1
|
Park SB, Lee NY, Lee EY, Kim S, Lee N, Roh EC, Kim YG, Kim HJ, Jin MS, Park CS, Kim YC. Discovery of Diphenyl Ether Derivatives as Novel BK Ca Channel Activators: Structure-Activity Relationship, Cryo-EM Complex Structures, and In Vivo Animal Studies. J Med Chem 2025; 68:4259-4286. [PMID: 39947888 DOI: 10.1021/acs.jmedchem.4c02008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The BKCa channel, a large-conductance calcium-activated potassium channel, plays a crucial role in maintaining the homeostasis of the micturition cycle and airway-related functions. In this study, we optimized a novel BKCa channel activator, 4d, with a diphenyl ether structure identified from library screening. This led to the discovery of potent activators, 10b (EC50 = 0.12 μM, cell-based assay) and 51b, an orally bioavailable derivative. Compound 10b demonstrated potent in vivo efficacy in a spontaneous hypertensive rat (SHR) of urinary incontinence model, while compound 51b showed dose-dependent cough suppression efficacy with an ED50 of 11.8 mg/kg in a citric acid-induced cough model. Furthermore, we reported the cryo-electron microscopy (cryo-EM) structures of the BKCa channel in complex with 10b and 51b at resolutions of 2.8 and 3.4 Å. Based on structural analyses, we determined the binding sites and key interaction residues of 51b, which were validated via mutation studies.
Collapse
Affiliation(s)
- Soo Bin Park
- School of Life Science, Gwangju Institute of Science and Technology, 123, Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Na Young Lee
- School of Life Science, Gwangju Institute of Science and Technology, 123, Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Eun-Young Lee
- School of Life Science, Gwangju Institute of Science and Technology, 123, Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Subin Kim
- School of Life Science, Gwangju Institute of Science and Technology, 123, Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Narasaem Lee
- School of Life Science, Gwangju Institute of Science and Technology, 123, Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Eun Chae Roh
- College of Pharmacy, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungcheongnam-do 31116, Republic of Korea
| | - Yoon Gyoon Kim
- College of Pharmacy, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungcheongnam-do 31116, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815, Hwarang-ro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Mi Sun Jin
- School of Life Science, Gwangju Institute of Science and Technology, 123, Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Chul-Seung Park
- School of Life Science, Gwangju Institute of Science and Technology, 123, Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Yong-Chul Kim
- School of Life Science, Gwangju Institute of Science and Technology, 123, Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
2
|
Gao S, Fan L, He J, Liu H, Tian R. Investigating the Link Between Free Androgen Index and Nocturia in Women: Findings From National Health and Nutrition Examination Survey. Neurourol Urodyn 2025. [PMID: 39927428 DOI: 10.1002/nau.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND Nocturia is the most prevalent lower urinary tract symptom in women, affecting approximately 54.5% of female patients and significantly impacting the quality of life. While the androgen levels may be related to urinary function, its association with nocturia in women remains unclear. This study aims to explore the relationship between androgen levels and nocturia in women. METHODS This study utilized data from the 2013-2016 National Health and Nutrition Examination Survey (NHANES), including 4531 women aged 20 and above. The level of androgen is reflected by the total testosterone (TT) and free androgen index (FAI). Weighted logistic regression models were employed to analyze the association between FAI, TT, and nocturia. RESULTS After comprehensive adjustment for confounding factors, higher FAI levels were significantly associated with a reduced risk of nocturia (OR = 0.84, 95% CI: 0.74-0.95). Women in the highest FAI tertile had a significantly lower incidence of nocturia compared to those in the lowest tertile (OR = 0.75, 95% CI: 0.60-0.93). Trend analysis indicated a significant decrease in nocturia occurrence with increasing FAI levels (P for trend = 0.0177). No significant association was found between TT levels and nocturia. CONCLUSIONS Higher FAI levels are significantly inversely associated with nocturia in women, suggesting that bioavailable testosterone may have a protective effect against nocturia. This finding underscores the importance of considering FAI levels in research and clinical practice, and future studies should explore the potential benefits of modulating FAI levels in women with nocturia.
Collapse
Affiliation(s)
- Shang Gao
- Department of Urology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
- Department of Graduate School, China Medical University, Shenyang, China
| | - Lianhui Fan
- Department of Urology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Jingteng He
- Department of Urology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Hongtao Liu
- Department of Urology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Renli Tian
- Department of Urology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Martínez-Lazaro R, Reyes-Carrión A, Bartolomé-Martín D, Giraldez T. The NMDAR-BK channelosomes as regulators of synaptic plasticity. Biochem Soc Trans 2025; 53:BST20240425. [PMID: 39874044 DOI: 10.1042/bst20240425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025]
Abstract
Large conductance voltage- and calcium-activated potassium channels (BK channels) are extensively found throughout the central nervous system and play a crucial role in various neuronal functions. These channels are activated by a combination of cell membrane depolarisation and an increase in intracellular calcium concentration, provided by calcium sources located close to BK. In 2001, Isaacson and Murphy first demonstrated the coupling of BK channels with N-methyl-D-aspartate receptors (NMDAR) in olfactory bulb neurons. Since then, additional evidence has confirmed this functional coupling in other brain regions and highlighted its significance in neuronal function and pathophysiology. In this review, we explore the current understanding of these macrocomplexes in the brain, the molecular mechanisms behind their interactions and their potential roles in neurodevelopmental disorders, paving the way for new treatment strategies.
Collapse
Affiliation(s)
- Rebeca Martínez-Lazaro
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud-sección Medicina, Universidad de La Laguna, Tenerife, ES-38071, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife ES-38071, Spain
| | - Andrea Reyes-Carrión
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud-sección Medicina, Universidad de La Laguna, Tenerife, ES-38071, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife ES-38071, Spain
| | - David Bartolomé-Martín
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife ES-38071, Spain
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Ciencias, Universidad de La Laguna, Tenerife, ES-38071, Spain
| | - Teresa Giraldez
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud-sección Medicina, Universidad de La Laguna, Tenerife, ES-38071, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife ES-38071, Spain
| |
Collapse
|
4
|
Sanghvi S, Sridharan D, Evans P, Dougherty J, Szteyn K, Gabrilovich D, Dyta M, Weist J, Pierre SV, Gururaja Rao S, Halm DR, Chen T, Athanasopoulos PS, Dolga AM, Yu L, Khan M, Singh H. Functional large-conductance calcium and voltage-gated potassium channels in extracellular vesicles act as gatekeepers of structural and functional integrity. Nat Commun 2025; 16:42. [PMID: 39747826 PMCID: PMC11697022 DOI: 10.1038/s41467-024-55379-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Extracellular vesicles (EVs) are associated with intercellular communications, immune responses, viral pathogenicity, cardiovascular diseases, neurological disorders, and cancer progression. EVs deliver proteins, metabolites, and nucleic acids into recipient cells to effectively alter their physiological and biological response. During their transportation from the donor to the recipient cell EVs face differential ionic concentrations, which can be detrimental to their integrity and impact their cargo content. EVs are known to possess ion channels and transporters in their membrane but neither the function nor the role of these channels in EVs is known. In this study, we discover a functional calcium-activated large-conductance potassium channel (BKCa) in the membrane of EVs. Furthermore, we establish that BKCa is essential for the structural and functional integrity of EVs. Together, these findings establish the critical role of ion channels such as BKCa in functioning as gatekeepers and maintaining EV-mediated signaling.
Collapse
Grants
- 916599 American Heart Association (American Heart Association, Inc.)
- TR004344 U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS)
- R01 HL133050 NHLBI NIH HHS
- HL157453 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL157453 NHLBI NIH HHS
- R13 TR004344 NCATS NIH HHS
- HL133050 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 965301 American Heart Association (American Heart Association, Inc.)
- R03 TR004178 NCATS NIH HHS
- R01 AR080946 NIAMS NIH HHS
- HL136232 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS)
- The Ohio State University President’s Predoctoral Fellowship
Collapse
Affiliation(s)
- Shridhar Sanghvi
- Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Divya Sridharan
- Division of Basic and Translation Research, Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Parker Evans
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA
| | - Julie Dougherty
- Division of Basic and Translation Research, Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kalina Szteyn
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Denis Gabrilovich
- Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA
| | - Mayukha Dyta
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jessica Weist
- Division of Basic and Translation Research, Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sandrine V Pierre
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Shubha Gururaja Rao
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, Ada, OH, USA
| | - Dan R Halm
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH, USA
| | - Tingting Chen
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, NE, USA
| | - Panagiotis S Athanasopoulos
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, NE, USA
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, NE, USA
| | - Lianbo Yu
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Mahmood Khan
- Division of Basic and Translation Research, Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Harpreet Singh
- Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
5
|
Ohta H, Nozawa T, Higuchi K, Meredith AL, Morimoto Y, Satoh Y, Ishizuka T. Altered trial-to-trial responses to reward outcomes in KCNMA1 knockout mice during probabilistic learning tasks. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:36. [PMID: 39731174 DOI: 10.1186/s12993-024-00262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/06/2024] [Indexed: 12/29/2024]
Abstract
The large-conductance calcium- and voltage-activated potassium (BK) channels, encoded by the KCNMA1 gene, play important roles in neuronal function. Mutations in KCNMA1 have been found in patients with various neurodevelopmental features, including intellectual disability, autism spectrum disorder (ASD), or attention deficit hyperactivity disorder (ADHD). Previous studies of KCNMA1 knockout mice have suggested altered activity patterns and behavioral flexibility, but it remained unclear whether these changes primarily affect immediate behavioral adaptation or longer-term learning processes. Using a 5-armed bandit task (5-ABT) and a novel Δrepeat rate analysis method that considers individual baseline choice tendencies, we investigated immediate trial-by-trial Win-Stay-Lose-Shift (WSLS) strategies and learning rates across multiple trials in KCNMA1 knockout (KCNMA1-/-) mice. Three key findings emerged: (1) Unlike wildtype mice, which showed increased Δrepeat rates after rewards and decreased rates after losses, KCNMA1-/- mice exhibited impaired WSLS behavior, (2) KCNMA1-/- mice displayed shortened response intervals after unrewarded trials, and (3) despite these short-term behavioral impairments, their learning rates and task accuracy remained comparable to wildtype mice, with significantly shorter task completion times. These results suggest that BK channel dysfunction primarily alters immediate behavioral responses to outcomes in the next trial rather than affecting long-term learning capabilities. These findings and our analytical method may help identify behavioral phenotypes in animal models of both BK channel-related and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hiroyuki Ohta
- Department of Pharmacology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Takashi Nozawa
- Department of Pharmacology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Kohki Higuchi
- Tokyo Denki University, Ishizaka, Hiki, Saitama, Hatoyama, 359-0394, Japan
| | - Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yuji Morimoto
- Department of Physiology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Yasushi Satoh
- Department of Biochemistry, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Toshiaki Ishizuka
- Department of Pharmacology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
6
|
Lee N, Kim S, Lee NY, Jo H, Jeong P, Pagire HS, Pagire SH, Ahn JH, Jin MS, Park CS. Activation mechanism and novel binding sites of the BK Ca channel activator CTIBD. Life Sci Alliance 2024; 7:e202402621. [PMID: 39089879 PMCID: PMC11294680 DOI: 10.26508/lsa.202402621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
The large-conductance calcium-activated potassium (BKCa) channel, which is crucial for urinary bladder smooth muscle relaxation, is a potential target for overactive bladder treatment. Our prior work unveiled CTIBD as a promising BKCa channel activator, altering V 1/2 and G max This study investigates CTIBD's activation mechanism, revealing its independence from the Ca2+ and membrane voltage sensing of the BKCa channel. Cryo-electron microscopy disclosed that two CTIBD molecules bind to hydrophobic regions on the extracellular side of the lipid bilayer. Key residues (W22, W203, and F266) are important for CTIBD binding, and their replacement with alanine reduces CTIBD-mediated channel activation. The triple-mutant (W22A/W203A/F266A) channel showed the smallest V 1/2 shift with a minimal impact on activation and deactivation kinetics by CTIBD. At the single-channel level, CTIBD treatment was much less effective at increasing P o in the triple mutant, mainly because of a drastically increased dissociation rate compared with the WT. These findings highlight CTIBD's mechanism, offering crucial insights for developing small-molecule treatments for BKCa-related pathophysiological conditions.
