1
|
Baakdah F, Georges E. Epitope specific antibodies to N- and C cytoplasmic domains of the Plasmodium falciparum chloroquine resistance transporter (PfCRT) differentiate native and post-translationally modified variant. Biochem Biophys Res Commun 2023; 669:54-60. [PMID: 37267860 DOI: 10.1016/j.bbrc.2023.05.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Polymorphisms in Plasmodium falciparum chloroquine resistance transporter (or PfCRT) were shown to be causative of decreased sensitivity to diverse quinoline-based antimalarials. In this report we describe the identification of a post-translational variant of PfCRT using highly characterized antibodies raised against its N- and C-terminal cytoplasmic domains (e.g., 58 and 26 amino acids, respectively). Western blot analyses of P. falciparum protein extracts with anti N-PfCRT antiserum revealed two polypeptides with apparent molecular masses of 52 kDa and 42 kDa, relative to the calculated molecular mass of PfCRT of 48.7 kDa. The 52 kDa polypeptide was detectable with anti C-PfCRT antiserum, only after alkaline phosphatase treatment of P. falciparum extracts. Detailed epitope mapping of anti N- and C-PfCRT antisera revealed epitopes covering two previously identified phosphorylation sites, Ser411 and Thr416, whereby substitution of these residues with Asp amino acid, to mimic phosphorylated residues, dramatically inhibited anti C-PfCRT binding. Consistently, alkaline phosphatase treatment of P. falciparum extract unmasked the binding of anti C-PfCRT to the 52 kDa polypeptide, suggesting that the 52 kDa but not 42 kDa polypeptide is phosphorylated at its C-terminal Ser411 and Thr416. Interestingly, Pfcrt expressed in HEK-293F human kidney cells showed the same reactive polypeptides with anti N- and C-PfCRT antisera, consistent with PfCRT origin of the two polypeptides (e.g., 42 kDa and 52 kDa), but lacking PfCRT phosphorylation at its C-terminal. Immunohistochemical staining of late trophozoite-infected erythrocytes with anti N-or C-PfCRT antisera showed both polypeptides are localized to the parasite's digestive vacuole. Moreover, both polypeptides are detected in chloroquine-susceptible and -resistant strains of P. falciparum. This is the first report describing a post-translationally modified variant of PfCRT. The physiologic role of the 52 kDa phosphorylated PfCRT in P. falciparum remains to be determined.
Collapse
Affiliation(s)
- Fadi Baakdah
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue (Montreal), Quebec, Canada
| | - Elias Georges
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue (Montreal), Quebec, Canada.
| |
Collapse
|
2
|
Baakdah F, Georges E. Epitope-specific IgG pools identify PfCRT monomer and homodimer polypeptides that are differentially phosphorylated at Ser 411 in Plasmodium falciparum. Biochem Biophys Res Commun 2021; 557:261-266. [PMID: 33894412 DOI: 10.1016/j.bbrc.2021.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022]
Abstract
The Plasmodium falciparum chloroquine resistance transporter (PfCRT) is a phospho-protein with three identified phosphorylation sites (Ser33, Ser411 and Thr416) at its cytosolic N- and C-termini. In this study, we report on the characterization of PfCRT anti-serum and show the presence of three epitope-specific immunoglobulin (IgG) pools (i.e., IgG-P1, P2, and P3), each recognizing a different epitope in PfCRT cytoplasmic C-terminal. IgG-P2 bound the heptapeptide sequence (408NEDSEGE414), including Ser411. The effect of Ser411 phosphorylation on the binding specificity of IgG-P2 was confirmed using heptapeptides and full-length PfCRT with substitutions of Ser411 with aspartic acid (phospho-serine mimic) and alanine residues. Moreover, using purified IgG-P2, we show the presence of PfCRT homodimer that has un-phosphorylated Ser411 and migrates with an apparent molecular mass of 90 kDa on SDS-PAGE. In addition, parasite lysates showed PfCRT to be more phosphorylated at Ser411 in CQ-sensitive (3D7) than CQ-resistant (Dd2-H) strains of P. falciparum. Taken together, the findings of this study suggest a role for Ser411 phosphorylation in PfCRT structure-function.
Collapse
Affiliation(s)
- Fadi Baakdah
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Québec, Canada
| | - Elias Georges
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Québec, Canada.
| |
Collapse
|
3
|
Shafik SH, Cobbold SA, Barkat K, Richards SN, Lancaster NS, Llinás M, Hogg SJ, Summers RL, McConville MJ, Martin RE. The natural function of the malaria parasite's chloroquine resistance transporter. Nat Commun 2020; 11:3922. [PMID: 32764664 PMCID: PMC7413254 DOI: 10.1038/s41467-020-17781-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 07/15/2020] [Indexed: 01/27/2023] Open
Abstract
The Plasmodium falciparum chloroquine resistance transporter (PfCRT) is a key contributor to multidrug resistance and is also essential for the survival of the malaria parasite, yet its natural function remains unresolved. We identify host-derived peptides of 4-11 residues, varying in both charge and composition, as the substrates of PfCRT in vitro and in situ, and show that PfCRT does not mediate the non-specific transport of other metabolites and/or ions. We find that drug-resistance-conferring mutations reduce both the peptide transport capacity and substrate range of PfCRT, explaining the impaired fitness of drug-resistant parasites. Our results indicate that PfCRT transports peptides from the lumen of the parasite's digestive vacuole to the cytosol, thereby providing a source of amino acids for parasite metabolism and preventing osmotic stress of this organelle. The resolution of PfCRT's native substrates will aid the development of drugs that target PfCRT and/or restore the efficacy of existing antimalarials.
Collapse
Affiliation(s)
- Sarah H Shafik
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Simon A Cobbold
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Kawthar Barkat
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Sashika N Richards
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Nicole S Lancaster
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Simon J Hogg
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Robert L Summers
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Malcolm J McConville
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Rowena E Martin
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
4
|
Structural and evolutionary analyses of the Plasmodium falciparum chloroquine resistance transporter. Sci Rep 2020; 10:4842. [PMID: 32179795 PMCID: PMC7076037 DOI: 10.1038/s41598-020-61181-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) confer resistance to several antimalarial drugs such as chloroquine (CQ) or piperaquine (PPQ), a partner molecule in current artemisinin-based combination therapies. As a member of the Drug/Metabolite Transporter (DMT) superfamily, the vacuolar transporter PfCRT may translocate substrate molecule(s) across the membrane of the digestive vacuole (DV), a lysosome-like organelle. However, the physiological substrate(s), the transport mechanism and the functional regions of PfCRT remain to be fully characterized. Here, we hypothesized that identification of evolutionary conserved sites in a tertiary structural context could help locate putative functional regions of PfCRT. Hence, site-specific substitution rates were estimated over Plasmodium evolution at each amino acid sites, and the PfCRT tertiary structure was predicted in both inward-facing (open-to-vacuole) and occluded states through homology modeling using DMT template structures sharing <15% sequence identity with PfCRT. We found that the vacuolar-half and membrane-spanning domain (and especially the transmembrane helix 9) of PfCRT were more conserved, supporting that its physiological substrate is expelled out of the parasite DV. In the PfCRT occluded state, some evolutionary conserved sites, including positions related to drug resistance mutations, participate in a putative binding pocket located at the core of the PfCRT membrane-spanning domain. Through structural comparison with experimentally-characterized DMT transporters, we identified several conserved PfCRT amino acid sites located in this pocket as robust candidates for mediating substrate transport. Finally, in silico mutagenesis revealed that drug resistance mutations caused drastic changes in the electrostatic potential of the transporter vacuolar entry and pocket, facilitating the escape of protonated CQ and PPQ from the parasite DV.
