]
Abstract
The extracellular domain of the luteinizing hormone (LH) receptor has six potential N-linked glycosylation sites. Although previous studies have shown that mutation of the first three sites results in decreased ligand binding at the cell surface, the role of glycosylation in LH receptor processing is not understood. In the present study, we examined whether mutation of the first three sites has any affect on receptor synthesis, processing, and degradation of the mutant receptors. The data show that mutation of N77, N152, or N173 did not affect receptor synthesis, but did significantly reduce processing of the receptor precursor to the mature, cell surface form. Furthermore, defective processing was due to increased degradation of the precursor rather than increased turnover of cell surface receptors. Thus, lack of glycosylation decreases LH receptor processing and targets the receptors for degradation thereby leading to decreased cell surface expression. These results show that glycosylation of the LH receptor plays an important role in receptor processing and cell surface expression.
Collapse
Affiliation(s)
- Christine L Clouser
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0617, USA
| | | |
Collapse
|
35
|
Tantisira KG, Small KM, Litonjua AA, Weiss ST, Liggett SB. Molecular properties and pharmacogenetics of a polymorphism of adenylyl cyclase type 9 in asthma: interaction between beta-agonist and corticosteroid pathways. Hum Mol Genet 2005; 14:1671-7. [PMID: 15879435 DOI: 10.1093/hmg/ddi175] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In asthma, the response to beta-agonists acting at beta2-adrenergic receptors (beta2AR) displays extensive interindividual variation. One effector for airway beta2AR, adenylyl cyclase type 9 (AC9), was considered a candidate locus for predicting beta-agonist efficacy in the absence and presence of corticosteroid treatment. One non-synonymous AC9 polymorphism has been identified, which results in substitution of Met for Ile at amino acid 772. Under standard culture conditions in stably transfected cells, we found decreased catalytic activity of Met772. However, cells cultured in the presence of glucocorticoid expressing Met772 had a significantly increased albuterol-stimulated adenylyl cyclase response (approximately 80%) when compared with those expressing Ile772 (approximately 20%, P=0.02). An equivalent increase in beta2AR expression was observed in both lines due to glucocorticoid, but AC9 expression was unaffected. The hypothesis that Met772-AC9 is associated with an improved albuterol bronchodilator response in asthmatics was investigated in 436 asthmatic children who were followed for 4 years and randomized to receive placebo or the inhaled corticosteroid budesonide. Met772 carriers on budesonide showed a significant improvement in forced expiratory volume in 1 s (P=0.005). Moreover, a highly significant interaction (P=0.002) was found for budesonide treatment and the AC9 polymorphism. These in vitro and human association studies are consistent with this AC9 polymorphism altering albuterol responsiveness in the context of concomitant inhaled corticosteroid administration, which is a common asthma regimen. The Met772-AC9 polymorphism represents one of most likely several multi-gene polymorphisms along the receptor-relaxation axis, which together may provide for a composite pharmacogenetic index for asthma therapy.
Collapse
Affiliation(s)
- Kelan G Tantisira
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|