1
|
Voss M. Proteolytic cleavage of Golgi glycosyltransferases by SPPL3 and other proteases and its implications for cellular glycosylation. Biochim Biophys Acta Gen Subj 2024; 1868:130668. [PMID: 38992482 DOI: 10.1016/j.bbagen.2024.130668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Glycosylation of proteins and lipids is of fundamental importance in multicellular eukaryotes. The vast diversity of glycan structures observed is generated in the Golgi apparatus by the concerted activity of >100 distinct enzymes, which include glycosyltransferases and other glycan-modifying enzymes. Well-known for decades, the majority of these enzymes is released from the Golgi apparatus and subsequently secreted into the extracellular space following endoproteolytic cleavage, but the underlying molecular mechanisms and the physiological implications have remained unexplored. This review will summarize our current knowledge of Golgi enzyme proteolysis and secretion and will discuss its conceptual implications for the regulation of cellular glycosylation and the organization of the Golgi apparatus. A particular focus will lie on the intramembrane protease SPPL3, which recently emerged as key protease facilitating Golgi enzyme release and has since been shown to affect a multitude of glycosylation-dependent physiological processes.
Collapse
Affiliation(s)
- Matthias Voss
- Institute of Biochemistry, Kiel University, Kiel, Germany.
| |
Collapse
|
2
|
Irons EE, Sajina GC, Lau JT. Sialic acid in the regulation of blood cell production, differentiation and turnover. Immunology 2024; 172:517-532. [PMID: 38503445 PMCID: PMC11223974 DOI: 10.1111/imm.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
Sialic acid is a unique sugar moiety that resides in the distal and most accessible position of the glycans on mammalian cell surface and extracellular glycoproteins and glycolipids. The potential for sialic acid to obscure underlying structures has long been postulated, but the means by which such structural changes directly affect biological processes continues to be elucidated. Here, we appraise the growing body of literature detailing the importance of sialic acid for the generation, differentiation, function and death of haematopoietic cells. We conclude that sialylation is a critical post-translational modification utilized in haematopoiesis to meet the dynamic needs of the organism by enforcing rapid changes in availability of lineage-specific cell types. Though long thought to be generated only cell-autonomously within the intracellular ER-Golgi secretory apparatus, emerging data also demonstrate previously unexpected diversity in the mechanisms of sialylation. Emphasis is afforded to the mechanism of extrinsic sialylation, whereby extracellular enzymes remodel cell surface and extracellular glycans, supported by charged sugar donor molecules from activated platelets.
Collapse
Affiliation(s)
| | | | - Joseph T.Y. Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203 USA
| |
Collapse
|
3
|
Krüger L, Biskup K, Schipke CG, Kochnowsky B, Schneider LS, Peters O, Blanchard V. The Cerebrospinal Fluid Free-Glycans Hex 1 and HexNAc 1Hex 1Neu5Ac 1 as Potential Biomarkers of Alzheimer's Disease. Biomolecules 2024; 14:512. [PMID: 38785920 PMCID: PMC11117705 DOI: 10.3390/biom14050512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, affecting a growing number of elderly people. In order to improve the early and differential diagnosis of AD, better biomarkers are needed. Glycosylation is a protein post-translational modification that is modulated in the course of many diseases, including neurodegeneration. Aiming to improve AD diagnosis and differential diagnosis through glycan analytics methods, we report the glycoprotein glycome of cerebrospinal fluid (CSF) isolated from a total study cohort of 262 subjects. The study cohort consisted of patients with AD, healthy controls and patients suffering from other types of dementia. CSF free-glycans were also isolated and analyzed in this study, and the results reported for the first time the presence of 19 free glycans in this body fluid. The free-glycans consisted of complete or truncated N-/O-glycans as well as free monosaccharides. The free-glycans Hex1 and HexNAc1Hex1Neu5Ac1 were able to discriminate AD from controls and from patients suffering from other types of dementia. Regarding CSF N-glycosylation, high proportions of high-mannose, biantennary bisecting core-fucosylated N-glycans were found, whereby only about 20% of the N-glycans were sialylated. O-Glycans and free-glycan fragments were less sialylated in AD patients than in controls. To conclude, this comprehensive study revealed for the first time the biomarker potential of free glycans for the differential diagnosis of AD.
Collapse
Affiliation(s)
- Lynn Krüger
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (L.K.)
- Department of Human Medicine, Medical School Berlin, Rüdesheimer Str. 50, 14197 Berlin, Germany
| | - Karina Biskup
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (L.K.)
- Department of Human Medicine, Medical School Berlin, Rüdesheimer Str. 50, 14197 Berlin, Germany
| | - Carola G. Schipke
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (C.G.S.); (B.K.); (L.-S.S.); (O.P.)
| | - Bianca Kochnowsky
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (C.G.S.); (B.K.); (L.-S.S.); (O.P.)
| | - Luisa-Sophie Schneider
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (C.G.S.); (B.K.); (L.-S.S.); (O.P.)
| | - Oliver Peters
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (C.G.S.); (B.K.); (L.-S.S.); (O.P.)
| | - Véronique Blanchard
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (L.K.)
- Department of Human Medicine, Medical School Berlin, Rüdesheimer Str. 50, 14197 Berlin, Germany
| |
Collapse
|
4
|
Kim J, Jeon H, Yun Kim H, Kim Y. Failure, Success, and Future Direction of Alzheimer Drugs Targeting Amyloid-β Cascade: Pros and Cons of Chemical and Biological Modalities. Chembiochem 2023; 24:e202300328. [PMID: 37497809 DOI: 10.1002/cbic.202300328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 07/28/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia and has become a health concern worldwide urging for an effective therapeutic. The amyloid hypothesis, currently the most pursued basis of AD drug discovery, points the cause of AD to abnormal production and ineffective removal of pathogenic aggregated amyloid-β (Aβ). AD therapeutic research has been focused on targeting different species of Aβ in the amyloidogenic process to control Aβ content and recover cognitive decline. Among the different processes targeted, the clearance mechanism has been found to be the most effective, supported by the recent clinical approval of an Aβ-targeting immunotherapeutic drug which significantly slowed cognitive decline. Although the current AD drug discovery field is extensively researching immunotherapeutic drugs, there are numerous properties of immunotherapy in need of improvements that could be overcome by an equally performing chemical drug. Here, we review chemical and immunotherapy drug candidates, based on their mechanism of modulating the amyloid cascade, selected from the AlzForum database. Through this review, we aim to summarize and evaluate the prospect of Aβ-targeting chemical drugs.
Collapse
Affiliation(s)
- JiMin Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Hanna Jeon
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Hye Yun Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - YoungSoo Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| |
Collapse
|
5
|
Yang J, Li H, Zhao Y. Dessert or Poison? The Roles of Glycosylation in Alzheimer's, Parkinson's, Huntington's Disease, and Amyotrophic Lateral Sclerosis. Chembiochem 2023; 24:e202300017. [PMID: 37440197 DOI: 10.1002/cbic.202300017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/27/2023] [Indexed: 07/14/2023]
Abstract
Ministry of Education and Key Laboratory of Neurons and glial cells of the central nervous system (CNS) are modified by glycosylation and rely on glycosylation to achieve normal neural function. Neurodegenerative disease is a common disease of the elderly, affecting their healthy life span and quality of life, and no effective treatment is currently available. Recent research implies that various glycosylation traits are altered during neurodegenerative diseases, suggesting a potential implication of glycosylation in disease pathology. Herein, we summarized the current knowledge about glycosylation associated with Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic lateral sclerosis (ALS) pathogenesis, focusing on their promising functional avenues. Moreover, we collected research aimed at highlighting the need for such studies to provide a wealth of disease-related glycosylation information that will help us better understand the pathophysiological mechanisms and hopefully specific glycosylation information to provide further diagnostic and therapeutic directions for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiajun Yang
- Department of Biochemistry and Molecular Biology School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
- Key Laboratory of Endemic and Ethenic Diseases Medical Molecular Biology of Guizhou Province Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Hongmei Li
- Department of Biochemistry and Molecular Biology School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
- Key Laboratory of Endemic and Ethenic Diseases Medical Molecular Biology of Guizhou Province Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yuhui Zhao
- Key Laboratory of Endemic and Ethenic Diseases Medical Molecular Biology of Guizhou Province Guizhou Medical University, Guiyang, 550004, Guizhou, China
- Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
6
|
Sato W, Watanabe-Takahashi M, Murata T, Utsunomiya-Tate N, Motoyama J, Anzai M, Ishihara S, Nishioka N, Uchiyama H, Togashi J, Nishihara S, Kawasaki K, Saito T, Saido TC, Funamoto S, Nishikawa K. A tailored tetravalent peptide displays dual functions to inhibit amyloid β production and aggregation. Commun Biol 2023; 6:383. [PMID: 37031306 PMCID: PMC10082830 DOI: 10.1038/s42003-023-04771-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Inhibition of amyloid-β peptide (Aβ) accumulation in the brain is a promising approach for treatment of Alzheimer's disease (AD). Aβ is produced by β-secretase and γ-secretase in endosomes via sequential proteolysis of amyloid precursor protein (APP). Aβ and APP have a common feature to readily cluster to form multimers. Here, using multivalent peptide library screens, we identified a tetravalent peptide, LME-tet, which binds APP and Aβ via multivalent interactions. In cells, LME-tet-bound APP in the plasma membrane is transported to endosomes, blocking Aβ production through specific inhibition of β-cleavage, but not γ-cleavage. LME-tet further suppresses Aβ aggregation by blocking formation of the β-sheet conformation. Inhibitory effects are not observed with a monomeric peptide, emphasizing the significance of multivalent interactions for mediating these activities. Critically, LME-tet efficiently reduces Aβ levels in the brain of AD model mice, suggesting it may hold promise for treatment of AD.