Collapse
|
5
|
Heterologous Expression of Aedes aegypti Cation Chloride Cotransporter 2 (aeCCC2) in Xenopus laevis Oocytes Induces an Enigmatic Na⁺/Li⁺ Conductance. INSECTS 2019; 10:insects10030071. [PMID: 30875796 PMCID: PMC6468792 DOI: 10.3390/insects10030071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/06/2019] [Accepted: 03/09/2019] [Indexed: 01/11/2023]
Abstract
The yellow fever mosquito Aedes aegypti possesses three genes encoding putative Na⁺-coupled cation chloride cotransporters (CCCs): aeNKCC1, aeCCC2, and aeCCC3. To date, none of the aeCCCs have been functionally characterized. Here we expressed aeCCC2 heterologously in Xenopus oocytes and measured the uptake of Li⁺ (a tracer for Na⁺) and Rb⁺ (a tracer for K⁺). Compared to control (H₂O-injected) oocytes, the aeCCC2-expressing oocytes exhibited significantly greater uptake of Li⁺, but not Rb⁺. However, the uptake of Li⁺ was neither Cl--dependent nor inhibited by thiazide, loop diuretics, or amiloride, suggesting unconventional CCC activity. To determine if the Li⁺-uptake was mediated by a conductive pathway, we performed two-electrode voltage clamping (TEVC) on the oocytes. The aeCCC2 oocytes were characterized by an enhanced conductance for Li⁺ and Na⁺, but not K⁺, compared to control oocytes. It remains to be determined whether aeCCC2 directly mediates the Na⁺/Li⁺ conductance or whether heterologous expression of aeCCC2 stimulates an endogenous cation channel in the oocyte plasma membrane.
Collapse
|
6
|
Argaiz ER, Chavez-Canales M, Ostrosky-Frid M, Rodríguez-Gama A, Vázquez N, Gonzalez-Rodriguez X, Garcia-Valdes J, Hadchouel J, Ellison D, Gamba G. Kidney-specific WNK1 isoform (KS-WNK1) is a potent activator of WNK4 and NCC. Am J Physiol Renal Physiol 2018; 315:F734-F745. [PMID: 29846116 DOI: 10.1152/ajprenal.00145.2018] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Familial hyperkalemic hypertension (FHHt) can be mainly attributed to increased activity of the renal Na+:Cl- cotransporter (NCC), which is caused by altered expression and regulation of the with-no-lysine (K) 1 (WNK1) or WNK4 kinases. The WNK1 gene gives rise to a kidney-specific isoform that lacks the kinase domain (KS-WNK1), the expression of which occurs primarily in the distal convoluted tubule. The role played by KS-WNK1 in the modulation of the WNK/STE20-proline-alanine rich kinase (SPAK)/NCC pathway remains elusive. In the present study, we assessed the effect of human KS-WNK1 on NCC activity and on the WNK4-SPAK pathway. Microinjection of oocytes with human KS-WNK1 cRNA induces remarkable activation and phosphorylation of SPAK and NCC. The effect of KS-WNK1 was abrogated by eliminating a WNK-WNK-interacting domain and by a specific WNK inhibitor, WNK463, indicating that the activation of SPAK/NCC by KS-WNK1 is due to interaction with another WNK kinase. Under control conditions in oocytes, the activating serine 335 of the WNK4 T loop is not phosphorylated. In contrast, this serine becomes phosphorylated when the intracellular chloride concentration ([Cl-]i) is reduced or when KS-WNK1 is coexpressed with WNK4. KS-WNK1-mediated activation of WNK4 is not due to a decrease of the [Cl-]i. Coimmunoprecipitation analysis revealed that KS-WNK1 and WNK4 interact with each other and that WNK4 becomes autophosphorylated at serine 335 when it is associated with KS-WNK1. Together, these observations suggest that WNK4 becomes active in the presence of KS-WNK1, despite a constant [Cl-]i.
Collapse
Affiliation(s)
- Eduardo R Argaiz
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico.,Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan Mexico City, Mexico.,Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León , Mexico
| | - Maria Chavez-Canales
- INSERM UMRS1155, University Pierre and Marie Curie, Faculty of Medicine , Paris , France.,Translational Medicine Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, México City, Mexico
| | - Mauricio Ostrosky-Frid
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan Mexico City, Mexico.,PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico
| | - Alejandro Rodríguez-Gama
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico
| | - Norma Vázquez
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico.,Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan Mexico City, Mexico
| | - Xochiquetzal Gonzalez-Rodriguez
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico
| | - Jesus Garcia-Valdes
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico
| | - Juliette Hadchouel
- INSERM UMRS1155, University Pierre and Marie Curie, Faculty of Medicine , Paris , France
| | - David Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University , Portland, Oregon.,Veterans Affairs Portland Health Care System, Portland, Oregon
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico.,Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan Mexico City, Mexico.,Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León , Mexico
| |
Collapse
|
7
|
Bakouh N, Bellanca S, Nyboer B, Moliner Cubel S, Karim Z, Sanchez CP, Stein WD, Planelles G, Lanzer M. Iron is a substrate of the Plasmodium falciparum chloroquine resistance transporter PfCRT in Xenopus oocytes. J Biol Chem 2017; 292:16109-16121. [PMID: 28768767 DOI: 10.1074/jbc.m117.805200] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/01/2017] [Indexed: 01/01/2023] Open
Abstract
The chloroquine resistance transporter of the human malaria parasite Plasmodium falciparum, PfCRT, is an important determinant of resistance to several quinoline and quinoline-like antimalarial drugs. PfCRT also plays an essential role in the physiology of the parasite during development inside erythrocytes. However, the function of this transporter besides its role in drug resistance is still unclear. Using electrophysiological and flux experiments conducted on PfCRT-expressing Xenopus laevis oocytes, we show here that both wild-type PfCRT and a PfCRT variant associated with chloroquine resistance transport both ferrous and ferric iron, albeit with different kinetics. In particular, we found that the ability to transport ferrous iron is reduced by the specific polymorphisms acquired by the PfCRT variant as a result of chloroquine selection. We further show that iron and chloroquine transport via PfCRT is electrogenic. If these findings in the Xenopus model extend to P. falciparum in vivo, our data suggest that PfCRT might play a role in iron homeostasis, which is essential for the parasite's development in erythrocytes.