Collapse
Affiliation(s)
- Narasaem Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Subin Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Na Young Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Heeji Jo
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | | | - Haushabhau S Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Suvarna H Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Mi Sun Jin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Chul-Seung Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
7
|
Drumm BT, Gupta N, Mircea A, Griffin CS. Cells and ionic conductances contributing to spontaneous activity in bladder and urethral smooth muscle. J Physiol 2024. [PMID: 39323077 DOI: 10.1113/jp284744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
Smooth muscle organs of the lower urinary tract comprise the bladder detrusor and urethral wall, which have a reciprocal contractile relationship during urine storage and micturition. As the bladder fills with urine, detrusor smooth muscle cells (DSMCs) remain relaxed to accommodate increases in intravesical pressure while urethral smooth muscle cells (USMCs) sustain tone to occlude the urethral orifice, preventing leakage. While neither organ displays coordinated regular contractions as occurs in small intestine, lymphatics or renal pelvis, they do exhibit patterns of rhythmicity at cellular and tissue levels. In rabbit and guinea-pig urethra, electrical slow waves are recorded from USMCs. This activity is linked to cells expressing vimentin, c-kit and Ca2+-activated Cl- channels, like interstitial cells of Cajal in the gastrointestinal tract. In mouse, USMCs are rhythmically active (firing propagating Ca2+ waves linked to contraction), and this cellular rhythmicity is asynchronous across tissues and summates to form tone. Experiments in mice have failed to demonstrate a voltage-dependent mechanism for regulating this rhythmicity or contractions in vitro, suggesting that urethral tone results from an intrinsic ability of USMCs to 'pace' their own Ca2+ mobilization pathways required for contraction. DSMCs exhibit spontaneous transient contractions, increases in intracellular Ca2+ and action potentials. Consistent across numerous species, including humans, this activity relies on voltage-dependent Ca2+ influx in DSMCs. While interstitial cells are present in the bladder, they do not 'pace' the organ in an excitatory manner. Instead, specialized cells (PDGFRα+ interstitial cells) may 'negatively pace' DSMCs to prevent bladder overexcitability.
Collapse
Affiliation(s)
- Bernard T Drumm
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Ireland
| | - Neha Gupta
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Ireland
| | - Alexandru Mircea
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Ireland
| | - Caoimhin S Griffin
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Ireland
| |
Collapse
|
8
|
Arake M, Ohta H, Nozawa T, Satoh Y, Fujita M, Nakata T, Meredith AL, Shinomiya N, Ishizuka T, Morimoto Y. BK channel dysfunction disrupts attention-controlled behaviors and altered perseverative responses in murine instrumental learning. Behav Brain Res 2024; 468:115015. [PMID: 38670533 DOI: 10.1016/j.bbr.2024.115015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
This study examined the effect of knockout of KCNMA1 gene, coding for the BK channel, on cognitive and attentional functions in mice, with an aim to better understand its implications for human neurodevelopmental disorders. The study used the 3-choice serial reaction time task (3-CSRTT) to assess the learning performance, attentional abilities, and repetitive behaviors in mice lacking the KCNMA1 gene (KCNMA1-/-) compared to wild-type (WT) controls. Results showed no significant differences in learning accuracy between the two groups. However, KCNMA1-/- mice were more prone to omitting responses to stimuli. In addition, when the timing of cue presentation was randomized, the KCNMA1-/- showed premature responses. Notably, these mice also demonstrated a marked reduction in perseverative responses, which include repeated nose-poke behaviors following decisions. These findings highlight the involvement of the KCNMA1 gene in managing attention, impulsivity, and potentially moderating repetitive actions.
Collapse
Affiliation(s)
- Masashi Arake
- Department of Physiology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Hiroyuki Ohta
- Department of Pharmacology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan.
| | - Takashi Nozawa
- Department of Psychology, Mejiro University, Nakaochiai 4-31-1, Shinjuku-ku, Tokyo 161-8539, Japan
| | - Yasushi Satoh
- Department of Biochemistry, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Masanori Fujita
- Division of Environmental Medicine, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Takahiro Nakata
- Department of Molecular and Cellular Anatomy, Faculty of Health Promotional Sciences, Tokoha University, Hamamatsu, Shizuoka, Japan
| | - Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Toshiaki Ishizuka
- Department of Pharmacology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Yuji Morimoto
- Department of Physiology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| |
Collapse
|
9
|
Meredith AL. BK Channelopathies and KCNMA1-Linked Disease Models. Annu Rev Physiol 2024; 86:277-300. [PMID: 37906945 DOI: 10.1146/annurev-physiol-030323-042845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Novel KCNMA1 variants, encoding the BK K+ channel, are associated with a debilitating dyskinesia and epilepsy syndrome. Neurodevelopmental delay, cognitive disability, and brain and structural malformations are also diagnosed at lower incidence. More than half of affected individuals present with a rare negative episodic motor disorder, paroxysmal nonkinesigenic dyskinesia (PNKD3). The mechanistic relationship of PNKD3 to epilepsy and the broader spectrum of KCNMA1-associated symptomology is unknown. This review summarizes patient-associated KCNMA1 variants within the BK channel structure, functional classifications, genotype-phenotype associations, disease models, and treatment. Patient and transgenic animal data suggest delineation of gain-of-function (GOF) and loss-of-function KCNMA1 neurogenetic disease, validating two heterozygous alleles encoding GOF BK channels (D434G and N999S) as causing seizure and PNKD3. This discovery led to a variant-defined therapeutic approach for PNKD3, providing initial insight into the neurological basis. A comprehensive clinical definition of monogenic KCNMA1-linked disease and the neuronal mechanisms currently remain priorities for continued investigation.
Collapse
Affiliation(s)
- Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA;
| |
Collapse
|
10
|
Kwon J, Kim DY, Cho KJ, Hashimoto M, Matsuoka K, Kamijo T, Wang Z, Karnup S, Robertson AM, Tyagi P, Yoshimura N. Pathophysiology of Overactive Bladder and Pharmacologic Treatments Including β3-Adrenoceptor Agonists -Basic Research Perspectives. Int Neurourol J 2024; 28:12-33. [PMID: 38461853 DOI: 10.5213/inj.2448002.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/10/2024] [Indexed: 03/12/2024] Open
Abstract
Overactive bladder (OAB) is a symptom-based syndrome defined by urinary urgency, frequency, and nocturia with or without urge incontinence. The causative pathology is diverse; including bladder outlet obstruction (BOO), bladder ischemia, aging, metabolic syndrome, psychological stress, affective disorder, urinary microbiome, localized and systemic inflammatory responses, etc. Several hypotheses have been suggested as mechanisms of OAB generation; among them, neurogenic, myogenic, and urothelial mechanisms are well-known hypotheses. Also, a series of local signals called autonomous myogenic contraction, micromotion, or afferent noises, which can occur during bladder filling, may be induced by the leak of acetylcholine (ACh) or urothelial release of adenosine triphosphate (ATP). They can be transmitted to the central nervous system through afferent fibers to trigger coordinated urgency-related detrusor contractions. Antimuscarinics, commonly known to induce smooth muscle relaxation by competitive blockage of muscarinic receptors in the parasympathetic postganglionic nerve, have a minimal effect on detrusor contraction within therapeutic doses. In fact, they have a predominant role in preventing signals in the afferent nerve transmission process. β3-adrenergic receptor (AR) agonists inhibit afferent signals by predominant inhibition of mechanosensitive Aδ-fibers in the normal bladder. However, in pathologic conditions such as spinal cord injury, it seems to inhibit capsaicin-sensitive C-fibers. Particularly, mirabegron, a β3-agonist, prevents ACh release in the BOO-induced detrusor overactivity model by parasympathetic prejunctional mechanisms. A recent study also revealed that vibegron may have 2 mechanisms of action: inhibition of ACh from cholinergic efferent nerves in the detrusor and afferent inhibition via urothelial β3-AR.
Collapse
Affiliation(s)
- Joonbeom Kwon
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Leaders Urology Clinic, Daegu, Korea
| | - Duk Yoon Kim
- Department of Urology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Kang Jun Cho
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mamoru Hashimoto
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kanako Matsuoka
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tadanobu Kamijo
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sergei Karnup
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anne M Robertson
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh School of Bioengineering, Pittsburgh, PA, USA
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Gao J, Yin H, Dong Y, Wang X, Liu Y, Wang K. A Novel Role of Uricosuric Agent Benzbromarone in BK Channel Activation and Reduction of Airway Smooth Muscle Contraction. Mol Pharmacol 2023; 103:241-254. [PMID: 36669879 DOI: 10.1124/molpharm.122.000638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 01/21/2023] Open
Abstract
The uricosuric drug benzbromarone, widely used for treatment of gout, hyperpolarizes the membrane potential of airway smooth muscle cells, but how it works remains unknown. Here we show a novel role of benzbromarone in activation of large conductance calcium-activated K+ channels. Benzbromarone results in dose-dependent activation of macroscopic big potassium (BK) currents about 1.7- to 14.5-fold with an EC50 of 111 μM and shifts the voltage-dependent channel activation to a more hyperpolarizing direction about 10 to 54 mV in whole-cell patch clamp recordings. In single-channel recordings, benzbromarone decreases single BKα channel closed dwell time and increases the channel open probability. Coexpressing β1 subunit also enhances BK activation by benzbromarone with an EC50 of 67 μM and a leftward shift of conductance-voltage (G-V) curve about 44 to 138 mV. Site-directed mutagenesis reveals that a motif of three amino acids 329RKK331 in the cytoplasmic linker between S6 and C-terminal regulator of potassium conductance (RCK) gating ring mediates the pharmacological activation of BK channels by benzbromarone. Further ex vivo assay shows that benzbromarone causes reduction of tracheal strip contraction. Taken together, our findings demonstrate that uricosuric benzbromarone activates BK channels through molecular mechanism of action involving the channel RKK motif of S6-RCK linker. Pharmacological activation of BK channel by benzbromarone causes reduction of tracheal strip contraction, holding a repurposing potential for asthma and pulmonary arterial hypertension or BK channelopathies. SIGNIFICANCE STATEMENT: We describe a novel role of uricosuric agent benzbromarone in big potassium (BK) channel activation and relaxation of airway smooth muscle contraction. In this study, we find that benzbromarone is an activator of the large-conductance Ca2+- and voltage-activated K+ channel (BK channel), which serves numerous cellular functions, including control of smooth muscle contraction. Pharmacological activation of BK channel by the FDA-approved drug benzbromarone may hold repurposing potential for treatment of asthma and pulmonary arterial hypertension or BK channelopathies.
Collapse
Affiliation(s)
- Jian Gao
- Department of Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China (J.G., X.W.); Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (H.Y., Y.D., Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Hao Yin
- Department of Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China (J.G., X.W.); Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (H.Y., Y.D., Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Yanqun Dong
- Department of Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China (J.G., X.W.); Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (H.Y., Y.D., Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Xintong Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China (J.G., X.W.); Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (H.Y., Y.D., Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Yani Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China (J.G., X.W.); Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (H.Y., Y.D., Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - KeWei Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China (J.G., X.W.); Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (H.Y., Y.D., Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| |
Collapse
|
12
|
Zyrianova T, Zou K, Lopez B, Liao A, Gu C, Olcese R, Schwingshackl A. Activation of Endothelial Large Conductance Potassium Channels Protects against TNF-α-Induced Inflammation. Int J Mol Sci 2023; 24:4087. [PMID: 36835507 PMCID: PMC9961193 DOI: 10.3390/ijms24044087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Elevated TNF-α levels in serum and broncho-alveolar lavage fluid of acute lung injury patients correlate with mortality rates. We hypothesized that pharmacological plasma membrane potential (Em) hyperpolarization protects against TNF-α-induced CCL-2 and IL-6 secretion from human pulmonary endothelial cells through inhibition of inflammatory Ca2+-dependent MAPK pathways. Since the role of Ca2+ influx in TNF-α-mediated inflammation remains poorly understood, we explored the role of L-type voltage-gated Ca2+ (CaV) channels in TNF-α-induced CCL-2 and IL-6 secretion from human pulmonary endothelial cells. The CaV channel blocker, Nifedipine, decreased both CCL-2 and IL-6 secretion, suggesting that a fraction of CaV channels is open at the significantly depolarized resting Em of human microvascular pulmonary endothelial cells (-6 ± 1.9 mV), as shown by whole-cell patch-clamp measurements. To further explore the role of CaV channels in cytokine secretion, we demonstrated that the beneficial effects of Nifedipine could also be achieved by Em hyperpolarization via the pharmacological activation of large conductance K+ (BK) channels with NS1619, which elicited a similar decrease in CCL-2 but not IL-6 secretion. Using functional gene enrichment analysis tools, we predicted and validated that known Ca2+-dependent kinases, JNK-1/2 and p38, are the most likely pathways to mediate the decrease in CCL-2 secretion.