Collapse
Affiliation(s)
- Waka Sato
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Miho Watanabe-Takahashi
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Takuya Murata
- Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | | | - Jun Motoyama
- Laboratory of Developmental Neurobiology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Masataka Anzai
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Seiko Ishihara
- Department of Neuropathology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Nanako Nishioka
- Department of Neuropathology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Hina Uchiyama
- Department of Neuropathology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Juri Togashi
- Department of Neuropathology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Saeka Nishihara
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Kiyoshi Kawasaki
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Graduate School of Medical Sciences, Nagoya City University, Aichi, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, Riken Center For Brain Science, Saitama, Japan
| | - Satoru Funamoto
- Department of Neuropathology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan.
| | - Kiyotaka Nishikawa
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan.
| |
Collapse
|
7
|
Papadopoulou AA, Stelzer W, Silber M, Schlosser C, Spitz C, Haug-Kröper M, Straub T, Müller SA, Lichtenthaler SF, Muhle-Goll C, Langosch D, Fluhrer R. Helical stability of the GnTV transmembrane domain impacts on SPPL3 dependent cleavage. Sci Rep 2022; 12:20987. [PMID: 36470941 PMCID: PMC9722940 DOI: 10.1038/s41598-022-24772-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Signal-Peptide Peptidase Like-3 (SPPL3) is an intramembrane cleaving aspartyl protease that causes secretion of extracellular domains from type-II transmembrane proteins. Numerous Golgi-localized glycosidases and glucosyltransferases have been identified as physiological SPPL3 substrates. By SPPL3 dependent processing, glycan-transferring enzymes are deactivated inside the cell, as their active site-containing domain is cleaved and secreted. Thus, SPPL3 impacts on glycan patterns of many cellular and secreted proteins and can regulate protein glycosylation. However, the characteristics that make a substrate a favourable candidate for SPPL3-dependent cleavage remain unknown. To gain insights into substrate requirements, we investigated the function of a GxxxG motif located in the transmembrane domain of N-acetylglucosaminyltransferase V (GnTV), a well-known SPPL3 substrate. SPPL3-dependent secretion of the substrate's ectodomain was affected by mutations disrupting the GxxxG motif. Using deuterium/hydrogen exchange and NMR spectroscopy, we studied the effect of these mutations on the helix flexibility of the GnTV transmembrane domain and observed that increased flexibility facilitates SPPL3-dependent shedding and vice versa. This study provides first insights into the characteristics of SPPL3 substrates, combining molecular biology, biochemistry, and biophysical techniques and its results will provide the basis for better understanding the characteristics of SPPL3 substrates with implications for the substrates of other intramembrane proteases.
Collapse
Affiliation(s)
- Alkmini A. Papadopoulou
- grid.7307.30000 0001 2108 9006Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätstrasse 2, 86159 Augsburg, Germany
| | - Walter Stelzer
- grid.6936.a0000000123222966Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Mara Silber
- grid.7892.40000 0001 0075 5874Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany ,grid.7892.40000 0001 0075 5874Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Christine Schlosser
- grid.7307.30000 0001 2108 9006Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätstrasse 2, 86159 Augsburg, Germany
| | - Charlotte Spitz
- grid.7307.30000 0001 2108 9006Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätstrasse 2, 86159 Augsburg, Germany
| | - Martina Haug-Kröper
- grid.7307.30000 0001 2108 9006Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätstrasse 2, 86159 Augsburg, Germany
| | - Tobias Straub
- grid.5252.00000 0004 1936 973XCore Facility Bioinformatics, Biomedical Center, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Stephan A. Müller
- grid.424247.30000 0004 0438 0426DZNE – German Center for Neurodegenerative Diseases, Munich, Germany
| | - Stefan F. Lichtenthaler
- grid.424247.30000 0004 0438 0426DZNE – German Center for Neurodegenerative Diseases, Munich, Germany ,grid.15474.330000 0004 0477 2438Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Claudia Muhle-Goll
- grid.7892.40000 0001 0075 5874Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany ,grid.7892.40000 0001 0075 5874Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Dieter Langosch
- grid.6936.a0000000123222966Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Regina Fluhrer
- grid.7307.30000 0001 2108 9006Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätstrasse 2, 86159 Augsburg, Germany
| |
Collapse
|
8
|
Truberg J, Hobohm L, Jochimsen A, Desel C, Schweizer M, Voss M. Endogenous tagging reveals a mid-Golgi localization of the glycosyltransferase-cleaving intramembrane protease SPPL3. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119345. [PMID: 36007678 DOI: 10.1016/j.bbamcr.2022.119345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Numerous Golgi-resident enzymes implicated in glycosylation are regulated by the conserved intramembrane protease SPPL3. SPPL3-catalyzed endoproteolysis separates Golgi enzymes from their membrane anchors, enabling subsequent release from the Golgi and secretion. Experimentally altered SPPL3 expression changes glycosylation patterns, yet the regulation of SPPL3-mediated Golgi enzyme cleavage is not understood and conflicting results regarding the subcellular localization of SPPL3 have been reported. Here, we used precise genome editing to generate isogenic cell lines expressing N- or C-terminally tagged SPPL3 from its endogenous locus. Using these cells, we conducted co-localization analyses of tagged endogenous SPPL3 and Golgi markers under steady-state conditions and upon treatment with drugs disrupting Golgi organization. Our data demonstrate that endogenous SPPL3 is Golgi-resident and found predominantly in the mid-Golgi. We find that endogenous SPPL3 co-localizes with its substrates but similarly with non-substrate type II proteins, demonstrating that in addition to co-localization in the Golgi other substrate-intrinsic properties govern SPPL3-mediated intramembrane proteolysis. Given the prevalence of SPPL3-mediated cleavage among Golgi-resident proteins our results have important implications for the regulation of SPPL3 and its role in the organization of the Golgi glycosylation machinery.
Collapse
Affiliation(s)
- Jule Truberg
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, D-24118 Kiel, Germany
| | - Laura Hobohm
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, D-24118 Kiel, Germany
| | - Alexander Jochimsen
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, D-24118 Kiel, Germany
| | - Christine Desel
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, D-24118 Kiel, Germany
| | - Michaela Schweizer
- Morphology and Electron Microscopy, University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH), 20251 Hamburg, Germany
| | - Matthias Voss
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, D-24118 Kiel, Germany.
| |
Collapse
|
9
|
Taylor HA, Przemylska L, Clavane EM, Meakin PJ. BACE1: More than just a β-secretase. Obes Rev 2022; 23:e13430. [PMID: 35119166 PMCID: PMC9286785 DOI: 10.1111/obr.13430] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/04/2022] [Accepted: 01/16/2022] [Indexed: 02/06/2023]
Abstract
β-site amyloid precursor protein cleaving enzyme-1 (BACE1) research has historically focused on its actions as the β-secretase responsible for the production of β-amyloid beta, observed in Alzheimer's disease. Although the greatest expression of BACE1 is found in the brain, BACE1 mRNA and protein is also found in many cell types including pancreatic β-cells, adipocytes, hepatocytes, and vascular cells. Pathologically elevated BACE1 expression in these cells has been implicated in the development of metabolic diseases, including type 2 diabetes, obesity, and cardiovascular disease. In this review, we examine key questions surrounding the BACE1 literature, including how is BACE1 regulated and how dysregulation may occur in disease, and understand how BACE1 regulates metabolism via cleavage of a myriad of substrates. The phenotype of the BACE1 knockout mice models, including reduced weight gain, increased energy expenditure, and enhanced leptin signaling, proposes a physiological role of BACE1 in regulating energy metabolism and homeostasis. Taken together with the weight loss observed with BACE1 inhibitors in clinical trials, these data highlight a novel role for BACE1 in regulation of metabolic physiology. Finally, this review aims to examine the possibility that BACE1 inhibitors could provide a innovative treatment for obesity and its comorbidities.
Collapse
Affiliation(s)
- Hannah A Taylor
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Lena Przemylska
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Eva M Clavane
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Paul J Meakin
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
10
|
Hobohm L, Koudelka T, Bahr FH, Truberg J, Kapell S, Schacht SS, Meisinger D, Mengel M, Jochimsen A, Hofmann A, Heintz L, Tholey A, Voss M. N-terminome analyses underscore the prevalence of SPPL3-mediated intramembrane proteolysis among Golgi-resident enzymes and its role in Golgi enzyme secretion. Cell Mol Life Sci 2022; 79:185. [PMID: 35279766 PMCID: PMC8918473 DOI: 10.1007/s00018-022-04163-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/07/2022] [Accepted: 01/22/2022] [Indexed: 12/17/2022]
Abstract
Golgi membrane proteins such as glycosyltransferases and other glycan-modifying enzymes are key to glycosylation of proteins and lipids. Secretion of soluble Golgi enzymes that are released from their membrane anchor by endoprotease activity is a wide-spread yet largely unexplored phenomenon. The intramembrane protease SPPL3 can specifically cleave select Golgi enzymes, enabling their secretion and concomitantly altering global cellular glycosylation, yet the entire range of Golgi enzymes cleaved by SPPL3 under physiological conditions remains to be defined. Here, we established isogenic SPPL3-deficient HEK293 and HeLa cell lines and applied N-terminomics to identify substrates cleaved by SPPL3 and released into cell culture supernatants. With high confidence, our study identifies more than 20 substrates of SPPL3, including entirely novel substrates. Notably, our N-terminome analyses provide a comprehensive list of SPPL3 cleavage sites demonstrating that SPPL3-mediated shedding of Golgi enzymes occurs through intramembrane proteolysis. Through the use of chimeric glycosyltransferase constructs we show that transmembrane domains can determine cleavage by SPPL3. Using our cleavage site data, we surveyed public proteome data and found that SPPL3 cleavage products are present in human blood. We also generated HEK293 knock-in cells expressing the active site mutant D271A from the endogenous SPPL3 locus. Immunoblot analyses revealed that secretion of select novel substrates such as the key mucin-type O-glycosylation enzyme GALNT2 is dependent on endogenous SPPL3 protease activity. In sum, our study expands the spectrum of known physiological substrates of SPPL3 corroborating its significant role in Golgi enzyme turnover and secretion as well as in the regulation of global glycosylation pathways.
