1
|
Liang H, Mower JP, Chia CP. Functional Prokaryotic-Like Deoxycytidine Triphosphate Deaminases and Thymidylate Synthase in Eukaryotic Social Amoebae: Vertical, Endosymbiotic, or Horizontal Gene Transfer? Mol Biol Evol 2023; 40:msad268. [PMID: 38064674 PMCID: PMC10733785 DOI: 10.1093/molbev/msad268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/22/2023] [Accepted: 11/30/2023] [Indexed: 12/22/2023] Open
Abstract
The de novo synthesis of deoxythymidine triphosphate uses several pathways: gram-negative bacteria use deoxycytidine triphosphate deaminase to convert deoxycytidine triphosphate into deoxyuridine triphosphate, whereas eukaryotes and gram-positive bacteria instead use deoxycytidine monophosphate deaminase to transform deoxycytidine monophosphate to deoxyuridine monophosphate. It is then unusual that in addition to deoxycytidine monophosphate deaminases, the eukaryote Dictyostelium discoideum has 2 deoxycytidine triphosphate deaminases (Dcd1Dicty and Dcd2Dicty). Expression of either DcdDicty can fully rescue the slow growth of an Escherichia coli dcd knockout. Both DcdDicty mitigate the hydroxyurea sensitivity of a Schizosaccharomyces pombe deoxycytidine monophosphate deaminase knockout. Phylogenies show that Dcd1Dicty homologs may have entered the common ancestor of the eukaryotic groups of Amoebozoa, Obazoa, Metamonada, and Discoba through an ancient horizontal gene transfer from a prokaryote or an ancient endosymbiotic gene transfer from a mitochondrion, followed by horizontal gene transfer from Amoebozoa to several other unrelated groups of eukaryotes. In contrast, the Dcd2Dicty homologs were a separate horizontal gene transfer from a prokaryote or a virus into either Amoebozoa or Rhizaria, followed by a horizontal gene transfer between them. ThyXDicty, the D. discoideum thymidylate synthase, another enzyme of the deoxythymidine triphosphate biosynthesis pathway, was suggested previously to be acquired from the ancestral mitochondria or by horizontal gene transfer from alpha-proteobacteria. ThyXDicty can fully rescue the E. coli thymidylate synthase knockout, and we establish that it was obtained by the common ancestor of social amoebae not from mitochondria but from a bacterium. We propose horizontal gene transfer and endosymbiotic gene transfer contributed to the enzyme diversity of the deoxythymidine triphosphate synthesis pathway in most social amoebae, many Amoebozoa, and other eukaryotes.
Collapse
Affiliation(s)
- Heng Liang
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jeffrey P Mower
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Catherine P Chia
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
2
|
McKindles KM, Manes M, Neudeck M, McKay RM, Bullerjahn GS. Multi-year molecular quantification and 'omics analysis of Planktothrix-specific cyanophage sequences from Sandusky Bay, Lake Erie. Front Microbiol 2023; 14:1199641. [PMID: 37455749 PMCID: PMC10343443 DOI: 10.3389/fmicb.2023.1199641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Planktothrix agardhii is a microcystin-producing cyanobacterium found in Sandusky Bay, a shallow and turbid embayment of Lake Erie. Previous work in other systems has indicated that cyanophages are an important natural control factor of harmful algal blooms. Currently, there are few cyanophages that are known to infect P. agardhii, with the best-known being PaV-LD, a tail-less cyanophage isolated from Lake Donghu, China. Presented here is a molecular characterization of Planktothrix specific cyanophages in Sandusky Bay. Methods and Results Putative Planktothrix-specific viral sequences from metagenomic data from the bay in 2013, 2018, and 2019 were identified by two approaches: homology to known phage PaV-LD, or through matching CRISPR spacer sequences with Planktothrix host genomes. Several contigs were identified as having viral signatures, either related to PaV-LD or potentially novel sequences. Transcriptomic data from 2015, 2018, and 2019 were also employed for the further identification of cyanophages, as well as gene expression of select viral sequences. Finally, viral quantification was tested using qPCR in 2015-2019 for PaV-LD like cyanophages to identify the relationship between presence and gene expression of these cyanophages. Notably, while PaV-LD like cyanophages were in high abundance over the course of multiple years (qPCR), transcriptomic analysis revealed only low levels of viral gene expression. Discussion This work aims to provide a broader understanding of Planktothrix cyanophage diversity with the goals of teasing apart the role of cyanophages in the control and regulation of harmful algal blooms and designing monitoring methodology for potential toxin-releasing lysis events.
Collapse
Affiliation(s)
- Katelyn M. McKindles
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, OH, United States
| | - Makayla Manes
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Michelle Neudeck
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, OH, United States
| | - Robert Michael McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, OH, United States
| | - George S. Bullerjahn
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, OH, United States
| |
Collapse
|
3
|
Zhang D, You F, He Y, Te SH, Gin KYH. Corrected and Republished from: "Isolation and Characterization of the First Freshwater Cyanophage Infecting Pseudanabaena". J Virol 2023; 97:e0040523. [PMID: 37074059 PMCID: PMC10286775 DOI: 10.1128/jvi.00405-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/20/2023] Open
Abstract
Cyanobacteria are the major primary producers in both freshwater and marine environments. However, the majority of freshwater cyanophages remain unknown due to the limited number of cyanophage isolates. In this study, we present a novel lytic freshwater cyanophage, PA-SR01, which was isolated from the Singapore Serangoon Reservoir. To our knowledge, this is the first isolate of a cyanophage that has been found to infect the cyanobacterium Pseudanabaena. PA-SR01 has a narrow host range, a short latent period, and is chloroform sensitive. PA-SR01 is a member of Siphoviridae with a long noncontractile tail. It is a double-stranded DNA virus with a 137,012-bp genome. Functional annotation for the predicted open reading frames (ORFs) of the PA-SR01 genome identified genes with putative functions related to DNA metabolism, structural proteins, lysis, host-derived metabolic genes, and DNA packaging. Out of 166 predicted ORFs, only 17 ORFs have homology with genes with known function. Phylogenetic analysis of the major capsid protein and terminase large subunit further suggests that phage PA-SR01 is evolutionary distinct from known cyanophages. Metagenomics sequence recruitment onto the PA-SR01 genome indicates that PA-SR01 represents a new evolutionary lineage of phage which shares considerable genetic similarities with phage sequences in aquatic environments and could play key ecological roles. IMPORTANCE This study presents the isolation of the very first freshwater cyanophage, PA-SR01, that infects Pseudanabaena, and fills an important knowledge gap on freshwater cyanophages as well as cyanophages infecting Pseudanabaena.
Collapse
Affiliation(s)
- Dong Zhang
- NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Fang You
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shu Harn Te
- NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, Singapore
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| |
Collapse
|
4
|
Bacterial origins of thymidylate metabolism in Asgard archaea and Eukarya. Nat Commun 2023; 14:838. [PMID: 36792581 PMCID: PMC9931769 DOI: 10.1038/s41467-023-36487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Asgard archaea include the closest known archaeal relatives of eukaryotes. Here, we investigate the evolution and function of Asgard thymidylate synthases and other folate-dependent enzymes required for the biosynthesis of DNA, RNA, amino acids and vitamins, as well as syntrophic amino acid utilization. Phylogenies of Asgard folate-dependent enzymes are consistent with their horizontal transmission from various bacterial groups. We experimentally validate the functionality of thymidylate synthase ThyX of the cultured 'Candidatus Prometheoarchaeum syntrophicum'. The enzyme efficiently uses bacterial-like folates and is inhibited by mycobacterial ThyX inhibitors, even though the majority of experimentally tested archaea are known to use carbon carriers distinct from bacterial folates. Our phylogenetic analyses suggest that the eukaryotic thymidylate synthase, required for de novo DNA synthesis, is not closely related to archaeal enzymes and might have been transferred from bacteria to protoeukaryotes during eukaryogenesis. Altogether, our study suggests that the capacity of eukaryotic cells to duplicate their genetic material is a sum of archaeal (replisome) and bacterial (thymidylate synthase) characteristics. We also propose that recent prevalent lateral gene transfer from bacteria has markedly shaped the metabolism of Asgard archaea.
Collapse
|
5
|
Meng LH, Ke F, Zhang QY, Zhao Z. Biological and Genomic Characteristics of MaMV-DH01, a Novel Freshwater Myoviridae Cyanophage Strain. Microbiol Spectr 2023; 11:e0288822. [PMID: 36602358 PMCID: PMC9927357 DOI: 10.1128/spectrum.02888-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
The genomic traits of cyanophages and their potential for metabolic reprogramming of the host cell remain unknown due to the limited number of studies on cyanophage isolates. In the present study, a lytic Microcystis cyanophage, MaMV-DH01, was isolated and identified. MaMV-DH01 has an icosahedral head approximately 100 nm in diameter and a tail 260 nm in length. Its burst size is large, with approximately 145 phage particles/infected cell; it has a latent period of 2 days, and it shows high stability under pH and temperature stresses. Multiple infection (multiplicity of infection [MOI] 0.0001 to 100) results showed that when the MOI was 0.0001, MaMV-DH01 needed a longer time to lyse host cells. Cyanophage MaMV-DH01 has a double-stranded DNA genome of 182,372 bp, with a GC content of 45.35% and 210 predicted open reading frames (ORFs). These ORFs are related to DNA metabolism, structural proteins, lysis, host-derived metabolic genes, and DNA packaging. Phylogenetic trees based on the whole genome and two conserved genes (TerL and capsid) indicate that MaMV-DH01 is clustered with Ma-LMM01 and MaMV-DC, which are independent of other cyanophages. Collinearity analysis showed that the complete genome of MaMV-DH01 was longer than those of Ma-LMM01 and MaMV-DC, with lengths of 20,263 bp and 13,139 bp, respectively. We verified the authenticity of these excess DNA fragments and found that they are involved to various degrees in the MaMV-DH01 transcription process. Map overlays of environmental virus macrogenomic reads onto the MaMV-DH01 genome revealed that viral sequences similar to that of MaMV-DH01 are widespread in the environment. IMPORTANCE A novel freshwater Myoviridae cyanophage strain, MaMV-DH01, was isolated; this strain infects Microcystis aeruginosa FACHB-524, and the biological and genomic characteristics of MaMV-DH01 provide new insights for understanding the mechanism by which cyanophages infect cyanobacterial blooms.
