1
|
Juhl AD, Wüstner D. Pathways and Mechanisms of Cellular Cholesterol Efflux-Insight From Imaging. Front Cell Dev Biol 2022; 10:834408. [PMID: 35300409 PMCID: PMC8920967 DOI: 10.3389/fcell.2022.834408] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 12/24/2022] Open
Abstract
Cholesterol is an essential molecule in cellular membranes, but too much cholesterol can be toxic. Therefore, mammalian cells have developed complex mechanisms to remove excess cholesterol. In this review article, we discuss what is known about such efflux pathways including a discussion of reverse cholesterol transport and formation of high-density lipoprotein, the function of ABC transporters and other sterol efflux proteins, and we highlight their role in human diseases. Attention is paid to the biophysical principles governing efflux of sterols from cells. We also discuss recent evidence for cholesterol efflux by the release of exosomes, microvesicles, and migrasomes. The role of the endo-lysosomal network, lipophagy, and selected lysosomal transporters, such as Niemann Pick type C proteins in cholesterol export from cells is elucidated. Since oxysterols are important regulators of cellular cholesterol efflux, their formation, trafficking, and secretion are described briefly. In addition to discussing results obtained with traditional biochemical methods, focus is on studies that use established and novel bioimaging approaches to obtain insight into cholesterol efflux pathways, including fluorescence and electron microscopy, atomic force microscopy, X-ray tomography as well as mass spectrometry imaging.
Collapse
Affiliation(s)
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, PhyLife, Physical Life Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
2
|
Sterol and lipid analyses identifies hypolipidemia and apolipoprotein disorders in autism associated with adaptive functioning deficits. Transl Psychiatry 2021; 11:471. [PMID: 34504056 PMCID: PMC8429516 DOI: 10.1038/s41398-021-01580-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 12/30/2022] Open
Abstract
An improved understanding of sterol and lipid abnormalities in individuals with autism spectrum disorder (ASD) could lead to personalized treatment approaches. Toward this end, in blood, we identified reduced synthesis of cholesterol in families with ≥2 children with ASD participating with the Autism Genetic Resource Exchange (AGRE), as well as reduced amounts of high-density lipoprotein cholesterol (HDL), apolipoprotein A1 (ApoA1) and apolipoprotein B (ApoB), with 19.9% of the subjects presenting with apolipoprotein patterns similar to hypolipidemic clinical syndromes and 30% with either or both ApoA1 and ApoB less than the fifth centile. Subjects with levels less than the fifth centile of HDL or ApoA1 or ApoA1 + ApoB had lower adaptive functioning than other individuals with ASD, and hypocholesterolemic subjects had apolipoprotein deficits significantly divergent from either typically developing individuals participating in National Institutes of Health or the National Health and Nutrition Examination Survey III.
Collapse
|
3
|
Bai Y, Yin S, Gbordzor V, Guo Y, Bai Q, Wang S, Wei X, Chen N, Zhang Y, Li W. Increase in plasma Niemann-Pick disease type C2 protein is associated with poor prognosis of sepsis. Sci Rep 2021; 11:5907. [PMID: 33723331 PMCID: PMC7961030 DOI: 10.1038/s41598-021-85478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/02/2021] [Indexed: 11/09/2022] Open
Abstract
The functional significance of extracellular Niemann-Pick disease type C2 protein (NPC2) is poorly defined. It is not known whether there is an association between plasma NPC2 and sepsis. Our exploratory, quantitative proteomic analysis showed a significant increase in the level of plasma NPC2 in moribund sepsis patients. Thus, we subsequently determined NPC2 concentration in plasma from healthy subjects, pneumonia patients and sepsis patients with comorbid pneumonia; and analyzed the association of plasma NPC2 with organ dysfunction and prognosis of sepsis patients. Our data shows that plasma NPC2 concentration was significantly higher in pneumonia and sepsis patients than healthy subjects, and was further increased in sepsis patients when the SOFA score reached 14. In addition, NPC2 concentration was significantly higher in patients that subsequently developed septic shock or died within 30 days. Moreover, NPC2 level showed the strongest association with the degree of renal dysfunction in sepsis patients. In moribund sepsis patients, however, NPC2 had highest correlation coefficient with indicators of coagulation anomaly. Based on these results, we conclude that the increase in plasma NPC2 in sepsis patients is associated with multiple organ failure, possibly results from a deficiency in renal clearance, and may serve as a prognostic marker for sepsis.
Collapse
Affiliation(s)
- Yu Bai
- Sepsis Laboratory, Center for Translational Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China
| | - Shuangyi Yin
- Sepsis Laboratory, Center for Translational Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China
| | - Vivian Gbordzor
- Sepsis Laboratory, Center for Translational Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China
| | - Yu Guo
- Sepsis Laboratory, Center for Translational Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China.,Department of Pulmonary and Critical Care Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China
| | - Qing Bai
- Sepsis Laboratory, Center for Translational Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China.,Department of Pulmonary and Critical Care Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China
| | - Shuaiwei Wang
- Sepsis Laboratory, Center for Translational Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China
| | - Xiangyan Wei
- Sepsis Laboratory, Center for Translational Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China
| | - Na Chen
- Department of Pulmonary and Critical Care Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China
| | - Yijie Zhang
- Sepsis Laboratory, Center for Translational Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China.
| | - Wei Li
- Sepsis Laboratory, Center for Translational Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China.
| |
Collapse
|
4
|
Juhl AD, Lund FW, Jensen MLV, Szomek M, Heegaard CW, Guttmann P, Werner S, McNally J, Schneider G, Kapishnikov S, Wüstner D. Niemann Pick C2 protein enables cholesterol transfer from endo-lysosomes to the plasma membrane for efflux by shedding of extracellular vesicles. Chem Phys Lipids 2021; 235:105047. [PMID: 33422548 DOI: 10.1016/j.chemphyslip.2020.105047] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
The Niemann-Pick C2 protein (NPC2) is a sterol transfer protein in the lumen of late endosomes and lysosomes (LE/LYSs). Absence of functional NPC2 leads to endo-lysosomal buildup of cholesterol and other lipids. How NPC2's known capacity to transport cholesterol between model membranes is linked to its function in living cells is not known. Using quantitative live-cell imaging combined with modeling of the efflux kinetics, we show that NPC2-deficient human fibroblasts can export the cholesterol analog dehydroergosterol (DHE) from LE/LYSs. Internalized NPC2 accelerated sterol efflux extensively, accompanied by reallocation of LE/LYSs containing fluorescent NPC2 and DHE to the cell periphery. Using quantitative fluorescence loss in photobleaching of TopFluor-cholesterol (TF-Chol), we estimate a residence time for a rapidly exchanging sterol pool in LE/LYSs localized in close proximity to the plasma membrane (PM), of less than one min and observed non-vesicular sterol exchange between LE/LYSs and the PM. Excess sterol was released from the PM by shedding of cholesterol-rich vesicles. The ultrastructure of such vesicles was analyzed by combined fluorescence and cryo soft X-ray tomography (SXT), revealing that they can contain lysosomal cargo and intraluminal vesicles. Treating cells with apoprotein A1 and with nuclear receptor liver X-receptor (LXR) agonists to upregulate expression of ABC transporters enhanced cholesterol efflux from the PM, at least partly by accelerating vesicle release. We conclude that NPC2 inside LE/LYSs facilitates non-vesicular sterol exchange with the PM for subsequent sterol efflux to acceptor proteins and for shedding of sterol-rich vesicles from the cell surface.