Collapse
Affiliation(s)
- Laura Hobohm
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Tomas Koudelka
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Kiel University, 24105, Kiel, Germany
| | - Fenja H Bahr
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Jule Truberg
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Sebastian Kapell
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Sarah-Sophie Schacht
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
- Institute of Immunology, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Daniel Meisinger
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Marion Mengel
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Alexander Jochimsen
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Anna Hofmann
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Lukas Heintz
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
- Institute for Cellular and Integrative Physiology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Andreas Tholey
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Kiel University, 24105, Kiel, Germany
| | - Matthias Voss
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany.
| |
Collapse
|
11
|
Shah H, Patel A, Parikh V, Nagani A, Bhimani B, Shah U, Bambharoliya T. The β-Secretase Enzyme BACE1: A Biochemical Enigma for Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2021; 19:184-194. [PMID: 32452328 DOI: 10.2174/1871527319666200526144141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/18/2020] [Accepted: 04/29/2020] [Indexed: 01/08/2023]
Abstract
Beta site amyloid precursor protein cleaving enzyme 1 (BACE1) is a rational target in Alzheimer's Disease (AD) drug development due to its role in amyloidogenic cleavage of Amyloid Precursor Protein (APP) in generating Amyloid β (Aβ). This β-secretase cleaves not only Amyloid Precursor Protein (APP) and its homologues, but also small series of substrates including neuregulin and β subunit of voltage-gated sodium channel that play a very important role in the development and normal function of the brain. Moreover, BACE1 is modulated at the post-translational level by several factors that are associated with both physiological and pathological functions. Since the discovery of BACE1 over a decade ago, medicinal chemistry and pharmacokinetics of BACE1 small molecule inhibitors have proven challenging for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Hirak Shah
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat 391760, India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Vruti Parikh
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat 391760, India
| | - Afzal Nagani
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat 391760, India
| | - Bhargav Bhimani
- Piramal Discovery Solution, Pharmaceutical Special Economic Zone, Ahmedabad 382213, India
| | - Umang Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Tushar Bambharoliya
- Pharmaceutical Polymer Technology, North Carolina State University, North Carolina, NC, United States
| |
Collapse
|
12
|
Yang K, Yang Z, Chen X, Li W. The significance of sialylation on the pathogenesis of Alzheimer's disease. Brain Res Bull 2021; 173:116-123. [PMID: 33991608 DOI: 10.1016/j.brainresbull.2021.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/29/2022]
Abstract
Sialylation, one of the most common and complex modes of glycosylation, corresponds with the development of the infant brain and nervous system. The most prevalent neurodegenerative disease is Alzheimer's disease (AD), which is mainly characterized by cognitive decline and behavioral disorders. However, the relationship between sialylation and AD occurrence is poorly understood. In this article, we reviewed the role of sialylation on the occurrence and development of AD, then discussed the value of sialylation modification for AD diagnosis and treatment.
Collapse
Affiliation(s)
- Kangkang Yang
- College of Basic Medical Sciences, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning, 116044, China
| | - Zhaofei Yang
- College of Basic Medical Sciences, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning, 116044, China
| | - Xiaofeng Chen
- College of Basic Medical Sciences, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning, 116044, China
| | - Wenzhe Li
- College of Basic Medical Sciences, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning, 116044, China.
| |
Collapse
|
13
|
Fissel JA, Farah MH. The influence of BACE1 on macrophage recruitment and activity in the injured peripheral nerve. J Neuroinflammation 2021; 18:71. [PMID: 33722254 PMCID: PMC7962400 DOI: 10.1186/s12974-021-02121-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/26/2021] [Indexed: 01/13/2023] Open
Abstract
Following peripheral nerve injury, multiple cell types, including axons, Schwann cells, and macrophages, coordinate to promote nerve regeneration. However, this capacity for repair is limited, particularly in older populations, and current treatments are insufficient. A critical component of the regeneration response is the network of cell-to-cell signaling in the injured nerve microenvironment. Sheddases are expressed in the peripheral nerve and play a role in the regulation if this cell-to-cell signaling through cleavage of transmembrane proteins, enabling the regulation of multiple pathways through cis- and trans-cellular regulatory mechanisms. Enhanced axonal regeneration has been observed in mice with deletion of the sheddase beta-secretase (BACE1), a transmembrane aspartyl protease that has been studied in the context of Alzheimer’s disease. BACE1 knockout (KO) mice display enhanced macrophage recruitment and activity following nerve injury, although it is unclear whether this plays a role in driving the enhanced axonal regeneration. Further, it is unknown by what mechanism(s) BACE1 increases macrophage recruitment and activity. BACE1 has many substrates, several of which are known to have immunomodulatory activity. This review will discuss current knowledge of the role of BACE1 and other sheddases in peripheral nerve regeneration and outline known immunomodulatory BACE1 substrates and what potential roles they could play in peripheral nerve regeneration. Currently, the literature suggests that BACE1 and substrates that are expressed by neurons and Schwann cells are likely to be more important for this process than those expressed by macrophages. More broadly, BACE1 may play a role as an effector of immunomodulation beyond the peripheral nerve.
Collapse
Affiliation(s)
- John A Fissel
- Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Mohamed H Farah
- Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
14
|
Chopra N, Wang R, Maloney B, Nho K, Beck JS, Pourshafie N, Niculescu A, Saykin AJ, Rinaldi C, Counts SE, Lahiri DK. MicroRNA-298 reduces levels of human amyloid-β precursor protein (APP), β-site APP-converting enzyme 1 (BACE1) and specific tau protein moieties. Mol Psychiatry 2021; 26:5636-5657. [PMID: 31942037 PMCID: PMC8758483 DOI: 10.1038/s41380-019-0610-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common age-related form of dementia, associated with deposition of intracellular neuronal tangles consisting primarily of hyperphosphorylated microtubule-associated protein tau (p-tau) and extracellular plaques primarily comprising amyloid- β (Aβ) peptide. The p-tau tangle unit is a posttranslational modification of normal tau protein. Aβ is a neurotoxic peptide excised from the amyloid-β precursor protein (APP) by β-site APP-cleaving enzyme 1 (BACE1) and the γ-secretase complex. MicroRNAs (miRNAs) are short, single-stranded RNAs that modulate protein expression as part of the RNA-induced silencing complex (RISC). We identified miR-298 as a repressor of APP, BACE1, and the two primary forms of Aβ (Aβ40 and Aβ42) in a primary human cell culture model. Further, we discovered a novel effect of miR-298 on posttranslational levels of two specific tau moieties. Notably, miR-298 significantly reduced levels of ~55 and 50 kDa forms of the tau protein without significant alterations of total tau or other forms. In vivo overexpression of human miR-298 resulted in nonsignificant reduction of APP, BACE1, and tau in mice. Moreover, we identified two miR-298 SNPs associated with higher cerebrospinal fluid (CSF) p-tau and lower CSF Aβ42 levels in a cohort of human AD patients. Finally, levels of miR-298 varied in postmortem human temporal lobe between AD patients and age-matched non-AD controls. Our results suggest that miR-298 may be a suitable target for AD therapy.
Collapse
Affiliation(s)
- Nipun Chopra
- grid.257413.60000 0001 2287 3919Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN USA
| | - Ruizhi Wang
- grid.257413.60000 0001 2287 3919Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN USA
| | - Bryan Maloney
- grid.257413.60000 0001 2287 3919Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN USA ,grid.257413.60000 0001 2287 3919Indiana Alzheimers Disease Center, Indiana University School of Medicine, Indianapolis, IN USA
| | - Kwangsik Nho
- grid.257413.60000 0001 2287 3919Indiana Alzheimers Disease Center, Indiana University School of Medicine, Indianapolis, IN USA ,grid.257413.60000 0001 2287 3919Departments of Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA
| | - John S. Beck
- grid.17088.360000 0001 2150 1785Departments of Translational Neuroscience and Family Medicine, Michigan State University, Grand Rapids, MI USA
| | - Naemeh Pourshafie
- grid.94365.3d0000 0001 2297 5165Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD USA
| | - Alexander Niculescu
- grid.257413.60000 0001 2287 3919Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN USA
| | - Andrew J. Saykin
- grid.257413.60000 0001 2287 3919Indiana Alzheimers Disease Center, Indiana University School of Medicine, Indianapolis, IN USA ,grid.257413.60000 0001 2287 3919Departments of Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA ,grid.257413.60000 0001 2287 3919Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN USA
| | - Carlo Rinaldi
- grid.4991.50000 0004 1936 8948Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | - Scott E. Counts
- grid.17088.360000 0001 2150 1785Departments of Translational Neuroscience and Family Medicine, Michigan State University, Grand Rapids, MI USA
| | - Debomoy K. Lahiri
- grid.257413.60000 0001 2287 3919Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN USA ,grid.257413.60000 0001 2287 3919Indiana Alzheimers Disease Center, Indiana University School of Medicine, Indianapolis, IN USA ,grid.257413.60000 0001 2287 3919Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN USA
| |
Collapse
|
15
|
Regan P, McClean PL, Smyth T, Doherty M. Early Stage Glycosylation Biomarkers in Alzheimer's Disease. MEDICINES 2019; 6:medicines6030092. [PMID: 31484367 PMCID: PMC6789538 DOI: 10.3390/medicines6030092] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is of great cause for concern in our ageing population, which currently lacks diagnostic tools to permit accurate and timely diagnosis for affected individuals. The development of such tools could enable therapeutic interventions earlier in the disease course and thus potentially reducing the debilitating effects of AD. Glycosylation is a common, and important, post translational modification of proteins implicated in a host of disease states resulting in a complex array of glycans being incorporated into biomolecules. Recent investigations of glycan profiles, in a wide range of conditions, has been made possible due to technological advances in the field enabling accurate glycoanalyses. Amyloid beta (Aβ) peptides, tau protein, and other important proteins involved in AD pathogenesis, have altered glycosylation profiles. Crucially, these abnormalities present early in the disease state, are present in the peripheral blood, and help to distinguish AD from other dementias. This review describes the aberrant glycome in AD, focusing on proteins implicated in development and progression, and elucidates the potential of glycome aberrations as early stage biomarkers of AD.