Collapse
Affiliation(s)
- Li-Hui Meng
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qi-Ya Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, China
| |
Collapse
|
6
|
Synthesis and Structure-Activity Relationship Studies of Pyrido [1,2- e]Purine-2,4( 1H,3H)-Dione Derivatives Targeting Flavin-Dependent Thymidylate Synthase in Mycobacterium tuberculosis. Molecules 2022; 27:molecules27196216. [PMID: 36234754 PMCID: PMC9571937 DOI: 10.3390/molecules27196216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
In 2002, a new class of thymidylate synthase (TS) involved in the de novo synthesis of dTMP named Flavin-Dependent Thymidylate Synthase (FDTS) encoded by the thyX gene was discovered; FDTS is present only in 30% of prokaryote pathogens and not in human pathogens, which makes it an attractive target for the development of new antibacterial agents, especially against multi-resistant pathogens. We report herein the synthesis and structure-activity relationship of a novel series of hitherto unknown pyrido[1,2-e]purine-2,4(1H,3H)-dione analogues. Several synthetics efforts were done to optimize regioselective N1-alkylation through organopalladium cross-coupling. Modelling of potential hits were performed to generate a model of interaction into the active pocket of FDTS to understand and guide further synthetic modification. All those compounds were evaluated on an in-house in vitro NADPH oxidase assays screening as well as against Mycobacterium tuberculosis ThyX. The highest inhibition was obtained for compound 23a with 84.3% at 200 µM without significant cytotoxicity (CC50 > 100 μM) on PBM cells.
Collapse
|
7
|
Alexandrova LA, Khandazhinskaya AL, Matyugina ES, Makarov DA, Kochetkov SN. Analogues of Pyrimidine Nucleosides as Mycobacteria Growth Inhibitors. Microorganisms 2022; 10:microorganisms10071299. [PMID: 35889017 PMCID: PMC9322969 DOI: 10.3390/microorganisms10071299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/25/2023] Open
Abstract
Tuberculosis (TB) is the oldest human infection disease. Mortality from TB significantly decreased in the 20th century, because of vaccination and the widespread use of antibiotics. However, about a third of the world’s population is currently infected with Mycobacterium tuberculosis (Mtb) and the death rate from TB is about 1.4–2 million people per year. In the second half of the 20th century, new extensively multidrug-resistant strains of Mtb were identified, which are steadily increasing among TB patients. Therefore, there is an urgent need to develop new anti-TB drugs, which remains one of the priorities of pharmacology and medicinal chemistry. The antimycobacterial activity of nucleoside derivatives and analogues was revealed not so long ago, and a lot of studies on their antibacterial properties have been published. Despite the fact that there are no clinically used drugs based on nucleoside analogues, some progress has been made in this area. This review summarizes current research in the field of the design and study of inhibitors of mycobacteria, primarily Mtb.
Collapse
|
8
|
Li X, Guo R, Zou X, Yao Y, Lu L. The First Cbk-Like Phage Infecting Erythrobacter, Representing a Novel Siphoviral Genus. Front Microbiol 2022; 13:861793. [PMID: 35620087 PMCID: PMC9127768 DOI: 10.3389/fmicb.2022.861793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Erythrobacter is an important and widespread bacterial genus in the ocean. However, our knowledge about their phages is still rare. Here, a novel lytic phage vB_EliS-L02, infecting Erythrobacter litoralis DSM 8509, was isolated and purified from Sanggou Bay seawater, China. Morphological observation revealed that the phage belonged to Cbk-like siphovirus, with a long prolate head and a long tail. The host range test showed that phage vB_EliS-L02 could only infect a few strains of Erythrobacter, demonstrating its potential narrow-host range. The genome size of vB_EliS-L02 was 150,063 bp with a G+C content of 59.43%, encoding 231 putative open reading frames (ORFs), but only 47 were predicted to be functional domains. Fourteen auxiliary metabolic genes were identified, including phoH that may confer vB_EliS-L02 the advantage of regulating phosphate uptake and metabolism under a phosphate-limiting condition. Genomic and phylogenetic analyses indicated that vB_EliS-L02 was most closely related to the genus Lacusarxvirus with low similarity (shared genes < 30%, and average nucleotide sequence identity < 70%), distantly from other reported phages, and could be grouped into a novel viral genus cluster, in this study as Eliscbkvirus. Meanwhile, the genus Eliscbkvirus and Lacusarxvirus stand out from other siphoviral genera and could represent a novel subfamily within Siphoviridae, named Dolichocephalovirinae-II. Being a representative of an understudied viral group with manifold adaptations to the host, phage vB_EliS-L02 could improve our understanding of the virus–host interactions and provide reference information for viral metagenomic analysis in the ocean.
Collapse
Affiliation(s)
- Xuejing Li
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University (Xiang'an), Xiamen, China
| | - Ruizhe Guo
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiao Zou
- Qingdao Central Hospital, Qingdao, China
| | - Yanyan Yao
- Weihai Changqing Ocean Science Technology Co., Ltd., Weihai, China
| | - Longfei Lu
- Weihai Changqing Ocean Science Technology Co., Ltd., Weihai, China
| |
Collapse
|
9
|
Isolation and Characterization of the First Freshwater Cyanophage Infecting Pseudanabaena. J Virol 2020; 94:JVI.00682-20. [PMID: 32611754 PMCID: PMC7431792 DOI: 10.1128/jvi.00682-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/18/2020] [Indexed: 02/08/2023] Open
Abstract
Cyanobacteria are the major primary producers in both freshwater and marine environments. However, the majority of freshwater cyanophages remain unknown due to the limited number of cyanophage isolates. In this study, we present a novel lytic freshwater cyanophage, PA-SR01, which was isolated from the Singapore Serangoon Reservoir. To our knowledge, this is the first isolate of a cyanophage that has been found to infect the cyanobacterium Pseudanabaena PA-SR01 has a narrow host range, a short latent period, and is chloroform sensitive. Distinct from the majority of cyanophage isolates, PA-SR01 has a tailless morphology. It is a double-stranded DNA virus with a 137,012-bp genome. Functional annotation for the predicted open reading frames (ORFs) of the PA-SR01 genome identified genes with putative functions related to DNA metabolism, structural proteins, lysis, host-derived metabolic genes, and DNA packaging. Out of 166 predicted ORFs, only 17 ORFs have homology with genes with known function. Phylogenetic analysis of the major capsid protein and terminase large subunit further suggests that phage PA-SR01 is evolutionary distinct from known cyanophages. Metagenomics sequence recruitment onto the PA-SR01 genome indicates that PA-SR01 represents a new evolutionary lineage of phage which shares considerable genetic similarities with phage sequences in aquatic environments and could play key ecological roles.IMPORTANCE This study presents the isolation of the very first freshwater cyanophage, PA-SR01, that infects Pseudanabaena, and fills an important knowledge gap on freshwater cyanophages as well as cyanophages infecting Pseudanabaena.
Collapse
|
10
|
Van Etten JL, Agarkova IV, Dunigan DD. Chloroviruses. Viruses 2019; 12:E20. [PMID: 31878033 PMCID: PMC7019647 DOI: 10.3390/v12010020] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/20/2022] Open
Abstract
Chloroviruses are large dsDNA, plaque-forming viruses that infect certain chlorella-like green algae; the algae are normally mutualistic endosymbionts of protists and metazoans and are often referred to as zoochlorellae. The viruses are ubiquitous in inland aqueous environments throughout the world and occasionally single types reach titers of thousands of plaque-forming units per ml of native water. The viruses are icosahedral in shape with a spike structure located at one of the vertices. They contain an internal membrane that is required for infectivity. The viral genomes are 290 to 370 kb in size, which encode up to 16 tRNAs and 330 to ~415 proteins, including many not previously seen in viruses. Examples include genes encoding DNA restriction and modification enzymes, hyaluronan and chitin biosynthetic enzymes, polyamine biosynthetic enzymes, ion channel and transport proteins, and enzymes involved in the glycan synthesis of the virus major capsid glycoproteins. The proteins encoded by many of these viruses are often the smallest or among the smallest proteins of their class. Consequently, some of the viral proteins are the subject of intensive biochemical and structural investigation.
Collapse
Affiliation(s)
- James L. Van Etten
- Department of Plant Pathology, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA; (I.V.A.); (D.D.D.)
| | | | | |
Collapse
|
11
|
Castelán-Sánchez HG, Lopéz-Rosas I, García-Suastegui WA, Peralta R, Dobson ADW, Batista-García RA, Dávila-Ramos S. Extremophile deep-sea viral communities from hydrothermal vents: Structural and functional analysis. Mar Genomics 2019; 46:16-28. [PMID: 30857856 DOI: 10.1016/j.margen.2019.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/25/2019] [Accepted: 03/01/2019] [Indexed: 12/29/2022]
Abstract
Ten publicly available metagenomic data sets from hydrothermal vents were analyzed to determine the taxonomic structure of the viral communities present, as well as their potential metabolic functions. The type of natural selection on two auxiliary metabolic genes was also analyzed. The structure of the virome in the hydrothermal vents was quite different in comparison with the viruses present in sediments, with specific populations being present in greater abundance in the plume samples when compared with the sediment samples. ssDNA genomes such as Circoviridae and Microviridae were predominantly present in the sediment samples, with Caudovirales which are dsDNA being present in the vent samples. Genes potentially encoding enzymes that participate in carbon, nitrogen and sulfur metabolic pathways were found in greater abundance, than those involved in the oxygen cycle, in the hydrothermal vents. Functional profiling of the viromes, resulted in the discovery of genes encoding proteins involved in bacteriophage capsids, DNA synthesis, nucleotide synthesis, DNA repair, as well as viral auxiliary metabolic genes such as cytitidyltransferase and ribonucleotide reductase. These auxiliary metabolic genes participate in the synthesis of phospholipids and nucleotides respectively and are likely to contribute to enhancing the fitness of their bacterial hosts within the hydrothermal vent communities. Finally, evolutionary analysis suggested that these auxiliary metabolic genes are highly conserved and evolve under purifying selection, and are thus maintained in their genome.