Collapse
Affiliation(s)
- Alice Dupont Juhl
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Frederik W Lund
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Maria Louise V Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Maria Szomek
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Christian W Heegaard
- Department of Molecular Biology and Genetics, University of Aarhus, DK-8000, Aarhus C, Denmark
| | - Peter Guttmann
- Department X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Stephan Werner
- Department X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - James McNally
- Department X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Gerd Schneider
- Department X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Sergey Kapishnikov
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230, Odense M, Denmark.
| |
Collapse
|
5
|
González-Guevara E, Cárdenas G, Pérez-Severiano F, Martínez-Lazcano JC. Dysregulated Brain Cholesterol Metabolism Is Linked to Neuroinflammation in Huntington's Disease. Mov Disord 2020; 35:1113-1127. [PMID: 32410324 DOI: 10.1002/mds.28089] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease is an autosomal-dominant, neurodegenerative disorder caused by a CAG repeat expansion in exon-1 of the huntingtin gene. Alterations in cholesterol metabolism and distribution have been reported in Huntington's disease, including abnormal interactions between mutant huntingtin and sterol regulatory element-binding proteins, decreased levels of apolipoprotein E/cholesterol/low-density lipoprotein receptor complexes, and alterations in the synthesis of ATP-binding cassette transporter A1. Plasma levels of 24S-hydroxycholestrol, a key intermediary in cholesterol metabolism and a possible marker in neurodegenerative diseases, decreased proportionally to the degree of caudate nucleus atrophy. The interaction of mutant huntingtin with sterol regulatory element-binding proteins is of particular interest given that sterol regulatory element-binding proteins play a dual role: They take part in lipid and cholesterol metabolism, but also in the inflammatory response that induces immune cell migration as well as toxic effects, particularly in astrocytes. This work summarizes current evidence on the metabolic and immune implications of sterol regulatory element-binding protein dysregulation in Huntington's disease, highlighting the potential use of drugs that modulate these alterations. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Edith González-Guevara
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "MVS", Mexico City, Mexico
| | - Graciela Cárdenas
- Departamento de Neurología y Enfermedades Neuro-Infecciosas, Instituto Nacional de Neurología y Neurocirugía "MVS", Mexico City, Mexico
| | - Francisca Pérez-Severiano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "MVS", Mexico City, Mexico
| | - Juan Carlos Martínez-Lazcano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "MVS", Mexico City, Mexico
| |
Collapse
|
6
|
Park MH, Choi BJ, Jeong MS, Lee JY, Jung IK, Park KH, Lee HW, Yamaguchi T, Marti HH, Lee BH, Schuchman EH, Jin HK, Bae JS. Characterization of the Subventricular-Thalamo-Cortical Circuit in the NP-C Mouse Brain, and New Insights Regarding Treatment. Mol Ther 2019; 27:1507-1526. [PMID: 31138511 PMCID: PMC6697385 DOI: 10.1016/j.ymthe.2019.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 01/17/2023] Open
Abstract
Gliosis in Niemann-Pick type C (NP-C) disease is characterized by marked changes in microglia and astrocytes. However, the gliosis onset and progression in NP-C has not been systematically studied, nor has the mechanism underlying this finding. Here, we found early gliosis in the subventricular zone (SVZ) of NP-C mice. Neural progenitor damage by Npc1 mutation suppressed vascular endothelial growth factor (VEGF) expression and further induced microglia activation followed by astrogliosis. Interestingly, excessive astrogliosis in the SVZ induced neural progenitor retention and/or migration into thalamus via astrocyte-derived VEGF, resulting in acceleration of thalamic and cortical gliosis through thalamo-cortical pathways. Transplantation of VEGF-overexpressing neural stem cells into the SVZ improved whole-brain pathology of NP-C mice. Overall, our data provide a new pathological perspective on NP-C neural pathology, revealing abnormalities in the subventricular-thalamo-cortical circuit of NP-C mouse brain and highlighting the importance of the SVZ microenvironment as a therapeutic target for NP-C disease.
Collapse
Affiliation(s)
- Min Hee Park
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea; Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, South Korea
| | - Byung Jo Choi
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea; Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Min Seock Jeong
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea; Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Ju Youn Lee
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea; Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, South Korea
| | - In Kyung Jung
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea; Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, South Korea
| | - Kang Ho Park
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea; Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, South Korea
| | - Hye Won Lee
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, South Korea
| | - Tomoyuki Yamaguchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Beom Hee Lee
- Medical Genetics Center, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hee Kyung Jin
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea; Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea.
| | - Jae-Sung Bae
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea; Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
7
|
Saher G, Stumpf SK. Cholesterol in myelin biogenesis and hypomyelinating disorders. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1083-94. [PMID: 25724171 DOI: 10.1016/j.bbalip.2015.02.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/05/2015] [Accepted: 02/12/2015] [Indexed: 02/05/2023]
Abstract
The largest pool of free cholesterol in mammals resides in myelin membranes. Myelin facilitates rapid saltatory impulse propagation by electrical insulation of axons. This function is achieved by ensheathing axons with a tightly compacted stack of membranes. Cholesterol influences myelination at many steps, from the differentiation of myelinating glial cells, over the process of myelin membrane biogenesis, to the functionality of mature myelin. Cholesterol emerged as the only integral myelin component that is essential and rate-limiting for the development of myelin in the central and peripheral nervous system. Moreover, disorders that interfere with sterol synthesis or intracellular trafficking of cholesterol and other lipids cause hypomyelination and neurodegeneration. This review summarizes recent results on the roles of cholesterol in CNS myelin biogenesis in normal development and under different pathological conditions. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Gesine Saher
- Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| | - Sina Kristin Stumpf
- Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| |
Collapse
|
8
|
Erickson RP. Current controversies in Niemann-Pick C1 disease: steroids or gangliosides; neurons or neurons and glia. J Appl Genet 2013; 54:215-24. [PMID: 23292954 DOI: 10.1007/s13353-012-0130-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 11/28/2022]
Abstract
There has been a recent explosion in research on Niemann-Pick type C disease. Much of the work has used mouse models or cells in culture to elucidate the pathophysiological mechanisms resulting in the phenotype of the disease. This work has generated several contrasting views on the mechanism, which are labeled 'controversies' here. In this review, two of these controversies are explored. The first concerns which stored materials are causative in the disease: cholesterol, gangliosides and sphingolipids, or something else? The second concerns which cells in the body require Npc1 in order to function properly: somatic cells, neurons only, or neurons and glia? For the first controversy, a clear answer has emerged. More research will be needed in order to definitively solve the second controversy.