Collapse
Affiliation(s)
- Patricia Regan
- Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland.
- Cellular Health and Toxicology Research Group, Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland.
| | - Paula L McClean
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Clinical Translational Research and Innovation Centre, Altnagelvin Area Hospital, Glenshane Road, Derry BT47 6SB, UK
| | - Thomas Smyth
- Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland
- Cellular Health and Toxicology Research Group, Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland
| | - Margaret Doherty
- Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland
- Cellular Health and Toxicology Research Group, Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland
| |
Collapse
|
16
|
Zhang Q, Higginbotham JN, Jeppesen DK, Yang YP, Li W, McKinley ET, Graves-Deal R, Ping J, Britain CM, Dorsett KA, Hartman CL, Ford DA, Allen RM, Vickers KC, Liu Q, Franklin JL, Bellis SL, Coffey RJ. Transfer of Functional Cargo in Exomeres. Cell Rep 2019; 27:940-954.e6. [PMID: 30956133 PMCID: PMC6559347 DOI: 10.1016/j.celrep.2019.01.009] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/02/2018] [Accepted: 01/02/2019] [Indexed: 01/01/2023] Open
Abstract
Exomeres are a recently discovered type of extracellular nanoparticle with no known biological function. Herein, we describe a simple ultracentrifugation-based method for separation of exomeres from exosomes. Exomeres are enriched in Argonaute 1-3 and amyloid precursor protein. We identify distinct functions of exomeres mediated by two of their cargo, the β-galactoside α2,6-sialyltransferase 1 (ST6Gal-I) that α2,6- sialylates N-glycans, and the EGFR ligand, amphiregulin (AREG). Functional ST6Gal-I in exomeres can be transferred to cells, resulting in hypersialylation of recipient cell-surface proteins including β1-integrin. AREG-containing exomeres elicit prolonged EGFR and downstream signaling in recipient cells, modulate EGFR trafficking in normal intestinal organoids, and dramatically enhance the growth of colonic tumor organoids. This study provides a simplified method of exomere isolation and demonstrates that exomeres contain and can transfer functional cargo. These findings underscore the heterogeneity of nanoparticles and should accelerate advances in determining the composition and biological functions of exomeres.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James N Higginbotham
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dennis K Jeppesen
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yu-Ping Yang
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Wei Li
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eliot T McKinley
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ramona Graves-Deal
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jie Ping
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Colleen M Britain
- Cell, Developmental and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Kaitlyn A Dorsett
- Cell, Developmental and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Celine L Hartman
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - David A Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Ryan M Allen
- Department of Cardiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kasey C Vickers
- Department of Cardiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey L Franklin
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Veterans Affairs Medical Center, Nashville, Vanderbilt University, TN 37212, USA
| | - Susan L Bellis
- Cell, Developmental and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Robert J Coffey
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Veterans Affairs Medical Center, Nashville, Vanderbilt University, TN 37212, USA.
| |
Collapse
|
17
|
Jones MB. IgG and leukocytes: Targets of immunomodulatory α2,6 sialic acids. Cell Immunol 2018; 333:58-64. [PMID: 29685495 DOI: 10.1016/j.cellimm.2018.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/30/2018] [Indexed: 12/27/2022]
Abstract
ST6Gal1 is a critical sialyltransferase enzyme that controls the addition of α2,6-linked sialic acids to the termini of glycans. Attachment of sialic acids to glycoproteins as a posttranslational modification influences cellular responses, and is a well-known modifier of immune cell behavior. ST6Gal1 activity impacts processes such as: effector functions of immunoglobulin G via Fc sialylation, hematopoietic capacity by hematopoietic stem and progenitor cell surface sialylation, and lymphocyte activation thresholds though CD22 engagement and inhibition of galectins. This review summarizes recent studies that suggest α2,6 sialylation by ST6Gal1 has an immunoregulatory effect on immune reactions.
Collapse
Affiliation(s)
- Mark B Jones
- Case Western Reserve University, School of Medicine, Department of Pathology, Cleveland, OH 44106, United States.
| |
Collapse
|
18
|
Kizuka Y, Kitazume S, Taniguchi N. N -glycan and Alzheimer's disease. Biochim Biophys Acta Gen Subj 2017; 1861:2447-2454. [DOI: 10.1016/j.bbagen.2017.04.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 12/14/2022]
|
19
|
Dysregulation of intracellular trafficking and endosomal sorting in Alzheimer's disease: controversies and unanswered questions. Biochem J 2017; 473:1977-93. [PMID: 27407168 DOI: 10.1042/bcj20160147] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/18/2016] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid plaques in the brain consisting of an aggregated form of amyloid β-peptide (Aβ) derived from sequential amyloidogenic processing of the amyloid precursor protein (APP) by membrane-bound proteases β-site APP-cleaving enzyme 1 (BACE1) and γ-secretase. The initial processing of APP by BACE1 is re-gulated by intracellular sorting events of the enzyme, which is a prime target for therapeutic intervention. GWAS (genome-wide sequencing studies) have identified several AD-susceptibility genes that are associated with the regulation of membrane trafficking, and substantial evidence now indicates that AD is likely to arise from defective membrane trafficking in either or both of the secretory and endocytic pathways. Considerable progress has been made in defining the intracellular trafficking pathways of BACE1 and APP and the sorting signals of these membrane proteins that define their itineraries. In this review we highlight recent advances in understanding the regulation of the intracellular sorting of BACE1 and APP, discuss how dysregulation of these trafficking events may lead to enhanced generation of the neurotoxic Aβ products in AD and highlight the unresolved questions in the field.
Collapse
|
20
|
Deng X, Zhang J, Liu Y, Chen L, Yu C. TNF-α regulates the proteolytic degradation of ST6Gal-1 and endothelial cell-cell junctions through upregulating expression of BACE1. Sci Rep 2017; 7:40256. [PMID: 28091531 PMCID: PMC5238365 DOI: 10.1038/srep40256] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/02/2016] [Indexed: 11/11/2022] Open
Abstract
Endothelial dysfunction and monocyte adhesion to vascular endothelial cells are two critical steps in atherosclerosis development, and emerging evidence suggests that protein sialylation is involved in these processes. However, the mechanism underlying this phenomenon remains incompletely elucidated. In this study, we demonstrated that treatment with the proinflammatory cytokine TNF-α disrupted vascular endothelial cell-cell tight junctions and promoted monocyte endothelial cell adhesion. Western blotting and Sambucus nigra lectin (SNA) blotting analyses revealed that TNF-α treatment decreased α-2, 6-sialic acid transferase 1 (ST6Gal-I) levels and downregulated VE-Cadherin α-2, 6 sialylation. Further analysis demonstrated that TNF-α treatment upregulated β-site amyloid precursor protein enzyme 1 (BACE1) expression, thus resulting in sequential ST6Gal-I proteolytic degradation. Furthermore, our results revealed that PKC signaling cascades were involved in TNF-α-induced BACE1 upregulation. Together, these results indicated that the proinflammatory cytokine TNF-α impairs endothelial tight junctions and promotes monocyte-endothelial cell adhesion by upregulating BACE1 expression through activating PKC signaling and sequentially cleaving ST6Gal-I. Thus, inhibition of BACE1 expression may be a new approach for treating atherosclerosis.