Collapse
Affiliation(s)
- Tatiana Zyrianova
- Departments of Pediatrics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kathlyn Zou
- Departments of Pediatrics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Benjamin Lopez
- Departments of Pediatrics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Andy Liao
- Departments of Pediatrics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Charles Gu
- Departments of Pediatrics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Riccardo Olcese
- Departments of Anesthesiology and Perioperative Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Departments of Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Andreas Schwingshackl
- Departments of Pediatrics, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Barrese V, Wehbe Z, Linden A, McDowell S, Forrester E, Povstyan O, McCloskey KD, Greenwood IA. Key role for Kv11.1 (ether-a-go-go related gene) channels in rat bladder contractility. Physiol Rep 2023; 11:e15583. [PMID: 36750122 PMCID: PMC9904964 DOI: 10.14814/phy2.15583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 06/01/2023] Open
Abstract
In addition, to their established role in cardiac myocytes and neurons, ion channels encoded by ether-a-go-go-related genes (ERG1-3 or kcnh2,3 and 6) (kcnh2) are functionally relevant in phasic smooth muscle. The aim of the study was to determine the expression and functional impact of ERG expression products in rat urinary bladder smooth muscle using quantitative polymerase chain reaction, immunocytochemistry, whole-cell patch-clamp and isometric tension recording. kcnh2 was expressed in rat bladder, whereas kcnh6 and kcnh3 expression were negligible. Immunofluorescence for the kcnh2 expression product Kv11.1 was detected in the membrane of isolated smooth muscle cells. Potassium currents with voltage-dependent characteristics consistent with Kv11.1 channels and sensitive to the specific blocker E4031 (1 μM) were recorded from isolated detrusor smooth muscles. Disabling Kv11.1 activity with specific blockers (E4031 and dofetilide, 0.2-20 μM) augmented spontaneous contractions to a greater extent than BKCa channel blockers, enhanced carbachol-driven activity, increased nerve stimulation-mediated contractions, and impaired β-adrenoceptor-mediated inhibitory responses. These data establish for the first time that Kv11.1 channels are key determinants of contractility in rat detrusor smooth muscle.
Collapse
Affiliation(s)
- Vincenzo Barrese
- Vascular Biology Research CentreMolecular and Clinical Sciences Research Institute, St George's University of LondonLondonUK
- Department of Neuroscience, Reproductive Sciences and DentistryUniversity of Naples Federico IINaplesItaly
| | - Zena Wehbe
- Vascular Biology Research CentreMolecular and Clinical Sciences Research Institute, St George's University of LondonLondonUK
| | - Alice Linden
- Vascular Biology Research CentreMolecular and Clinical Sciences Research Institute, St George's University of LondonLondonUK
| | - Sarah McDowell
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Elizabeth Forrester
- Vascular Biology Research CentreMolecular and Clinical Sciences Research Institute, St George's University of LondonLondonUK
| | | | - Karen D. McCloskey
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Iain A. Greenwood
- Vascular Biology Research CentreMolecular and Clinical Sciences Research Institute, St George's University of LondonLondonUK
| |
Collapse
|
14
|
Ca 2+-Sensitive Potassium Channels. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020885. [PMID: 36677942 PMCID: PMC9861210 DOI: 10.3390/molecules28020885] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
The Ca2+ ion is used ubiquitously as an intracellular signaling molecule due to its high external and low internal concentration. Many Ca2+-sensing ion channel proteins have evolved to receive and propagate Ca2+ signals. Among them are the Ca2+-activated potassium channels, a large family of potassium channels activated by rises in cytosolic calcium in response to Ca2+ influx via Ca2+-permeable channels that open during the action potential or Ca2+ release from the endoplasmic reticulum. The Ca2+ sensitivity of these channels allows internal Ca2+ to regulate the electrical activity of the cell membrane. Activating these potassium channels controls many physiological processes, from the firing properties of neurons to the control of transmitter release. This review will discuss what is understood about the Ca2+ sensitivity of the two best-studied groups of Ca2+-sensitive potassium channels: large-conductance Ca2+-activated K+ channels, KCa1.1, and small/intermediate-conductance Ca2+-activated K+ channels, KCa2.x/KCa3.1.
Collapse
|
15
|
External Hemin as an Inhibitor of Mitochondrial Large-Conductance Calcium-Activated Potassium Channel Activity. Int J Mol Sci 2022; 23:ijms232113391. [DOI: 10.3390/ijms232113391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial large-conductance calcium-activated potassium channel (mitoBKCa) is located in the inner mitochondrial membrane and seems to play a crucial role in cytoprotection. The mitoBKCa channel is regulated by many modulators, including activators, such as calcium ions and inhibitors, such as heme and its oxidized form hemin. Heme/hemin binds to the heme-binding motif (CXXCH) located between two RCK domains present in the mitochondrial matrix. In the present study, we used the patch-clamp technique in the outside-out configuration to record the activity of mitoBKCa channels. This allowed for the application of channel modulators to the intermembrane-space side of the mitoBKCa. We found that hemin applied in this configuration inhibits the activity of mitoBKCa. In addition, we proved that the observed hemin effect is specific and it is not due to its interaction with the inner mitochondrial membrane. Our data suggest the existence of a new potential heme/hemin binding site in the structure of the mitoBKCa channel located on the mitochondrial intermembrane space side, which could constitute a new way for the regulation of mitoBKCa channel activity.
Collapse
|
16
|
Slayden AV, Dyer CL, Ma D, Li W, Bukiya AN, Parrill AL, Dopico AM. Discovery of agonist-antagonist pairs for the modulation of Ca [2]+ and voltage-gated K + channels of large conductance that contain beta1 subunits. Bioorg Med Chem 2022; 68:116876. [PMID: 35716586 PMCID: PMC10464842 DOI: 10.1016/j.bmc.2022.116876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/02/2022]
Abstract
Large conductance, calcium/voltage-gated potassium channels (BK) regulate critical body processes, including neuronal, secretory and smooth muscle (SM) function. While BK-forming alpha subunits are ubiquitous, accessory beta1 subunits are highly expressed in SM. This makes beta1 an attractive target for pharmaceutical development to treat SM disorders, such as hypertension or cerebrovascular spasm. Compounds activating BK via beta1 have been identified, yet they exhibit low potency and off-target effects while antagonists that limit agonist activity via beta 1 remain unexplored. Beta1-dependent BK ligand-based pharmacophore modeling and ZINC database searches identified 15 commercially available hits. Concentration-response curves on BK alpha + beta1 subunit-mediated currents were obtained in CHO cells. One potent (EC50 = 20 nM) and highly efficacious activator (maximal activation = ×10.3 of control) was identified along with a potent antagonist (KB = 3.02 nM), both of which were dependent on beta1. Our study provides the first proof-of-principle that an agonist/antagonist pair can be used to control beta1-containing BK activity.
Collapse
Affiliation(s)
- Alexandria V Slayden
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis TN, 38103, USA
| | - Christy L Dyer
- Department of Chemistry, The University of Memphis, Memphis TN, 38152, USA
| | - Dejian Ma
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis TN, 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis TN, 38163, USA
| | - Anna N Bukiya
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis TN, 38103, USA
| | - Abby L Parrill
- Department of Chemistry, The University of Memphis, Memphis TN, 38152, USA
| | - Alex M Dopico
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis TN, 38103, USA.
| |
Collapse
|
17
|
Park SM, Roache CE, Iffland PH, Moldenhauer HJ, Matychak KK, Plante AE, Lieberman AG, Crino PB, Meredith A. BK channel properties correlate with neurobehavioral severity in three KCNMA1-linked channelopathy mouse models. eLife 2022; 11:e77953. [PMID: 35819138 PMCID: PMC9275823 DOI: 10.7554/elife.77953] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/01/2022] [Indexed: 12/14/2022] Open
Abstract
KCNMA1 forms the pore of BK K+ channels, which regulate neuronal and muscle excitability. Recently, genetic screening identified heterozygous KCNMA1 variants in a subset of patients with debilitating paroxysmal non-kinesigenic dyskinesia, presenting with or without epilepsy (PNKD3). However, the relevance of KCNMA1 mutations and the basis for clinical heterogeneity in PNKD3 has not been established. Here, we evaluate the relative severity of three KCNMA1 patient variants in BK channels, neurons, and mice. In heterologous cells, BKN999S and BKD434G channels displayed gain-of-function (GOF) properties, whereas BKH444Q channels showed loss-of-function (LOF) properties. The relative degree of channel activity was BKN999S > BKD434G>WT > BKH444Q. BK currents and action potential firing were increased, and seizure thresholds decreased, in Kcnma1N999S/WT and Kcnma1D434G/WT transgenic mice but not Kcnma1H444Q/WT mice. In a novel behavioral test for paroxysmal dyskinesia, the more severely affected Kcnma1N999S/WT mice became immobile after stress. This was abrogated by acute dextroamphetamine treatment, consistent with PNKD3-affected individuals. Homozygous Kcnma1D434G/D434G mice showed similar immobility, but in contrast, homozygous Kcnma1H444Q/H444Q mice displayed hyperkinetic behavior. These data establish the relative pathogenic potential of patient alleles as N999S>D434G>H444Q and validate Kcnma1N999S/WT mice as a model for PNKD3 with increased seizure propensity.
Collapse
Affiliation(s)
- Su Mi Park
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Cooper E Roache
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Philip H Iffland
- Department of Neurology, University of Maryland School of MedicineBaltimoreUnited States
| | - Hans J Moldenhauer
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Katia K Matychak
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Amber E Plante
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Abby G Lieberman
- Department of Pharmacology, University of Maryland School of MedicineBaltimoreUnited States
| | - Peter B Crino
- Department of Neurology, University of Maryland School of MedicineBaltimoreUnited States
| | - Andrea Meredith
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| |
Collapse
|
18
|
Bae EJ, Jo H, Kim SS, Shin DS, Yang JY, Bae MA, Jeong P, Park CS, Ahn JH. Novel Thioxothiazolo[3,4- a]quinazolin-5(4 H)-one Derivatives as BK Ca Channel Activators for Urinary Incontinence. ACS Med Chem Lett 2022; 13:1052-1061. [DOI: 10.1021/acsmedchemlett.2c00070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Eun Jung Bae
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Heeji Jo
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Seong Soon Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Dae-Seop Shin
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Jung Yoon Yang
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Pyeonghwa Jeong
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Chul-Seung Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
19
|
Bushart DD, Shakkottai VG. Vulnerability of Human Cerebellar Neurons to Degeneration in Ataxia-Causing Channelopathies. Front Syst Neurosci 2022; 16:908569. [PMID: 35757096 PMCID: PMC9219590 DOI: 10.3389/fnsys.2022.908569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
Mutations in ion channel genes underlie a number of human neurological diseases. Historically, human mutations in ion channel genes, the so-called channelopathies, have been identified to cause episodic disorders. In the last decade, however, mutations in ion channel genes have been demonstrated to result in progressive neurodegenerative and neurodevelopmental disorders in humans, particularly with ion channels that are enriched in the cerebellum. This was unexpected given prior rodent ion channel knock-out models that almost never display neurodegeneration. Human ataxia-causing channelopathies that result in even haploinsufficiency can result in cerebellar atrophy and cerebellar Purkinje neuron loss. Rodent neurons with ion channel loss-of-function appear to, therefore, be significantly more resistant to neurodegeneration compared to human neurons. Fundamental differences in susceptibility of human and rodent cerebellar neurons in ataxia-causing channelopathies must therefore be present. In this review, we explore the properties of human neurons that may contribute to their vulnerability to cerebellar degeneration secondary to ion channel loss-of-function mutations. We present a model taking into account the known allometric scaling of neuronal ion channel density in humans and other mammals that may explain the preferential vulnerability of human cerebellar neurons to degeneration in ataxia-causing channelopathies. We also speculate on the vulnerability of cerebellar neurons to degeneration in mouse models of spinocerebellar ataxia (SCA) where ion channel transcript dysregulation has recently been implicated in disease pathogenesis.