Collapse
Affiliation(s)
- Naziha Bakouh
- From INSERM, Centre de Recherche des Cordeliers, Unité 1138, CNRS ERL8228, Université Pierre et Marie Curie and Université Paris-Descartes, Paris 75006, France
| | - Sebastiano Bellanca
- the Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Britta Nyboer
- the Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Sonia Moliner Cubel
- the Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Zoubida Karim
- INSERM, UMR1149, CNRS ERL 8252, Université Paris Diderot Paris 75890, France, and
| | - Cecilia P Sanchez
- the Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Wilfred D Stein
- Biological Chemistry, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gabrielle Planelles
- From INSERM, Centre de Recherche des Cordeliers, Unité 1138, CNRS ERL8228, Université Pierre et Marie Curie and Université Paris-Descartes, Paris 75006, France,
| | - Michael Lanzer
- the Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany,
| |
Collapse
|
8
|
Sanchez CP, Liu CH, Mayer S, Nurhasanah A, Cyrklaff M, Mu J, Ferdig MT, Stein WD, Lanzer M. A HECT ubiquitin-protein ligase as a novel candidate gene for altered quinine and quinidine responses in Plasmodium falciparum. PLoS Genet 2014; 10:e1004382. [PMID: 24830312 PMCID: PMC4022464 DOI: 10.1371/journal.pgen.1004382] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 04/01/2014] [Indexed: 11/18/2022] Open
Abstract
The emerging resistance to quinine jeopardizes the efficacy of a drug that has been used in the treatment of malaria for several centuries. To identify factors contributing to differential quinine responses in the human malaria parasite Plasmodium falciparum, we have conducted comparative quantitative trait locus analyses on the susceptibility to quinine and also its stereoisomer quinidine, and on the initial and steady-state intracellular drug accumulation levels in the F1 progeny of a genetic cross. These data, together with genetic screens of field isolates and laboratory strains associated differential quinine and quinidine responses with mutated pfcrt, a segment on chromosome 13, and a novel candidate gene, termed MAL7P1.19 (encoding a HECT ubiquitin ligase). Despite a strong likelihood of association, episomal transfections demonstrated a role for the HECT ubiquitin-protein ligase in quinine and quinidine sensitivity in only a subset of genetic backgrounds, and here the changes in IC50 values were moderate (approximately 2-fold). These data show that quinine responsiveness is a complex genetic trait with multiple alleles playing a role and that more experiments are needed to unravel the role of the contributing factors. Quinine, a natural product from cinchona bark, has been used in the treatment of malaria for centuries. Unfortunately, a progressive loss in responsiveness of the human malaria parasite Plasmodium falciparum to quinine has been observed, particularly in Southeast Asia, where cases of quinine treatment failure regularly occur. To better understand how P. falciparum defends itself against the cytotoxic activity of quinine, we have conducted comparative linkage analyses in the F1 progeny of a genetic cross where we assessed the susceptibility and the amount of intracellular accumulation of quinine and of its stereoisomer quinidine. These data identified a novel candidate gene encoding a HECT ubiquitin-protein ligase that might contribute to altered quinine responsiveness. The identification of this novel gene might improve the surveillance of quinine-resistant malaria parasites in the field and aid the preservation of this valuable antimalarial drug.
Collapse
Affiliation(s)
- Cecilia P. Sanchez
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Chia-Hao Liu
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Sybille Mayer
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Astutiati Nurhasanah
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
- Laboratory for the Development of Agroindustrial and Biomedical Technology (LAPTIAB), Tangerang Selatan, Indonesia
| | - Marek Cyrklaff
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Michael T. Ferdig
- The Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Wilfred D. Stein
- Biological Chemistry, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Michael Lanzer
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
9
|
Valayannopoulos V, Bakouh N, Mazzuca M, Nonnenmacher L, Hubert L, Makaci FL, Chabli A, Salomons GS, Mellot-Draznieks C, Brulé E, de Lonlay P, Toulhoat H, Munnich A, Planelles G, de Keyzer Y. Functional and electrophysiological characterization of four non-truncating mutations responsible for creatine transporter (SLC6A8) deficiency syndrome. J Inherit Metab Dis 2013; 36:103-12. [PMID: 22644605 DOI: 10.1007/s10545-012-9495-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 04/24/2012] [Accepted: 05/03/2012] [Indexed: 12/27/2022]
Abstract
Intellectual disability coupled with epilepsy are clinical hallmarks of the creatine (Cr) transporter deficiency syndrome resulting from mutations in the SLC6A8 gene. So far characterization of pathogenic mutations of SLC6A8 has been limited to Cr uptake. The aim of our study was to characterize the electrogenic and pharmacological properties of non truncating SLC6A8 mutations identified in patients presenting variable clinical severity. Electrophysiological and pharmacological properties of four mutants (including two novel ones) were studied in X. laevis oocyte expression system. Creatine uptake was assessed with [(14)C]-Cr in X. laevis and patients' fibroblasts. Subcellular localization was determined by immunofluorescence and western blot. All mutants were properly targeted to the plasma membrane in both systems. Mutations led to the complete loss of both electrogenic and transport activities in X. laevis and Cr uptake in patients' fibroblasts. Among the Cr analogs tested, guanidinopropionate induced an electrogenic activity with the normal SLC6A8 transporter similar to creatine whereas a phosphocreatine derivative, PCr-Mg-CPLX, resulted in partial activity. SLC6A8 mutants displayed no electrogenic activity with all Cr analogs tested in X. laevis oocytes. Although the mutations altered various domains of SLC6A8 Cr uptake and electrogenic properties were completely inhibited and could not be dissociated. Besides the metabolic functions of Cr, the loss of SLC6A8 electrogenic activity, demonstrated here for the first time, may also play a role in the altered brain functions of the patients.
Collapse
Affiliation(s)
- Vassili Valayannopoulos
- INSERM U781 and Paris-Descartes University, Necker-Enfants Malades Hospital, 149 rue de Sèvres, 75743 Paris cedex 15, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
PfCRT and its role in antimalarial drug resistance. Trends Parasitol 2012; 28:504-14. [PMID: 23020971 DOI: 10.1016/j.pt.2012.08.002] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/09/2012] [Accepted: 08/13/2012] [Indexed: 12/15/2022]
Abstract
Plasmodium falciparum resistance to chloroquine, the former gold standard antimalarial drug, is mediated primarily by mutant forms of the chloroquine resistance transporter (PfCRT). These mutations impart upon PfCRT the ability to efflux chloroquine from the intracellular digestive vacuole, the site of drug action. Recent studies reveal that PfCRT variants can also affect parasite fitness, protect immature gametocytes against chloroquine action, and alter P. falciparum susceptibility to current first-line therapies. These results highlight the need to be vigilant in screening for the appearance of novel pfcrt alleles that could contribute to new multi-drug resistance phenotypes.
Collapse
|
11
|
Papakrivos J, Sá JM, Wellems TE. Functional characterization of the Plasmodium falciparum chloroquine-resistance transporter (PfCRT) in transformed Dictyostelium discoideum vesicles. PLoS One 2012; 7:e39569. [PMID: 22724026 PMCID: PMC3378554 DOI: 10.1371/journal.pone.0039569] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 05/27/2012] [Indexed: 11/19/2022] Open
Abstract
Background Chloroquine (CQ)-resistant Plasmodium falciparum malaria has been a global health catastrophe, yet much about the CQ resistance (CQR) mechanism remains unclear. Hallmarks of the CQR phenotype include reduced accumulation of protonated CQ as a weak base in the digestive vacuole of the erythrocyte-stage parasite, and chemosensitization of CQ-resistant (but not CQ-sensitive) P. falciparum by agents such as verapamil. Mutations in the P. falciparum CQR transporter (PfCRT) confer CQR; particularly important among these mutations is the charge-loss substitution K→T at position 76. Dictyostelium discoideum transformed with mutant PfCRT expresses key features of CQR including reduced drug accumulation and verapamil chemosensitization. Methodology and Findings We describe the isolation and characterization of PfCRT-transformed, hematin-free vesicles from D. discoideum cells. These vesicles permit assessments of drug accumulation, pH, and membrane potential that are difficult or impossible with hematin-containing digestive vacuoles from P. falciparum-infected erythrocytes. Mutant PfCRT-transformed D. discoideum vesicles show features of the CQR phenotype, and manipulations of vesicle membrane potential by agents including ionophores produce large changes of CQ accumulation that are dissociated from vesicular pH. PfCRT in its native or mutant form blunts the ability of valinomycin to reduce CQ accumulation in transformed vesicles and decreases the ability of K+ to reverse membrane potential hyperpolarization caused by valinomycin treatment. Conclusion Isolated vesicles from mutant-PfCRT-transformed D. discoideum exhibit features of the CQR phenotype, consistent with evidence that the drug resistance mechanism operates at the P. falciparum digestive vacuole membrane in malaria. Membrane potential apart from pH has a major effect on the PfCRT-mediated CQR phenotype of D. discoideum vesicles. These results support a model of PfCRT as an electrochemical potential-driven transporter in the drug/metabolite superfamily that (appropriately mutated) acts as a saturable simple carrier for the facilitated diffusion of protonated CQ.