Collapse
Affiliation(s)
- Xiao Deng
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Jun Zhang
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Yan Liu
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Linmu Chen
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Chao Yu
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, P. R. China
| |
Collapse
|
21
|
Szabo R, Skropeta D. Advancement of Sialyltransferase Inhibitors: Therapeutic Challenges and Opportunities. Med Res Rev 2016; 37:219-270. [DOI: 10.1002/med.21407] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/14/2016] [Accepted: 08/03/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Rémi Szabo
- School of Chemistry; University of Wollongong; Wollongong NSW 2522 Australia
| | - Danielle Skropeta
- School of Chemistry; University of Wollongong; Wollongong NSW 2522 Australia
- Centre for Medical & Molecular Bioscience; University of Wollongong; Wollongong NSW 2522 Australia
| |
Collapse
|
22
|
Ohno M. Alzheimer's therapy targeting the β-secretase enzyme BACE1: Benefits and potential limitations from the perspective of animal model studies. Brain Res Bull 2016; 126:183-198. [PMID: 27093940 DOI: 10.1016/j.brainresbull.2016.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/05/2016] [Accepted: 04/10/2016] [Indexed: 01/18/2023]
Abstract
Accumulating evidence points to the amyloid-β (Aβ) peptide as the culprit in the pathogenesis of Alzheimer's disease (AD). β-Site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is a protease that is responsible for initiating Aβ production. Although precise mechanisms that trigger Aβ accumulation remain unclear, BACE1 inhibition undoubtedly represents an important intervention that may prevent and/or cure AD. Remarkably, animal model studies with knockouts, virus-delivered small interfering RNAs, immunization and bioavailable small-molecule agents that specifically inhibit BACE1 activity strongly support the idea for the therapeutic BACE1 inhibition. Meanwhile, a growing number of BACE1 substrates besides APP uncover new physiological roles of this protease, raising some concern regarding the safety of BACE1 inhibition. Here, I review recent progress in preclinical studies that have evaluated the efficacies and potential limitations of genetic/pharmacological inhibition of BACE1, with special focus on AD-associated phenotypes including synaptic dysfunction, neuron loss and memory deficits in animal models.
Collapse
Affiliation(s)
- Masuo Ohno
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA; Departments of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
23
|
BACE1 Physiological Functions May Limit Its Use as Therapeutic Target for Alzheimer's Disease. Trends Neurosci 2016; 39:158-169. [DOI: 10.1016/j.tins.2016.01.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 01/21/2023]
|
24
|
Ben Halima S, Mishra S, Raja KMP, Willem M, Baici A, Simons K, Brüstle O, Koch P, Haass C, Caflisch A, Rajendran L. Specific Inhibition of β-Secretase Processing of the Alzheimer Disease Amyloid Precursor Protein. Cell Rep 2016; 14:2127-2141. [PMID: 26923602 DOI: 10.1016/j.celrep.2016.01.076] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 11/09/2015] [Accepted: 01/26/2016] [Indexed: 01/18/2023] Open
Abstract
Development of disease-modifying therapeutics is urgently needed for treating Alzheimer disease (AD). AD is characterized by toxic β-amyloid (Aβ) peptides produced by β- and γ-secretase-mediated cleavage of the amyloid precursor protein (APP). β-secretase inhibitors reduce Aβ levels, but mechanism-based side effects arise because they also inhibit β-cleavage of non-amyloid substrates like Neuregulin. We report that β-secretase has a higher affinity for Neuregulin than it does for APP. Kinetic studies demonstrate that the affinities and catalytic efficiencies of β-secretase are higher toward non-amyloid substrates than toward APP. We show that non-amyloid substrates are processed by β-secretase in an endocytosis-independent manner. Exploiting this compartmentalization of substrates, we specifically target the endosomal β-secretase by an endosomally targeted β-secretase inhibitor, which blocked cleavage of APP but not non-amyloid substrates in many cell systems, including induced pluripotent stem cell (iPSC)-derived neurons. β-secretase inhibitors can be designed to specifically inhibit the Alzheimer process, enhancing their potential as AD therapeutics without undesired side effects.
Collapse
Affiliation(s)
- Saoussen Ben Halima
- Systems and Cell Biology of Neurodegeneration, Institute of Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; Graduate Program in Neuroscience, Neuroscience Center Zurich, 8057 Zurich, Switzerland; Graduate Program of the Zurich Center for Integrative Human Physiology, University of Zurich, 8057 Zurich, Switzerland
| | - Sabyashachi Mishra
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - K Muruga Poopathi Raja
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Tamil Nadu 625002, Madurai, India
| | - Michael Willem
- Biomedical Center, Ludwig-Maximilians-University, 81337 Munich, Germany
| | - Antonio Baici
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Kai Simons
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases, 53175 Bonn, Germany; Life & Brain, 53127 Bonn, Germany
| | - Philipp Koch
- Institute of Reconstructive Neurobiology, University of Bonn, 53127 Bonn, Germany
| | - Christian Haass
- Biomedical Center, Ludwig-Maximilians-University, 81337 Munich, Germany; German Center for Neurodegenerative Diseases, 53175 Bonn, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Lawrence Rajendran
- Systems and Cell Biology of Neurodegeneration, Institute of Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; Graduate Program in Neuroscience, Neuroscience Center Zurich, 8057 Zurich, Switzerland; Graduate Program of the Zurich Center for Integrative Human Physiology, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
25
|
Nagamine S, Yamazaki T, Makioka K, Fujita Y, Ikeda M, Takatama M, Okamoto K, Yokoo H, Ikeda Y. Hypersialylation is a common feature of neurofibrillary tangles and granulovacuolar degenerations in Alzheimer's disease and tauopathy brains. Neuropathology 2015; 36:333-45. [DOI: 10.1111/neup.12277] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/20/2015] [Accepted: 10/20/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Shun Nagamine
- Department of Neurology; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Tsuneo Yamazaki
- Department of Rehabilitation; Gunma University Graduate School of Health Sciences; Maebashi Gunma Japan
| | - Kouki Makioka
- Department of Neurology; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Yukio Fujita
- Department of Neurology; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Masaki Ikeda
- Department of Neurology; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Masamitsu Takatama
- Geriatrics Research Institute and Hospital; Gunma University Graduate School of Medicine
| | - Koichi Okamoto
- Geriatrics Research Institute and Hospital; Gunma University Graduate School of Medicine
| | - Hideaki Yokoo
- Department of Human Pathology; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Yoshio Ikeda
- Department of Neurology; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| |
Collapse
|
26
|
Kandalepas PC, Vassar R. The normal and pathologic roles of the Alzheimer's β-secretase, BACE1. Curr Alzheimer Res 2015; 11:441-9. [PMID: 24893886 DOI: 10.2174/1567205011666140604122059] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/15/2014] [Accepted: 01/25/2014] [Indexed: 01/18/2023]
Abstract
As the most common neurodegenerative disease, therapeutic avenues for the treatment and prevention of Alzheimer's Disease are highly sought after. The aspartic protease BACE1 is the initiator enzyme for the formation of Aβ, a major constituent of amyloid plaques that represent one of the hallmark pathological features of this disorder. Thus, targeting BACE1 for disease-modifying AD therapies represents a rationale approach. The collective knowledge acquired from investigations of BACE1 deletion mutants and characterization of BACE1 substrates has downstream significance not only for the discovery of AD drug therapies but also for predicting side effects of BACE1 inhibition. Here we discuss the identification and validation of BACE1 as the β-secretase implicated in AD, in addition to information regarding BACE1 cell biology, localization, substrates and potential physiological functions derived from BACE1 knockout models.
Collapse
Affiliation(s)
| | - Robert Vassar
- Northwestern University, Feinberg School of Medicine, Department of Cell & Molecular Biology, 300 E. Superior, Tarry 8-713, IL 60611, Chicago.
| |
Collapse
|
27
|
A novel immunosensor for detection of beta-galactoside alpha-2, 6-sialyltransferase in serum based on gold nanoparticles loaded on Prussian blue-based hybrid nanocomposite film. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Voss M, Künzel U, Higel F, Kuhn PH, Colombo A, Fukumori A, Haug-Kröper M, Klier B, Grammer G, Seidl A, Schröder B, Obst R, Steiner H, Lichtenthaler SF, Haass C, Fluhrer R. Shedding of glycan-modifying enzymes by signal peptide peptidase-like 3 (SPPL3) regulates cellular N-glycosylation. EMBO J 2014; 33:2890-905. [PMID: 25354954 DOI: 10.15252/embj.201488375] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Protein N-glycosylation is involved in a variety of physiological and pathophysiological processes such as autoimmunity, tumour progression and metastasis. Signal peptide peptidase-like 3 (SPPL3) is an intramembrane-cleaving aspartyl protease of the GxGD type. Its physiological function, however, has remained enigmatic, since presently no physiological substrates have been identified. We demonstrate that SPPL3 alters the pattern of cellular N-glycosylation by triggering the proteolytic release of active site-containing ectodomains of glycosidases and glycosyltransferases such as N-acetylglucosaminyltransferase V, β-1,3 N-acetylglucosaminyltransferase 1 and β-1,4 galactosyltransferase 1. Cleavage of these enzymes leads to a reduction in their cellular activity. In line with that, reduced expression of SPPL3 results in a hyperglycosylation phenotype, whereas elevated SPPL3 expression causes hypoglycosylation. Thus, SPPL3 plays a central role in an evolutionary highly conserved post-translational process in eukaryotes.