Collapse
Affiliation(s)
- David D. Bushart
- Ohio State University College of Medicine, Columbus, OH, United States
| | - Vikram G. Shakkottai
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States,*Correspondence: Vikram G. Shakkottai,
| |
Collapse
|
20
|
Discovery and characterization of a potent activator of the BK Ca channel that relives overactive bladder syndrome in rats. Eur J Pharmacol 2022; 927:175055. [PMID: 35644420 DOI: 10.1016/j.ejphar.2022.175055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022]
Abstract
The large-conductance Ca2+-activated K+ channel (BKCa channel) is involved in repolarizing the membrane potential and has a variety of cellular functions. The BKCa channel is highly expressed in bladder smooth muscle and mediates muscle relaxation. Compounds that activate the BKCa channel have therapeutic potential against pathological symptoms associated with the overactivity of bladder smooth muscle. In this regard, we screened a chemical library of 9938 compounds to identify novel BKCa channel activators. A cell-based fluorescence assay identified a structural family of compounds containing a common tricyclic quinazoline ring that activated the BKCa channel. The most potent compound TTQC-1 (7-bromo-N-(3-methylphenyl)-5-oxo-1-thioxo-4,5-dihydro[1,3]thiazolo[3,4-a]quinazoline-3-carboxamide) directly and reversibly activated the macroscopic current of BKCa channels expressed in Xenopus oocytes from both sides of the cellular membrane. TTQC-1 increased the maximum conductance and shifted the half activation voltage to the left. The apparent half-maximal effective concentration and dissociation constant were 2.8 μM and 7.95 μM, respectively. TTQC-1 delayed the kinetics of channel deactivation without affecting channel activation. The activation effects were observed over a wide range of intracellular Ca2+ concentrations and dependent on the co-expression of β1 and β4 auxiliary subunits, which are highly expressed in urinary bladder. In the isolated smooth muscle cells of rat urinary bladder, TTQC-1 increased the K+ currents which can be blocked by iberiotoxin. Finally, oral administration of TTQC-1 to hypertensive rats decreased the urination frequency. Therefore, TTQC-1 is a BKCa channel activator with a novel structure that is a potential therapeutic candidate for BKCa channel-related diseases, such as overactive bladder syndrome.
Collapse
|
21
|
Sanghvi S, Szteyn K, Ponnalagu D, Sridharan D, Lam A, Hansra I, Chaudhury A, Majumdar U, Kohut AR, Gururaja Rao S, Khan M, Garg V, Singh H. Inhibition of BK Ca channels protects neonatal hearts against myocardial ischemia and reperfusion injury. Cell Death Dis 2022; 8:175. [PMID: 35393410 PMCID: PMC8989942 DOI: 10.1038/s41420-022-00980-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
Abstract
BKCa channels are large-conductance calcium and voltage-activated potassium channels that are heterogeneously expressed in a wide array of cells. Activation of BKCa channels present in mitochondria of adult ventricular cardiomyocytes is implicated in cardioprotection against ischemia-reperfusion (IR) injury. However, the BKCa channel’s activity has never been detected in the plasma membrane of adult ventricular cardiomyocytes. In this study, we report the presence of the BKCa channel in the plasma membrane and mitochondria of neonatal murine and rodent cardiomyocytes, which protects the heart on inhibition but not activation. Furthermore, K+ currents measured in neonatal cardiomyocyte (NCM) was sensitive to iberiotoxin (IbTx), suggesting the presence of BKCa channels in the plasma membrane. Neonatal hearts subjected to IR when post-conditioned with NS1619 during reoxygenation increased the myocardial infarction whereas IbTx reduced the infarct size. In agreement, isolated NCM also presented increased apoptosis on treatment with NS1619 during hypoxia and reoxygenation, whereas IbTx reduced TUNEL-positive cells. In NCMs, activation of BKCa channels increased the intracellular reactive oxygen species post HR injury. Electrophysiological characterization of NCMs indicated that NS1619 increased the beat period, field, and action potential duration, and decreased the conduction velocity and spike amplitude. In contrast, IbTx had no impact on the electrophysiological properties of NCMs. Taken together, our data established that inhibition of plasma membrane BKCa channels in the NCM protects neonatal heart/cardiomyocytes from IR injury. Furthermore, the functional disparity observed towards the cardioprotective activity of BKCa channels in adults compared to neonatal heart could be attributed to their differential localization.
Collapse
Affiliation(s)
- Shridhar Sanghvi
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA
| | - Kalina Szteyn
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Devasena Ponnalagu
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Divya Sridharan
- Department of Emergency Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Alexander Lam
- Department of Internal Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Inderjot Hansra
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ankur Chaudhury
- Department of Internal Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Uddalak Majumdar
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Andrew R Kohut
- Department of Internal Medicine, Drexel University College of Medicine, Philadelphia, PA, USA.,Division of Cardiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shubha Gururaja Rao
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, Ada, OH, USA
| | - Mahmood Khan
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Emergency Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Vidu Garg
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA. .,Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
22
|
Chen G, Li Q, Yan J. The leucine-rich repeat domains of BK channel auxiliary γ subunits regulate their expression, trafficking, and channel-modulation functions. J Biol Chem 2022; 298:101664. [PMID: 35104503 PMCID: PMC8892010 DOI: 10.1016/j.jbc.2022.101664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 11/25/2022] Open
Abstract
As high-conductance calcium- and voltage-dependent potassium channels, BK channels consist of pore-forming, voltage-, and Ca2+-sensing α and auxiliary subunits. The leucine-rich repeat (LRR) domain-containing auxiliary γ subunits potently modulate the voltage dependence of BK channel activation. Despite their dominant size in whole protein masses, the function of the LRR domain in BK channel γ subunits is unknown. We here investigated the function of these LRR domains in BK channel modulation by the auxiliary γ1-3 (LRRC26, LRRC52, and LRRC55) subunits. Using cell surface protein immunoprecipitation, we validated the predicted extracellular localization of the LRR domains. We then refined the structural models of mature proteins on the membrane via molecular dynamic simulations. By replacement of the LRR domain with extracellular regions or domains of non-LRR proteins, we found that the LRR domain is nonessential for the maximal channel-gating modulatory effect but is necessary for the all-or-none phenomenon of BK channel modulation by the γ1 subunit. Mutational and enzymatic blockade of N-glycosylation in the γ1-3 subunits resulted in a reduction or loss of BK channel modulation by γ subunits. Finally, by analyzing their expression in whole cells and on the plasma membrane, we found that blockade of N-glycosylation drastically reduced total expression of the γ2 subunit and the cell surface expression of the γ1 and γ3 subunits. We conclude that the LRR domains play key roles in the regulation of the expression, cell surface trafficking, and channel-modulation functions of the BK channel γ subunits.
Collapse
Affiliation(s)
- Guanxing Chen
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qin Li
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiusheng Yan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Graduate Programs of Neuroscience and Biochemistry and Cell Biology, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas, USA.
| |
Collapse
|
23
|
Imaizumi Y. Reciprocal Relationship between Ca 2+ Signaling and Ca 2+-Gated Ion Channels as a Potential Target for Drug Discovery. Biol Pharm Bull 2022; 45:1-18. [PMID: 34980771 DOI: 10.1248/bpb.b21-00896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular Ca2+ signaling functions as one of the most common second messengers of various signal transduction pathways in cells and mediates a number of physiological roles in a cell-type dependent manner. Ca2+ signaling also regulates more general and fundamental cellular activities, including cell proliferation and apoptosis. Among ion channels, Ca2+-permeable channels in the plasma membrane as well as endo- and sarcoplasmic reticulum membranes play important roles in Ca2+ signaling by directly contributing to the influx of Ca2+ from extracellular spaces or its release from storage sites, respectively. Furthermore, Ca2+-gated ion channels in the plasma membrane often crosstalk reciprocally with Ca2+ signals and are central to the regulation of cellular functions. This review focuses on the physiological and pharmacological impact of i) Ca2+-gated ion channels as an apparatus for the conversion of cellular Ca2+ signals to intercellularly propagative electrical signals and ii) the opposite feedback regulation of Ca2+ signaling by Ca2+-gated ion channel activities in excitable and non-excitable cells.
Collapse
Affiliation(s)
- Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
24
|
Sanghvi S, Szteyn K, Ponnalagu D, Sridharan D, Lam A, Hansra I, Chaudhury A, Majumdar U, Kohut AR, Rao SG, Khan M, Garg V, Singh H. Inhibition of BK Ca channels protects neonatal hearts against myocardial ischemia and reperfusion injury.. [DOI: 10.1101/2021.11.02.466585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
AbstractBKCa channels are large-conductance calcium and voltage-activated potassium channels that are heterogeneously expressed in a wide array of cells. Activation of BKCa channels present in mitochondria of adult ventricular cardiomyocytes is implicated in cardioprotection against ischemia-reperfusion (IR) injury. However, the BKCa channel’s activity has never been detected in the plasma membrane of adult ventricular cardiomyocytes. In this study, we report the presence of the BKCa channel in the plasma membrane and mitochondria of neonatal murine and rodent cardiomyocytes which protects the heart on inhibition but not activation. Furthermore, K+ currents measured in neonatal cardiomyocyte (NCM) was sensitive to iberiotoxin (IbTx), suggesting the presence of BKCa channels in the plasma membrane. Neonatal hearts subjected to IR when post-conditioned with NS1619 during reoxygenation increased the myocardial infarction whereas IbTx reduced the infarct size. In agreement, isolated NCM also presented increased apoptosis on treatment with NS1619 during hypoxia and reoxygenation, whereas IbTx reduced TUNEL positive cells. In NCMs, activation of BKCa channels increased the intracellular reactive oxygen species post HR injury. Electrophysiological characterization of NCMs indicated that NS1619 increased the beat period, field, and action potential duration, and decreased the conduction velocity and spike amplitude. In contrast, IbTx had no impact on the electrophysiological properties of NCMs. Taken together, our data established that inhibition of plasma membrane BKCa channels in the NCM protects neonatal heart/cardiomyocytes from IR injury. Furthermore, the functional disparity observed towards the cardioprotective activity of BKCa channels in adults compared to neonatal heart could be attributed to their differential localization.
Collapse
|
25
|
Gebremendhin D, Lindemer B, Weihrauch D, Harder DR, Lohr NL. Electromagnetic energy (670 nm) stimulates vasodilation through activation of the large conductance potassium channel (BKCa). PLoS One 2021; 16:e0257896. [PMID: 34610026 PMCID: PMC8491904 DOI: 10.1371/journal.pone.0257896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Peripheral artery disease (PAD) is a highly morbid condition in which impaired blood flow to the limbs leads to pain and tissue loss. Previously we identified 670 nm electromagnetic energy (R/NIR) to increase nitric oxide levels in cells and tissue. NO elicits relaxation of smooth muscle (SMC) by stimulating potassium efflux and membrane hyperpolarization. The actions of energy on ion channel activity have yet to be explored. Here we hypothesized R/NIR stimulates vasodilation through activation of potassium channels in SMC. METHODS Femoral arteries or facial arteries from C57Bl/6 and Slo1-/- mice were isolated, pressurized to 60 mmHg, pre-constricted with U46619, and irradiated twice with energy R/NIR (10 mW/cm2 for 5 min) with a 10 min dark period between irradiations. Single-channel K+ currents were recorded at room temperature from cell-attached and excised inside-out membrane patches of freshly isolated mouse femoral arterial muscle cells using the patch-clamp technique. RESULTS R/NIR stimulated vasodilation requires functional activation of the large conductance potassium channels. There is a voltage dependent outward current in SMC with light stimulation, which is due to increases in the open state probability of channel opening. R/NIR modulation of channel opening is eliminated pharmacologically (paxilline) and genetically (BKca α subunit knockout). There is no direct action of light to modulate channel activity as excised patches did not increase the open state probability of channel opening. CONCLUSION R/NIR vasodilation requires indirect activation of the BKca channel.
Collapse
Affiliation(s)
- Debebe Gebremendhin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States of America
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Brian Lindemer
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America
- Clement J Zablocki VA Medical Center, Milwaukee, WI, United States of America
| | - Dorothee Weihrauch
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - David R. Harder
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States of America
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
- Clement J Zablocki VA Medical Center, Milwaukee, WI, United States of America
| | - Nicole L. Lohr
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States of America
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America
- Clement J Zablocki VA Medical Center, Milwaukee, WI, United States of America
- * E-mail:
| |
Collapse
|
26
|
He C, Li X, Wang M, Zhang S, Liu H. Deletion of BK channels decreased skeletal and cardiac muscle function but increased smooth muscle contraction in rats. Biochem Biophys Res Commun 2021; 570:8-14. [PMID: 34271438 DOI: 10.1016/j.bbrc.2021.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022]
Abstract
Large conductance calcium-activated potassium channel (BK channel) is widely expressed in skeletal muscle, myocardium, smooth muscle and other muscle tissues. Mutation, abnormal expression and altered activity of BK channel are linked to muscle-related diseases such as dyskinesia, epilepsy and erectile dysfunction. In order to compare the effects of BK channel on different muscle tissues, we constructed BK channel gene knockout rats (BK-/- rats). HE staining, open field and grip strength tests, ultrasound, blood pressure measurement and vascular tension test were utilized to explore the effects of BK channel deletion on the structure and function changes in skeletal muscle, myocardium, and vascular smooth muscle (VSM). It was found that compared with wild-type rats, the BK-/- rats showed decreased skeletal muscle fiber area, grip, movement distance and speed at 2 and 12 months of ages. At heart, the muscle fiber area, cardiac systolic/diastolic function and heart rate decreased in BK-/- rats. The wall of the left ventricle became thin. However, the vascular wall of BK-/- rats thickened, the pulse wave velocity was increased, and the VSM contraction was enhanced. Unexpectedly, both systolic and diastolic blood pressure were reduced in BK-/- rats, while pulse pressure difference was increased. These results suggest that BK channel may have different effects on different types of muscle tissue, and it should be noted that different parts of muscle tissue may have different effects when BK channel-related drugs are used.