Collapse
Affiliation(s)
- Hugo G Castelán-Sánchez
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Morelos. Av. Universidad 1001. Col. Chamilpa. Cuernavca, Morelos. C.P, Cuernavaca 62209, Mexico
| | - Itzel Lopéz-Rosas
- CONACyT Research fellow-Colegio de Postgraduados Campus Campeche, Carretera Haltunchén - Edzná Km 17.5. Colonia Sihochac. Champotón, Campeche 24450, Mexico
| | - Wendy A García-Suastegui
- Laboratorio de Toxicología Molecular, Departamento de Biología y Toxicología de la Reproducción, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla C.P., 72570, Mexico
| | - Raúl Peralta
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Morelos. Av. Universidad 1001. Col. Chamilpa. Cuernavca, Morelos. C.P, Cuernavaca 62209, Mexico
| | - Alan D W Dobson
- School of Microbiology, University College Cork. Cork, Ireland; Environmental Research Institute, University College, Cork, Ireland
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Morelos. Av. Universidad 1001. Col. Chamilpa. Cuernavca, Morelos. C.P, Cuernavaca 62209, Mexico
| | - Sonia Dávila-Ramos
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Morelos. Av. Universidad 1001. Col. Chamilpa. Cuernavca, Morelos. C.P, Cuernavaca 62209, Mexico.
| |
Collapse
|
12
|
Myllykallio H, Sournia P, Heliou A, Liebl U. Unique Features and Anti-microbial Targeting of Folate- and Flavin-Dependent Methyltransferases Required for Accurate Maintenance of Genetic Information. Front Microbiol 2018; 9:918. [PMID: 29867829 PMCID: PMC5954106 DOI: 10.3389/fmicb.2018.00918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/20/2018] [Indexed: 12/14/2022] Open
Abstract
Comparative genome analyses have led to the discovery and characterization of novel flavin- and folate-dependent methyltransferases that mainly function in DNA precursor synthesis and post-transcriptional RNA modification by forming (ribo) thymidylate and its derivatives. Here we discuss the recent literature on the novel mechanistic features of these enzymes sometimes referred to as “uracil methyltransferases,” albeit we prefer to refer to them as (ribo) thymidylate synthases. These enzyme families attest to the convergent evolution of nucleic acid methylation. Special focus is given to describing the unique characteristics of these flavin- and folate-dependent enzymes that have emerged as new models for studying the non-canonical roles of reduced flavin co-factors (FADH2) in relaying carbon atoms between enzyme substrates. This ancient enzymatic methylation mechanism with a very wide phylogenetic distribution may be more commonly used for biological methylation reactions than previously anticipated. This notion is exemplified by the recent discovery of additional substrates for these enzymes. Moreover, similar reaction mechanisms can be reversed by demethylases, which remove methyl groups e.g., from human histones. Future work is now required to address whether the use of different methyl donors facilitates the regulation of distinct methylation reactions in the cell. It will also be of great interest to address whether the low activity flavin-dependent thymidylate synthases ThyX represent ancestral enzymes that were eventually replaced by the more active thymidylate synthases of the ThyA family to facilitate the maintenance of larger genomes in fast-growing microbes. Moreover, we discuss the recent efforts from several laboratories to identify selective anti-microbial compounds that target flavin-dependent thymidylate synthase ThyX. Altogether we underline how the discovery of the alternative flavoproteins required for methylation of DNA and/or RNA nucleotides, in addition to providing novel targets for antibiotics, has provided new insight into microbial physiology and virulence.
Collapse
Affiliation(s)
- Hannu Myllykallio
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Palaiseau, France
| | - Pierre Sournia
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Palaiseau, France
| | - Alice Heliou
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Palaiseau, France.,Laboratoire d'Informatique de l'École Polytechnique, Ecole Polytechnique, Centre National de la Recherche Scientifique, Université Paris-Saclay, Palaiseau, France
| | - Ursula Liebl
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Palaiseau, France
| |
Collapse
|
13
|
Karunaratne K, Luedtke N, Quinn DM, Kohen A. Flavin-dependent thymidylate synthase: N5 of flavin as a Methylene carrier. Arch Biochem Biophys 2017; 632:11-19. [PMID: 28821425 DOI: 10.1016/j.abb.2017.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/09/2017] [Accepted: 08/12/2017] [Indexed: 10/19/2022]
Abstract
Thymidylate is synthesized de novo in all living organisms for replication of genomes. The chemical transformation is reductive methylation of deoxyuridylate at C5 to form deoxythymidylate. All eukaryotes including humans complete this well-understood transformation with thymidylate synthase utilizing 6R-N5-N10-methylene-5,6,7,8-tetrahydrofolate as both a source of methylene and a reducing hydride. In 2002, flavin-dependent thymidylate synthase was discovered as a new pathway for de novo thymidylate synthesis. The flavin-dependent catalytic mechanism is different than thymidylate synthase because it requires flavin as a reducing agent and methylene transporter. This catalytic mechanism is not well-understood, but since it is known to be very different from thymidylate synthase, there is potential for mechanism-based inhibitors that can selectively inhibit the flavin-dependent enzyme to target many human pathogens with low host toxicity.
Collapse
Affiliation(s)
| | - Nicholas Luedtke
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Daniel M Quinn
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
14
|
Discovery of a new Mycobacterium tuberculosis thymidylate synthase X inhibitor with a unique inhibition profile. Biochem Pharmacol 2017; 135:69-78. [PMID: 28359706 DOI: 10.1016/j.bcp.2017.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/24/2017] [Indexed: 01/24/2023]
Abstract
Tuberculosis (TB), mainly caused by Mycobacterium tuberculosis (Mtb), is an infection that is responsible for roughly 1.5 million deaths per year. The situation is further complicated by the wide-spread resistance to the existing first- and second-line drugs. As a result of this, it is urgent to develop new drugs to combat the resistant bacteria as well as have lower side effects, which can promote adherence to the treatment regimens. Targeting the de novo synthesis of thymidylate (dTMP) is an important pathway to develop drugs for TB. Although Mtb carries genes for two families of thymidylate synthases (TS), ThyA and ThyX, only ThyX is essential for its normal growth. Both enzymes catalyze the conversion of uridylate (dUMP) to dTMP but employ a different catalytic approach and have different structures. Also, ThyA is the only TS found in humans. This is the rationale for identifying selective inhibitors against ThyX. We exploited the NADPH oxidation to NADP+ step, catalyzed by ThyX, to develop a spectrophotometric biochemical assay. Success of the assay was demonstrated by its effectiveness (average Z'=0.77) and identification of selective ThyX inhibitors. The most potent compound is a tight-binding inhibitor with an IC50 of 710nM. Its mechanism of inhibition is analyzed in relation to the latest findings of ThyX mechanism and substrate and cofactor binding order.
Collapse
|
15
|
Luciani R, Saxena P, Surade S, Santucci M, Venturelli A, Borsari C, Marverti G, Ponterini G, Ferrari S, Blundell TL, Costi MP. Virtual Screening and X-ray Crystallography Identify Non-Substrate Analog Inhibitors of Flavin-Dependent Thymidylate Synthase. J Med Chem 2016; 59:9269-9275. [PMID: 27589670 DOI: 10.1021/acs.jmedchem.6b00977] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thymidylate synthase X (ThyX) represents an attractive target for tuberculosis drug discovery. Herein, we selected 16 compounds through a virtual screening approach. We solved the first X-ray crystal structure of Thermatoga maritima (Tm) ThyX in complex with a nonsubstrate analog inhibitor. Given the active site similarities between Mycobacterium tuberculosis ThyX (Mtb-ThyX) and Tm-ThyX, our crystal structure paves the way for a structure-based design of novel antimycobacterial compounds. The 1H-imidazo[4,5-d]pyridazine was identified as scaffold for the development of Mtb-ThyX inhibitors.
Collapse
Affiliation(s)
- Rosaria Luciani
- Department of Life Sciences, University of Modena and Reggio Emilia , Via Campi, 103, 41125 Modena, Italy
| | - Puneet Saxena
- Department of Life Sciences, University of Modena and Reggio Emilia , Via Campi, 103, 41125 Modena, Italy
| | - Sachin Surade
- Department of Biochemistry, University of Cambridge , 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Matteo Santucci
- Department of Life Sciences, University of Modena and Reggio Emilia , Via Campi, 103, 41125 Modena, Italy
| | - Alberto Venturelli
- Department of Life Sciences, University of Modena and Reggio Emilia , Via Campi, 103, 41125 Modena, Italy.,Tydock Pharma srl , Strada Gherbella 294/B, 41126 Modena, Italy
| | - Chiara Borsari
- Department of Life Sciences, University of Modena and Reggio Emilia , Via Campi, 103, 41125 Modena, Italy
| | - Gaetano Marverti
- Department of Biomedical Sciences, Metabolic and Neural Sciences, University of Modena and Reggio Emilia , Via Campi, 287, 41125 Modena, Italy
| | - Glauco Ponterini
- Department of Life Sciences, University of Modena and Reggio Emilia , Via Campi, 103, 41125 Modena, Italy
| | - Stefania Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia , Via Campi, 103, 41125 Modena, Italy
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge , 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia , Via Campi, 103, 41125 Modena, Italy
| |
Collapse
|
16
|
An unusual UMP C-5 methylase in nucleoside antibiotic polyoxin biosynthesis. Protein Cell 2016; 7:673-83. [PMID: 27412636 PMCID: PMC5003785 DOI: 10.1007/s13238-016-0289-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/14/2016] [Indexed: 11/04/2022] Open
Abstract
Polyoxin is a group of structurally-related peptidyl nucleoside antibiotics bearing C-5 modifications on the nucleoside skeleton. Although the structural diversity and bioactivity preference of polyoxin are, to some extent, affected by such modifications, the biosynthetic logic for their occurence remains obscure. Here we report the identification of PolB in polyoxin pathway as an unusual UMP C-5 methylase with thymidylate synthase activity which is responsible for the C-5 methylation of the nucleoside skeleton. To probe its molecular mechanism, we determined the crystal structures of PolB alone and in complexes with 5-Br UMP and 5-Br dUMP at 2.15 Å, 1.76 Å and 2.28 Å resolutions, respectively. Loop 1 (residues 117–131), Loop 2 (residues 192–201) and the substrate recognition peptide (residues 94–102) of PolB exhibit considerable conformational flexibility and adopt distinct structures upon binding to different substrate analogs. Consistent with the structural findings, a PolB homolog that harbors an identical function from Streptomyces viridochromogenes DSM 40736 was identified. The discovery of UMP C5-methylase opens the way to rational pathway engineering for polyoxin component optimization, and will also enrich the toolbox for natural nucleotide chemistry.