Collapse
Affiliation(s)
- Janni Papakrivos
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Juliana M. Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas E. Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
12
|
Abstract
A wide range of drug transport studies using intact infected red blood cells, isolated malarial parasites, heterologous expression systems, and purified protein, combined with elegant genetic experiments, have suggested that chloroquine transport by the Plasmodium falciparum chloroquine resistance transporter (PfCRT) is a key aspect of the molecular mechanism of quinoline antimalarial drug resistance. However, many questions remain. This short review summarizes data that have led to drug channel versus drug pump hypotheses for PfCRT and suggests ways in which recent contrasting interpretations might be reconciled.
Collapse
Affiliation(s)
- Paul D Roepe
- Department of Chemistry, Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington, DC 20057, United States.
| |
Collapse
|
13
|
Rotmann A, Sanchez C, Guiguemde A, Rohrbach P, Dave A, Bakouh N, Planelles G, Lanzer M. PfCHA is a mitochondrial divalent cation/H+ antiporter in Plasmodium falciparum. Mol Microbiol 2010; 76:1591-606. [PMID: 20487273 DOI: 10.1111/j.1365-2958.2010.07187.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human malaria parasite Plasmodium falciparum is capable of adapting to vastly different extracellular Ca(2+) environments while maintaining tight control of its intracellular Ca(2+) concentration. The mechanisms underpinning Ca(2+) homeostasis in this important pathogen are only partly understood. Here we have functionally expressed the putative Ca(2+)/H(+) antiporter PfCHA in Xenopus laevis oocytes. Our data suggest that PfCHA mediates H(+)-coupled Ca(2+) and Mn(2+) exchange. The apparent dissociation constant K(M) for Ca(2+) of 2.2 +/- 0.7 mM and the maximal velocity V(max) of 0.6 +/- 0.1 nmol per oocyte per hour are consistent with PfCHA being a low-affinity high-capacity Ca(2+) carrier. In the parasite, PfCHA was found to localize to the mitochondrion. Physiological studies conducted with live parasitized erythrocytes, and using Fluo-4 and Rhod-2 to monitor cytoplasmic and mitochondrial Ca(2+) dynamics, suggest that the mitochondrion serves as a dynamic Ca(2+) store and that PfCHA functions as a Ca(2+) efflux system expelling excess Ca(2+) from the mitochondrion. PfCHA lacks appreciable homologies to the human mitochondrial Ca(2+)/H(+) exchanger and might represent an evolutionary divergent class of mitochondrial cation antiporter, which, in turn, might provide novel opportunities for intervention.
Collapse
Affiliation(s)
- Alexander Rotmann
- Hygiene Institut, Abteilung Parasitologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sanchez CP, Dave A, Stein WD, Lanzer M. Transporters as mediators of drug resistance in Plasmodium falciparum. Int J Parasitol 2010; 40:1109-18. [PMID: 20399785 DOI: 10.1016/j.ijpara.2010.04.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 04/06/2010] [Accepted: 04/09/2010] [Indexed: 12/31/2022]
Abstract
Drug resistance represents a major obstacle in the radical control of malaria. Drug resistance can arise in many different ways, but recent developments highlight the importance of mutations in transporter molecules as being major contributors to drug resistance in the human malaria parasite Plasmodium falciparum. While approximately 2.5% of the P. falciparum genome encodes membrane transporters, this review concentrates on three transporters, namely the chloroquine resistance transporter PfCRT, the multi-drug resistance transporter 1 PfMDR1, and the multi-drug resistance-associated protein PfMRP, which have been strongly associated with resistance to the major antimalarial drugs. The studies that identified these entities as contributors to resistance, and the possible molecular mechanisms that can bring about this phenotype, are discussed. A deep understanding of the underpinning mechanisms, and of the structural specificities of the players themselves, is a necessary basis for the development of the new drugs that will be needed for the future armamentarium against malaria.
Collapse
Affiliation(s)
- Cecilia P Sanchez
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
15
|
Kuhn Y, Sanchez CP, Ayoub D, Saridaki T, van Dorsselaer A, Lanzer M. Trafficking of the Phosphoprotein PfCRT to the Digestive Vacuolar Membrane inPlasmodium falciparum. Traffic 2010; 11:236-49. [DOI: 10.1111/j.1600-0854.2009.01018.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Stewart AK, Vandorpe DH, Heneghan JF, Chebib F, Stolpe K, Akhavein A, Edelman EJ, Maksimova Y, Gallagher PG, Alper SL. The GPA-dependent, spherostomatocytosis mutant AE1 E758K induces GPA-independent, endogenous cation transport in amphibian oocytes. Am J Physiol Cell Physiol 2009; 298:C283-97. [PMID: 19907019 DOI: 10.1152/ajpcell.00444.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The previously undescribed heterozygous missense mutation E758K was discovered in the human AE1/SLC4A1/band 3 gene in two unrelated patients with well-compensated hereditary spherostomatocytic anemia (HSt). Oocyte surface expression of AE1 E758K, in contrast to that of wild-type AE1, required coexpressed glycophorin A (GPA). The mutant polypeptide exhibited, in parallel, strong GPA dependence of DIDS-sensitive (36)Cl(-) influx, trans-anion-dependent (36)Cl(-) efflux, and Cl(-)/HCO(3)(-) exchange activities at near wild-type levels. AE1 E758K expression was also associated with GPA-dependent increases of DIDS-sensitive pH-independent SO(4)(2-) uptake and oxalate uptake with altered pH dependence. In marked contrast, the bumetanide- and ouabain-insensitive (86)Rb(+) influx associated with AE1 E758K expression was largely GPA-independent in Xenopus oocytes and completely GPA-independent in Ambystoma oocytes. AE1 E758K-associated currents in Xenopus oocytes also exhibited little or no GPA dependence. (86)Rb(+) influx was higher but inward cation current was lower in oocytes expressing AE1 E758K than previously reported in oocytes expressing the AE1 HSt mutants S731P and H734R. The pharmacological inhibition profile of AE1 E758K-associated (36)Cl(-) influx differed from that of AE1 E758K-associated (86)Rb(+) influx, as well as from that of wild-type AE1-mediated Cl(-) transport. Thus AE1 E758K-expressing oocytes displayed GPA-dependent surface polypeptide expression and anion transport, accompanied by substantially GPA-independent, pharmacologically distinct Rb(+) flux and by small, GPA-independent currents. The data strongly suggest that most of the increased cation transport associated with the novel HSt mutant AE1 E758K reflects activation of endogenous oocyte cation permeability pathways, rather than cation translocation through the mutant polypeptide.