Collapse
Affiliation(s)
- Chunyu He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Beijing, 100069, China
| | - Xiaoyue Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Beijing, 100069, China
| | - Meili Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Beijing, 100069, China
| | - Suli Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Beijing, 100069, China.
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Beijing, 100069, China.
| |
Collapse
|
27
|
Plante AE, Whitt JP, Meredith AL. BK channel activation by L-type Ca 2+ channels Ca V1.2 and Ca V1.3 during the subthreshold phase of an action potential. J Neurophysiol 2021; 126:427-439. [PMID: 34191630 DOI: 10.1152/jn.00089.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian circadian (24 h) rhythms are timed by the pattern of spontaneous action potential firing in the suprachiasmatic nucleus (SCN). This oscillation in firing is produced through circadian regulation of several membrane currents, including large-conductance Ca2+- and voltage-activated K+ (BK) and L-type Ca2+ channel (LTCC) currents. During the day steady-state BK currents depend mostly on LTCCs for activation, whereas at night they depend predominantly on ryanodine receptors (RyRs). However, the contribution of these Ca2+ channels to BK channel activation during action potential firing has not been thoroughly investigated. In this study, we used a pharmacological approach to determine that both LTCCs and RyRs contribute to the baseline membrane potential of SCN action potential waveforms, as well as action potential-evoked BK current, during the day and night, respectively. Since the baseline membrane potential is a major determinant of circadian firing rate, we focused on the LTCCs contributing to low voltage activation of BK channels during the subthreshold phase. For these experiments, two LTCC subtypes found in SCN (CaV1.2 and CaV1.3) were coexpressed with BK channels in heterologous cells, where their differential contributions could be separately measured. CaV1.3 channels produced currents that were shifted to more hyperpolarized potentials compared with CaV1.2, resulting in increased subthreshold Ca2+ and BK currents during an action potential command. These results show that although multiple Ca2+ sources in SCN can contribute to the activation of BK current during an action potential, specific BK-CaV1.3 partnerships may optimize the subthreshold BK current activation that is critical for firing rate regulation.NEW & NOTEWORTHY BK K+ channels are important regulators of firing. Although Ca2+ channels are required for their activation in excitable cells, it is not well understood how BK channels activate using these Ca2+ sources during an action potential. This study demonstrates the differences in BK current activated by CaV1.2 and CaV1.3 channels in clock neurons and heterologous cells. The results define how specific ion channel partnerships can be engaged during distinct phases of the action potential.
Collapse
Affiliation(s)
- Amber E Plante
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Joshua P Whitt
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
28
|
Wang X, Burke SRA, Talmadge RJ, Voss AA, Rich MM. Depressed neuromuscular transmission causes weakness in mice lacking BK potassium channels. J Gen Physiol 2021; 152:151617. [PMID: 32243496 PMCID: PMC7201880 DOI: 10.1085/jgp.201912526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/27/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
Mice lacking functional large-conductance voltage- and Ca2+-activated K+ channels (BK channels) are viable but have motor deficits including ataxia and weakness. The cause of weakness is unknown. In this study, we discovered, in vivo, that skeletal muscle in mice lacking BK channels (BK−/−) was weak in response to nerve stimulation but not to direct muscle stimulation, suggesting a failure of neuromuscular transmission. Voltage-clamp studies of the BK−/− neuromuscular junction (NMJ) revealed a reduction in evoked endplate current amplitude and the frequency of spontaneous vesicle release compared with WT littermates. Responses to 50-Hz stimulation indicated a reduced probability of vesicle release in BK−/− mice, suggestive of lower presynaptic Ca2+ entry. Pharmacological block of BK channels in WT NMJs did not affect NMJ function, surprisingly suggesting that the reduced vesicle release in BK−/− NMJs was not due to loss of BK channel–mediated K+ current. Possible explanations for our data include an effect of BK channels on development of the NMJ, a role for BK channels in regulating presynaptic Ca2+ current or the effectiveness of Ca2+ in triggering release. Consistent with reduced Ca2+ entry or effectiveness of Ca2+ in triggering release, use of 3,4-diaminopyridine to widen action potentials normalized evoked release in BK−/− mice to WT levels. Intraperitoneal application of 3,4-diaminopyridine fully restored in vivo nerve-stimulated muscle force in BK−/− mice. Our work demonstrates that mice lacking BK channels have weakness due to a defect in vesicle release at the NMJ.
Collapse
Affiliation(s)
- Xueyong Wang
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH
| | - Steven R A Burke
- Department of Biological Sciences, Wright State University, Dayton, OH
| | - Robert J Talmadge
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA
| | - Andrew A Voss
- Department of Biological Sciences, Wright State University, Dayton, OH
| | - Mark M Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH
| |
Collapse
|
29
|
Andersson KE, Christ GJ, Davies KP, Rovner ES, Melman A. Gene Therapy for Overactive Bladder: A Review of BK-Channel α-Subunit Gene Transfer. Ther Clin Risk Manag 2021; 17:589-599. [PMID: 34113116 PMCID: PMC8187094 DOI: 10.2147/tcrm.s291798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/16/2021] [Indexed: 01/04/2023] Open
Abstract
A need exists for local (ie, bladder-specific) interventions to treat overactive bladder (OAB) with low risk of unwanted postprocedural outcomes. Gene therapy targeted to leverage endogenous physiology in bladder cells may assist in restoring normal cell and organ function. Herein, we review the potential promise of gene therapy for treating OAB, focusing on gene transfer of URO-902, a non-viral naked plasmid DNA expressing the big potassium (BK) channel. We searched PubMed for articles concerning functional aspects of the BK channel and its potential use for gene transfer as local OAB treatment. Results from preclinical, phase 1, and phase 2 studies of URO-902 for erectile dysfunction and phase 1 studies of URO-902 for OAB are included. The BK channel has been extensively studied; however, URO-902 is the first gene therapy used in clinical trials directed toward treating OAB via the BK channel. In both URO-902 studies, there were no serious adverse events considered treatment related and no adverse events leading to early withdrawal. Both studies included secondary efficacy endpoints with promising results suggesting improvement in OAB symptoms, and quality of life, with use of URO-902 versus placebo. Gene therapy involving the BK channel, such as gene transfer with URO-902, has demonstrated promising safety and efficacy results in women with OAB. Findings warrant further investigation of the use of URO-902 for OAB treatment.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - George Joseph Christ
- Department of Biomedical Engineering, University of Virginia Medical School, Charlottesville, VA, USA
| | - Kelvin P Davies
- Department of Urology, Albert Einstein College of Medicine, New York, NY, USA
| | - Eric S Rovner
- Department of Urology, Medical University of South Carolina, Charleston, SC, USA
| | - Arnold Melman
- Department of Urology, Albert Einstein College of Medicine, Ardsley, NY, USA
| |
Collapse
|
30
|
Qi XL, Jo H, Wang XY, Ji TT, Lin HX, Park CS, Cui YM. Synthesis and BK channel-opening activity of 2-amino-1,3-thiazole derivatives. Bioorg Med Chem Lett 2021; 43:128083. [PMID: 33964448 DOI: 10.1016/j.bmcl.2021.128083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/23/2021] [Accepted: 05/01/2021] [Indexed: 11/28/2022]
Abstract
A series of 2-amino-5-arylmethyl- or 5-heteroarylmethyl-1,3-thiazole derivatives were synthesized and evaluated for BK channel-opening activities in cell-based fluorescence assay and electrophysiological recording. The assay results indicated that the activities of the investigated compounds were influenced by the physicochemical properties of the substituent at benzene ring.
Collapse
Affiliation(s)
- Xiao-Lei Qi
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Heeji Jo
- School of Life Sciences and National Leading Research Laboratory, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Xue-Ying Wang
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tong-Tong Ji
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hai-Xia Lin
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Chul-Seung Park
- School of Life Sciences and National Leading Research Laboratory, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Yong-Mei Cui
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
31
|
Malik M, Roh M, England SK. Uterine contractions in rodent models and humans. Acta Physiol (Oxf) 2021; 231:e13607. [PMID: 33337577 PMCID: PMC8047897 DOI: 10.1111/apha.13607] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022]
Abstract
Aberrant uterine contractions can lead to preterm birth and other labour complications and are a significant cause of maternal morbidity and mortality. To investigate the mechanisms underlying dysfunctional uterine contractions, researchers have used experimentally tractable small animal models. However, biological differences between humans and rodents change how researchers select their animal model and interpret their results. Here, we provide a general review of studies of uterine excitation and contractions in mice, rats, guinea pigs, and humans, in an effort to introduce new researchers to the field and help in the design and interpretation of experiments in rodent models.
Collapse
Affiliation(s)
- Manasi Malik
- Center for Reproductive Health SciencesDepartment of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMOUSA
| | - Michelle Roh
- Center for Reproductive Health SciencesDepartment of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMOUSA
| | - Sarah K. England
- Center for Reproductive Health SciencesDepartment of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
32
|
Abstract
Potassium channels are the most diverse and ubiquitous family of ion channels found in cells. The Ca2+ and voltage gated members form a subfamily that play a variety of roles in both excitable and non-excitable cells and are further classified on the basis of their single channel conductance to form the small conductance (SK), intermediate conductance (IK) and big conductance (BK) K+ channels.In this chapter, we will focus on the mechanisms underlying the gating of BK channels, whose function is modified in different tissues by different splice variants as well as the expanding array of regulatory accessory subunits including β, γ and LINGO subunits. We will examine how BK channels are modified by these regulatory subunits and describe how the channel gating is altered by voltage and Ca2+ whilst setting this in context with the recently published structures of the BK channel. Finally, we will discuss how BK and other calcium-activated channels are modulated by novel ion channel modulators and describe some of the challenges associated with trying to develop compounds with sufficient efficacy, potency and selectivity to be of therapeutic benefit.
Collapse
|
33
|
Igniting Ca 2+ sparks with TRPML1. Proc Natl Acad Sci U S A 2020; 117:32836-32838. [PMID: 33262276 DOI: 10.1073/pnas.2022896117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
34
|
The intracellular Ca 2+ release channel TRPML1 regulates lower urinary tract smooth muscle contractility. Proc Natl Acad Sci U S A 2020; 117:30775-30786. [PMID: 33199609 PMCID: PMC7720193 DOI: 10.1073/pnas.2016959117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
TRPML1 (transient receptor potential mucolipin 1) is a Ca2+-permeable, nonselective cation channel that is localized to late endosomes and lysosomes. Here, we investigated the function of TRPML1 channels in regulating lower urinary tract (LUT) smooth muscle cell (SMC) contractility. We found that TRPML1 forms a stable signaling complex with ryanodine receptors (RyRs) in the sarcoplasmic reticulum (SR). We further showed that TRPML1 channels are important for initiating an essential Ca2+-signaling negative feedback mechanism between RyRs on SR membranes and K+ channels on the plasma membrane. Knockout of TRPML1 channels in mice impaired this pathway, resulting in LUT smooth muscle hypercontractility and symptoms of overactive bladder. Our findings demonstrate a critical role for TRPML1 in LUT function. TRPML1 (transient receptor potential mucolipin 1) is a Ca2+-permeable, nonselective cation channel that is predominantly localized to the membranes of late endosomes and lysosomes (LELs). Intracellular release of Ca2+ through TRPML1 is thought to be pivotal for maintenance of intravesicular acidic pH as well as the maturation, fusion, and trafficking of LELs. Interestingly, genetic ablation of TRPML1 in mice (Mcoln1−/−) induces a hyperdistended/hypertrophic bladder phenotype. Here, we investigated this phenomenon further by exploring an unconventional role for TRPML1 channels in the regulation of Ca2+-signaling activity and contractility in bladder and urethral smooth muscle cells (SMCs). Four-dimensional (4D) lattice light-sheet live-cell imaging showed that the majority of LELs in freshly isolated bladder SMCs were essentially immobile. Superresolution microscopy revealed distinct nanoscale colocalization of LEL-expressing TRPML1 channels with ryanodine type 2 receptors (RyR2) in bladder SMCs. Spontaneous intracellular release of Ca2+ from the sarcoplasmic reticulum (SR) through RyR2 generates localized elevations of Ca2+ (“Ca2+ sparks”) that activate plasmalemmal large-conductance Ca2+-activated K+ (BK) channels, a critical negative feedback mechanism that regulates smooth muscle contractility. This mechanism was impaired in Mcoln1−/− mice, which showed diminished spontaneous Ca2+ sparks and BK channel activity in bladder and urethra SMCs. Additionally, ex vivo contractility experiments showed that loss of Ca2+ spark–BK channel signaling in Mcoln1−/− mice rendered both bladder and urethra smooth muscle hypercontractile. Voiding activity analyses revealed bladder overactivity in Mcoln1−/− mice. We conclude that TRPML1 is critically important for Ca2+ spark signaling, and thus regulation of contractility and function, in lower urinary tract SMCs.