Collapse
Affiliation(s)
- Robert P Erickson
- Department of Pediatrics, University of Arizona, Tucson, AZ 85724-5073, USA.
| |
Collapse
|
9
|
Jansen M, Wang W, Greco D, Bellenchi GC, Porzio U, Brown AJ, Ikonen E. What dictates the accumulation of desmosterol in the developing brain? FASEB J 2012; 27:865-70. [DOI: 10.1096/fj.12-211235] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maurice Jansen
- Institute of Biomedicine, AnatomyUniversity of HelsinkiHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Wei Wang
- Institute of Biomedicine, AnatomyUniversity of HelsinkiHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Dario Greco
- Research Unit of Molecular MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Bioscience and NutritionKarolinska InstituteStockholmSweden
| | | | | | - Andrew J. Brown
- School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Elina Ikonen
- Institute of Biomedicine, AnatomyUniversity of HelsinkiHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| |
Collapse
|
10
|
Yamanashi Y, Takada T, Shoda JI, Suzuki H. Novel function of Niemann-Pick C1-like 1 as a negative regulator of Niemann-Pick C2 protein. Hepatology 2012; 55:953-64. [PMID: 22095670 DOI: 10.1002/hep.24772] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 10/08/2011] [Indexed: 12/07/2022]
Abstract
UNLABELLED The hepatic expression of Niemann-Pick C1-like 1 (NPC1L1), which is a key molecule in intestinal cholesterol absorption, is high in humans. In addition to NPC1L1, Niemann-Pick C2 (NPC2), a secretory cholesterol-binding protein involved in intracellular cholesterol trafficking and the stimulation of biliary cholesterol secretion, is also expressed in the liver. In this study, we examined the molecular interaction and functional association between NPC1L1 and NPC2. In vitro studies with adenovirus-based or plasmid-mediated gene transfer systems revealed that NPC1L1 negatively regulated the protein expression and secretion of NPC2 without affecting the level of NPC2 messenger RNA. Experiments with small interfering RNA against NPC1L1 confirmed the endogenous association of these proteins. In addition, endocytosed NPC2 could compensate for the reduction of NPC2 in NPC1L1-overexpressing cells, and this demonstrated that the posttranscriptional regulation of NPC2 was dependent on a novel ability of NPC1L1 to inhibit the maturation of NPC2 and accelerate the degradation of NPC2 during its maturation. Furthermore, to confirm the physiological relevance of NPC1L1-mediated regulation, we analyzed human liver specimens and found a negative correlation between the protein levels of hepatic NPC1L1 and hepatic NPC2. CONCLUSION NPC1L1 down-regulates the expression and secretion of NPC2 by inhibiting its maturation and accelerating its degradation. NPC2 functions as a regulator of intracellular cholesterol trafficking and biliary cholesterol secretion; therefore, in addition to its role in cholesterol re-uptake from the bile by hepatocytes, hepatic NPC1L1 may control cholesterol homeostasis via the down-regulation of NPC2.
Collapse
Affiliation(s)
- Yoshihide Yamanashi
- Department of Pharmacy, University of Tokyo Hospital, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
11
|
Balboa E, Morales G, Aylwin P, Carrasco G, Amigo L, Castro J, Rigotti A, Zanlungo S. Niemann-Pick C2 protein expression regulates lithogenic diet-induced gallstone formation and dietary cholesterol metabolism in mice. Lipids 2011; 47:13-25. [PMID: 22038687 DOI: 10.1007/s11745-011-3625-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 10/11/2011] [Indexed: 12/21/2022]
Abstract
Niemann-Pick C2 protein (NPC2) is a lysosomal soluble protein that is highly expressed in the liver; it binds to cholesterol and is involved in intracellular cholesterol trafficking, allowing the exit of lysosomal cholesterol obtained via the lipoprotein endocytic pathway. Thus, this protein may play an important role in controlling hepatic cholesterol transport and metabolism. The aim of this work was to study the relevance of NPC2 protein expression in hepatic cholesterol metabolism, biliary lipid secretion and gallstone formation by comparing NPC2 hypomorph [NPC2 (h/h)] and wild-type mice fed control, 2% cholesterol, and lithogenic diets. NPC2 (h/h) mice exhibited resistance to a diet-induced increase in plasma cholesterol levels. When consuming the chow diet, we observed increased biliary cholesterol and phospholipid secretions in NPC2 (h/h) mice. When fed the 2% cholesterol diet, NPC2 (h/h) mice exhibited low and high gallbladder bile cholesterol and phospholipid concentrations, respectively. NPC2 (h/h) mice fed with the lithogenic diet showed reduced biliary cholesterol secretion, gallbladder bile cholesterol saturation, and cholesterol crystal and gallstone formation. This work indicates that hepatic NPC2 expression is an important factor in the regulation of diet-derived cholesterol metabolism and disposal as well as in diet-induced cholesterol gallstone formation in mice.
Collapse
Affiliation(s)
- Elisa Balboa
- Departmento de Gastroenterología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, Casilla 114-D, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Mailman T, Hariharan M, Karten B. Inhibition of neuronal cholesterol biosynthesis with lovastatin leads to impaired synaptic vesicle release even in the presence of lipoproteins or geranylgeraniol. J Neurochem 2011; 119:1002-15. [PMID: 21899539 DOI: 10.1111/j.1471-4159.2011.07474.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cholesterol is highly enriched in the brain, and plays a key role in synapse formation and function. The brain does not derive cholesterol from the circulation; instead, the majority of cholesterol is made in glia and secreted in form of lipoproteins. Neurons can synthesize cholesterol, but the extent of neuronal cholesterol biosynthesis in the adult brain is unknown. Cholesterol biosynthesis inhibitors of the statin family are widely used to lower circulating cholesterol and cardiovascular risk. Lipophilic statins can cross the blood brain barrier and inhibit brain cholesterol biosynthesis with possible consequences for synaptic cholesterol homeostasis. We have investigated the effects of lovastatin on synapse maturation and synaptic vesicle release. Treatment of primary hippocampal neurons with low levels of lovastatin for one week reduced synapse density and impaired synaptic vesicle release. Neither lipoproteins nor geranylgeraniol fully counteracted the lovastatin-induced decrease of synaptic vesicle exocytosis, even when cholesterol depletion was prevented. In contrast, restoration of neuronal cholesterol synthesis with mevalonate prevented defects in vesicle exocytosis without fully normalizing neuronal cholesterol content. These results raise the possibility that chronic exposure of neurons to lipophilic statins may affect synaptic transmission, and indicate that hippocampal neurons need a certain level of endogenous cholesterol biosynthesis.
Collapse
Affiliation(s)
- Tiffany Mailman
- Department of Biochemistry and Molecular Biology and Neuroscience Institute, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
13
|
Yu T, Shakkottai VG, Chung C, Lieberman AP. Temporal and cell-specific deletion establishes that neuronal Npc1 deficiency is sufficient to mediate neurodegeneration. Hum Mol Genet 2011; 20:4440-51. [PMID: 21856732 DOI: 10.1093/hmg/ddr372] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Niemann-Pick type C (NPC) disease is an autosomal recessive lysosomal storage disorder caused by mutations in the NPC1 or NPC2 genes. Loss of function mutations in either gene disrupt intracellular lipid trafficking and lead to a clinically heterogeneous phenotype that invariably includes neurological dysfunction and early death. The mechanism by which impaired lipid transport leads to neurodegeneration is poorly understood. Here we used mice with a conditional null allele to establish the timing and cell type that underlie neurodegeneration due to Npc1 deficiency. We show that global deletion of Npc1 in adult mice leads to progressive weight loss, impaired motor function and early death in a time course similar to that resulting from germline deletion. These phenotypes are associated with the occurrence of characteristic neuropathology including patterned Purkinje cell loss, axonal spheroids and reactive gliosis, demonstrating that there is not a significant developmental component to NPC neurodegeneration. Furthermore, we show that these same changes occur when Npc1 is specifically deleted only in neurons, establishing that neuronal deficiency is sufficient to mediate central nervous system (CNS) disease. In contrast, astrocyte-specific deletion does not impact behavioral phenotypes, CNS histopathology or synaptic function. We conclude that defects arising in neurons, but not in astrocytes, are the determining factor in the development of NPC neuropathology.