Collapse
|
17
|
Krumova S, Todinova S, Tileva M, Bouzhir-Sima L, Vos MH, Liebl U, Taneva SG. Thermal stability and binding energetics of thymidylate synthase ThyX. Int J Biol Macromol 2016; 91:560-7. [PMID: 27268384 DOI: 10.1016/j.ijbiomac.2016.05.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/20/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
The bacterial thymidylate synthase ThyX is a multisubstrate flavoenzyme that takes part in the de novo synthesis of thymidylate in a variety of microorganisms. Herein we study the effect of FAD and dUMP binding on the thermal stability of wild type (WT) ThyX from the mesophilic Paramecium bursaria chlorella virus-1 (PBCV-1) and from the thermophilic bacterium Thermotoga maritima (TmThyX), and from two variants of TmThyX, Y91F and S88W, using differential scanning calorimetry. The energetics underlying these processes was characterized by isothermal titration calorimetry. The PBCV-1 protein is significantly less stable against the thermal challenge than the TmThyX WT. FAD exerted stabilizing effect greater for PBCV-1 than for TmThyX and for both mutants, whereas binding of dUMP to FAD-loaded proteins stabilized further only TmThyX. Different thermodynamic signatures describe the FAD binding to the WT ThyX proteins. While TmThyX binds FAD with a low μM binding affinity in a process characterized by a favorable entropy change, the assembly of PBCV-1 with FAD is governed by a large enthalpy change opposed by an unfavorable entropy change resulting in a relatively strong nM binding. An enthalpy-driven formation of a high affinity ternary ThyX/FAD/dUMP complex was observed only for TmThyX.
Collapse
Affiliation(s)
- Sashka Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
| | - Milena Tileva
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
| | | | - Marten H Vos
- LOB, Ecole Polytechnique, CNRS, INSERM, 91128 Palaiseau Cedex, France
| | - Ursula Liebl
- LOB, Ecole Polytechnique, CNRS, INSERM, 91128 Palaiseau Cedex, France
| | - Stefka G Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria.
| |
Collapse
|
18
|
Nyíri K, Vértessy BG. Perturbation of genome integrity to fight pathogenic microorganisms. Biochim Biophys Acta Gen Subj 2016; 1861:3593-3612. [PMID: 27217086 DOI: 10.1016/j.bbagen.2016.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/05/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Resistance against antibiotics is unfortunately still a major biomedical challenge for a wide range of pathogens responsible for potentially fatal diseases. SCOPE OF REVIEW In this study, we aim at providing a critical assessment of the recent advances in design and use of drugs targeting genome integrity by perturbation of thymidylate biosynthesis. MAJOR CONCLUSION We find that research efforts from several independent laboratories resulted in chemically highly distinct classes of inhibitors of key enzymes within the routes of thymidylate biosynthesis. The present article covers numerous studies describing perturbation of this metabolic pathway in some of the most challenging pathogens like Mycobacterium tuberculosis, Plasmodium falciparum, and Staphylococcus aureus. GENERAL SIGNIFICANCE Our comparative analysis allows a thorough summary of the current approaches to target thymidylate biosynthesis enzymes and also include an outlook suggesting novel ways of inhibitory strategies. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.
Collapse
Affiliation(s)
- Kinga Nyíri
- Dept. Biotechnology, Budapest University of Technology and Economics, 4 Szent Gellért tér, Budapest HU 1111, Hungary; Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest HU 1117, Hungary.
| | - Beáta G Vértessy
- Dept. Biotechnology, Budapest University of Technology and Economics, 4 Szent Gellért tér, Budapest HU 1111, Hungary; Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest HU 1117, Hungary.
| |
Collapse
|
19
|
Choi M, Karunaratne K, Kohen A. Flavin-Dependent Thymidylate Synthase as a New Antibiotic Target. Molecules 2016; 21:molecules21050654. [PMID: 27213314 PMCID: PMC4913046 DOI: 10.3390/molecules21050654] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/09/2016] [Accepted: 05/13/2016] [Indexed: 11/16/2022] Open
Abstract
In humans de novo synthesis of 2'-deoxythymidine-5'-monophosphate (dTMP), an essential building block of DNA, utilizes an enzymatic pathway requiring thymidylate synthase (TSase) and dihydrofolate reductase (DHFR). The enzyme flavin-dependent thymidylate synthase (FDTS) represents an alternative enzymatic pathway to synthesize dTMP, which is not present in human cells. A number of pathogenic bacteria, however, depend on this enzyme in lieu of or in conjunction with the analogous human pathway. Thus, inhibitors of this enzyme may serve as antibiotics. Here, we review the similarities and differences of FDTS vs. TSase including aspects of their structure and chemical mechanism. In addition, we review current progress in the search for inhibitors of flavin dependent thymidylate synthase as potential novel therapeutics.
Collapse
Affiliation(s)
- Michael Choi
- Department of Chemistry, The University of Iowa, Iowa City, IA 52242-1727, USA.
| | - Kalani Karunaratne
- Department of Chemistry, The University of Iowa, Iowa City, IA 52242-1727, USA.
| | - Amnon Kohen
- Department of Chemistry, The University of Iowa, Iowa City, IA 52242-1727, USA.
| |
Collapse
|
20
|
Abstract
Purine and pyrimidine nucleoside and nucleotide analogs have been extensively studied as anticancer and antiviral agents. In addition to this, they have recently shown great potential against Mycobacterium Tuberculosis, the causative agent of TB. TB ranks as the tenth most common cause of death in the world. The current treatment for TB infection is limited by side effects and cost of the drugs and most importantly by the development of resistance to the therapy. Therefore the development of novel drugs, capable of overcoming the drawbacks of the existing treatments, has become the focus of many research programs. In parallel to that, a tremendous effort has been made to elucidate the unique metabolism of this pathogen with the aim to identify new possible targets. This review presents the state of the art in nucleoside and nucleotide analogs in the treatment of TB. In particular, we report on the inhibitory activity of this class of compounds, both in enzymatic and whole-cell assays, providing a brief insight to which reported target these novel compounds are hitting.
Collapse
|
21
|
Substrate interaction dynamics and oxygen control in the active site of thymidylate synthase ThyX. Biochem J 2014; 459:37-45. [PMID: 24422556 DOI: 10.1042/bj20131567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thymidylate synthase ThyX, required for DNA synthesis in many pathogenic bacteria, is considered a promising antimicrobial target. It binds FAD and three substrates, producing dTMP (2'-deoxythymidine-5'-monophosphate) from dUMP (2'-deoxyuridine-5'-monophosphate). However, ThyX proteins also act as NADPH oxidase by reacting directly with O2. In the present study we investigated the dynamic interplay between the substrates and their role in competing with this wasteful and potentially harmful oxidase reaction in catalytically efficient ThyX from Paramecium bursaria Chlorella virus-1. dUMP binding accelerates the O2-insensitive half-reaction between NADPH and FAD by over four orders of magnitude to ~30 s-1. Thus, although dUMP does not have a direct role in FAD reduction, any turnover with molecular O2 requires its presence. Inversely, NADPH accommodation accelerates dUMP binding ~3-fold and apparently precedes dUMP binding under physiological conditions. In the oxidative half-reaction, excess CH2H4folate (N5,N10-methylene-5,6,7,8-tetrahydrofolate) was found to re-oxidize FADH2 within 1 ms, thus very efficiently competing with FADH2 oxidation by O2 (1.5 s-1 under aerobic conditions). The resulting reaction scheme points out how the interplay between the fast reactions with the native substrates, although not rate-limiting for overall catalysis, avoids NADPH oxidase activity in aerobic micro-organisms, including many pathogens. These observations also explain why ThyX proteins are also present in aerobic micro-organisms.
Collapse
|
22
|
Abstract
The potential of flavoproteins as targets of pharmacological treatments is immense. In this review we present an overview of the current research progress on medical interventions based on flavoproteins with a special emphasis on cancer, infectious diseases, and neurological disorders.
Collapse
Affiliation(s)
- Esther Jortzik
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | | | | | | |
Collapse
|
23
|
Basta T, Boum Y, Briffotaux J, Becker HF, Lamarre-Jouenne I, Lambry JC, Skouloubris S, Liebl U, Graille M, van Tilbeurgh H, Myllykallio H. Mechanistic and structural basis for inhibition of thymidylate synthase ThyX. Open Biol 2013; 2:120120. [PMID: 23155486 PMCID: PMC3498832 DOI: 10.1098/rsob.120120] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/11/2012] [Indexed: 11/12/2022] Open
Abstract
Nature has established two mechanistically and structurally unrelated families of thymidylate synthases that produce de novo thymidylate or dTMP, an essential DNA precursor. Representatives of the alternative flavin-dependent thymidylate synthase family, ThyX, are found in a large number of microbial genomes, but are absent in humans. We have exploited the nucleotide binding pocket of ThyX proteins to identify non-substrate-based tight-binding ThyX inhibitors that inhibited growth of genetically modified Escherichia coli cells dependent on thyX in a manner mimicking a genetic knockout of thymidylate synthase. We also solved the crystal structure of a viral ThyX bound to 2-hydroxy-3-(4-methoxybenzyl)-1,4-naphthoquinone at a resolution of 2.6 Å. This inhibitor was found to bind within the conserved active site of the tetrameric ThyX enzyme, at the interface of two monomers, partially overlapping with the dUMP binding pocket. Our studies provide new chemical tools for investigating the ThyX reaction mechanism and establish a novel mechanistic and structural basis for inhibition of thymidylate synthesis. As essential ThyX proteins are found e.g. in Mycobacterium tuberculosis and Helicobacter pylori, our studies have also potential to pave the way towards the development of new anti-microbial compounds.
Collapse
Affiliation(s)
- Tamara Basta
- Laboratoire d'Optique et Biosciences, INSERM U696, CNRS UMR 7645, Ecole Polytechnique, Palaiseau Cedex, Palaiseau 91228, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Parchina A, Froeyen M, Margamuljana L, Rozenski J, De Jonghe S, Briers Y, Lavigne R, Herdewijn P, Lescrinier E. Discovery of an acyclic nucleoside phosphonate that inhibits Mycobacterium tuberculosis ThyX based on the binding mode of a 5-alkynyl substrate analogue. ChemMedChem 2013; 8:1373-83. [PMID: 23836539 DOI: 10.1002/cmdc.201300146] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Indexed: 11/10/2022]
Abstract
The urgent need for new antibiotics poses a challenge to target un(der)exploited vital cellular processes. Thymidylate biosynthesis is one such process due to its crucial role in DNA replication and repair. Thymidylate synthases (TS) catalyze a crucial step in the biosynthesis of thymidine 5-triphosphate (TTP), an elementary building block required for DNA synthesis and repair. To date, TS inhibitors have only been successfully applied in anticancer therapy due to their lack of specificity for antimicrobial versus human enzymes. However, the discovery of a new family of TS enzymes (ThyX) in a range of pathogenic bacteria that is structurally and biochemically different from the "classic" TS (ThyA) has opened the possibility to develop selective ThyX inhibitors as potent antimicrobial drugs. Here, the interaction of the known inhibitor 5-(3-octanamidoprop-1yn-1yl)-2'-deoxyuridine-5'-monophosphate (1) with Mycobacterium tuberculosis ThyX enzyme is explored using molecular modeling starting from published crystal structures, with further confirmation through NMR experiments. While the deoxyuridylate (dUMP) moiety of compound 1 occupies the cavity of the natural substrate in ThyX, the rest of the ligand (the "5-alkynyl tail") extends to the outside of the enzyme between two of its four subunits. The hydrophobic pocket that accommodates the alkyl part of the tail is formed by displacement of Tyr 44.C, Tyr 108.A and Lys 165.A. Changes to the resonance of the Lys 165 NH3 group upon ligand binding were monitored in a titration experiment by 2D HISQC NMR. Guided by the results of the modeling and NMR studies, and inspired by the success of acyclic antiviral nucleosides, compounds where a 5-alkynyl uracyl moiety is coupled to an acyclic nucleoside phosphonate (ANP) were synthesized and evaluated. Of the compounds evaluated, sodium (6-(5-(3-octanamidoprop-1-yn-1-yl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)hexyl)phosphonate (3 e) exhibited 43 % of inhibitory effect on ThyX at 50 μM. While only modest activity was achieved, this is the first example of an ANP inhibiting ThyX, and these results can be used to further guide structural modifications to this class to develop more potent compounds with potential application as antibacterial agents acting through a novel mechanism of action.