Collapse
|
35
|
Post WM, Ruiz-Zapata AM, Grens H, de Vries RBM, Poelmans G, Coenen MJH, Janssen DAW, Heesakkers JPFA, Oosterwijk E, Kluivers KB. Genetic variants and expression changes in urgency urinary incontinence: A systematic review. Neurourol Urodyn 2020; 39:2089-2110. [PMID: 32949220 PMCID: PMC7692907 DOI: 10.1002/nau.24512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/17/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022]
Abstract
Aim To perform a systematic review summarizing the knowledge of genetic variants, gene, and protein expression changes in humans and animals associated with urgency urinary incontinence (UUI) and to provide an overview of the known molecular mechanisms related to UUI. Methods A systematic search was performed on March 2, 2020, in PubMed, Embase, Web of Science, and the Cochrane library. Retrieved studies were screened for eligibility. The risk of bias was assessed using the ROBINS‐I (human) and SYRCLE (animal) tool. Data were presented in a structured manner and in the case of greater than five studies on a homogeneous outcome, a meta‐analysis was performed. Results Altogether, a total of 10,785 records were screened of which 37 studies met the inclusion criteria. Notably, 24/37 studies scored medium‐high to high on risk of bias, affecting the value of the included studies. The analysis of 70 unique genes and proteins and three genome‐wide association studies showed that specific signal transduction pathways and inflammation are associated with UUI. A meta‐analysis on the predictive value of urinary nerve growth factor (NGF) levels showed that increased urinary NGF levels correlate with UUI. Conclusion The collective evidence showed the involvement of two molecular mechanisms (signal transduction and inflammation) and NGF in UUI, enhancing our understanding of the pathophysiology of UUI. Unfortunately, the risk of bias was medium‐high to high for most studies and the value of many observations remains unclear. Future studies should focus on elucidating how deficits in the two identified molecular mechanisms contribute to UUI and should avoid bias.
Collapse
Affiliation(s)
- Wilke M Post
- Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alejandra M Ruiz-Zapata
- Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hilde Grens
- Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob B M de Vries
- Department for Health Evidence, SYRCLE, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert Poelmans
- Department of Human Genetics, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marieke J H Coenen
- Department of Human Genetics, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dick A W Janssen
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Egbert Oosterwijk
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kirsten B Kluivers
- Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Seidel R, Ritter M, Joerk A, Kuschke S, Langguth N, Schulze D, Görls H, Bauer M, Witte OW, Westerhausen M, Holthoff K, Pohnert G. Photoisomerization Neutralizes Vasoconstrictive Activity of a Heme Degradation Product. ACS OMEGA 2020; 5:21401-21411. [PMID: 32905283 PMCID: PMC7469247 DOI: 10.1021/acsomega.0c01698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Delayed cerebral ischemia (DCI) caused by cerebral vasospasm is the leading determinant of poor outcome and mortality in subarachnoid hemorrhage (SAH) patients, but current treatment options lack effective prevention and therapy. Two substance families of heme degradation products (HDPs), bilirubin oxidation end products (BOXes) and propentdyopents (PDPs), are elicitors of pathologic cerebral hypoperfusion after SAH. Z-configured HDPs can be photoconverted into the corresponding E-isomers. We hypothesize that photoconversion is a detoxification mechanism to prevent and treat DCI. We irradiated purified Z-BOXes and Z-PDPs with UV/Vis light and documented the Z-E photoconversion. E-BOX A slowly reisomerizes to the thermodynamically favored Z-configuration in protein-containing media. In contrast to vasoconstrictive Z-BOX A, E-BOX A does not cause vasoconstriction in cerebral arterioles in vitro and in vivo in wild-type mice. Our results enable a critical assessment of light-induced intrathecal photoconversion and suggest the use of phototherapy to prevent and cure HDP-mediated cerebral vasospasms.
Collapse
Affiliation(s)
- Raphael
A. Seidel
- Institute
of Inorganic and Analytical Chemistry, Friedrich
Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
- Department
of Anesthesiology and Intensive Care Medicine/Center for Sepsis Control
and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
- Devie
Medical, c/o Jena University Hospital, Bachstraße 18, 07743 Jena, Germany
| | - Marcel Ritter
- Institute
of Inorganic and Analytical Chemistry, Friedrich
Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Alexander Joerk
- Hans
Berger Department of Neurology, Jena University
Hospital, Am Klinikum
1, 07747 Jena, Germany
- Research
Program “Else Kröner-Forschungskolleg AntiAge”, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Stefan Kuschke
- Institute
of Inorganic and Analytical Chemistry, Friedrich
Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Niklas Langguth
- Hans
Berger Department of Neurology, Jena University
Hospital, Am Klinikum
1, 07747 Jena, Germany
| | - Daniel Schulze
- Institute
of Inorganic and Analytical Chemistry, Friedrich
Schiller University Jena, Humboldtstraße 8, 07743 Jena, Germany
| | - Helmar Görls
- Institute
of Inorganic and Analytical Chemistry, Friedrich
Schiller University Jena, Humboldtstraße 8, 07743 Jena, Germany
| | - Michael Bauer
- Department
of Anesthesiology and Intensive Care Medicine/Center for Sepsis Control
and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Otto W. Witte
- Hans
Berger Department of Neurology, Jena University
Hospital, Am Klinikum
1, 07747 Jena, Germany
- Research
Program “Else Kröner-Forschungskolleg AntiAge”, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Matthias Westerhausen
- Institute
of Inorganic and Analytical Chemistry, Friedrich
Schiller University Jena, Humboldtstraße 8, 07743 Jena, Germany
| | - Knut Holthoff
- Hans
Berger Department of Neurology, Jena University
Hospital, Am Klinikum
1, 07747 Jena, Germany
| | - Georg Pohnert
- Institute
of Inorganic and Analytical Chemistry, Friedrich
Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| |
Collapse
|
37
|
Szteyn K, Singh H. BK Ca Channels as Targets for Cardioprotection. Antioxidants (Basel) 2020; 9:antiox9080760. [PMID: 32824463 PMCID: PMC7463653 DOI: 10.3390/antiox9080760] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
The large-conductance calcium- and voltage-activated K+ channel (BKCa) are encoded by the Kcnma1 gene. They are ubiquitously expressed in neuronal, smooth muscle, astrocytes, and neuroendocrine cells where they are known to play an important role in physiological and pathological processes. They are usually localized to the plasma membrane of the majority of the cells with an exception of adult cardiomyocytes, where BKCa is known to localize to mitochondria. BKCa channels couple calcium and voltage responses in the cell, which places them as unique targets for a rapid physiological response. The expression and activity of BKCa have been linked to several cardiovascular, muscular, and neurological defects, making them a key therapeutic target. Specifically in the heart muscle, pharmacological and genetic activation of BKCa channels protect the heart from ischemia-reperfusion injury and also facilitate cardioprotection rendered by ischemic preconditioning. The mechanism involved in cardioprotection is assigned to the modulation of mitochondrial functions, such as regulation of mitochondrial calcium, reactive oxygen species, and membrane potential. Here, we review the progress made on BKCa channels and cardioprotection and explore their potential roles as therapeutic targets for preventing acute myocardial infarction.
Collapse
|
38
|
Malysz J, Petkov GV. Urinary bladder smooth muscle ion channels: expression, function, and regulation in health and disease. Am J Physiol Renal Physiol 2020; 319:F257-F283. [PMID: 32628539 PMCID: PMC7473901 DOI: 10.1152/ajprenal.00048.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 12/17/2022] Open
Abstract
Urinary bladder smooth muscle (UBSM), also known as detrusor smooth muscle, forms the bladder wall and ultimately determines the two main attributes of the organ: urine storage and voiding. The two functions are facilitated by UBSM relaxation and contraction, respectively, which depend on UBSM excitability shaped by multiple ion channels. In this review, we summarize the current understanding of key ion channels establishing and regulating UBSM excitability and contractility. They include excitation-enhancing voltage-gated Ca2+ (Cav) and transient receptor potential channels, excitation-reducing K+ channels, and still poorly understood Cl- channels. Dynamic interplay among UBSM ion channels determines the overall level of Cav channel activity. The net Ca2+ influx via Cav channels increases global intracellular Ca2+ concentration, which subsequently triggers UBSM contractility. Here, for each ion channel type, we describe UBSM tissue/cell expression (mRNA and protein) profiles and their role in regulating excitability and contractility of UBSM in various animal species, including the mouse, rat, and guinea pig, and, most importantly, humans. The currently available data reveal certain interspecies differences, which complicate the translational value of published animal research results to humans. This review highlights recent developments, findings on genetic knockout models, pharmacological data, reports on UBSM ion channel dysfunction in animal bladder disease models, and the very limited human studies currently available. Among all gaps in present-day knowledge, the unknowns on expression and functional roles for ion channels determined directly in human UBSM tissues and cells under both normal and disease conditions remain key hurdles in the field.
Collapse
Affiliation(s)
- John Malysz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Georgi V Petkov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Urology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
39
|
Fry CH, Chakrabarty B, Hashitani H, Andersson KE, McCloskey K, Jabr RI, Drake MJ. New targets for overactive bladder-ICI-RS 2109. Neurourol Urodyn 2020; 39 Suppl 3:S113-S121. [PMID: 31737931 PMCID: PMC8114459 DOI: 10.1002/nau.24228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 10/31/2019] [Indexed: 12/16/2022]
Abstract
AIM To review evidence for novel drug targets that can manage overactive bladder (OAB) symptoms. METHODS A think tank considered evidence from the literature and their own research experience to propose new drug targets in the urinary bladder to characterize their use to treat OAB. RESULTS Five classes of agents or cellular pathways were considered. (a) Cyclic nucleotide-dependent (cyclic adenosine monophosphate and cyclic guanosine monophosphate) pathways that modulate adenosine triphosphate release from motor nerves and urothelium. (b) Novel targets for β3 agonists, including the bladder wall vasculature and muscularis mucosa. (c) Several TRP channels (TRPV1 , TRPV4 , TRPA1 , and TRPM4 ) and their modulators in affecting detrusor overactivity. (d) Small conductance Ca2+ -activated K+ channels and their influence on spontaneous contractions. (e) Antifibrosis agents that act to modulate directly or indirectly the TGF-β pathway-the canonical fibrosis pathway. CONCLUSIONS The specificity of action remains a consideration if particular classes of agents can be considered for future development as receptors or pathways that mediate actions of the above mentioned potential agents are distributed among most organ systems. The tasks are to determine more detail of the pathological changes that occur in the OAB and how the specificity of potential drugs may be directed to bladder pathological changes. An important conclusion was that the storage, not the voiding, phase in the micturition cycle should be investigated and potential targets lie in the whole range of tissue in the bladder wall and not just detrusor.