Collapse
Affiliation(s)
- Matthias Voss
- Adolf Butenandt Institute for Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany
| | - Ulrike Künzel
- Adolf Butenandt Institute for Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany
| | - Fabian Higel
- Sandoz Biopharmaceuticals/HEXAL AG, Oberhaching, Germany
| | - Peer-Hendrik Kuhn
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany Institute for Advanced Study, Technische Universität München, Garching, Germany
| | - Alessio Colombo
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
| | - Akio Fukumori
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
| | - Martina Haug-Kröper
- Adolf Butenandt Institute for Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany
| | - Bärbel Klier
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
| | - Gudula Grammer
- Adolf Butenandt Institute for Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany
| | - Andreas Seidl
- Sandoz Biopharmaceuticals/HEXAL AG, Oberhaching, Germany
| | - Bernd Schröder
- Biochemical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Reinhard Obst
- Institute for Immunology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Harald Steiner
- Adolf Butenandt Institute for Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
| | - Stefan F Lichtenthaler
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany Munich Cluster for Systems Neurology (SyNergy), Munich, Germany Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christian Haass
- Adolf Butenandt Institute for Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany DZNE - German Center for Neurodegenerative Diseases, Munich, Germany Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Regina Fluhrer
- Adolf Butenandt Institute for Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
| |
Collapse
|
29
|
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease of the central nervous system that causes dementia in a large percentage of the aged population and for which there are only symptomatic treatments. Disease-modifying therapies that are currently being pursued are based on the amyloid cascade theory. This states that accumulation of amyloid β (Aβ) in the brain triggers a cascade of cellular events leading to neurodegeneration. Aβ, which is the major constituent of amyloid plaques, is a peptidic fragment derived from proteolytic processing of the amyloid precursor protein (APP) by sequential cleavages that involve β-site APP-cleaving enzyme 1 (BACE1) and γ-secretase. Targeting BACE1 is a rational approach as its cleavage of APP is the rate-limiting step in Aβ production and this enzyme is elevated in the brain of patients with AD. Furthermore, knocking out the BACE1 gene in mice showed little apparent consequences. Ten years of intensive research has led to the design of efficacious BACE1 inhibitors with favorable pharmacological properties. Several drug candidates have shown promising results in animal models, as they reduce amyloid plaque pathology in the brain and rescue cognitive deficits. Phase I clinical trials indicate that these drugs are well tolerated, and the results from further trials in AD patients are now awaited eagerly. Yet, recent novel information on BACE1 biology, and the discovery that BACE1 cleaves a selection of substrates involved in myelination, retinal homeostasis, brain circuitry, and synaptic function, alert us to potential side effects of BACE1 inhibitors that will require further evaluation to provide a safe therapy for AD.
Collapse
|
30
|
Lahiri DK, Maloney B, Long JM, Greig NH. Lessons from a BACE1 inhibitor trial: off-site but not off base. Alzheimers Dement 2014; 10:S411-9. [PMID: 24530026 DOI: 10.1016/j.jalz.2013.11.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/04/2013] [Accepted: 11/25/2013] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD) is characterized by formation of neuritic plaque primarily composed of a small filamentous protein called amyloid-β peptide (Aβ). The rate-limiting step in the production of Aβ is the processing of Aβ precursor protein (APP) by β-site APP-cleaving enzyme (BACE1). Hence, BACE1 activity plausibly plays a rate-limiting role in the generation of potentially toxic Aβ within brain and the development of AD, thereby making it an interesting drug target. A phase II trial of the promising LY2886721 inhibitor of BACE1 was suspended in June 2013 by Eli Lilly and Co., due to possible liver toxicity. This outcome was apparently a surprise to the study's team, particularly since BACE1 knockout mice and mice treated with the drug did not show such liver toxicity. Lilly proposed that the problem was not due to LY2886721 anti-BACE1 activity. We offer an alternative hypothesis, whereby anti-BACE1 activity may induce apparent hepatotoxicity through inhibiting BACE1's processing of β-galactoside α-2,6-sialyltransferase I (STGal6 I). In knockout mice, paralogues, such as BACE2 or cathepsin D, could partially compensate. Furthermore, the short duration of animal studies and short lifespan of study animals could mask effects that would require several decades to accumulate in humans. Inhibition of hepatic BACE1 activity in middle-aged humans would produce effects not detectable in mice. We present a testable model to explain the off-target effects of LY2886721 and highlight more broadly that so-called off-target drug effects might actually represent off-site effects that are not necessarily off-target. Consideration of this concept in forthcoming drug design, screening, and testing programs may prevent such failures in the future.
Collapse
Affiliation(s)
- Debomoy K Lahiri
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Bryan Maloney
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Justin M Long
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nigel H Greig
- Laboratory of Translational Gerontology, Intramural Research Program, National Institute of Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
31
|
Evin G, Barakat A. Critical analysis of the use of β-site amyloid precursor protein-cleaving enzyme 1 inhibitors in the treatment of Alzheimer's disease. Degener Neurol Neuromuscul Dis 2014; 4:1-19. [PMID: 32669897 PMCID: PMC7337240 DOI: 10.2147/dnnd.s41056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/06/2014] [Indexed: 01/18/2023] Open
Abstract
Alzheimer’s disease (AD) is the major cause of dementia in the elderly and an unmet clinical challenge. A variety of therapies that are currently under development are directed to the amyloid cascade. Indeed, the accumulation and toxicity of amyloid-β (Aβ) is believed to play a central role in the etiology of the disease, and thus rational interventions are aimed at reducing the levels of Aβ in the brain. Targeting β-site amyloid precursor protein-cleaving enzyme (BACE)-1 represents an attractive strategy, as this enzyme catalyzes the initial and rate-limiting step in Aβ production. Observation of increased levels of BACE1 and enzymatic activity in the brain, cerebrospinal fluid, and platelets of patients with AD and mild cognitive impairment supports the potential benefits of BACE1 inhibition. Numerous potent inhibitors have been generated, and many of these have been proved to lower Aβ levels in the brain of animal models. Over 10 years of intensive research on BACE1 inhibitors has now culminated in advancing half a dozen of these drugs into human trials, yet translating the in vitro and cellular efficacy of BACE1 inhibitors into preclinical and clinical trials represents a challenge. This review addresses the promises and also the potential problems associated with BACE1 inhibitors for AD therapy, as the complex biological function of BACE1 in the brain is becoming unraveled.
Collapse
Affiliation(s)
- Genevieve Evin
- Oxidation Biology Laboratory, Mental Health Research Institute, Florey Institute of Neuroscience and Mental Health, University of Melbourne.,Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| | - Adel Barakat
- Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
32
|
Moore DB, Gillentine MA, Botezatu NM, Wilson KA, Benson AE, Langeland JA. Asynchronous evolutionary origins of Aβ and BACE1. Mol Biol Evol 2013; 31:696-702. [PMID: 24361992 DOI: 10.1093/molbev/mst262] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neurodegenerative plaques characteristic of Alzheimer's disease (AD) are composed of amyloid beta (Aβ) peptide, which is proteolyzed from amyloid precursor protein (APP) by β-secretase (beta-site APP cleaving enzyme [BACE1]) and γ-secretase. Although γ-secretase has essential functions across metazoans, no essential roles have been identified for BACE1 or Aβ. Because their only known function results in a disease phenotype, we sought to understand these components from an evolutionary perspective. We show that APP-like proteins are found throughout most animal taxa, but sequences homologous to Aβ are not found outside gnathostomes and the β cut site is only conserved within sarcopterygians. BACE1 enzymes, however, extend through basal chordates and as far as cnidaria. We then sought to determine whether BACE1 from a species that never evolved Aβ could proteolyze APP substrates that include Aβ. We demonstrate that BACE1 from a basal chordate is a functional ortholog that can liberate Aβ from full-length human APP, indicating BACE1 activity evolved at least 360 My before Aβ.
Collapse
|
33
|
Schedin-Weiss S, Winblad B, Tjernberg LO. The role of protein glycosylation in Alzheimer disease. FEBS J 2013; 281:46-62. [PMID: 24279329 DOI: 10.1111/febs.12590] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 12/18/2022]
Abstract
Glycosylation is one of the most common, and the most complex, forms of post-translational modification of proteins. This review serves to highlight the role of protein glycosylation in Alzheimer disease (AD), a topic that has not been thoroughly investigated, although glycosylation defects have been observed in AD patients. The major pathological hallmarks in AD are neurofibrillary tangles and amyloid plaques. Neurofibrillary tangles are composed of phosphorylated tau, and the plaques are composed of amyloid β-peptide (Aβ), which is generated from amyloid precursor protein (APP). Defects in glycosylation of APP, tau and other proteins have been reported in AD. Another interesting observation is that the two proteases required for the generation of amyloid β-peptide (Aβ), i.e. γ-secretase and β-secretase, also have roles in protein glycosylation. For instance, γ-secretase and β-secretase affect the extent of complex N-glycosylation and sialylation of APP, respectively. These processes may be important in AD pathogenesis, as proper intracellular sorting, processing and export of APP are affected by how it is glycosylated. Furthermore, lack of one of the key components of γ-secretase, presenilin, leads to defective glycosylation of many additional proteins that are related to AD pathogenesis and/or neuronal function, including nicastrin, reelin, butyrylcholinesterase, cholinesterase, neural cell adhesion molecule, v-ATPase, and tyrosine-related kinase B. Improved understanding of the effects of AD on protein glycosylation, and vice versa, may therefore be important for improving the diagnosis and treatment of AD patients.
Collapse
Affiliation(s)
- Sophia Schedin-Weiss
- Karolinska Institutet Alzheimer Disease Research Center (KI-ADRC), Novum, Stockholm, Sweden
| | | | | |
Collapse
|
34
|
Kitazume S, Yoshihisa A, Yamaki T, Oikawa M, Tachida Y, Ogawa K, Imamaki R, Takeishi Y, Yamamoto N, Taniguchi N. Soluble amyloid precursor protein 770 is a novel biomarker candidate for acute coronary syndrome. Proteomics Clin Appl 2013; 7:657-63. [PMID: 23857744 DOI: 10.1002/prca.201200135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/08/2013] [Accepted: 04/16/2013] [Indexed: 01/02/2023]
Abstract
Most Alzheimer disease patients show deposition of amyloid β (Aβ) peptide in blood vessels as well as the brain parenchyma. We previously found that vascular endothelial cells express amyloid β precursor protein (APP) 770, a different APP isoform from neuronal APP695, and that they produce amyloid β peptide. We analyzed the glycosylation of APP770 and found that O-glycosylated sAPP770 is preferentially processed by proteases for Aβ production. Because the soluble APP cleavage product sAPP is considered to be a possible marker for Alzheimer disease diagnosis, sAPP, consisting of a mixture of these variants, has been widely measured. We hypothesized that measurement of the endothelial APP770 cleavage product in patients separately from that of neuronal APP695 would enable us to discriminate between endothelial and neurological dysfunctions. Our recent findings, showing that the level of plasma sAPP770 is significantly higher in patients with acute coronary syndrome, raise the possibility that sAPP770 could be an indicator of endothelial dysfunction. In this review, we first describe the expression, glycosylation, and processing of APP770, and then discuss sAPP770 as a novel biomarker candidate of acute coronary syndrome.