Collapse
Affiliation(s)
- Andrew K Stewart
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The malaria parasite-infected erythrocyte is a multi-compartment structure, incorporating numerous different membrane systems. The movement of nutrients, metabolites and inorganic ions into and out of the intraerythrocytic parasite, as well as between subcellular compartments within the parasite, is mediated by transporters and channels - integral membrane proteins that facilitate the movement of solutes across the membrane bilayer. Proteins of this type also play a key role in antimalarial drug resistance. Genes encoding transporters and channels account for at least 2.5% of the parasite genome. However, ascribing functions and physiological roles to these proteins, and defining their roles in drug resistance, is not straightforward. For any given membrane transport protein, a full understanding of its role(s) in the parasitized erythrocyte requires a knowledge of its subcellular localization and substrate specificity, as well as some knowledge of the effects on the parasite of modifying the sequence and/or level of expression of the gene involved. Here we consider recent work in this area, describe a number of newly identified transport proteins, and summarize the likely subcellular localization and putative substrate specificity of all of the candidate membrane transport proteins identified to date.
Collapse
Affiliation(s)
- Rowena E Martin
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia.
| | | | | |
Collapse
|
18
|
Roepe PD. Molecular and physiologic basis of quinoline drug resistance in Plasmodium falciparum malaria. Future Microbiol 2009; 4:441-55. [PMID: 19416013 PMCID: PMC2724744 DOI: 10.2217/fmb.09.15] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
30 years before the discovery of the pfcrt gene, altered cellular drug accumulation in drug-resistant malarial parasites had been well documented. Heme released from catabolized hemoglobin was thought to be a key target for quinoline drugs, and additional modifications to quinoline drug structure in order to improve activity against chloroquine-resistant malaria were performed in a few laboratories. However, parasite cell culture methods were still in their infancy, assays for drug susceptibility were not well standardized, and the power of malarial genetics was decades away. The last 10 years have witnessed explosive progress in elucidation of the biochemistry of chloroquine resistance. This review briefly summarizes that progress, and discusses where additional work is needed.
Collapse
Affiliation(s)
- Paul D Roepe
- Department of Chemistry and Department of Biochemistry, Cellular & Molecular Biology, and Center for Infectious Disease, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
19
|
Harvey WR. Voltage coupling of primary H+ V-ATPases to secondary Na+- or K+-dependent transporters. J Exp Biol 2009; 212:1620-9. [PMID: 19448072 PMCID: PMC2683009 DOI: 10.1242/jeb.031534] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2009] [Indexed: 01/23/2023]
Abstract
This review provides alternatives to two well established theories regarding membrane energization by H(+) V-ATPases. Firstly, we offer an alternative to the notion that the H(+) V-ATPase establishes a protonmotive force (pmf) across the membrane into which it is inserted. The term pmf, which was introduced by Peter Mitchell in 1961 in his chemiosmotic hypothesis for the synthesis of ATP by H(+) F-ATP synthases, has two parts, the electrical potential difference across the phosphorylating membrane, Deltapsi, and the pH difference between the bulk solutions on either side of the membrane, DeltapH. The DeltapH term implies three phases - a bulk fluid phase on the H(+) input side, the membrane phase and a bulk fluid phase on the H(+) output side. The Mitchell theory was applied to H(+) V-ATPases largely by analogy with H(+) F-ATP synthases operating in reverse as H(+) F-ATPases. We suggest an alternative, voltage coupling model. Our model for V-ATPases is based on Douglas B. Kell's 1979 'electrodic view' of ATP synthases in which two phases are added to the Mitchell model - an unstirred layer on the input side and another one on the output side of the membrane. In addition, we replace the notion that H(+) V-ATPases normally acidify the output bulk solution with the hypothesis, which we introduced in 1992, that the primary action of a H(+) V-ATPase is to charge the membrane capacitance and impose a Deltapsi across the membrane; the translocated hydrogen ions (H(+)s) are retained at the outer fluid-membrane interface by electrostatic attraction to the anions that were left behind. All subsequent events, including establishing pH differences in the outside bulk solution, are secondary. Using the surface of an electrode as a model, Kell's 'electrodic view' has five phases - the outer bulk fluid phase, an outer fluid-membrane interface, the membrane phase, an inner fluid-membrane interface and the inner bulk fluid phase. Light flash, H(+) releasing and binding experiments and other evidence provide convincing support for Kell's electrodic view yet Mitchell's chemiosmotic theory is the one that is accepted by most bioenergetics experts today. First we discuss the interaction between H(+) V-ATPase and the K(+)/2H(+) antiporter that forms the caterpillar K(+) pump, and use the Kell electrodic view to explain how the H(+)s at the outer fluid-membrane interface can drive two H(+) from lumen to cell and one K(+) from cell to lumen via the antiporter even though the pH in the bulk fluid of the lumen is highly alkaline. Exchange of outer bulk fluid K(+) (or Na(+)) with outer interface H(+) in conjunction with (K(+) or Na(+))/2H(+) antiport, transforms the hydrogen ion electrochemical potential difference, mu(H), to a K(+) electrochemical potential difference, mu(K) or a Na(+) electrochemical potential difference, mu(Na). The mu(K) or mu(Na) drives K(+)- or Na(+)-coupled nutrient amino acid transporters (NATs), such as KAAT1 (K(+) amino acid transporter 1), which moves Na(+) and an amino acid into the cell with no H(+)s involved. Examples in which the voltage coupling model is used to interpret ion and amino acid transport in caterpillar and larval mosquito midgut are discussed.
Collapse
Affiliation(s)
- William R Harvey
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA.
| |
Collapse
|
20
|
Piermarini PM, Weihrauch D, Meyer H, Huss M, Beyenbach KW. NHE8 is an intracellular cation/H+ exchanger in renal tubules of the yellow fever mosquito Aedes aegypti. Am J Physiol Renal Physiol 2009; 296:F730-50. [PMID: 19193723 PMCID: PMC2670640 DOI: 10.1152/ajprenal.90564.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 01/27/2009] [Indexed: 11/22/2022] Open
Abstract
The goal of this study was to identify and characterize the hypothesized apical cation/H(+) exchanger responsible for K(+) and/or Na(+) secretion in the renal (Malpighian) tubules of the yellow fever mosquito Aedes aegypti. From Aedes Malpighian tubules, we cloned "AeNHE8," a full-length cDNA encoding an ortholog of mammalian Na(+)/H(+) exchanger 8 (NHE8). The expression of AeNHE8 transcripts is ubiquitous among mosquito tissues and is not enriched in Malpighian tubules. Western blots of Malpighian tubules suggest that AeNHE8 is expressed primarily as an intracellular protein, which was confirmed by immunohistochemical localizations in Malpighian tubules. AeNHE8 immunoreactivity is expressed in principal cells of the secretory, distal segments, where it localizes to a subapical compartment (e.g., vesicles or endosomes), but not in the apical brush border. Furthermore, feeding mosquitoes a blood meal or treating isolated tubules with dibutyryl-cAMP, both of which stimulate a natriuresis by Malpighian tubules, do not influence the intracellular localization of AeNHE8 in principal cells. When expressed heterologously in Xenopus laevis oocytes, AeNHE8 mediates EIPA-sensitive Na/H exchange, in which Li(+) partially and K(+) poorly replace Na(+). The expression of AeNHE8 in Xenopus oocytes is associated with the development of a conductive pathway that closely resembles the known endogenous nonselective cation conductances of Xenopus oocytes. In conclusion, AeNHE8 does not mediate cation/H(+) exchange in the apical membrane of Aedes Malpighian tubules; it is more likely involved with an intracellular function.