Collapse
Affiliation(s)
- Christopher Henry Fry
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Basu Chakrabarty
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Hikaru Hashitani
- Department of Cell Physiology, Nagoya City University, Nagoya, Japan
| | - Karl-Erik Andersson
- Institute of Laboratory Medicine, Lund University, Lund, Sweden
- Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Karen McCloskey
- School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, UK
| | - Rita I. Jabr
- Division of Biochemical Sciences, Faculty of Health and Biomedical Sciences, University of Surrey, Guildford, UK
| | | |
Collapse
|
40
|
Ohtsuki G, Shishikura M, Ozaki A. Synergistic excitability plasticity in cerebellar functioning. FEBS J 2020; 287:4557-4593. [PMID: 32367676 DOI: 10.1111/febs.15355] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 12/27/2022]
Abstract
The cerebellum, a universal processor for sensory acquisition and internal models, and its association with synaptic and nonsynaptic plasticity have been envisioned as the biological correlates of learning, perception, and even thought. Indeed, the cerebellum is no longer considered merely as the locus of motor coordination and its learning. Here, we introduce the mechanisms underlying the induction of multiple types of plasticity in cerebellar circuit and give an overview focusing on the plasticity of nonsynaptic intrinsic excitability. The discovery of long-term potentiation of synaptic responsiveness in hippocampal neurons led investigations into changes of their intrinsic excitability. This activity-dependent potentiation of neuronal excitability is distinct from that of synaptic efficacy. Systematic examination of excitability plasticity has indicated that the modulation of various types of Ca2+ - and voltage-dependent K+ channels underlies the phenomenon, which is also triggered by immune activity. Intrinsic plasticity is expressed specifically on dendrites and modifies the integrative processing and filtering effect. In Purkinje cells, modulation of the discordance of synaptic current on soma and dendrite suggested a novel type of cellular learning mechanism. This property enables a plausible synergy between synaptic efficacy and intrinsic excitability, by amplifying electrical conductivity and influencing the polarity of bidirectional synaptic plasticity. Furthermore, the induction of intrinsic plasticity in the cerebellum correlates with motor performance and cognitive processes, through functional connections from the cerebellar nuclei to neocortex and associated regions: for example, thalamus and midbrain. Taken together, recent advances in neuroscience have begun to shed light on the complex functioning of nonsynaptic excitability and the synergy.
Collapse
Affiliation(s)
- Gen Ohtsuki
- The Hakubi Center for Advanced Research, Kyoto University, Japan.,Department of Biophysics, Kyoto University Graduate School of Science, Japan.,Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Japan
| | - Mari Shishikura
- Department of Biophysics, Kyoto University Graduate School of Science, Japan
| | - Akitoshi Ozaki
- Department of Biophysics, Kyoto University Graduate School of Science, Japan
| |
Collapse
|
41
|
Scruggs AM, Grabauskas G, Huang SK. The Role of KCNMB1 and BK Channels in Myofibroblast Differentiation and Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2020; 62:191-203. [PMID: 31486669 DOI: 10.1165/rcmb.2019-0163oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The differentiation of fibroblasts into myofibroblasts is critical for the development of fibrotic disorders, including idiopathic pulmonary fibrosis (IPF). Previously, we demonstrated that fibroblasts from patients with IPF exhibit changes in DNA methylation across the genome that contribute to a profibrotic phenotype. One of the top differentially methylated genes identified in our previous study was KCNMB1, which codes for the β subunit of the large-conductance potassium (BK, also known as MaxiK or KCa1.1) channel. Here, we examined how the expression of KCNMB1 differed between IPF fibroblasts and normal cells, and how BK channels affected myofibroblast differentiation. Fibroblasts from patients with IPF exhibited increased expression of KCNMB1, which corresponded to increased DNA methylation within the gene body. Patch-clamp experiments demonstrated that IPF fibroblasts had increased BK channel activity. Knockdown of KCNMB1 attenuated the ability of fibroblasts to contract collagen gels, and this was associated with a loss of α-smooth muscle actin (SMA) expression. Pharmacologic activation of BK channels stimulated α-SMA expression, whereas BK channel inhibitors blocked the upregulation of α-SMA. The ability of BK channels to enhance α-SMA expression was dependent on intracellular calcium, as activation of BK channels resulted in increased levels of intracellular calcium and the effects of BK agonists were abolished when calcium was removed. Together, our findings demonstrate that epigenetic upregulation of KCNMB1 contributes to increased BK channel activity in IPF fibroblasts, and identify a newfound role for BK channels in myofibroblast differentiation.
Collapse
Affiliation(s)
| | - Gintautas Grabauskas
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | | |
Collapse
|
42
|
Liang L, Li X, Moutton S, Schrier Vergano SA, Cogné B, Saint-Martin A, Hurst ACE, Hu Y, Bodamer O, Thevenon J, Hung CY, Isidor B, Gerard B, Rega A, Nambot S, Lehalle D, Duffourd Y, Thauvin-Robinet C, Faivre L, Bézieau S, Dure LS, Helbling DC, Bick D, Xu C, Chen Q, Mancini GMS, Vitobello A, Wang QK. De novo loss-of-function KCNMA1 variants are associated with a new multiple malformation syndrome and a broad spectrum of developmental and neurological phenotypes. Hum Mol Genet 2020; 28:2937-2951. [PMID: 31152168 DOI: 10.1093/hmg/ddz117] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/17/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023] Open
Abstract
KCNMA1 encodes the large-conductance Ca2+- and voltage-activated K+ (BK) potassium channel α-subunit, and pathogenic gain-of-function variants in this gene have been associated with a dominant form of generalized epilepsy and paroxysmal dyskinesia. Here, we genetically and functionally characterize eight novel loss-of-function (LoF) variants of KCNMA1. Genome or exome sequencing and the participation in the international Matchmaker Exchange effort allowed for the identification of novel KCNMA1 variants. Patch clamping was used to assess functionality of mutant BK channels. The KCNMA1 variants p.(Ser351Tyr), p.(Gly356Arg), p.(Gly375Arg), p.(Asn449fs) and p.(Ile663Val) abolished the BK current, whereas p.(Cys413Tyr) and p.(Pro805Leu) reduced the BK current amplitude and shifted the activation curves toward positive potentials. The p.(Asp984Asn) variant reduced the current amplitude without affecting kinetics. A phenotypic analysis of the patients carrying the recurrent p.(Gly375Arg) de novo missense LoF variant revealed a novel syndromic neurodevelopmental disorder associated with severe developmental delay, visceral and cardiac malformations, connective tissue presentations with arterial involvement, bone dysplasia and characteristic dysmorphic features. Patients with other LoF variants presented with neurological and developmental symptoms including developmental delay, intellectual disability, ataxia, axial hypotonia, cerebral atrophy and speech delay/apraxia/dysarthria. Therefore, LoF KCNMA1 variants are associated with a new syndrome characterized by a broad spectrum of neurological phenotypes and developmental disorders. LoF variants of KCNMA1 cause a new syndrome distinctly different from gain-of-function variants in the same gene.
Collapse
Affiliation(s)
- Lina Liang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Xia Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Sébastien Moutton
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Dijon 21079, France.,Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital d'Enfants, Dijon 21079, France.,Inserm UMR 1231 GAD team, Genetics of Developmental Disorders, Université de Bourgogne Franche-Comté, Dijon 21070, France
| | - Samantha A Schrier Vergano
- Medical Genetics and Metabolism, Children's Hospital of The King's Daughters, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Benjamin Cogné
- Service de Génétique Médicale, CHU de Nantes, Nantes 44093, France
| | - Anne Saint-Martin
- Neuropédiatrie, Centre de Référence des Epilepsies Rares, Hôpitaux Universitaires de Strasbourg, Strasbourg 67098, France
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yushuang Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Olaf Bodamer
- Division of Genetics and Genomics, Boston Children's Hospital/Harvard Medical School, Boston, MA 02115, USA.,The Broad Institute of Harvard and MIT, Boston, MA 02115, USA
| | - Julien Thevenon
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Dijon 21079, France.,Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital d'Enfants, Dijon 21079, France.,Inserm UMR 1231 GAD team, Genetics of Developmental Disorders, Université de Bourgogne Franche-Comté, Dijon 21070, France
| | - Christina Y Hung
- Division of Genetics and Genomics, Boston Children's Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, Nantes 44093, France
| | - Bénédicte Gerard
- Institut de Génétique Médicale d'Alsace, Laboratoires de Diagnostic Génétique, Unité de Génétique Moléculaire, Nouvel Hôpital Civil, Strasbourg 67000, Franc
| | - Adelaide Rega
- Pediatric Radiologist, Département de Radiologie et Imagerie Diagnostique et Thérapeutique, CHU, Dijon 21079, France
| | - Sophie Nambot
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Dijon 21079, France.,Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital d'Enfants, Dijon 21079, France.,Inserm UMR 1231 GAD team, Genetics of Developmental Disorders, Université de Bourgogne Franche-Comté, Dijon 21070, France
| | - Daphné Lehalle
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Dijon 21079, France.,Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital d'Enfants, Dijon 21079, France.,Inserm UMR 1231 GAD team, Genetics of Developmental Disorders, Université de Bourgogne Franche-Comté, Dijon 21070, France
| | - Yannis Duffourd
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Dijon 21079, France.,Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital d'Enfants, Dijon 21079, France.,Inserm UMR 1231 GAD team, Genetics of Developmental Disorders, Université de Bourgogne Franche-Comté, Dijon 21070, France
| | - Christel Thauvin-Robinet
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Dijon 21079, France.,Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital d'Enfants, Dijon 21079, France.,Inserm UMR 1231 GAD team, Genetics of Developmental Disorders, Université de Bourgogne Franche-Comté, Dijon 21070, France
| | - Laurence Faivre
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Dijon 21079, France.,Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital d'Enfants, Dijon 21079, France.,Inserm UMR 1231 GAD team, Genetics of Developmental Disorders, Université de Bourgogne Franche-Comté, Dijon 21070, France
| | - Stéphane Bézieau
- Service de Génétique Médicale, CHU de Nantes, Nantes 44093, France
| | - Leon S Dure
- Department of Pediatrics and Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Daniel C Helbling
- Clinical Services Laboratory, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - David Bick
- Clinical Services Laboratory, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Qiuyun Chen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam 3015, The Netherlands
| | - Antonio Vitobello
- Inserm UMR 1231 GAD team, Genetics of Developmental Disorders, Université de Bourgogne Franche-Comté, Dijon 21070, France
| | - Qing Kenneth Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China.,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA.,Department of Genetics and Genome Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
43
|
Papanicolaou KN, Ashok D, Liu T, Bauer TM, Sun J, Li Z, da Costa E, D'Orleans CC, Nathan S, Lefer DJ, Murphy E, Paolocci N, Foster DB, O'Rourke B. Global knockout of ROMK potassium channel worsens cardiac ischemia-reperfusion injury but cardiomyocyte-specific knockout does not: Implications for the identity of mitoKATP. J Mol Cell Cardiol 2020; 139:176-189. [PMID: 32004507 PMCID: PMC7849919 DOI: 10.1016/j.yjmcc.2020.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 01/29/2023]
Abstract
The renal-outer-medullary‑potassium (ROMK) channel, mutated in Bartter's syndrome, regulates ion exchange in kidney, but its extra-renal functions remain unknown. Additionally, ROMK was postulated to be the pore-forming subunit of the mitochondrial ATP-sensitive K+ channel (mitoKATP), a mediator of cardioprotection. Using global and cardiomyocyte-specific knockout mice (ROMK-GKO and ROMK-CKO respectively), we characterize the effects of ROMK knockout on mitochondrial ion handling, the response to pharmacological KATP channel modulators, and ischemia/reperfusion (I/R) injury. Mitochondria from ROMK-GKO hearts exhibited a lower threshold for Ca2+-triggered permeability transition pore (mPTP) opening but normal matrix volume changes during oxidative phosphorylation. Isolated perfused ROMK-GKO hearts exhibited impaired functional recovery and increased infarct size when I/R was preceded by an ischemic preconditioning (IPC) protocol. Because ROMK-GKO mice exhibited severe renal defects and cardiac remodeling, we further characterized ROMK-CKO hearts to avoid confounding systemic effects. Mitochondria from ROMK-CKO hearts had unchanged matrix volume responses during oxidative phosphorylation and still swelled upon addition of a mitoKATP opener, but exhibited a lower threshold for mPTP opening, similar to GKO mitochondria. Nevertheless, I/R induced damage was not exacerbated in ROMK-CKO hearts, either ex vivo or in vivo. Lastly, we examined the response of ROMK-CKO hearts to ex vivo I/R injury with or without IPC and found that IPC still protected these hearts, suggesting that cardiomyocyte ROMK does not participate significantly in the cardioprotective pathway elicited by IPC. Collectively, our findings from these novel strains of mice suggest that cardiomyocyte ROMK is not a central mediator of mitoKATP function, although it can affect mPTP activation threshold.