Collapse
Affiliation(s)
- Ting Yu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
14
|
Pfrieger FW, Ungerer N. Cholesterol metabolism in neurons and astrocytes. Prog Lipid Res 2011; 50:357-71. [PMID: 21741992 DOI: 10.1016/j.plipres.2011.06.002] [Citation(s) in RCA: 334] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/11/2011] [Accepted: 06/22/2011] [Indexed: 12/20/2022]
Abstract
Cells in the mammalian body must accurately maintain their content of cholesterol, which is an essential membrane component and precursor for vital signalling molecules. Outside the brain, cholesterol homeostasis is guaranteed by a lipoprotein shuttle between the liver, intestine and other organs via the blood circulation. Cells inside the brain are cut off from this circuit by the blood-brain barrier and must regulate their cholesterol content in a different manner. Here, we review how this is accomplished by neurons and astrocytes, two cell types of the central nervous system, whose cooperation is essential for normal brain development and function. The key observation is a remarkable cell-specific distribution of proteins that mediate different steps of cholesterol metabolism. This form of metabolic compartmentalization identifies astrocytes as net producers of cholesterol and neurons as consumers with unique means to prevent cholesterol overload. The idea that cholesterol turnover in neurons depends on close cooperation with astrocytes raises new questions that need to be addressed by new experimental approaches to monitor and manipulate cholesterol homeostasis in a cell-specific manner. We conclude that an understanding of cholesterol metabolism in the brain and its role in disease requires a close look at individual cell types.
Collapse
Affiliation(s)
- Frank W Pfrieger
- CNRS UPR 3212, University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI), 67084 Strasbourg Cedex, France.
| | | |
Collapse
|
15
|
Anatomically defined neuron-based rescue of neurodegenerative Niemann-Pick type C disorder. J Neurosci 2011; 31:4367-78. [PMID: 21430138 DOI: 10.1523/jneurosci.5981-10.2011] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Niemann-Pick type C disease is a fatal lysosomal storage disorder caused by loss of NPC1 function. The disorder severely affects multiple body systems, particularly the nervous system. To test whether rescue of NPC1 activity in neurons, astrocytes, or other cell types can correct the neurological defects, a Tet-inducible Npc1-YFP transgene was introduced into Npc1(-/-) mice for the cell type-specific rescue of NPC1 loss. NPC1-YFP produced in neurons prevented neuron degeneration, slowed reactive glial activity, and ameliorated the disease. NPC1-YFP produced in astrocytes or in cells of visceral tissue did not. These results suggest that loss of NPC1 activity from neurons is the primary cause of the neuropathology and that rescue of NPC1 function in neurons is sufficient to mitigate the disease. The ability of neurons to survive and function in a cell-autonomous fashion allowed the use of this newly engineered rescue system to further define the brain regions or neuron populations required to ameliorate a neurological symptom. NPC1-YFP produced specifically in cerebellar Purkinje neurons reduced ataxia, increased weight, and prolonged life, but it did not prevent the eventual decline and premature death of Npc1(-/-) mice. Significant increase in lifespan correlated with sustained reduction of inflammation in the thalamus. Neuron rescue of other forebrain areas provided little benefit. Future work targeting increasingly discrete neuronal networks should reveal which CNS areas are critical for survival. This work may have broad implications for understanding the anatomical and cellular basis of neurological signs and symptoms of other neurodegenerative and lysosomal disorders.
Collapse
|
16
|
Abstract
Niemann-Pick Type C (NPC) disease is associated with accumulation of cholesterol and other lipids in late endosomes/lysosomes in virtually every organ; however, neurodegeneration represents the fatal cause for the disease. Genetic analysis has identified loss-of-function mutations in NPC1 and NPC2 genes as the molecular triggers for the disease. Although the precise function of these proteins has not yet been clarified, recent research suggests that they orchestrate cholesterol efflux from late endosomes/lysosomes. NPC protein deficits result in impairment in intracellular cholesterol trafficking and dysregulation of cholesterol biosynthesis. Disruption of cholesterol homeostasis is also associated with deregulation of autophagic activity and early-onset neuroinflammation, which may contribute to the pathogenesis of NPC disease. This chapter reviews recent achievements in the investigation of disruption of cholesterol homeostasis-induced neurodegeneration in NPC disease, and provides new insight for developing a potential therapeutic strategy for this disorder.
Collapse
Affiliation(s)
- Xiaoning Bi
- Department of Basic Medical Sciences, COMP, Western University of Health Sciences, Pomona, CA 91766, USA.
| | | |
Collapse
|
17
|
GFAP reactivity, apolipoprotein E redistribution and cholesterol reduction in human astrocytes treated with alpha-synuclein. Neurosci Lett 2009; 469:11-4. [PMID: 19932737 DOI: 10.1016/j.neulet.2009.11.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 10/17/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
Alpha-synuclein (alpha-syn) is an abundant neuronal protein expressed at the synapse. In neurodegenerative disease alpha-syn accumulates in the extracellular space. Astrocytes present at neural synapses are thought to contribute to synaptogenesis through cholesterol release and normally exhibit increased glial fibrillary acid protein (GFAP) reactivity and apolipoprotein E (apoE) expression in neurodegenerative disease states. We proposed that extracellular alpha-syn treatment of human astrocytes would impact cholesterol levels and expression of GFAP and apolipoprotein E (apoE). Human astrocytes were treated with alpha-syn at different concentrations and time points to determine the effective membrane permeability of the peptide. After alpha-syn treatment, we analyzed apoE and cholesterol levels in the astrocyte membrane. Lastly, we performed immunocytochemistry for GFAP in control and alpha-syn treated cells. Our results indicate membrane apoE was reduced and redistributed from a nuclear and membranous dominated expression to the cytosol. Cholesterol levels were also reduced in the astrocyte cell membrane. GFAP expression was sharply increased in alpha-syn treated cells indicating that alpha-syn may contribute to reactive gliosis. Our results support the conclusion that astrocytes play a role in pathological mechanisms in synucleinopathies.