Collapse
Affiliation(s)
- Shinobu Kitazume
- Disease Glycomics Team, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, Wako, Saitama, Japan.
| | - Akiomi Yoshihisa
- Department of Advanced Cardiac Therapeutics, Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Takayoshi Yamaki
- Department of Advanced Cardiac Therapeutics, Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Masayoshi Oikawa
- Department of Advanced Cardiac Therapeutics, Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Yuriko Tachida
- Disease Glycomics Team, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, Wako, Saitama, Japan
| | - Kazuko Ogawa
- Disease Glycomics Team, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, Wako, Saitama, Japan
| | - Rie Imamaki
- Disease Glycomics Team, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, Wako, Saitama, Japan
| | - Yasuchika Takeishi
- Department of Advanced Cardiac Therapeutics, Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Naomasa Yamamoto
- Department of Biochemistry, School of Pharmaceutical Sciences, Ohu University, Tomita, Koriyama, Fukushima, Japan
| | - Naoyuki Taniguchi
- Disease Glycomics Team, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, Wako, Saitama, Japan
| |
Collapse
|
35
|
Li X, Hong L, Coughlan K, Wang L, Cao L, Tang J. Structure-activity relationship of memapsin 2: implications on physiological functions and Alzheimer's disease. Acta Biochim Biophys Sin (Shanghai) 2013; 45:613-21. [PMID: 23676825 DOI: 10.1093/abbs/gmt050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Memapsin 2 (BACE1, β-secretase), a membrane aspartic protease, functions in the cleavage of the type I transmembrane protein, β-amyloid precursor protein (APP), leading to the production of amyloid β (Aβ) in the brain. Since Aβ is closely associated with the pathogenesis of Alzheimer's disease, understanding the biological function, particularly the catalytic activities of memapsin 2, would assist in a better understanding of the disease and the development of its inhibitors. The transmembrane and cytosolic domains of memapsin 2 function in cellular transport and localization, which are important regulatory mechanisms for its activity. The catalytic ectodomain contains a long substrate cleft that is responsible for substrate recognition, specificity, and peptide bond hydrolysis. The substrate cleft accommodates 11 residues of the substrate in separate binding subsites. Besides APP, a number of membrane proteins have been reported to be substrates of memapsin 2. The elucidation for the specificity of these subsites and the amino acid sequences surrounding the memapsin 2 cleavage site in these proteins has led to the establishment of a predictive model that can quantitatively estimate the efficiency of cleavage for any potential substrates. Such tools may be employed for future studies of memapsin 2 about its biological function. Herein, we review the current knowledge on the structure-function relationship of memapsin 2 and its relationship in the biological function.
Collapse
Affiliation(s)
- Xiaoman Li
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110001, China
| | | | | | | | | | | |
Collapse
|
36
|
Liu R, Hou H, Yi X, Wu S, Zeng H. Divalent cation tolerance protein binds to β-secretase and inhibits the processing of amyloid precursor protein. Neural Regen Res 2013; 8:991-9. [PMID: 25206392 PMCID: PMC4145881 DOI: 10.3969/j.issn.1673-5374.2013.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/27/2013] [Indexed: 11/18/2022] Open
Abstract
The deposition of amyloid-beta is a pathological hallmark of Alzheimer's disease. Amyloid-beta is derived from amyloid precursor protein through sequential proteolytic cleavages by β-secretase (beta-site amyloid precursor protein-cleaving enzyme 1) and γ-secretase. To further elucidate the roles of beta-site amyloid precursor protein-cleaving enzyme 1 in the development of Alzheimer's disease, a yeast two-hybrid system was used to screen a human embryonic brain cDNA library for proteins directly interacting with the intracellular domain of beta-site amyloid precursor protein-cleaving enzyme 1. A potential beta-site amyloid precursor protein-cleaving enzyme 1-interacting protein identified from the positive clones was divalent cation tolerance protein. Immunoprecipitation studies in the neuroblastoma cell line N2a showed that exogenous divalent cation tolerance protein interacts with endogenous beta-site amyloid precursor protein-cleaving enzyme 1. The overexpression of divalent cation tolerance protein did not affect beta-site amyloid precursor protein-cleaving enzyme 1 protein levels, but led to increased amyloid precursor protein levels in N2a/APP695 cells, with a concomitant reduction in the processing product amyloid precursor protein C-terminal fragment, indicating that divalent cation tolerance protein inhibits the processing of amyloid precursor protein. Our experimental findings suggest that divalent cation tolerance protein negatively regulates the function of beta-site amyloid precursor protein-cleaving enzyme 1. Thus, divalent cation tolerance protein could play a protective role in Alzheimer's disease.
Collapse
Affiliation(s)
- Runzhong Liu
- State Key Laboratory of Cellular Stress Biology, Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian Province, China
| | - Haibo Hou
- State Key Laboratory of Cellular Stress Biology, Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian Province, China
| | - Xuelian Yi
- State Key Laboratory of Cellular Stress Biology, Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian Province, China
| | - Shanwen Wu
- State Key Laboratory of Cellular Stress Biology, Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian Province, China
| | - Huan Zeng
- Xiamen Maternal and Child Health Hospital, Xiamen 361003, Fujian Province, China
| |
Collapse
|
37
|
Swindall AF, Londoño-Joshi AI, Schultz MJ, Fineberg N, Buchsbaum DJ, Bellis SL. ST6Gal-I protein expression is upregulated in human epithelial tumors and correlates with stem cell markers in normal tissues and colon cancer cell lines. Cancer Res 2013; 73:2368-78. [PMID: 23358684 DOI: 10.1158/0008-5472.can-12-3424] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ST6Gal-I sialyltransferase adds an α2-6-linked sialic acid to the N-glycans of certain receptors. ST6Gal-I mRNA has been reported to be upregulated in human cancer, but a prior lack of antibodies has limited immunochemical analysis of the ST6Gal-I protein. Here, we show upregulated ST6Gal-I protein in several epithelial cancers, including many colon carcinomas. In normal colon, ST6Gal-I localized selectively to the base of crypts, where stem/progenitor cells are found, and the tissue staining patterns were similar to the established stem cell marker ALDH1. Similarly, ST6Gal-I expression was restricted to basal epidermal layers in skin, another stem/progenitor cell compartment. ST6Gal-I was highly expressed in induced pluripotent stem (iPS) cells, with no detectable expression in the fibroblasts from which iPS cells were derived. On the basis of these observations, we investigated further an association of ST6Gal-I with cancer stem cells (CSC). Selection of irinotecan resistance in colon carcinoma cells led to a greater proportion of CSCs compared with parental cells, as measured by the CSC markers CD133 and ALDH1 activity (Aldefluor). These chemoresistant cells exhibited a corresponding upregulation of ST6Gal-I expression. Conversely, short hairpin RNA (shRNA)-mediated attenuation of ST6Gal-I in colon carcinoma cells with elevated endogenous expression decreased the number of CD133/ALDH1-positive cells present in the cell population. Collectively, our results suggest that ST6Gal-I promotes tumorigenesis and may serve as a regulator of the stem cell phenotype in both normal and cancer cell populations.
Collapse
Affiliation(s)
- Amanda F Swindall
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
38
|
Oikawa A, Lund CH, Sakuragi Y, Scheller HV. Golgi-localized enzyme complexes for plant cell wall biosynthesis. TRENDS IN PLANT SCIENCE 2013; 18:49-58. [PMID: 22925628 DOI: 10.1016/j.tplants.2012.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/13/2012] [Accepted: 07/18/2012] [Indexed: 05/18/2023]
Abstract
The plant cell wall mostly comprises complex glycans, which are synthesized by numerous enzymes located in the Golgi apparatus and plasma membrane. Protein-protein interactions have been shown to constitute an important organizing principle for glycan biosynthetic enzymes in mammals and yeast. Recent genetic and biochemical data also indicate that such interactions could be common in plant cell wall biosynthesis. In this review, we examine the new findings in protein-protein interactions among plant cell wall biosynthetic enzymes and discuss the possibilities for enzyme complexes in the Golgi apparatus. These new insights in the field may contribute to novel strategies for molecular engineering of the cell wall.
Collapse
Affiliation(s)
- Ai Oikawa
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, CA 94608, USA
| | | | | | | |
Collapse
|
39
|
Schenk D, Basi GS, Pangalos MN. Treatment strategies targeting amyloid β-protein. Cold Spring Harb Perspect Med 2012; 2:a006387. [PMID: 22951439 DOI: 10.1101/cshperspect.a006387] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
With the advent of the key discovery in the mid-1980s that the amyloid β-protein (Aβ) is the core constituent of the amyloid plaque pathology found in Alzheimer disease (AD), an intensive effort has been underway to attempt to mitigate its role in the hope of treating the disease. This effort fully matured when it was clarified that the Aβ is a normal product of cleavage of the amyloid precursor protein, and well-defined proteases for this process were identified. Further therapeutic options have been developed around the concept of anti-Aβ aggregation inhibitors and the surprising finding that immunization with Aβ itself leads to reduction of pathology in animal models of the disease. Here we review the progress in this field toward the goal of targeting Aβ for treatment and prevention of AD and identify some of the major challenges for the future of this area of medicine.