Collapse
Affiliation(s)
- Anastasia Parchina
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Laptenok SP, Bouzhir-Sima L, Lambry JC, Myllykallio H, Liebl U, Vos MH. Ultrafast real-time visualization of active site flexibility of flavoenzyme thymidylate synthase ThyX. Proc Natl Acad Sci U S A 2013; 110:8924-9. [PMID: 23671075 PMCID: PMC3670337 DOI: 10.1073/pnas.1218729110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In many bacteria the flavoenzyme thymidylate synthase ThyX produces the DNA nucleotide deoxythymidine monophosphate from dUMP, using methylenetetrahydrofolate as carbon donor and NADPH as hydride donor. Because all three substrates bind in close proximity to the catalytic flavin adenine dinucleotide group, substantial flexibility of the ThyX active site has been hypothesized. Using femtosecond time-resolved fluorescence spectroscopy, we have studied the conformational heterogeneity and the conformational interconversion dynamics in real time in ThyX from the hyperthermophilic bacterium Thermotoga maritima. The dynamics of electron transfer to excited flavin adenine dinucleotide from a neighboring tyrosine residue are used as a sensitive probe of the functional dynamics of the active site. The fluorescence decay spanned a full three orders of magnitude, demonstrating a very wide range of conformations. In particular, at physiological temperatures, multiple angstrom cofactor-residue displacements occur on the picoseconds timescale. These experimental findings are supported by molecular dynamics simulations. Binding of the dUMP substrate abolishes this flexibility and stabilizes the active site in a configuration where dUMP closely interacts with the flavin cofactor and very efficiently quenches fluorescence itself. Our results indicate a dynamic selected-fit mechanism where binding of the first substrate dUMP at high temperature stabilizes the enzyme in a configuration favorable for interaction with the second substrate NADPH, and more generally have important implications for the role of active site flexibility in enzymes interacting with multiple poly-atom substrates and products. Moreover, our data provide the basis for exploring the effect of inhibitor molecules on the active site dynamics of ThyX and other multisubstrate flavoenzymes.
Collapse
Affiliation(s)
- Sergey P. Laptenok
- Laboratory for Optics and Biosciences, Centre National de la Recherche Scientifique Ecole Polytechnique, 91128 Palaiseau, France; and
- Institut National de la Santé et de la Recherche Médicale U696, 91128 Palaiseau, France
| | - Latifa Bouzhir-Sima
- Laboratory for Optics and Biosciences, Centre National de la Recherche Scientifique Ecole Polytechnique, 91128 Palaiseau, France; and
- Institut National de la Santé et de la Recherche Médicale U696, 91128 Palaiseau, France
| | - Jean-Christophe Lambry
- Laboratory for Optics and Biosciences, Centre National de la Recherche Scientifique Ecole Polytechnique, 91128 Palaiseau, France; and
- Institut National de la Santé et de la Recherche Médicale U696, 91128 Palaiseau, France
| | - Hannu Myllykallio
- Laboratory for Optics and Biosciences, Centre National de la Recherche Scientifique Ecole Polytechnique, 91128 Palaiseau, France; and
- Institut National de la Santé et de la Recherche Médicale U696, 91128 Palaiseau, France
| | - Ursula Liebl
- Laboratory for Optics and Biosciences, Centre National de la Recherche Scientifique Ecole Polytechnique, 91128 Palaiseau, France; and
- Institut National de la Santé et de la Recherche Médicale U696, 91128 Palaiseau, France
| | - Marten H. Vos
- Laboratory for Optics and Biosciences, Centre National de la Recherche Scientifique Ecole Polytechnique, 91128 Palaiseau, France; and
- Institut National de la Santé et de la Recherche Médicale U696, 91128 Palaiseau, France
| |
Collapse
|
26
|
Mathews II. Flavin-Dependent Thymidylate Synthase as a Drug Target for Deadly Microbes: Mutational Study and a Strategy for Inhibitor Design. ACTA ACUST UNITED AC 2013; Suppl 12:004. [PMID: 24563811 DOI: 10.4172/2157-2526.s12-004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The identification of flavin-dependent thymidylate synthase (FDTS) as an essential enzyme and its occurrence in several pathogenic microbes opens opportunities for using FDTS enzyme as an excellent target for new antimicrobial drug discovery. In contrast to the human thymidylate synthase enzyme that utilizes methylene-tetrahydrofolate (CH2H4 folate) for the conversion of dUMP to dTMP, the microbial enzymes utilize an additional non-covalently bound FAD molecule for the hydride transfer from NAD(P)H. The structural and mechanistic differences between the human and microbial enzymes present an attractive opportunity for the design of antimicrobial compounds specific for the pathogens. We have determined the crystal structure of FDTS enzyme in complex with the methyl donor, CH2H4 folate. We describe here the structure of a FDTS mutant and compare it with other FDTS complex structures, including a FDTS-CH2H4 folate complex. We identified a conformational change essential for substrate binding and propose a strategy for the design of FDTS specific inhibitors.
Collapse
Affiliation(s)
- Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, CA 94025, USA
| |
Collapse
|
27
|
Abstract
The DNA nucleotide thymidylate is synthesized by the enzyme thymidylate synthase, which catalyzes the reductive methylation of deoxyuridylate using the cofactor methylene-tetrahydrofolate (CH(2)H(4)folate). Most organisms, including humans, rely on the thyA- or TYMS-encoded classic thymidylate synthase, whereas, certain microorganisms, including all Rickettsia and other pathogens, use an alternative thyX-encoded flavin-dependent thymidylate synthase (FDTS). Although several crystal structures of FDTSs have been reported, the absence of a structure with folates limits understanding of the molecular mechanism and the scope of drug design for these enzymes. Here we present X-ray crystal structures of FDTS with several folate derivatives, which together with mutagenesis, kinetic analysis, and computer modeling shed light on the cofactor binding and function. The unique structural data will likely facilitate further elucidation of FDTSs' mechanism and the design of structure-based inhibitors as potential leads to new antimicrobial drugs.
Collapse
|
28
|
Mishanina TV, Koehn EM, Kohen A. Mechanisms and inhibition of uracil methylating enzymes. Bioorg Chem 2012; 43:37-43. [PMID: 22172597 PMCID: PMC3315608 DOI: 10.1016/j.bioorg.2011.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/21/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
Abstract
Uracil methylation is essential for survival of organisms and passage of information from generation to generation with high fidelity. Two alternative uridyl methylation enzymes, flavin-dependent thymidylate synthase and folate/FAD-dependent RNA methyltransferase, have joined the long-known classical enzymes, thymidylate synthase and SAM-dependent RNA methyltransferase. These alternative enzymes differ significantly from their classical counterparts in structure, cofactor requirements and chemical mechanism. This review covers the available structural and mechanistic knowledge of the classical and alternative enzymes in biological uracil methylation, and offers a possibility of using inhibitors specifically aiming at microbial thymidylate production as antimicrobial drugs.
Collapse
Affiliation(s)
- Tatiana V. Mishanina
- Department of Chemistry, The University of Iowa, E274 Chemistry Building, Iowa City, IA 52245, USA
| | - Eric M. Koehn
- Department of Chemistry, The University of Iowa, E274 Chemistry Building, Iowa City, IA 52245, USA
| | - Amnon Kohen
- Department of Chemistry, The University of Iowa, E274 Chemistry Building, Iowa City, IA 52245, USA
| |
Collapse
|
29
|
Cho S, Yang S, Rhie H. The gene encoding the alternative thymidylate synthase ThyX is regulated by sigma factor SigB in Corynebacterium glutamicum ATCC 13032. FEMS Microbiol Lett 2012; 328:157-65. [PMID: 22224900 DOI: 10.1111/j.1574-6968.2011.02494.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 12/14/2011] [Accepted: 12/20/2011] [Indexed: 11/27/2022] Open
Abstract
Both ThyA and ThyX proteins catalyze the transfer of the methyl group from methylenetetrahydrofolate (CH(2) H(4) -folate) to dUMP, forming dTMP. To estimate the relative steady state expression levels of ThyA and ThyX, Western blot analysis was performed using ThyA or ThyX antiserum on total protein from the wild-type, ΔthyX, and thyX-complemented strains of Corynebacterium glutamicum. The level of ThyA decreased gradually during the stationary growth phase but that of ThyX was maintained steadily. Whereas the expression level of ThyA in a ΔsigB strain was comparable to that of the wild-type, the level of ThyX was significantly diminished in the deletion mutant and was restored to that of the wild-type in the complemented strain, indicating that the level of ThyX was regulated by SigB. Growth of the C. glutamicum ΔsigB strain was dependent upon coupling activity of dihydrofolate reductase (DHFR) with ThyA for the synthesis of thymidine, and thus showed sensitivity to the inhibition of DHFR by the experimental inhibitor, WR99210-HCl. These results suggested that the relative levels of ThyA and ThyX differ in response to different growth phases and that SigB is necessary for maintenance of the level of ThyX during transition into the stationary growth phase.