Collapse
|
18
|
Desmosterol can replace cholesterol in sustaining cell proliferation and regulating the SREBP pathway in a sterol-Delta24-reductase-deficient cell line. Biochem J 2009; 420:305-15. [PMID: 19260826 DOI: 10.1042/bj20081909] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cholesterol homoeostasis is critical for cell viability and proliferation. The SREBP (sterol regulatory element-binding protein) pathway is crucial for the maintenance of cholesterol homoeostasis. This pathway is controlled by cholesterol and cholesterol-derived oxysterols. J774 cells cannot convert desmosterol into cholesterol, a defect resulting from the absence of mRNA for sterol-Delta24-reductase. Using J774 cells, we addressed the capacity of desmosterol to replace cholesterol in sustaining cell proliferation and regulating the SREBP pathway. J774 cells were able to grow indefinitely after the virtually total replacement of cholesterol by desmosterol (J774-D cells). Inhibition of sterol biosynthesis with lovastatin suppressed J774-D cell proliferation. Desmosterol prevented this effect, but its analogue, cholest-5,22-trans-dien-3beta-ol, did not. Addition of desmosterol inhibited processing of SREBP-1 and -2 and also reduced the expression of SREBP-targeted genes. As occurs in cholesterol-containing cells, 25-hydroxycholesterol was more potent than desmosterol or cholesterol in suppressing these processes. Moreover, desmosterol addition enhanced the expression of Abca1 and Srebf1c, two LXR (liver X receptor)-targeted genes. To test the ability of endogenously produced desmosterol to regulate gene expression, J774-D cells were pretreated with lovastatin to inhibit sterol biosynthesis. After removal of the inhibitor the expression of SREBP-targeted genes decreased and that of an LXR-targeted gene increased, reaching control levels. Our results demonstrate that the virtually complete replacement of cholesterol by desmosterol is compatible with cell growth and the functioning of the SREBP pathway. In these cells, desmosterol suppresses SREBP processing and targeted gene expression, and it is especially effective activating LXR-targeted genes.
Collapse
|
19
|
Nieweg K, Schaller H, Pfrieger FW. Marked differences in cholesterol synthesis between neurons and glial cells from postnatal rats. J Neurochem 2009; 109:125-34. [DOI: 10.1111/j.1471-4159.2009.05917.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Róg T, Vattulainen I, Jansen M, Ikonen E, Karttunen M. Comparison of cholesterol and its direct precursors along the biosynthetic pathway: effects of cholesterol, desmosterol and 7-dehydrocholesterol on saturated and unsaturated lipid bilayers. J Chem Phys 2009; 129:154508. [PMID: 19045210 DOI: 10.1063/1.2996296] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Despite extensive studies, the remarkable structure-function relationship of cholesterol in cellular membranes has remained rather elusive. This is exemplified by the fact that the membrane properties of cholesterol are distinctly different from those of many other sterols. Here we elucidate this issue through atomic-scale simulations of desmosterol and 7-dehydrocholesterol (7DHC), which are immediate precursors of cholesterol in its two distinct biosynthetic pathways. While desmosterol and 7DHC differ from cholesterol only by one additional double bond, we find that their influence on saturated lipid bilayers is substantially different from cholesterol. The capability to form ordered regions in a saturated (dipalmitoyl-phosphatidylcholine) membrane is given by cholesterol > 7DHC > desmosterol, indicating the important role of cholesterol in saturated lipid environments. For comparison, in an unsaturated (dioleoyl-phosphatidylcholine) bilayer, the membrane properties of all sterols were found to be essentially identical. Our studies indicate that the different membrane ordering properties of sterols can be characterized by a single experimentally accessible parameter, the sterol tilt. The smaller the tilt, the more ordered are the lipids around a given sterol. The molecular level mechanisms responsible for tilt modulation are found to be related to changes in local packing around the additional double bonds.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, Helsinki University of Technology, Otakaari 1, F1-02150 Espoo, Finland
| | | | | | | | | |
Collapse
|
21
|
Ordering effects of cholesterol and its analogues. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:97-121. [DOI: 10.1016/j.bbamem.2008.08.022] [Citation(s) in RCA: 450] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 08/27/2008] [Accepted: 08/31/2008] [Indexed: 12/12/2022]
|
22
|
Zhang M, Strnatka D, Donohue C, Hallows JL, Vincent I, Erickson RP. Astrocyte-only Npc1 reduces neuronal cholesterol and triples life span of Npc1-/- mice. J Neurosci Res 2008; 86:2848-56. [PMID: 18500759 DOI: 10.1002/jnr.21730] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Niemann-Pick type C (NPC) disease is an autosomal recessive, lethal neurodegenerative disorder. Although neurodegeneration of Purkinje cells in the mouse model (Npc1(-/-)) is thought to be autonomous, the basis of neuronal death in other regions of the brain remains elusive. We addressed this issue in vivo by using the glial fibrillary acidic protein (GFAP) promoter to direct astrocyte-specific, replacement expression of Npc1 in Npc1(-/-) mice. These mice showed enhanced survival, decreased neuronal storage of cholesterol associated with less accumulation of axonal spheroids, lower numbers of degenerated neurons and reactive astrocytes, and restoration of myelin tracts. Their death was not associated with the usual terminal decline in weight but instead with a loss of Purkinje cells and motor coordination. We conclude that neurodegeneration of Npc1(-/-) mice is greatly affected by the loss of fibrillary astrocyte function.
Collapse
Affiliation(s)
- Min Zhang
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Niemann-Pick type C disease (NPC) is a sphingolipid-storage disorder that results from inherited deficiencies of intracellular lipid-trafficking proteins, and is characterised by an accumulation of cholesterol and glycosphingolipids in late endosomes and lysosomes. Patients with this disorder develop progressive neurological impairment that often begins in childhood, is ultimately fatal and is currently untreatable. How impaired lipid trafficking leads to neurodegeneration is largely unknown. Here we review NPC clinical features and biochemical defects, and discuss model systems used to study this disorder. Recent studies have established that NPC is associated with an induction of autophagy, a regulated and evolutionarily conserved process by which cytoplasmic proteins are sequestered within autophagosomes and targeted for degradation. This pathway enables recycling of limited or damaged macromolecules to promote cell survival. However, in other instances, robust activation of autophagy leads to cell stress and programmed cell death. We summarise evidence showing that autophagy induction and flux are increased in NPC by signalling through a complex of the class III phosphoinositide 3-kinase and beclin-1. We propose that an imbalance between induction and flux through the autophagic pathway contributes to cell stress and neuronal loss in NPC and related sphingolipid-storage disorders, and discuss potential therapeutic strategies for modulating activity of this pathway.
Collapse
Affiliation(s)
- Chris D. Pacheco
- Neuroscience Program, University of Michigan, Ann Arbor, MI 48109
| | - Andrew P. Lieberman
- Neuroscience Program, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
24
|
Cellular sterol trafficking and metabolism: spotlight on structure. Curr Opin Cell Biol 2008; 20:371-7. [DOI: 10.1016/j.ceb.2008.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 03/30/2008] [Accepted: 03/31/2008] [Indexed: 11/20/2022]
|
25
|
Hölttä-Vuori M, Uronen RL, Repakova J, Salonen E, Vattulainen I, Panula P, Li Z, Bittman R, Ikonen E. BODIPY-cholesterol: a new tool to visualize sterol trafficking in living cells and organisms. Traffic 2008; 9:1839-49. [PMID: 18647169 DOI: 10.1111/j.1600-0854.2008.00801.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Analysis of sterol distribution and transport in living cells has been hampered by the lack of bright, photostable fluorescent sterol derivatives that closely resemble cholesterol. In this study, we employed atomistic simulations and experiments to characterize a cholesterol compound with fluorescent boron dipyrromethene difluoride linked to sterol carbon-24 (BODIPY-cholesterol). This probe packed in the membrane and behaved similarly to cholesterol both in normal and in cholesterol-storage disease cells and with trace amounts allowed the visualization of sterol movement in living systems. Upon injection into the yolk sac, BODIPY-cholesterol did not disturb zebrafish development and was targeted to sterol-enriched brain regions in live fish. We conclude that this new probe closely mimics the membrane partitioning and trafficking of cholesterol and, because of its excellent fluorescent properties, enables the direct monitoring of sterol movement by time-lapse imaging using trace amounts of the probe. This is, to our knowledge, the first cholesterol probe that fulfills these prerequisites.