Collapse
Affiliation(s)
- Kyriakos N Papanicolaou
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deepthi Ashok
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ting Liu
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tyler M Bauer
- Cardiovascular Branch, NHLBI, NIH, 10 Center Drive, Bethesda, MD, USA
| | - Junhui Sun
- Cardiovascular Branch, NHLBI, NIH, 10 Center Drive, Bethesda, MD, USA
| | - Zhen Li
- Cardiovascular Center of Excellence, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA; Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA, USA
| | - Eduardo da Costa
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles Crepy D'Orleans
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sara Nathan
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA; Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA, USA
| | - Elizabeth Murphy
- Cardiovascular Branch, NHLBI, NIH, 10 Center Drive, Bethesda, MD, USA
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - D Brian Foster
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
44
|
A lysosomal K + channel regulates large particle phagocytosis by facilitating lysosome Ca 2+ release. Sci Rep 2020; 10:1038. [PMID: 31974459 PMCID: PMC6978423 DOI: 10.1038/s41598-020-57874-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
Macrophages are highly specialized in removing large particles including dead cells and cellular debris. When stimulated, delivery of the intracellular lysosomal membranes is required for the formation of plasmalemmal pseudopods and phagosomes. As a key lysosomal Ca2+ channel, Transient Receptor Potential Mucolipin-1 (TRPML1) regulates lysosomal exocytosis and subsequent phagosome biogenesis, thereby promoting phagocytosis of large extracellular particles. Recently, we have suggested that TRPML1-mediated lysosomal exocytosis is essentially dependent on lysosomal big conductance Ca2+-activated potassium (BK) channel. Therefore, we predict that lysosomal BK channels regulate large particle phagocytosis. In this study, by using RAW264.7 macrophage cell line and bone marrow-derived macrophages, we show that although BK is dispensable for small particle uptake, loss of BK significantly inhibits the ingestion of large particles whereas activating BK increases the uptake of large particles. BK facilitating effect on large particle ingestion is inhibited by either blocking TRPML1 or suppressing lysosomal exocytosis. Additionally, the increased uptake of large particles by activating TRPML1 is eliminated by inhibiting BK. These data suggest that BK and TRPML1 are functionally coupled to regulate large particle phagocytosis through modulating lysosomal exocytosis.
Collapse
|
45
|
LINGO1 is a regulatory subunit of large conductance, Ca 2+-activated potassium channels. Proc Natl Acad Sci U S A 2020; 117:2194-2200. [PMID: 31932443 PMCID: PMC6994976 DOI: 10.1073/pnas.1916715117] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Large conductance calcium-activated potassium (BK) channels are ubiquitously expressed and alter cellular excitability. These channels are formed by four pore-forming α subunits whose biophysical and pharmacological properties are modulated by regulatory β and γ subunits. LINGO1 is a protein, previously shown to be upregulated in both Parkinson’s disease and Essential Tremor. Consequently, we investigated its effects on BK channels and demonstrate that LINGO1 associates with these channels in human cerebellum. LINGO1 causes BK channels to inactivate and to open at more negative potentials. Furthermore, coexpression of BK with LINGO1 also led to a reduction in BK channels in the membrane. Our data support the idea that LINGO1 is a regulatory subunit of BK channels. LINGO1 is a transmembrane protein that is up-regulated in the cerebellum of patients with Parkinson’s disease (PD) and Essential Tremor (ET). Patients with additional copies of the LINGO1 gene also present with tremor. Pharmacological or genetic ablation of large conductance Ca2+-activated K+ (BK) channels also result in tremor and motor disorders. We hypothesized that LINGO1 is a regulatory BK channel subunit. We show that 1) LINGO1 coimmunoprecipitated with BK channels in human brain, 2) coexpression of LINGO1 and BK channels resulted in rapidly inactivating BK currents, and 3) LINGO1 reduced the membrane surface expression of BK channels. These results suggest that LINGO1 is a regulator of BK channels, which causes a “functional knockdown” of these currents and may contribute to the tremor associated with increased LINGO1 levels.
Collapse
|
46
|
Plante AE, Lai MH, Lu J, Meredith AL. Effects of Single Nucleotide Polymorphisms in Human KCNMA1 on BK Current Properties. Front Mol Neurosci 2019; 12:285. [PMID: 31849601 PMCID: PMC6901604 DOI: 10.3389/fnmol.2019.00285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
BK Ca2+-activated K+ channels are important regulators of membrane excitability. Multiple regulatory mechanisms tailor BK current properties across tissues, such as alternative splicing, posttranslational modifications, and auxiliary subunits. Another potential mechanism for modulating BK channel activity is genetic variation due to single nucleotide polymorphisms (SNPs). The gene encoding the human BK α subunit, KCNMA1, contains hundreds of SNPs. However, the variation in BK channel activity due to SNPs is not well studied. Here, we screened the effects of four SNPs (A138V, C495G, N599D, and R800W) on BK currents in HEK293T cells, selected based on predicted protein pathogenicity or disease linkage. We found that the SNPs C495G and R800W had the largest effects on BK currents, affecting the conductance-voltage relationship across multiple Ca2+ conditions in the context of two BK channel splice variants. In symmetrical K+, C495G shifted the V1/2 to more hyperpolarized potentials (by -15 to -20 mV) and accelerated activation, indicating C495G confers some gain-of-function properties. R800W shifted the V1/2 to more depolarized potentials (+15 to +35 mV) and slowed activation, conferring loss-of-function properties. Moreover, the C495G and R800W effects on current properties were found to persist with posttranslational modifications. In contrast, A138V and N599D had smaller and more variable effects on current properties. Neither application of alkaline phosphatase to patches, which results in increased BK channel activity attributed to channel dephosphorylation, nor bidirectional redox modulations completely abrogated SNP effects on BK currents. Lastly, in physiological K+, C495G increased the amplitude of action potential (AP)-evoked BK currents, while R800W had a more limited effect. However, the introduction of R800W in parallel with the epilepsy-linked mutation D434G (D434G/R800W) decreased the amplitude of AP-evoked BK currents compared with D434G alone. These results suggest that in a physiological context, C495G could increase BK activation, while the effects of the loss-of-function SNP R800W could oppose the gain-of-function effects of an epilepsy-linked mutation. Together, these results implicate naturally occurring human genetic variation as a potential modifier of BK channel activity across a variety of conditions.
Collapse
Affiliation(s)
| | | | | | - Andrea L. Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
47
|
Hayashi T, Hashitani H, Takeya M, Uemura KI, Nakamura KI, Igawa T. Properties of SK3 channel-expressing PDGFRα (+) cells in the rodent urinary bladder. Eur J Pharmacol 2019; 860:172552. [DOI: 10.1016/j.ejphar.2019.172552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/05/2019] [Accepted: 07/15/2019] [Indexed: 11/27/2022]
|
48
|
BK Ca ( Slo) Channel Regulates Mitochondrial Function and Lifespan in Drosophila melanogaster. Cells 2019; 8:cells8090945. [PMID: 31438578 PMCID: PMC6770356 DOI: 10.3390/cells8090945] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022] Open
Abstract
BKCa channels, originally discovered in Drosophila melanogaster as slowpoke (slo), are recognized for their roles in cellular and organ physiology. Pharmacological approaches implicated BKCa channels in cellular and organ protection possibly for their ability to modulate mitochondrial function. However, the direct role of BKCa channels in regulating mitochondrial structure and function is not deciphered. Here, we demonstrate that BKCa channels are present in fly mitochondria, and slo mutants show structural and functional defects in mitochondria. slo mutants display an increase in reactive oxygen species and the modulation of ROS affected their survival. We also found that the absence of BKCa channels reduced the lifespan of Drosophila, and overexpression of human BKCa channels in flies extends life span in males. Our study establishes the presence of BKCa channels in mitochondria of Drosophila and ascertains its novel physiological role in regulating mitochondrial structural and functional integrity, and lifespan.
Collapse
|
49
|
Bailey CS, Moldenhauer HJ, Park SM, Keros S, Meredith AL. KCNMA1-linked channelopathy. J Gen Physiol 2019; 151:1173-1189. [PMID: 31427379 PMCID: PMC6785733 DOI: 10.1085/jgp.201912457] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Bailey et al. review a new neurological channelopathy associated with KCNMA1, encoding the BK voltage- and Ca2+-activated K+ channel. KCNMA1 encodes the pore-forming α subunit of the “Big K+” (BK) large conductance calcium and voltage-activated K+ channel. BK channels are widely distributed across tissues, including both excitable and nonexcitable cells. Expression levels are highest in brain and muscle, where BK channels are critical regulators of neuronal excitability and muscle contractility. A global deletion in mouse (KCNMA1−/−) is viable but exhibits pathophysiology in many organ systems. Yet despite the important roles in animal models, the consequences of dysfunctional BK channels in humans are not well characterized. Here, we summarize 16 rare KCNMA1 mutations identified in 37 patients dating back to 2005, with an array of clinically defined pathological phenotypes collectively referred to as “KCNMA1-linked channelopathy.” These mutations encompass gain-of-function (GOF) and loss-of-function (LOF) alterations in BK channel activity, as well as several variants of unknown significance (VUS). Human KCNMA1 mutations are primarily associated with neurological conditions, including seizures, movement disorders, developmental delay, and intellectual disability. Due to the recent identification of additional patients, the spectrum of symptoms associated with KCNMA1 mutations has expanded but remains primarily defined by brain and muscle dysfunction. Emerging evidence suggests the functional BK channel alterations produced by different KCNMA1 alleles may associate with semi-distinct patient symptoms, such as paroxysmal nonkinesigenic dyskinesia (PNKD) with GOF and ataxia with LOF. However, due to the de novo origins for the majority of KCNMA1 mutations identified to date and the phenotypic variability exhibited by patients, additional evidence is required to establish causality in most cases. The symptomatic picture developing from patients with KCNMA1-linked channelopathy highlights the importance of better understanding the roles BK channels play in regulating cell excitability. Establishing causality between KCNMA1-linked BK channel dysfunction and specific patient symptoms may reveal new treatment approaches with the potential to increase therapeutic efficacy over current standard regimens.
Collapse
Affiliation(s)
- Cole S Bailey
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Hans J Moldenhauer
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Su Mi Park
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Sotirios Keros
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, SD
| | - Andrea L Meredith
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
50
|
Imari K, Harada Y, Zhang J, Mori Y, Hayashi Y. KCNMB3 in spinal microglia contributes to the generation and maintenance of neuropathic pain in mice. Int J Mol Med 2019; 44:1585-1593. [PMID: 31364720 DOI: 10.3892/ijmm.2019.4279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/01/2019] [Indexed: 11/06/2022] Open
Abstract
Neuropathic pain is one of most intense types of chronic pain. Numerous studies investigating neuropathic pain have described the critical involvement of microglia in the spinal cord. Previous studies have indicated that activation of large conductance Ca2+‑activated K+ (BK) channels contributes to microglial activation in the spinal dorsal horn (SDH) and the generation of neuropathic pain. However, the specific role of BK channels in spinal microglia in neuropathic pain has not been fully addressed in previous studies, as BK channel inhibitors were used to inhibit microglial BK channel based on their inhibitory kinetics. We previously identified that Ca2+‑activated K+ channel β3 auxiliary subunit (KCNMB3), which is an auxiliary subunit of BK channels and regulates gating properties of the channel, is exclusively expressed in microglia in the spinal cord. The present study analyzed the role of BK channels in spinal microglia in neuropathic pain using a spinal microglia‑specific BK channel knockdown method, with intrathecal injection of KCNMB3 small interfering RNA. Neuropathic pain was significantly attenuated in KCNMB3 knockdown mice. Increases in the number of microglia in the SDH following nerve injury were attenuated by KCNMB3 knockdown. Furthermore, increased levels of pain‑associated molecules in the SDH were attenuated in KCNMB3 knockdown mice. Attempts were also made to analyze the effects of KCNMB3 knockdown on chronic pain. KCNMB3 knockdown ameliorated chronic pain and inhibited the expression levels of pain‑associated molecules in the SDH. The results from the present study suggested that BK channels modulated the activation state of spinal microglia, and that KCNMB3 is a potential therapeutic target for neuropathic pain.
Collapse
Affiliation(s)
- Kazuhisa Imari
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812‑8582, Japan
| | - Yuka Harada
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka 812‑8582, Japan
| | - Jing Zhang
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka 812‑8582, Japan
| | - Yoshihide Mori
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812‑8582, Japan
| | - Yoshinori Hayashi
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka 812‑8582, Japan
| |
Collapse
|