Collapse
Affiliation(s)
- Sukhyeong Cho
- Department of Biology, Kyung Hee University, Seoul, Korea
| | | | | |
Collapse
|
30
|
Wang K, Wang Q, Chen J, Chen L, Jiang H, Shen X. Crystal structure and enzymatic characterization of thymidylate synthase X from Helicobacter pylori strain SS1. Protein Sci 2011; 20:1398-410. [PMID: 21633987 PMCID: PMC3189525 DOI: 10.1002/pro.668] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 05/23/2011] [Accepted: 05/23/2011] [Indexed: 11/09/2022]
Abstract
Thymidylate synthase X (ThyX) catalyzes the methylation of dUMP to form dTMP in bacterial life cycle and is regarded as a promising target for antibiotics discovery. Helicobacter pylori is a human pathogen associated with a number of human diseases. Here, we cloned and purified the ThyX enzyme from H. pylori SS1 strain (HpThyX). The recombinant HpThyX was discovered to exhibit the maximum activity at pH 8.5, and K(m) values of the two substrates dUMP and CH(2) H(4) folate were determined to be 15.3 ± 1.25 μM and 0.35 ± 0.18 mM, respectively. The analyzed crystal structure of HpThyX with the cofactor FAD and the substrate dUMP (at 2.31 Å) revealed that the enzyme was a tetramer bound to four dUMP and four FAD molecules. Different from the catalytic feature of the classical thymidylate synthase (ThyA), N5 atom of the FAD functioned as a nucleophile in the catalytic reaction instead of Ser84 and Ser85 residues. Our current work is expected to help better understand the structural and enzymatic features of HpThyX thus further providing valuable information for anti-H. pylori inhibitor discovery.
Collapse
Affiliation(s)
| | | | - Jing Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai 201203, China
| | | | | | - Xu Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai 201203, China
| |
Collapse
|
31
|
Kögler M, Vanderhoydonck B, De Jonghe S, Rozenski J, Van Belle K, Herman J, Louat T, Parchina A, Sibley C, Lescrinier E, Herdewijn P. Synthesis and evaluation of 5-substituted 2'-deoxyuridine monophosphate analogues as inhibitors of flavin-dependent thymidylate synthase in Mycobacterium tuberculosis. J Med Chem 2011; 54:4847-62. [PMID: 21657202 DOI: 10.1021/jm2004688] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of 5-substituted 2'-deoxyuridine monophosphate analogues has been synthesized and evaluated as potential inhibitors of mycobacterial ThyX, a novel flavin-dependent thymidylate synthase in Mycobacterium tuberculosis. A systematic SAR study led to the identification of compound 5a, displaying an IC(50) value against mycobacterial ThyX of 0.91 μM. This derivative lacks activity against the classical mycobacterial thymidylate synthase ThyA (IC(50) > 50 μM) and represents the first example of a selective mycobacterial FDTS inhibitor.
Collapse
Affiliation(s)
- Martin Kögler
- Katholieke Universiteit Leuven, Rega Institute for Medical Research, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Park M, Cho S, Lee H, Sibley CH, Rhie H. Alternative thymidylate synthase, ThyX, involved in Corynebacterium glutamicum ATCC 13032 survival during stationary growth phase. FEMS Microbiol Lett 2010; 307:128-34. [PMID: 20636973 DOI: 10.1111/j.1574-6968.2010.01971.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A BLASTP search has shown the presence of a gene homologous to an alternative thymidylate synthase (TS), thyX, in Corynebacterium glutamicum ATCC 13032. To determine if thyX is functionally analogous to thyA, thyX was cloned in a plasmid and the resulting construct was transferred by transformation into a thyA mutant of Escherichia coli. The ThyX from C. glutamicum compensated for the defect in TS-deficient E. coli. A functional knockout of the thyX gene was constructed by allelic replacement using a sucrose counter-selectable suicide plasmid and confirmed by PCR and reverse transcriptase-PCR analyses. This mutant was viable without thymidine supplementation, suggesting that thyX is not an essential gene in C. glutamicum. Growth of the thyX mutant was dependent upon coupling activity of dihydrofolate reductase (DHFR) with ThyA for the synthesis of thymidine, and thus showed sensitivity to the inhibition of DHFR by the experimental inhibitor, WR99210. This indicates that thymidine synthesis was at least partially dependent on thyX expression. As it approached stationary phase, the thyX mutant lost viability much more rapidly than the parental wild type and the mutant complemented the thyX gene, suggesting that the activity of the ThyX enzyme is important in that phase of the growth cycle.
Collapse
Affiliation(s)
- Mijeong Park
- Department of Biology, Kyung Hee University, Seoul, Korea
| | | | | | | | | |
Collapse
|
33
|
Biochemical characterization of two thymidylate synthases in Corynebacterium glutamicum NCHU 87078. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1751-9. [PMID: 20595007 DOI: 10.1016/j.bbapap.2010.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 05/06/2010] [Accepted: 05/17/2010] [Indexed: 11/23/2022]
Abstract
The genome of Corynebacterium glutamicum NCHU 87078 contains two putative thymidylate synthase genes, designated CgthyA and CgthyX. These two genes were expressed in Escherichia coli NovaBlue and the expressed His(6)-tagged enzymes were purified by nickel-chelate chromatography. The purified CgThyA had a specific activity of 414 mU mg(-)(1) protein, whereas thymidylate synthase activity for CgThyX could not be detected in a functional complementation assay using a 10-day incubation period. Gel filtration chromatography and chemical cross-linking experiments showed that CgThyX may exist as a dimer in solution, unlike a typical ThyX protein with homotetrameric structure for catalytic activity. Spectroscopic analysis indicated that purified CgThyX lacked the cofactor FAD. The 2.3A resolution crystal structure of CgThyX-FAD demonstrated a loose tetramer, in which FAD is chelated between the subunits via a manner distinct from that of other flavin-dependent thymidylate synthases. Structure-based mutational studies have identified a non-conserved segment (residues 70-73) of CgThyX protein with crucial role in binding to FAD. Taken together, our biochemical and structural analyses highlight unique features of the C. glutamicum ThyX that distinguish this enzyme from ThyX proteins from other organisms. Our results also suggest that thymidylate synthesis in C. glutamicum requires ThyA but not ThyX.
Collapse
|
34
|
Wehelie R, Eriksson S, Bölske G, Wang L. Thymidylate synthases of Mycoplasma mycoides subsp. mycoides SC and Ureaplasma parvum are flavin-dependent. Vet Microbiol 2010; 145:265-72. [PMID: 20413228 DOI: 10.1016/j.vetmic.2010.03.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/25/2010] [Accepted: 03/26/2010] [Indexed: 11/28/2022]
Abstract
Mycoplasma mycoides subsp. mycoides small colony type (M. mycoides subsp. mycoides SC) is the causative agent of contagious bovine pleuropneumonia (CBPP), one of the most serious bacterial diseases in cattle and buffalo. Ureaplasma parvum (U. parvum) colonizes the human urogenital tract, and has been associated with urethritis and premature birth. The de novo synthesis of thymidylate (dTMP) is essential and catalyzed by thymidylate synthase (TS), encoded by either the thyA or the thyX genes. No homologs to either thyA or thyX have been identified in the U. parvum and M. mycoides subsp. mycoides SC genomes. Here we report the identification, partial purification and characterization of M. mycoides subsp. mycoides and U. parvum TS. Our results showed that the M. mycoides subsp. mycoides SC and U. parvum TS apparently are flavin-dependent, having similar enzymatic activities but no sequence homology to other known ThyX proteins. Up to date there are 11 Mollicutes species lacking both thyA and thyX gene. Therefore, the finding described here most likely constitutes a new enzyme family specific for Mollicutes. These M. mycoides subsp. mycoides SC and U. parvum TS enzymes could be ideal targets for future development of agents against Myoplasma infections.
Collapse
Affiliation(s)
- Rahma Wehelie
- Department of Anatomy, Physiology and Biochemistry, Section of Veterinary Medical Biochemistry, Swedish University of Agricultural Sciences, The Biomedical Centre, Uppsala, Sweden
| | | | | | | |
Collapse
|
35
|
Stern A, Mayrose I, Penn O, Shaul S, Gophna U, Pupko T. An evolutionary analysis of lateral gene transfer in thymidylate synthase enzymes. Syst Biol 2010; 59:212-25. [PMID: 20525631 PMCID: PMC2826268 DOI: 10.1093/sysbio/syp104] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Thymidylate synthases (Thy) are key enzymes in the synthesis of deoxythymidylate, 1 of the 4 building blocks of DNA. As such, they are essential for all DNA-based forms of life and therefore implicated in the hypothesized transition from RNA genomes to DNA genomes. Two evolutionally unrelated Thy enzymes, ThyA and ThyX, are known to catalyze the same biochemical reaction. Both enzymes are sporadically distributed within each of the 3 domains of life in a pattern that suggests multiple nonhomologous lateral gene transfer (LGT) events. We present a phylogenetic analysis of the evolution of the 2 enzymes, aimed at unraveling their entangled evolutionary history and tracing their origin back to early life. A novel probabilistic evolutionary model was developed, which allowed us to compute the posterior probabilities and the posterior expectation of the number of LGT events. Simulation studies were performed to validate the model's ability to accurately detect LGT events, which have occurred throughout a large phylogeny. Applying the model to the Thy data revealed widespread nonhomologous LGT between and within all 3 domains of life. By reconstructing the ThyA and ThyX gene trees, the most likely donor of each LGT event was inferred. The role of viruses in LGT of Thy is finally discussed.
Collapse
Affiliation(s)
- Adi Stern
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
36
|
Weynberg KD, Allen MJ, Ashelford K, Scanlan DJ, Wilson WH. From small hosts come big viruses: the complete genome of a secondOstreococcus taurivirus, OtV-1. Environ Microbiol 2009; 11:2821-39. [PMID: 19650882 DOI: 10.1111/j.1462-2920.2009.01991.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Karen D Weynberg
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK
| | | | | | | | | |
Collapse
|
37
|
Koehn EM, Kohen A. Flavin-dependent thymidylate synthase: a novel pathway towards thymine. Arch Biochem Biophys 2009; 493:96-102. [PMID: 19643076 DOI: 10.1016/j.abb.2009.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 07/21/2009] [Accepted: 07/23/2009] [Indexed: 10/20/2022]
Abstract
For several decades only one chemical pathway was known for the de novo biosynthesis of the essential DNA nucleotide, thymidylate. This reaction catalyzed by thyA or TYMS encoded thymidylate synthases is the last committed step in the biosynthesis of thymidylate and proceeds via the reductive methylation of uridylate. However, many microorganisms have recently been shown to produce a novel, flavin-dependent thymidylate synthase encoded by the thyX gene. Preliminary structural and mechanistic studies have shown substantial differences between these deoxyuridylate-methylating enzymes. Recently, both the chemical and kinetic mechanisms of FDTS have provided further insight into the distinctions between thyA and thyX encoded thymidylate synthases. Since FDTSs are found in several severe human pathogens their unusual mechanism offers a promising future for the development of antibiotic and antiviral drugs with little effect on human thymidylate biosynthesis.