Collapse
Affiliation(s)
- Maarit Hölttä-Vuori
- Institute of Biomedicine/Anatomy, Haartmaninkatu 8, University of Helsinki, Helsinki 00014, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang N, Yvan-Charvet L, Lütjohann D, Mulder M, Vanmierlo T, Kim TW, Tall AR. ATP-binding cassette transporters G1 and G4 mediate cholesterol and desmosterol efflux to HDL and regulate sterol accumulation in the brain. FASEB J 2007; 22:1073-82. [PMID: 18039927 DOI: 10.1096/fj.07-9944com] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transporters in the ABCG family appear to be involved in the cellular excretion of cholesterol and other sterols in a cell- and tissue-specific fashion. Overexpression of ATP-binding cassette transporters G1 (Abcg1) and G4 (Abcg4) can promote cellular cholesterol efflux to high-density lipoprotein (HDL), but the in vivo functions of Abcg4 are poorly understood. We used mice with knockouts of Abcg1 or Abcg4 singly or together to further elucidate the function of these transporters. Abcg1 and Abcg4 are highly expressed in the brain and are found in both astrocytes and neurons. Whereas Abcg1(-/-) or Abcg4(-/-) mice showed essentially normal levels of brain sterols, in Abcg1(-/-)/Abcg4(-/-) mice, levels of several sterol intermediates in the cholesterol biosynthetic pathway, namely desmosterol, lathosterol, and lanosterol, as well as 27-OH cholesterol, were increased 2- to 3-fold. Overexpression of Abcg1 or Abcg4 promoted efflux of desmosterol and cholesterol from cells to HDL, and combined deficiency of these transporters led to defective efflux and accumulation of these sterols in primary astrocytes. Consistent with defective efflux and sterol accumulation, cholesterol biosynthesis was reduced in Abcg1(-/-)/Abcg4(-/-) astrocytes. The accumulation of desmosterol, a known liver-X receptor (LXR) activator, was associated with increased expression of LXR target genes, including ATP-binding cassette transporter A1, and increased apolipoprotein E secretion in Abcg1(-/-)/Abcg4(-/-) astrocytes. Our findings provide the first in vivo demonstration of a role for Abcg4 in sterol efflux in the brain and show that Abcg1 and Abcg4 have overlapping functions in astrocytes, promoting efflux of cholesterol, desmosterol, and possibly other sterol biosynthetic intermediates to HDL.
Collapse
Affiliation(s)
- Nan Wang
- Department of Medicine, Columbia University, PS 8-401, 630 W. 168th St., New York, NY 10032, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Chen G, Li HM, Chen YR, Gu XS, Duan S. Decreased estradiol release from astrocytes contributes to the neurodegeneration in a mouse model of Niemann-Pick disease type C. Glia 2007; 55:1509-18. [PMID: 17705200 DOI: 10.1002/glia.20563] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Niemann-Pick disease type C (NPC) is a deadly neurodegenerative disease often caused by mutation in a gene called NPC1, which results in the accumulation of unesterified cholesterol and glycosphingolipids in the endosomal-lysosomal system. Most studies on the mechanisms of neurodegeneration in NPC have focused on neurons. However, the possibility also exists that NPC1 affects neuronal functions indirectly by acting on other cells that are intimately interacting with neurons. In this study, using a heterotypic neuron-glia coculture system, we found that wild-type neurons cultured on a layer of NPC1-/- astrocytes showed decreased neurite growth compared with those cultured on wild-type astrocytes. RT-PCR and immunohistochemical assessments showed significantly lower expression of neurosteroid enzymes and StAR (steroidogenic acute regulatory protein) in NPC1-/- astrocyte cultures than in wild-type cultures. Furthermore, a reduced level of estradiol was measured from both astrocyte culture medium and whole brains from NPC1-/- mice. Administration of 17beta-estradiol to neonatal NPC1-/- mice significantly delayed the onset of neurological symptoms, increased Purkinje cell survival, and extended the animals' life span. Our findings suggest that astrocyte dysfunction contributes to the neurodegeneration of NPC and estradiol treatment may be useful in ameliorating progression of the disease.
Collapse
Affiliation(s)
- Gang Chen
- Institute of Neuroscience and Key Laboratory of Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | |
Collapse
|
28
|
Ahtiainen L, Kolikova J, Mutka AL, Luiro K, Gentile M, Ikonen E, Khiroug L, Jalanko A, Kopra O. Palmitoyl protein thioesterase 1 (Ppt1)-deficient mouse neurons show alterations in cholesterol metabolism and calcium homeostasis prior to synaptic dysfunction. Neurobiol Dis 2007; 28:52-64. [PMID: 17656100 DOI: 10.1016/j.nbd.2007.06.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 05/30/2007] [Accepted: 06/08/2007] [Indexed: 11/22/2022] Open
Abstract
Infantile neuronal ceroid lipofuscinosis (INCL) is a severe neurodegenerative disorder of children, characterized by selective death of neocortical neurons. To understand early disease mechanisms in INCL, we have studied Ppt1(Deltaex4) knock-out mouse neurons in culture and acute brain slices. Global transcript profiling showed deregulation of key neuronal functions in knock-out mice including cholesterol metabolism, neuronal maturation, and calcium homeostasis. Cholesterol metabolism showed major changes; sterol biosynthesis was enhanced and steady-state amounts of sterols were altered at the cellular level. Changes were also present in early maturation of Ppt1(Deltaex4) neurons indicated by increased proliferative capacity of neuronal stem cells. Knock-out neurons presented unaltered electrophysiological properties suggesting uncompromised synaptic function in young animals. However, knock-out neurons exhibited more efficient recovery from glutamate-induced calcium transients, possibly indicating neuroprotective activation. This study established that the neuronal deregulation in INCL is linked to neuronal maturation, lipid metabolism and calcium homeostasis.