Collapse
Affiliation(s)
- Peter M Piermarini
- Cornell Univ., College of Veterinary Medicine, Dept. of Biomedical Sciences, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
21
|
Heterologous expression of plasmodial proteins for structural studies and functional annotation. Malar J 2008; 7:197. [PMID: 18828893 PMCID: PMC2567985 DOI: 10.1186/1475-2875-7-197] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 10/01/2008] [Indexed: 11/10/2022] Open
Abstract
Malaria remains the world's most devastating tropical infectious disease with as many as 40% of the world population living in risk areas. The widespread resistance of Plasmodium parasites to the cost-effective chloroquine and antifolates has forced the introduction of more costly drug combinations, such as Coartem®. In the absence of a vaccine in the foreseeable future, one strategy to address the growing malaria problem is to identify and characterize new and durable antimalarial drug targets, the majority of which are parasite proteins. Biochemical and structure-activity analysis of these proteins is ultimately essential in the characterization of such targets but requires large amounts of functional protein. Even though heterologous protein production has now become a relatively routine endeavour for most proteins of diverse origins, the functional expression of soluble plasmodial proteins is highly problematic and slows the progress of antimalarial drug target discovery. Here the status quo of heterologous production of plasmodial proteins is presented, constraints are highlighted and alternative strategies and hosts for functional expression and annotation of plasmodial proteins are reviewed.
Collapse
|
22
|
Sanchez CP, Rotmann A, Stein WD, Lanzer M. Polymorphisms within PfMDR1 alter the substrate specificity for anti-malarial drugs in Plasmodium falciparum. Mol Microbiol 2008; 70:786-98. [PMID: 18713316 DOI: 10.1111/j.1365-2958.2008.06413.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Resistance to several anti-malarial drugs has been associated with polymorphisms within the P-glycoprotein homologue (Pgh-1, PfMDR1) of the human malaria parasite Plasmodium falciparum. Pgh-1, coded for by the gene pfmdr1, is predominately located at the membrane of the parasite's digestive vacuole. How polymorphisms within this transporter mediate alter anti-malarial drug responsiveness has remained obscure. Here we have functionally expressed pfmdr1 in Xenopus laevis oocytes. Our data demonstrate that Pgh-1 transports vinblastine, an established substrate of mammalian MDR1, and the anti-malarial drugs halofantrine, quinine and chloroquine. Importantly, polymorphisms within Pgh-1 alter the substrate specificity for the anti-malarial drugs. Wild-type Pgh-1 transports quinine and chloroquine, but not halofantrine, whereas polymorphic Pgh-1 variants, associated with altered drug responsivenesses, transport halofantrine but not quinine and chloroquine. Our data further suggest that quinine acts as an inhibitor of Pgh-1. Our data are discussed in terms of the model that Pgh-1-mediates, in a variant-specific manner, import of certain drugs into the P. falciparum digestive vacuole, and that this contributes to accumulation of, and susceptibility to, the drug in question.
Collapse
Affiliation(s)
- Cecilia P Sanchez
- Hygiene Institut, Abteilung Parasitologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
23
|
Genome-wide compensatory changes accompany drug- selected mutations in the Plasmodium falciparum crt gene. PLoS One 2008; 3:e2484. [PMID: 18575593 PMCID: PMC2424241 DOI: 10.1371/journal.pone.0002484] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 05/14/2008] [Indexed: 11/25/2022] Open
Abstract
Mutations in PfCRT (Plasmodium falciparum chloroquine-resistant transporter), particularly the substitution at amino acid position 76, confer chloroquine (CQ) resistance in P. falciparum. Point mutations in the homolog of the mammalian multidrug resistance gene (pfmdr1) can also modulate the levels of CQ response. Moreover, parasites with the same pfcrt and pfmdr1 alleles exhibit a wide range of drug sensitivity, suggesting that additional genes contribute to levels of CQ resistance (CQR). Reemergence of CQ sensitive parasites after cessation of CQ use indicates that changes in PfCRT are deleterious to the parasite. Some CQR parasites, however, persist in the field and grow well in culture, which may reflect adaptive changes in the parasite genome to compensate for the mutations in PfCRT. Using three isogenic clones that have different drug resistance profiles corresponding to unique mutations in the pfcrt gene (106/1K76, 106/176I, and 106/76I-352K), we investigated changes in gene expression in these parasites grown with and without CQ. We also conducted hybridizations of genomic DNA to identify copy number (CN) changes in parasite genes. RNA transcript levels from 45 genes were significantly altered in one or both mutants relative to the parent line, 106/1K76. Most of the up-regulated genes are involved in invasion, cell growth and development, signal transduction, and transport activities. Of particular interest are genes encoding proteins involved in transport and/or regulation of cytoplasmic or compartmental pH such as the V-type H+ pumping pyrophosphatase 2 (PfVP2), Ca2+/H+ antiporter VCX1, a putative drug transporter and CN changes in pfmdr1. These changes may represent adaptations to altered functionality of PfCRT, a predicted member of drug/metabolite transporter superfamily found on the parasite food vacuole (FV) membrane. Further investigation of these genes may shed light on how the parasite compensates for functional changes accompanying drug resistance mutations in a gene coding for a membrane/drug transporter.
Collapse
|
24
|
Guizouarn H, Martial S, Gabillat N, Borgese F. Point mutations involved in red cell stomatocytosis convert the electroneutral anion exchanger 1 to a nonselective cation conductance. Blood 2007; 110:2158-65. [PMID: 17554061 DOI: 10.1182/blood-2006-12-063420] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anion exchanger 1 (AE1) is encoded by the SLC4A1 gene and catalyzes the electroneutral anion exchange across cell plasma membrane. It is the most abundant transmembrane protein expressed in red cell where it is involved in CO(2) transport. Recently, 4 new point mutations of SLC4A1 gene have been described leading to missense mutations in the protein sequence (L687P, D705Y, S731P, or H734R). These point mutations were associated with hemolytic anemia, and it was shown that they confer a cation transport feature to the human AE1. Facing this unexpected property for an electroneutral anion exchanger, we have studied the transport features of mutated hAE1 by expression in xenopus oocytes. Our results show that the point mutations of hAE1 convert the electroneutral anion exchanger to a cation conductance: the exchangers are no longer able to exchange Cl(-) and HCO(3)(-), whereas they transport Na(+) and K(+) through a conductive mechanism. These data shed new light on transport mechanisms showing the tiny difference, in terms of primary sequence, between an electroneutral exchange and a conductive pathway.