Collapse
Affiliation(s)
- Eric M Koehn
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
38
|
Wilson WH, Van Etten JL, Allen MJ. The Phycodnaviridae: the story of how tiny giants rule the world. Curr Top Microbiol Immunol 2009; 328:1-42. [PMID: 19216434 DOI: 10.1007/978-3-540-68618-7_1] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The family Phycodnaviridae encompasses a diverse and rapidly expanding collection of large icosahedral, dsDNA viruses that infect algae. These lytic and lysogenic viruses have genomes ranging from 160 to 560 kb. The family consists of six genera based initially on host range and supported by sequence comparisons. The family is monophyletic with branches for each genus, but the phycodnaviruses have evolutionary roots that connect them with several other families of large DNA viruses, referred to as the nucleocytoplasmic large DNA viruses (NCLDV). The phycodnaviruses have diverse genome structures, some with large regions of noncoding sequence and others with regions of ssDNA. The genomes of members in three genera in the Phycodnaviridae have been sequenced. The genome analyses have revealed more than 1000 unique genes, with only 14 homologous genes in common among the three genera of phycodnaviruses sequenced to date. Thus, their gene diversity far exceeds the number of so-called core genes. Not much is known about the replication of these viruses, but the consequences of these infections on phytoplankton have global affects, including influencing geochemical cycling and weather patterns.
Collapse
Affiliation(s)
- W H Wilson
- Bigelow Laboratory for Ocean Sciences, 180 McKown Point, P.O. Box 475, West Boothbay Harbor, ME 04575-0475, USA.
| | | | | |
Collapse
|
39
|
Flavin-dependent thymidylate synthase X limits chromosomal DNA replication. Proc Natl Acad Sci U S A 2008; 105:9948-52. [PMID: 18621705 DOI: 10.1073/pnas.0801356105] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have investigated the hitherto unexplored possibility that differences in the catalytic efficiencies of thymidylate synthases ThyX and ThyA, enzymes that produce the essential DNA precursor dTMP, have influenced prokaryotic genome evolution. We demonstrate that DNA replication speed in bacteria and archaea that contain the low-activity ThyX enzyme is up to 10-fold decreased compared with species that contain the catalytically more efficient ThyA. Our statistical studies of >400 genomes indicated that ThyA proteins are preferred for the replication of large genomes, providing further evidence that the thymidylate metabolism is limiting expansion of prokaryotic genomes. Because both ThyX and ThyA participate in frequent reciprocal gene replacement events, our observations indicate that the bacterial metabolism continues to modulate the size and composition of prokaryotic genomes. We also propose that the increased kinetic efficiency of thymidylate synthesis has contributed to extending the prokaryotic evolutionary potential.
Collapse
|
40
|
Hunter JH, Gujjar R, Pang CKT, Rathod PK. Kinetics and ligand-binding preferences of Mycobacterium tuberculosis thymidylate synthases, ThyA and ThyX. PLoS One 2008; 3:e2237. [PMID: 18493582 PMCID: PMC2386288 DOI: 10.1371/journal.pone.0002237] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 04/14/2008] [Indexed: 11/19/2022] Open
Abstract
Background Mycobacterium tuberculosis kills approximately 2 million people each year and presents an urgent need to identify new targets and new antitubercular drugs. Thymidylate synthase (TS) enzymes from other species offer good targets for drug development and the M. tuberculosis genome contains two putative TS enzymes, a conventional ThyA and a flavin-based ThyX. In M. tuberculosis, both TS enzymes have been implicated as essential for growth, either based on drug-resistance studies or genome-wide mutagenesis screens. To facilitate future small molecule inhibitors against these proteins, a detailed enzymatic characterization was necessary. Methodology/Principal Findings After cloning, overexpression, and purification, the thymidylate-synthesizing ability of ThyA and ThyX gene products were directly confirmed by HPLC analysis of reaction products and substrate saturation kinetics were established. 5-Fluoro-2′-deoxyuridine 5′-monophosphate (FdUMP) was a potent inhibitor of both ThyA and ThyX, offering important clues to double-targeting strategies. In contrast, the folate-based 1843U89 was a potent inhibitor of ThyA but not ThyX suggesting that it should be possible to find ThyX-specific antifolates. A turnover-dependent kinetic assay, combined with the active-site titration approach of Ackermann and Potter, revealed that both M. tuberculosis enzymes had very low kcat values. One possible explanation for the low catalytic activity of M. tuberculosis ThyX is that its true biological substrates remain to be identified. Alternatively, this slow-growing pathogen, with low demands for TMP, may have evolved to down-regulate TS activities by altering the turnover rate of individual enzyme molecules, perhaps to preserve total protein quantities for other purposes. In many organisms, TS is often used as a part of larger complexes of macromolecules that control replication and DNA repair. Conclusions/Significance Thus, the present enzymatic characterization of ThyA and ThyX from M. tuberculosis provides a framework for future development of cell-active inhibitors and the biological roles of these TS enzymes in M. tuberculosis.
Collapse
Affiliation(s)
- Joshua H. Hunter
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Ramesh Gujjar
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Cullen K. T. Pang
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Pradipsinh K. Rathod
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
41
|
Esra Onen F, Boum Y, Jacquement C, Spanedda MV, Jaber N, Scherman D, Myllykallio H, Herscovici J. Design, synthesis and evaluation of potent thymidylate synthase X inhibitors. Bioorg Med Chem Lett 2008; 18:3628-31. [PMID: 18513963 DOI: 10.1016/j.bmcl.2008.04.080] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 04/25/2008] [Accepted: 04/25/2008] [Indexed: 10/22/2022]
Abstract
Three synthesized series of compounds based on a thiazolidine core allowed identification of potent inhibitors of thymidylate synthase X. The evaluation of the catalytic activity of the enzyme in the presence of these molecules revealed two distinct classes of compounds that inhibit ThyX with submicromolar concentrations, which could lead, after optimization, to effective inhibitors with potential biomedical interest.
Collapse
Affiliation(s)
- F Esra Onen
- Unité de Pharmacologie Chimique et Génétique, Ecole Nationale Supérieure de Chimie de Paris, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Functional analysis of the Mycobacterium tuberculosis FAD-dependent thymidylate synthase, ThyX, reveals new amino acid residues contributing to an extended ThyX motif. J Bacteriol 2008; 190:2056-64. [PMID: 18192395 DOI: 10.1128/jb.01094-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel FAD-dependent thymidylate synthase, ThyX, is present in a variety of eubacteria and archaea, including the mycobacteria. A short motif found in all thyX genes, RHRX(7-8)S, has been identified. The three-dimensional structure of the Mycobacterium tuberculosis ThyX enzyme has been solved. Building upon this information, we used directed mutagenesis to produce 67 mutants of the M. tuberculosis thyX gene. Each enzyme was assayed to determine its ability to complement the defect in thymidine biosynthesis in a delta thyA strain of Escherichia coli. Enzymes from selected strains were then tested in vitro for their ability to catalyze the oxidation of NADPH and the release of a proton from position 5 of the pyrimidine ring of dUMP. The results defined an extended motif of amino acids essential to enzyme activity in M. tuberculosis (Y44X(24)H69X(25)R95HRX(7)S105XRYX(90)R199 [with the underlined histidine acting as the catalytic residue and the underlined serine as the nucleophile]) and provided insight into the ThyX reaction mechanism. ThyX is found in a variety of bacterial pathogens but is absent in humans, which depend upon an unrelated thymidylate synthase, ThyA. Therefore, ThyX is a potential target for development of antibacterial drugs.
Collapse
|
43
|
Leduc D, Escartin F, Nijhout HF, Reed MC, Liebl U, Skouloubris S, Myllykallio H. Flavin-dependent thymidylate synthase ThyX activity: implications for the folate cycle in bacteria. J Bacteriol 2007; 189:8537-45. [PMID: 17890305 PMCID: PMC2168944 DOI: 10.1128/jb.01380-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although flavin-dependent ThyX proteins show thymidylate synthase activity in vitro and functionally complement thyA defects in heterologous systems, direct proof of their cellular functions is missing. Using insertional mutagenesis of Rhodobacter capsulatus thyX, we constructed the first defined thyX inactivation mutant. Phenotypic analyses of the obtained mutant strain confirmed that R. capsulatus ThyX is required for de novo thymidylate synthesis. Full complementation of the R. capsulatus thyX::spec strain to thymidine prototrophy required not only the canonical thymidylate synthase ThyA but also the dihydrofolate reductase FolA. Strikingly, we also found that addition of exogenous methylenetetrahydrofolate transiently inhibited the growth of the different Rhodobacter strains used in this work. To rationalize these experimental results, we used a mathematical model of bacterial folate metabolism. This model suggests that a very low dihydrofolate reductase activity is enough to rescue significant thymidylate synthesis in the presence of ThyX proteins and is in agreement with the notion that intracellular accumulation of folates results in growth inhibition. In addition, our observations suggest that the presence of flavin-dependent thymidylate synthase X provides growth benefits under conditions in which the level of reduced folate derivatives is compromised.
Collapse
Affiliation(s)
- Damien Leduc
- INSERM Avenir group, Institut de Génétique et de Microbiologie, CNRS UMR8621, F-91405 Orsay, France
| | | | | | | | | | | | | |
Collapse
|
44
|
de Crécy-Lagard V, El Yacoubi B, de la Garza RD, Noiriel A, Hanson AD. Comparative genomics of bacterial and plant folate synthesis and salvage: predictions and validations. BMC Genomics 2007; 8:245. [PMID: 17645794 PMCID: PMC1971073 DOI: 10.1186/1471-2164-8-245] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 07/23/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Folate synthesis and salvage pathways are relatively well known from classical biochemistry and genetics but they have not been subjected to comparative genomic analysis. The availability of genome sequences from hundreds of diverse bacteria, and from Arabidopsis thaliana, enabled such an analysis using the SEED database and its tools. This study reports the results of the analysis and integrates them with new and existing experimental data. RESULTS Based on sequence similarity and the clustering, fusion, and phylogenetic distribution of genes, several functional predictions emerged from this analysis. For bacteria, these included the existence of novel GTP cyclohydrolase I and folylpolyglutamate synthase gene families, and of a trifunctional p-aminobenzoate synthesis gene. For plants and bacteria, the predictions comprised the identities of a 'missing' folate synthesis gene (folQ) and of a folate transporter, and the absence from plants of a folate salvage enzyme. Genetic and biochemical tests bore out these predictions. CONCLUSION For bacteria, these results demonstrate that much can be learnt from comparative genomics, even for well-explored primary metabolic pathways. For plants, the findings particularly illustrate the potential for rapid functional assignment of unknown genes that have prokaryotic homologs, by analyzing which genes are associated with the latter. More generally, our data indicate how combined genomic analysis of both plants and prokaryotes can be more powerful than isolated examination of either group alone.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Basma El Yacoubi
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | | - Alexandre Noiriel
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Andrew D Hanson
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
45
|
Chernyshev A, Fleischmann T, Koehn E, Lesley SA, Kohen A. The relationships between oxidase and synthase activities of flavin dependent thymidylate synthase (FDTS). Chem Commun (Camb) 2007:2861-3. [PMID: 17609801 PMCID: PMC4341948 DOI: 10.1039/b700977a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New findings lead to a revised understanding of the substrates' binding order, the role of the substrate as an activator, and the observed lag phase in the FDTS catalyzed reaction.