Collapse
Affiliation(s)
- Laura Ahtiainen
- National Public Health Institute, Department of Molecular Medicine, Biomedicum Helsinki, PO Box 104, 00251 Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fon Tacer K, Kuzman D, Seliskar M, Pompon D, Rozman D. TNF-alpha interferes with lipid homeostasis and activates acute and proatherogenic processes. Physiol Genomics 2007; 31:216-27. [PMID: 17566076 DOI: 10.1152/physiolgenomics.00264.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The interaction between disrupted lipid homeostasis and immune response is implicated in the pathogenesis of several diseases, but the molecular bridges between the major players are still a matter of controversy. Our systemic study of the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) in the livers of mice exposed to 20-h cytokine/fasting for the first time shows that TNF-alpha interferes with adaptation to fasting and activates harmful proatherogenic pathways, partially through interaction with the insulin-Insig-sterol regulatory element binding protein (Srebp) signaling pathway. In addition to the increased expression of acute-phase inflammatory genes, the most prominent alterations represent modified lipid homeostasis observed on the gene expression and metabolite levels. These include reduction of HDL-cholesterol, increase of LDL-cholesterol, and elevated expression of cholesterogenic genes, accompanied by increase of potentially harmful precholesterol metabolites and suppression of cholesterol elimination through bile acids, likely by farnesoid X receptor-independent mechanisms. On the transcriptional level, a shift from fatty oxidation toward fatty acid synthesis is observed. The concept of the influence of TNF-alpha on the Srebp regulatory network, followed by downstream effects on sterol metabolism, is novel. Observed acute alterations in lipid metabolism are in agreement with chronic disturbances found in patients.
Collapse
Affiliation(s)
- Klementina Fon Tacer
- Center for Functional Genomics and Biochips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
30
|
Chen F, Gordon R, Ioannou Y. NPC1 late endosomes contain elevated levels of non-esterified ('free') fatty acids and an abnormally glycosylated form of the NPC2 protein. Biochem J 2006; 390:549-61. [PMID: 15896196 PMCID: PMC1198935 DOI: 10.1042/bj20050236] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
NPC (Niemann-Pick type C) disease is a rare lipidosis characterized by the accumulation of LDL (low-density lipoprotein)-derived non-esterified cholesterol in the E/L (endosomal/lysosomal) system. The gene products that are responsible for the two NPC complementation groups are distinct and dissimilar, yet their cellular and disease phenotypes are virtually indistinguishable. To investigate the relationship between NPC1 and NPC2 and their potential role in NPC disease pathogenesis, we have developed a method for the rapid and efficient isolation of late endocytic vesicles from mouse liver by magnetic chromatography. Late endosomes from Wt (wild-type) and NPC1 mice were found to differ not only in their cholesterol and sphingomyelin content, as expected, but also in their non-esterified ('free') fatty acid content, with NPC1 vesicles showing an approx. 7-fold increase in non-esterified fatty acid levels compared with Wt vesicles. Furthermore, we show that the NPC2 protein is in an incompletely deglycosylated form in NPC1 late endosomes by a mechanism that is specific to the NPC2 protein and not a global aberration of protein glycosylation/deglycosylation or trafficking, since NPC2 secreted from NPC1 cells is indistinguishable from that secreted from Wt cells. Also, a greater proportion of the normally soluble cellular NPC2 protein partitions with detergent-insoluble late endosomal internal membrane domains in NPC1 vesicles. In addition, we show that, although a small amount of the NPC2 protein associates with these membranes in Wt vesicles, this localization becomes much more pronounced in NPC1 vesicles. These results suggest that the function of the NPC2 protein may be compromised as well in NPC1 endosomes, which might explain the paradoxical phenotypic similarities of the two NPC disease complementation groups.
Collapse
Affiliation(s)
- Fannie W. Chen
- *Department of Human Genetics, The Mount Sinai School of Medicine, New York, NY 10029, U.S.A
| | - Ronald E. Gordon
- †Department of Pathology, The Mount Sinai School of Medicine, New York, NY 10029, U.S.A
| | - Yiannis A. Ioannou
- *Department of Human Genetics, The Mount Sinai School of Medicine, New York, NY 10029, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
31
|
Klein A, Amigo L, Retamal MJ, Morales MG, Miquel JF, Rigotti A, Zanlungo S. NPC2 is expressed in human and murine liver and secreted into bile: potential implications for body cholesterol homeostasis. Hepatology 2006; 43:126-33. [PMID: 16374838 DOI: 10.1002/hep.20985] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The liver plays a critical role in the metabolism of lipoprotein cholesterol and in controlling its elimination through the bile. Niemann-Pick type C 2 (NPC2), a cholesterol-binding protein, is key for normal intracellular trafficking of lipoprotein cholesterol, allowing its exit from the endolysosomal pathway into the metabolically active pool of the cell. In addition, NPC2 is a secretory protein from astrocytes and epididymal cells. Although NPC2 mRNA is detected in the liver, plasma and biliary NPC2 protein levels and function have not been reported. This study demonstrates that NPC2 is present in murine and human plasma and bile. In addition, hepatic NPC2 protein expression was dramatically increased in NPC1-deficient mice but not regulated by cholesterol feeding or pharmacological modulation of various nuclear receptors involved in cholesterol and bile acid metabolism. Interestingly, biliary NPC2 levels were 3-fold increased in gallstone-susceptible C57BL6/J versus gallstone-resistant BALB/c mice. Furthermore, NPC2 was exclusively found in the cholesterol pro-nucleating ConA-binding fraction of human bile. In conclusion, NPC2 is secreted from the liver into bile and plasma, where it may have a functional role in cholesterol transport in normal and disease conditions.
Collapse
Affiliation(s)
- Andrés Klein
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
32
|
Vainio S, Jansen M, Koivusalo M, Róg T, Karttunen M, Vattulainen I, Ikonen E. Significance of sterol structural specificity. Desmosterol cannot replace cholesterol in lipid rafts. J Biol Chem 2005; 281:348-55. [PMID: 16249181 DOI: 10.1074/jbc.m509530200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Desmosterol is an immediate precursor of cholesterol in the Bloch pathway of sterol synthesis and an abundant membrane lipid in specific cell types. The significance of the difference between the two sterols, an additional double bond at position C24 in the tail of desmosterol, is not known. Here, we provide evidence that the biophysical and functional characteristics of the two sterols differ and that this is because the double bond at C24 significantly weakens the sterol ordering potential. In model membranes, desmosterol was significantly weaker than cholesterol in promoting the formation or stability of ordered domains, and in mammalian cell membranes, desmosterol associated less avidly than cholesterol with detergent-resistant membranes. Atomic scale molecular dynamics simulations showed that the double bond gives rise to additional stress in the tail, creating a rigid structure between C24 and C27 and favoring tilting of desmosterol distinct from cholesterol. Functional effects of desmosterol in cell membranes were assessed upon acutely exchanging approximately 70% of cholesterol to desmosterol. This led to impaired raft-dependent signaling via the insulin receptor, whereas non-raft-dependent protein secretion was not affected. We suggest that the choice of cholesterol synthesis route may provide a physiological mechanism to modulate raft-dependent functions in cells.