Collapse
Affiliation(s)
- Hélène Guizouarn
- Laboratoire de Physiologie Cellulaire et Moléculaire, Unité Mixte de Recherche 6548, Centre National de la Recherche Scientifique, Université de Nice, Bâtiment de Sciences Naturelles, Nice, France.
| | | | | | | |
Collapse
|
25
|
Parker MD, Young MT, Daly CM, Meech RW, Boron WF, Tanner MJA. A conductive pathway generated from fragments of the human red cell anion exchanger AE1. J Physiol 2007; 581:33-50. [PMID: 17317744 PMCID: PMC2075216 DOI: 10.1113/jphysiol.2007.128389] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Human red cell anion exchanger AE1 (band 3) is an electroneutral Cl-HCO3- exchanger with 12-14 transmembrane spans (TMs). Previous work using Xenopus oocytes has shown that two co-expressed fragments of AE1 lacking TMs 6 and 7 are capable of forming a stilbene disulphonate-sensitive (36)Cl-influx pathway, reminiscent of intact AE1. In the present study, we create a single construct, AE1Delta(6: 7), representing the intact protein lacking TMs 6 and 7. We expressed this construct in Xenopus oocytes and evaluated it employing a combination of two-electrode voltage clamp and pH-sensitive microelectrodes. We found that, whereas AE1Delta(6: 7) has some electroneutral Cl-base exchange activity, the protein also forms a novel anion-conductive pathway that is blocked by DIDS. The mutation Lys(539)Ala at the covalent DIDS-reaction site of AE1 reduced the DIDS sensitivity, demonstrating that (1) the conductive pathway is intrinsic to AE1Delta(6: 7) and (2) the conductive pathway has some commonality with the electroneutral anion-exchange pathway. The conductance has an anion-permeability sequence: NO3- approximately I- > NO2- > Br- > Cl- > SO4(2-) approximately HCO3- approximately gluconate- approximately aspartate- approximately cyclamate-. It may also have a limited permeability to Na+ and the zwitterion taurine. Although this conductive pathway is not a usual feature of intact mammalian AE1, it shares many properties with the anion-conductive pathways intrinsic to two other Cl-HCO3- exchangers, trout AE1 and mammalian SLC26A7.
Collapse
Affiliation(s)
- Mark D Parker
- Department of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| | | | | | | | | | | |
Collapse
|
26
|
Reeves DC, Liebelt DA, Lakshmanan V, Roepe PD, Fidock DA, Akabas MH. Chloroquine-resistant isoforms of the Plasmodium falciparum chloroquine resistance transporter acidify lysosomal pH in HEK293 cells more than chloroquine-sensitive isoforms. Mol Biochem Parasitol 2006; 150:288-99. [PMID: 17014918 PMCID: PMC1687154 DOI: 10.1016/j.molbiopara.2006.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 08/31/2006] [Accepted: 09/03/2006] [Indexed: 01/04/2023]
Abstract
The emergence of chloroquine-resistant Plasmodium falciparum malaria imperils the lives of millions of people in Africa, Southeast Asia and South America. Chloroquine resistance is associated with mutations in the P. falciparum chloroquine resistance transporter (PfCRT). We expressed chloroquine-sensitive (HB3) and resistant (Dd2) pfcrt alleles in HEK293 human embryonic kidney cells. PfCRT localized to the lysosomal limiting membrane and was not detected in the plasma membrane. We observed significant acidification of lysosomes containing PfCRT HB3 and Dd2, with Dd2 acidifying significantly more than HB3. A mutant HB3 allele expressing the K76T mutation (earlier found to be key for chloroquine resistance) acidified to the same extent as Dd2, whereas the acidification by a Dd2 allele expressing the T76K "back mutation" was significantly less than Dd2. Thus, the amino acid at position 76 is both an important determinant of chloroquine resistance in parasites and of lysosomal acidification following heterologous expression. PfCRT may be capable of modulating the pH of the parasite digestive vacuole, and thus chloroquine availability. Chloroquine accumulation and glycyl-phenylalanine-2-naphthylamide-induced release of lysosomal Ca(2+) stores were unaffected by PfCRT expression. Cytoplasmic domain mutations did not alter PfCRT sorting to the lysosomal membrane. This heterologous expression system will be useful to characterize PfCRT protein structure and function, and elucidate its molecular role in chloroquine resistance.
Collapse
Affiliation(s)
- David C Reeves
- Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
27
|
Tan W, Gou DM, Tai E, Zhao YZ, Chow LMC. Functional reconstitution of purified chloroquine resistance membrane transporter expressed in yeast. Arch Biochem Biophys 2006; 452:119-28. [PMID: 16884678 DOI: 10.1016/j.abb.2006.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 06/10/2006] [Accepted: 06/12/2006] [Indexed: 11/18/2022]
Abstract
Malaria is one of the major parasitic diseases. Current treatment of malaria is seriously hampered by the emergence of drug resistant cases. A once-effective drug chloroquine (CQ) has been rendered almost useless. The mechanism of CQ resistance is complicated and largely unknown. Recently, a novel transmembrane protein, Plasmodium falciparum chloroquine resistance transporter (PfCRT), has fulfilled all the requirements of being the CQ resistance gene. In order to elucidate the mechanism how PfCRT mediates CQ resistance, we have cloned the cDNA from a CQ sensitive parasite (3D7) and tried to express it in Pichia pastoris (P. pastoris) but with unsuccessful results due to AT-rich sequences in the malaria genome. We have therefore, based on the codon usage in P. pastoris, chemically synthesized a codon-modified pfcrt with an overall 55% AT content. This codon-modified pfcrt has now been successfully expressed in P. pastoris. The expressed PfCRT has been purified with immuno metal affinity chromatography (IMAC) and then reconstituted into proteoliposome. It was found that proteoliposomes have a saturable, concentration and time-dependent CQ transport activity. In addition, we found that proteoliposomes with resistant PfCRT(r) (K76T or K76I) showed an increased CQ transport activity compared to liposomes with lipid alone, or proteoliposomes reconstituted with sensitive PfCRT(s) (K76) protein. This activity could be inhibited by nigericin and decreased with the removal of Cl(-). This work suggests that PfCRT is mediating CQR in P. falciparum by virtue of its changes in CQ transport activity depending on pH gradient and chloride ion in the food vacuole.
Collapse
Affiliation(s)
- W Tan
- Department of Applied Biology and Chemical Technology, Central Laboratory of the Institute of Molecular Technology for Drug Discovery and Synthesis, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China.
| | | | | | | | | |
Collapse
|
28
|
Biagini GA, Fidock DA, Bray PG, Ward SA. Mutations conferring drug resistance in malaria parasite drug transporters Pgh1 and PfCRT do not affect steady-state vacuolar Ca2+. Antimicrob Agents Chemother 2006; 49:4807-8. [PMID: 16251339 PMCID: PMC1280173 DOI: 10.1128/aac.49.11.4807-4808.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Kirk K, Martin RE, Bröer S, Howitt SM, Saliba KJ. Plasmodium permeomics: membrane transport proteins in the malaria parasite. Curr Top Microbiol Immunol 2005; 295:325-56. [PMID: 16265897 DOI: 10.1007/3-540-29088-5_13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Membrane transport proteins are integral membrane proteins that mediate the passage across the membrane bilayer of specific molecules and/or ions. Such proteins serve a diverse range of physiological roles, mediating the uptake of nutrients into cells, the removal of metabolic wastes and xenobiotics (including drugs), and the generation and maintenance of transmembrane electrochemical gradients. In this chapter we review the present state of knowledge of the membrane transport mechanisms underlying the cell physiology of the intraerythrocytic malaria parasite and its host cell, considering in particular physiological measurements on the parasite and parasitized erythrocyte, the annotation of transport proteins in the Plasmodium genome, and molecular methods used to analyze transport protein function.