Collapse
Affiliation(s)
| | - Todd Fleischmann
- Department of Chemistry, The University of Iowa, Iowa City, IA, USA
| | - Eric Koehn
- Department of Chemistry, The University of Iowa, Iowa City, IA, USA
| | - Scott A. Lesley
- The Joint Center for Structural Genomics at The Genomics Institute of Novartis Research Foundation, 10675 JohnJay Hopkins Drive, San Diego, California 92121, USA
| | - Amnon Kohen
- Department of Chemistry, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
46
|
Fitzgerald LA, Graves MV, Li X, Hartigan J, Pfitzner AJP, Hoffart E, Van Etten JL. Sequence and annotation of the 288-kb ATCV-1 virus that infects an endosymbiotic chlorella strain of the heliozoon Acanthocystis turfacea. Virology 2007; 362:350-61. [PMID: 17276475 PMCID: PMC2018652 DOI: 10.1016/j.virol.2006.12.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 11/16/2006] [Accepted: 12/24/2006] [Indexed: 11/25/2022]
Abstract
Acanthocystis turfacea chlorella virus (ATCV-1), a prospective member of the family Phycodnaviridae, genus Chlorovirus, infects a unicellular, eukaryotic, chlorella-like green alga, Chlorella SAG 3.83, that is a symbiont in the heliozoon A. turfacea. The 288,047-bp ATCV-1 genome is the first virus to be sequenced that infects Chlorella SAG 3.83. ATCV-1 contains 329 putative protein-encoding and 11 tRNA-encoding genes. The protein-encoding genes are almost evenly distributed on both strands and intergenic space is minimal. Thirty-four percent of the viral gene products resemble entries in the public databases, including some that are unexpected for a virus. For example, these unique gene products include ribonucleoside-triphosphate reductase, dTDP-d-glucose 4,6 dehydratase, potassium ion transporter, aquaglyceroporin, and mucin-desulfating sulfatase. Comparison of ATCV-1 protein-encoding genes with the prototype chlorella virus PBCV-1 indicates that about 80% of the ATCV-1 genes are present in PBCV-1.
Collapse
Affiliation(s)
- Lisa A Fitzgerald
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Zhang Y, Maley F, Maley GF, Duncan G, Dunigan DD, Van Etten JL. Chloroviruses encode a bifunctional dCMP-dCTP deaminase that produces two key intermediates in dTTP formation. J Virol 2007; 81:7662-71. [PMID: 17475641 PMCID: PMC1933376 DOI: 10.1128/jvi.00186-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chlorovirus PBCV-1, like many large double-stranded DNA-containing viruses, contains several genes that encode putative proteins involved in nucleotide biosynthesis. This report describes the characterization of the PBCV-1 dCMP deaminase, which produces dUMP, a key intermediate in the synthesis of dTTP. As predicted, the recombinant protein has dCMP deaminase activity that is activated by dCTP and inhibited by dTTP. Unexpectedly, however, the viral enzyme also has dCTP deaminase activity, producing dUTP. Typically, these two reactions are catalyzed by proteins in separate enzyme classes; to our knowledge, this is the first example of a protein having both deaminase activities. Kinetic experiments established that (i) the PBCV-1 enzyme has a higher affinity for dCTP than for dCMP, (ii) dCTP serves as a positive heterotropic effector for the dCMP deaminase activity and a positive homotropic effector for the dCTP deaminase activity, and (iii) the enzymatic efficiency of the dCMP deaminase activity is about four times higher than that of the dCTP deaminase activity. Inhibitor studies suggest that the same active site is involved in both dCMP and dCTP deaminations. The discovery that the PBCV-1 dCMP deaminase has two activities, together with a previous report that the virus also encodes a functional dUTP triphosphatase (Y. Zhang, H. Moriyama, K. Homma, and J. L. Van Etten, J. Virol. 79:9945-9953, 2005), means that PBCV-1 is the first virus to encode enzymes involved in all three known pathways to form dUMP.
Collapse
Affiliation(s)
- Yuanzheng Zhang
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583-0722, USA
| | | | | | | | | | | |
Collapse
|
48
|
Chernyshev A, Fleischmann T, Kohen A. Thymidyl biosynthesis enzymes as antibiotic targets. Appl Microbiol Biotechnol 2007; 74:282-9. [PMID: 17216455 DOI: 10.1007/s00253-006-0763-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 11/13/2006] [Accepted: 11/14/2006] [Indexed: 10/23/2022]
Abstract
The two long-known "classical" enzymes of uridyl-5-methylation, thymidylate synthase and ribothymidyl synthase, have been joined by two alternative methylation enzymes, flavin-dependent thymidylate synthase and folate-dependent ribothymidyl synthase. These two newly discovered enzymes have much in common: both contain flavin cofactors, utilize methylenetetrahydrofolate as a source of methyl group, and perform thymidylate synthesis via chemical pathways distinct from those of their classic counterparts. Several severe human pathogens (e.g., typhus, anthrax, tuberculosis, and more) depend on these "alternative" enzymes for reproduction. These and other distinctive properties make the alternative enzymes and their corresponding genes appealing targets for new antibiotics.
Collapse
Affiliation(s)
- Anatoly Chernyshev
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA
| | | | | |
Collapse
|
49
|
Fitzgerald LA, Graves MV, Li X, Feldblyum T, Hartigan J, Van Etten JL. Sequence and annotation of the 314-kb MT325 and the 321-kb FR483 viruses that infect Chlorella Pbi. Virology 2006; 358:459-71. [PMID: 17023017 PMCID: PMC1890046 DOI: 10.1016/j.virol.2006.08.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 08/18/2006] [Accepted: 08/23/2006] [Indexed: 11/26/2022]
Abstract
Viruses MT325 and FR483, members of the family Phycodnaviridae, genus Chlorovirus, infect the fresh water, unicellular, eukaryotic, chlorella-like green alga, Chlorella Pbi. The 314,335-bp genome of MT325 and the 321,240-bp genome of FR483 are the first viruses that infect Chlorella Pbi to have their genomes sequenced and annotated. Furthermore, these genomes are the two smallest chlorella virus genomes sequenced to date, MT325 has 331 putative protein-encoding and 10 tRNA-encoding genes and FR483 has 335 putative protein-encoding and 9 tRNA-encoding genes. The protein-encoding genes are almost evenly distributed on both strands, and intergenic space is minimal. Approximately 40% of the viral gene products resemble entries in public databases, including some that are the first of their kind to be detected in a virus. For example, these unique gene products include an aquaglyceroporin in MT325, a potassium ion transporter protein and an alkyl sulfatase in FR483, and a dTDP-glucose pyrophosphorylase in both viruses. Comparison of MT325 and FR483 protein-encoding genes with the prototype chlorella virus PBCV-1 indicates that approximately 82% of the genes are present in all three viruses.
Collapse
Affiliation(s)
- Lisa A. Fitzgerald
- Deparment of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304
| | - Michael V. Graves
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, MA 01854
| | - Xiao Li
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, MA 01854
| | - Tamara Feldblyum
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850
| | - James Hartigan
- Agencourt Bioscience Corporation, 500 Cummings Center, Suite 2450, Beverly, MA 01915
| | - James L. Van Etten
- Deparment of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583-0722 and Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68588-0666
- *Corresponding author. Mailing address: Department of Plant Pathology, University of Nebraska-Lincoln, NE 68383-0722. Phone: (402) 472-3168. Fax: (402) 472-2853. E-mail:
| |
Collapse
|
50
|
Fitzgerald LA, Graves MV, Li X, Feldblyum T, Nierman WC, Van Etten JL. Sequence and annotation of the 369-kb NY-2A and the 345-kb AR158 viruses that infect Chlorella NC64A. Virology 2006; 358:472-84. [PMID: 17027058 PMCID: PMC1904511 DOI: 10.1016/j.virol.2006.08.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 08/17/2006] [Accepted: 08/23/2006] [Indexed: 10/24/2022]
Abstract
Viruses NY-2A and AR158, members of the family Phycodnaviridae, genus Chlorovirus, infect the fresh water, unicellular, eukaryotic, chlorella-like green alga, Chlorella NC64A. The 368,683-bp genome of NY-2A and the 344,690-bp genome of AR158 are the two largest chlorella virus genomes sequenced to date; NY-2A contains 404 putative protein-encoding and 7 tRNA-encoding genes and AR158 contains 360 putative protein-encoding and 6 tRNA-encoding genes. The protein-encoding genes are almost evenly distributed on both strands, and intergenic space is minimal. Two of the NY-2A genes encode inteins, the large subunit of ribonucleotide reductase and a superfamily II helicase. These are the first inteins to be detected in the chlorella viruses. Approximately 40% of the viral gene products resemble entries in the public databases, including some that are unexpected for a virus. These include GDP-d-mannose dehydratase, fucose synthase, aspartate transcarbamylase, Ca(++) transporting ATPase and ubiquitin. Comparison of NY-2A and AR158 protein-encoding genes with the prototype chlorella virus PBCV-1 indicates that 85% of the genes are present in all three viruses.
Collapse
Affiliation(s)
- Lisa A. Fitzgerald
- Deparment of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304
| | - Michael V. Graves
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, MA 01854
| | - Xiao Li
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, MA 01854
| | - Tamara Feldblyum
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850
| | - William C. Nierman
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850
- The George Washington University School of Medicine, Department of Biochemistry and Molecular Biology, Washington, DC 20037
| | - James L. Van Etten
- Deparment of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583-0722 and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68588-0666
- *Corresponding author. Mailing address: Department of Plant Pathology, University of Nebraska-Lincoln, NE 68383-0722. Phone: (402) 472-3168. Fax: (402) 472-2853. E-mail:
| |
Collapse
|