Collapse
Affiliation(s)
- Saara Vainio
- Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki FI-00014, Finland
| | | | | | | | | | | | | |
Collapse
|
33
|
Ko DC, Milenkovic L, Beier SM, Manuel H, Buchanan J, Scott MP. Cell-autonomous death of cerebellar purkinje neurons with autophagy in Niemann-Pick type C disease. PLoS Genet 2005; 1:81-95. [PMID: 16103921 PMCID: PMC1183526 DOI: 10.1371/journal.pgen.0010007] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 05/17/2005] [Indexed: 01/07/2023] Open
Abstract
Niemann-Pick type C is a neurodegenerative lysosomal storage disorder caused by mutations in either of two genes, npc1 and npc2. Cells lacking Npc1, which is a transmembrane protein related to the Hedgehog receptor Patched, or Npc2, which is a secreted cholesterol-binding protein, have aberrant organelle trafficking and accumulate large quantities of cholesterol and other lipids. Though the Npc proteins are produced by all cells, cerebellar Purkinje neurons are especially sensitive to loss of Npc function. Since Niemann-Pick type C disease involves circulating molecules such as sterols and steroids and a robust inflammatory response within the brain parenchyma, it is crucial to determine whether external factors affect the survival of Purkinje cells (PCs). We investigated the basis of neurodegeneration in chimeric mice that have functional npc1 in only some cells. Death of mutant npc1 cells was not prevented by neighboring wild-type cells, and wild-type PCs were not poisoned by surrounding mutant npc1 cells. PCs undergoing cell-autonomous degeneration have features consistent with autophagic cell death. Chimeric mice exhibited a remarkable delay and reduction of wasting and ataxia despite their substantial amount of mutant tissue and dying cells, revealing a robust mechanism that partially compensates for massive PC death. Niemann-Pick disease type C is a deadly neurodegenerative disease that is most often due to mutations in a gene called npc1. As a consequence of intracellular lipid trafficking defects, patients with Niemann-Pick type C, and mice with the same disease, lose an important class of cerebellar neurons called Purkinje cells (PCs). Npc1 (the protein coded by npc1) might be needed in other cell types to produce substances that nourish PCs or within the PCs themselves. To see which is true, the researchers constructed genetically mosaic mice in which some cells have mutant Npc1 and some have normal Npc1 function. In the cerebella of these mosaic mice, PCs lacking Npc1 continued to die even while surrounded by normal cells, while normal PCs appeared unaffected by their partially mutant surroundings. From these findings, the researchers concluded that the neurodegeneration is due to a problem within PCs and not due to a lack of supporting factors provided by other cells or an extrinsic toxic or inflammatory insult. Npc1 probably functions within PCs to allow critical transport processes necessary for cell survival. The researchers also found that the degenerating PCs undergo a complex process called autophagy in which the cells sense a lack of key nutrients and start to break down their own structures to feed themselves. By identifying exactly which cells require Npc1 function, the researchers set the stage for investigating the exact molecular roles of Npc1 protein in the cells where it is most needed.
Collapse
Affiliation(s)
- Dennis C Ko
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ljiljana Milenkovic
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Steven M Beier
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Hermogenes Manuel
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - JoAnn Buchanan
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Matthew P Scott
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Nishikawa Y, Quittnat F, Stedman TT, Voelker DR, Choi JY, Zahn M, Yang M, Pypaert M, Joiner KA, Coppens I. Host cell lipids control cholesteryl ester synthesis and storage in intracellular Toxoplasma. Cell Microbiol 2005; 7:849-67. [PMID: 15888087 DOI: 10.1111/j.1462-5822.2005.00518.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The intracellular protozoan Toxoplasma gondii lacks a de novo mechanism for cholesterol synthesis and therefore must scavenge this essential lipid from the host environment. In this study, we demonstrated that T. gondii diverts cholesterol from low-density lipoproteins for cholesteryl ester synthesis and storage in lipid bodies. We identified and characterized two isoforms of acyl-CoA:cholesterol acyltransferase (ACAT)-related enzymes, designated TgACAT1alpha and TgACAT1beta in T. gondii. Both proteins are coexpressed in the parasite, localized to the endoplasmic reticulum and participate in cholesteryl ester synthesis. In contrast to mammalian ACAT, TgACAT1alpha and TgACAT1beta preferentially incorporate palmitate into cholesteryl esters and present a broad sterol substrate affinity. Mammalian ACAT-deficient cells transfected with either TgACAT1alpha or TgACAT1beta are restored in their capability of cholesterol esterification. TgACAT1alpha produces steryl esters and forms lipid bodies after transformation in a Saccharomyces cerevisiae mutant strain lacking neutral lipids. In addition to their role as ACAT substrates, host fatty acids and low-density lipoproteins directly serve as Toxoplasma ACAT activators by stimulating cholesteryl ester synthesis and lipid droplet biogenesis. Free fatty acids significantly increase TgACAT1alpha mRNA levels. Selected cholesterol esterification inhibitors impair parasite growth by rapid disruption of plasma membrane. Altogether, these studies indicate that host lipids govern neutral lipid synthesis in Toxoplasma and that interference with mechanisms of host lipid storage is detrimental to parasite survival in mammalian cells.
Collapse
Affiliation(s)
- Yoshifumi Nishikawa
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Coppens I, Vielemeyer O. Insights into unique physiological features of neutral lipids in Apicomplexa: from storage to potential mediation in parasite metabolic activities. Int J Parasitol 2005; 35:597-615. [PMID: 15862574 DOI: 10.1016/j.ijpara.2005.01.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 01/05/2005] [Accepted: 01/13/2005] [Indexed: 01/18/2023]
Abstract
The fast intracellular multiplication of apicomplexan parasites including Toxoplasma and Plasmodium, requires large amounts of lipids necessary for the membrane biogenesis of new progenies. Hence, the study of lipids is fundamental in order to understand the biology and pathogenesis of these deadly organisms. Much has been reported on the importance of polar lipids, e.g. phospholipids in Plasmodium. Comparatively, little attention has been paid to the metabolism of neutral lipids, including sterols, steryl esters and acylglycerols. In eukaryotic cells, free sterols are membrane components whereas steryl esters and acylglycerols are stored in cytosolic lipid inclusions. The first part of this review describes the recent advances in neutral lipid synthesis and storage in Toxoplasma and Plasmodium. New potential pharmacological targets in the pathways producing neutral lipids are outlined. In addition to lipid bodies, Apicomplexa contain unique secretory organelles involved in parasite invasion named rhoptries. These compartments appear to sequester most of the cholesterol found in the exocytic pathway. The second part of the review focuses on rhoptry cholesterol and its potential roles in the biogenesis, structural organisation and function of these unique organelles among eukaryotes.
Collapse
Affiliation(s)
- Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205-2223, USA.
| | | |
Collapse
|
36
|
Chang TY, Reid PC, Sugii S, Ohgami N, Cruz JC, Chang CCY. Niemann-Pick type C disease and intracellular cholesterol trafficking. J Biol Chem 2005; 280:20917-20. [PMID: 15831488 DOI: 10.1074/jbc.r400040200] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Ta-Yuan Chang
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Cholesterol is highly enriched in the brain compared to other tissues. Essentially all cholesterol in the brain is synthesized endogenously since plasma lipoproteins are unable to cross the blood-brain barrier. Cholesterol is transported within the central nervous system in the form of apolipoprotein E-containing lipoprotein particles that are secreted mainly by glial cells. Cholesterol is excreted from the brain in the form of 24-hydroxycholesterol. Apolipoprotein E and cholesterol have been implicated in the formation of amyloid plaques in Alzheimer's disease. In addition, the progressive neurodegenerative disorder Niemann-Pick C disease is characterized by defects in intracellular trafficking of cholesterol.
Collapse
Affiliation(s)
- Jean E Vance
- Department of Medicine, Canadian Institutes for Health Research, Group on the Molecular and Cell Biology of Lipids, 332 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, Canada T6G 2S2.
| | | | | |
Collapse
|