Collapse
Affiliation(s)
- K Kirk
- School of Biochemistry and Molecular Biology, The Australian National University, 0200 Canberra, ACT, Australia.
| | | | | | | | | |
Collapse
|
30
|
Mak DOD, Dang B, Weiner ID, Foskett JK, Westhoff CM. Characterization of ammonia transport by the kidney Rh glycoproteins RhBG and RhCG. Am J Physiol Renal Physiol 2005; 290:F297-305. [PMID: 16131648 PMCID: PMC4321823 DOI: 10.1152/ajprenal.00147.2005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The erythrocyte Rh-associated glycoprotein (RhAG) was recently found to mediate transport of ammonia/ammonium when expressed in Xenopus laevis oocytes and yeast Saccharomyces cerevisiae. Nonerythroid homologs, RhBG and RhCG, are expressed in the mammalian kidney connecting segment and the collecting duct, major sites of urinary ammonia secretion. This study characterizes the transport properties of murine RhBG and RhCG by ammonium analog [14C]methylamine (MA) uptake and two-electrode voltage clamping of X. laevis oocytes. Both RhBG and RhCG mediated transport of ammonia, but differed in affinity for substrate (K(m) = 2.5 and 10 mM, respectively). The rates of RhBG- and RhCG-mediated transport were sensitive to the concentration of the protonated MA species and were stimulated by extracellular alkalosis and inhibited by acidosis, suggesting a role for H+ in the transport process. Whereas expression of RhBG or RhCG caused a small increase in plasma membrane conductance, [14C]MA uptake was not affected by depolarization of oocytes with 100 mM extracellular K+ or by clamping the membrane potential between 0 and -100 mV, indicating that RhBG- and RhCG-mediated transport was independent of the membrane potential. These results strongly suggest that RhBG and RhCG transport ammonia by an electroneutral process that involves NH4(+)/H+ exchange resulting in net NH3 translocation. The polarized localization of RhBG and RhCG in kidney tubules and the different substrate affinities may enable these proteins to participate in transepithelial ammonia secretion and to therefore play an important role in whole animal acid-base regulation.
Collapse
Affiliation(s)
- Don-On Daniel Mak
- American Red Cross, 700 Spring Garden St., Philadelphia, PA 19123, USA
| | | | | | | | | |
Collapse
|
31
|
Bray PG, Martin RE, Tilley L, Ward SA, Kirk K, Fidock DA. Defining the role of PfCRT in Plasmodium falciparum chloroquine resistance. Mol Microbiol 2005; 56:323-33. [PMID: 15813727 DOI: 10.1111/j.1365-2958.2005.04556.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recent studies have highlighted the importance of a parasite protein referred to as the chloroquine resistance transporter (PfCRT) in the molecular basis of Plasmodium falciparum resistance to the quinoline antimalarials. PfCRT, an integral membrane protein with 10 predicted transmembrane domains, is a member of the drug/metabolite transporter superfamily and is located on the membrane of the intra-erythrocytic parasite's digestive vacuole. Specific polymorphisms in PfCRT are tightly correlated with chloroquine resistance. Transfection studies have now proven that pfcrt mutations confer verapamil-reversible chloroquine resistance in vitro and reveal their important role in resistance to quinine. Available evidence is consistent with the view that PfCRT functions as a transporter directly mediating the efflux of chloroquine from the digestive vacuole.
Collapse
Affiliation(s)
- Patrick G Bray
- Molecular and Biochemical Parasitology Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | | | | | | | | | | |
Collapse
|
32
|
Cooper RA, Hartwig CL, Ferdig MT. pfcrt is more than the Plasmodium falciparum chloroquine resistance gene: a functional and evolutionary perspective. Acta Trop 2005; 94:170-80. [PMID: 15866507 DOI: 10.1016/j.actatropica.2005.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Genetic, physiological and pharmacological studies are gradually revealing the molecular basis of chloroquine resistance (CQR) in the malaria parasite, Plasmodium falciparum. Recent highlights include the discovery of a key gene associated with resistance, pfcrt (Plasmodium falciparum chloroquine resistance transporter; PfCRT), encoding a novel transporter, and the characterization of global selective sweeps of haplotypes containing a K76T amino acid change within this protein. Little is known about the cellular mechanism by which resistant parasites escape the effects of chloroquine (CQ), one of the most promising drugs ever deployed, due in part to an unresolved mechanism of action. The worldwide spread of CQR argues that investigations into these mechanisms are of little value. We propose, to the contrary, that the reconstruction of the evolutionary and molecular events underlying CQR is important at many levels, including: (i) its potential to assist in the development of rational approaches to thwart future drug resistances; (ii) the stimulation of the use of CQ-like compounds in drug combinations for new therapeutic approaches; and (iii) the consideration of how the CQ-selected genome will function as the context in which current and future drugs will act, particularly in light of the many reports of multidrug resistance. The purpose of this review is to highlight, discuss and in some cases challenge the interpretations of recent findings on CQR. We consider the natural function of the PfCRT protein, the role of multiple genes and "genetic background" in the CQR mechanism, and the evolution of CQR in parasite populations. Genetic transformation techniques are improving in P. falciparum and continue to provide important insight into CQR. Here, we also discuss more subtle, yet important pharmacological approaches that may have been overlooked in a traditional "gene for drug resistance" way of thinking.
Collapse
Affiliation(s)
- Roland A Cooper
- Department of Biological Sciences, 110 Mills Godwin Building/45th Street, Old Dominion University, Norfolk, VA 23529, USA.
| | | | | |
Collapse
|
33
|
Naudé B, Brzostowski JA, Kimmel AR, Wellems TE. Dictyostelium discoideum expresses a malaria chloroquine resistance mechanism upon transfection with mutant, but not wild-type, Plasmodium falciparum transporter PfCRT. J Biol Chem 2005; 280:25596-603. [PMID: 15883156 PMCID: PMC1779819 DOI: 10.1074/jbc.m503227200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Chloroquine resistance in Plasmodium falciparum malaria results from mutations in PfCRT, a member of a unique family of transporters present in apicomplexan parasites and Dictyostelium discoideum. Mechanisms that have been proposed to explain chloroquine resistance are difficult to evaluate within malaria parasites. Here we report on the targeted expression of wild-type and mutant forms of PfCRT to acidic vesicles in D. discoideum. We show that wild-type PfCRT has minimal effect on the accumulation of chloroquine by D. discoideum, whereas forms of PfCRT carrying a key charge-loss mutation of lysine 76 (e.g. K76T) enable D. discoideum to expel chloroquine. As in P. falciparum, the chloroquine resistance phenotype conferred on transformed D. discoideum can be reversed by the channel-blocking agent verapamil. Although intravesicular pH levels in D. discoideum show small acidic changes with the expression of different forms of PfCRT, these changes would tend to promote intravesicular trapping of chloroquine (a weak base) and do not account for reduced drug accumulation in transformed D. discoideum. Our results instead support outward-directed chloroquine efflux for the mechanism of chloroquine resistance by mutant PfCRT. This mechanism shows structural specificity as D. discoideum transformants that expel chloroquine do not expel piperaquine, a bisquinoline analog of chloroquine used frequently against chloroquine-resistant parasites in Southeast Asia. PfCRT, nevertheless, may have some ability to act on quinine and quinidine. Transformed D. discoideum will be useful for further studies of the chloroquine resistance mechanism and may assist in the development and evaluation of new antimalarial drugs.
Collapse
Affiliation(s)
- Bronwen Naudé
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Bethesda, Maryland 20892-8132, USA
| | | | | | | |
Collapse
|
34
|
Abstract
With the sequencing of the Plasmodium falciparum genome now complete, increasing attention is turning to the function of gene products and to cell-regulatory processes. The combination of in silico analyses with modern molecular and biophysical methods is leading to rapid advances in our understanding of the mechanisms underlying the biochemistry and physiology of the parasite and its host cell. In this brief review, we present a "snap shot" of recent work in this area, with particular emphasis on aspects relevant to the development of new antimalarial drugs.
Collapse
Affiliation(s)
- Katja Becker
- Department of Biochemistry, Interdisciplinary Research Center, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | | |
Collapse
|