Collapse
Affiliation(s)
- Dale Schenk
- Netotope Biosciences Inc., San Francisco, CA 94080, USA
| | | | | |
Collapse
|
40
|
Dislich B, Lichtenthaler SF. The Membrane-Bound Aspartyl Protease BACE1: Molecular and Functional Properties in Alzheimer's Disease and Beyond. Front Physiol 2012; 3:8. [PMID: 22363289 PMCID: PMC3281277 DOI: 10.3389/fphys.2012.00008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 01/11/2012] [Indexed: 12/31/2022] Open
Abstract
The β-site APP cleaving enzyme 1 (BACE1) is a transmembrane aspartyl protease involved in Alzheimer’s disease (AD) pathogenesis and in myelination. BACE1 initiates the generation of the pathogenic amyloid β-peptide, which makes BACE1 a major drug target for AD. BACE1 also cleaves and activates neuregulin 1, thereby contributing to postnatal myelination, in particular in the peripheral nervous system. Additional proteins are also cleaved by BACE1, but less is known about the physiological consequences of their cleavage. Recently, new phenotypes were described in BACE1-deficient mice. Although it remains unclear through which BACE1 substrates they are mediated, the phenotypes suggest a versatile role of this protease for diverse physiological processes. This review summarizes the enzymatic and cellular properties of BACE1 as well as its regulation by lipids, by transcriptional, and by translational mechanisms. The main focus will be on the recent progress in understanding BACE1 function and its implication for potential mechanism-based side effects upon therapeutic inhibition.
Collapse
Affiliation(s)
- Bastian Dislich
- German Center for Neurodegenerative Diseases (DZNE) Munich, Germany
| | | |
Collapse
|
41
|
Abstract
β-Site APP-cleaving enzyme (BACE1) cleaves the amyloid precursor protein (APP) at the β-secretase site to initiate the production of Aβ peptides. These accumulate to form toxic oligomers and the amyloid plaques associated with Alzheimer's disease (AD). An increase of BACE1 levels in the brain of AD patients has been mostly attributed to alterations of its intracellular trafficking. Golgi-associated adaptor proteins, GGA sort BACE1 for export to the endosomal compartment, which is the major cellular site of BACE1 activity. BACE1 undergoes recycling between endosome, trans-Golgi network (TGN), and the plasma membrane, from where it is endocytosed and either further recycled or retrieved to the endosome. Phosphorylation of Ser498 facilitates BACE1 recognition by GGA1 for retrieval to the endosome. Ubiquitination of BACE1 C-terminal Lys501 signals GGA3 for exporting BACE1 to the lysosome for degradation. In addition, the retromer mediates the retrograde transport of BACE1 from endosome to TGN. Decreased levels of GGA proteins and increased levels of retromer-associated sortilin have been associated with AD. Both would promote the co-localization of BACE1 and the amyloid precursor protein in the TGN and endosomes. Decreased levels of GGA3 also impair BACE1 degradation. Further understanding of BACE1 trafficking and its regulation may offer new therapeutic approaches for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jiangli Tan
- Department of Pathology, and Mental Health Research Institute, The University of Melbourne, Parkville, Australia
| | | |
Collapse
|
42
|
Abstract
Our knowledge of the etiology of Alzheimer's disease (AD) has advanced tremendously since the discovery of amyloid beta (Aβ) aggregation in diseased brains. Accumulating evidence suggests that Aβ plays a causative role in AD. The β-secretase enzyme, beta-site APP cleaving enzyme-1 (BACE1), is also implicated in AD pathogenesis, given that BACE1 cleavage of amyloid precursor protein is the initiating step in the formation of Aβ. As a result, BACE1 inhibition has been branded as a potential AD therapy. In this study, we review the identification and basic characteristics of BACE1, as well as the progress in our understanding of BACE1 cell biology, substrates, and phenotypes of BACE1 knockout mice that are informative about the physiological functions of BACE1 beyond amyloid precursor protein cleavage. These data are crucial for predicting potential mechanism-based toxicity that would arise from inhibiting BACE1 for the treatment or prevention of AD.
Collapse
Affiliation(s)
- Patty C Kandalepas
- Northwestern University, Feinberg School of Medicine, Department of Cell and Molecular Biology, Chicago, Illinois, USA
| | - Robert Vassar
- Northwestern University, Feinberg School of Medicine, Department of Cell and Molecular Biology, Chicago, Illinois, USA
| |
Collapse
|
43
|
Physiological functions of the amyloid precursor protein secretases ADAM10, BACE1, and Presenilin. Exp Brain Res 2011; 217:331-41. [DOI: 10.1007/s00221-011-2952-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/07/2011] [Indexed: 12/16/2022]
|
44
|
Cole SL, Vassar R. The Basic Biology of BACE1: A Key Therapeutic Target for Alzheimer's Disease. Curr Genomics 2011; 8:509-30. [PMID: 19415126 PMCID: PMC2647160 DOI: 10.2174/138920207783769512] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 12/27/2007] [Accepted: 12/27/2007] [Indexed: 11/22/2022] Open
Abstract
Alzheimer’s disease (AD) is an intractable, neurodegenerative disease that appears to be brought about by both genetic and non-genetic factors. The neuropathology associated with AD is complex, although amyloid plaques composed of the β-amyloid peptide (Aβ) are hallmark neuropathological lesions of AD brain. Indeed, Aβ plays an early and central role in this disease. β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is the initiating enzyme in Aβ genesis and BACE1 levels are elevated under a variety of conditions. Given the strong correlation between Aβ and AD, and the elevation of BACE1 in this disease, this enzyme is a prime drug target for inhibiting Aβ production in AD. However, nine years on from the initial identification of BACE1, and despite intense research, a number of key questions regarding BACE1 remain unanswered. Indeed, drug discovery and development for AD continues to be challenging. While current AD therapies temporarily slow cognitive decline, treatments that address the underlying pathologic mechanisms of AD are completely lacking. Here we review the basic biology of BACE1. We pay special attention to recent research that has provided some answers to questions such as those involving the identification of novel BACE1 substrates, the potential causes of BACE1 elevation and the putative function of BACE1 in health and disease. Our increasing understanding of BACE1 biology should aid the development of compounds that interfere with BACE1 expression and activity and may lead to the generation of novel therapeutics for AD.
Collapse
Affiliation(s)
- S L Cole
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | |
Collapse
|
45
|
Vassar R, Kandalepas PC. The β-secretase enzyme BACE1 as a therapeutic target for Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2011; 3:20. [PMID: 21639952 PMCID: PMC3226309 DOI: 10.1186/alzrt82] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Amyloid plaques are defining histopathologic lesions in the brains of Alzheimer's disease (AD) patients and are composed of the amyloid-beta peptide, which is widely considered to play a critical role in the pathogenesis of AD. The β-secretase, or β-site amyloid precursor protein cleaving enzyme 1 (BACE1; also called Asp2, memapsin 2), is the enzyme that initiates the generation of amyloid beta. Consequently, BACE1 is an attractive drug target for lowering cerebral levels of amyloid beta for the treatment or prevention of AD. Much has been learned about BACE1 since its discovery over 10 years ago. In the present article, we review BACE1 properties and characteristics, cell biology, in vivo validation, substrates, therapeutic potential, and inhibitor drug development. Studies relating to the physiological functions of BACE1 and the promise of BACE1 inhibition for AD will also be discussed. We conclude that therapeutic inhibition of BACE1 should be efficacious for AD, although careful titration of the drug dose may be necessary to limit mechanism-based side effects.
Collapse
Affiliation(s)
- Robert Vassar
- Department of Cell & Molecular Biology, Feinberg School of Medicine, Northwestern University, 300 E, Superior, Tarry 8-713, Chicago, IL 60611, USA.
| | | |
Collapse
|
46
|
Kitazume S. How Does N- and O-Glycosylation Affect the Formation and Accumulation of Amyloid β-Peptide? TRENDS GLYCOSCI GLYC 2011. [DOI: 10.4052/tigg.23.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Casas S, Casini P, Piquer S, Altirriba J, Soty M, Cadavez L, Gomis R, Novials A. BACE2 plays a role in the insulin receptor trafficking in pancreatic ß-cells. Am J Physiol Endocrinol Metab 2010; 299:E1087-95. [PMID: 20943756 DOI: 10.1152/ajpendo.00420.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACE1 (β-site amyloidogenic cleavage of precursor protein-cleaving enzyme 1) is a β-secretase protein that plays a central role in the production of the β-amyloid peptide in the brain and is thought to be involved in the Alzheimer's pathogenesis. In type 2 diabetes, amyloid deposition within the pancreatic islets is a pathophysiological hallmark, making crucial the study in the pancreas of BACE1 and its homologous BACE2 to understand the pathological mechanisms of this disease. The objectives of the present study were to characterize the localization of BACE proteins in human pancreas and determine their function. High levels of BACE enzymatic activity were detected in human pancreas. In normal human pancreas, BACE1 was observed in endocrine as well as in exocrine pancreas, whereas BACE2 expression was restricted to β-cells. Intracellular analysis using immunofluorescence showed colocalization of BACE1 with insulin and BACE2 with clathrin-coated vesicles of the plasma membrane in MIN6 cells. When BACE1 and -2 were pharmacologically inhibited, BACE1 localization was not altered, whereas BACE2 content in clathrin-coated vesicles was increased. Insulin internalization rate was reduced, insulin receptor β-subunit (IRβ) expression was decreased at the plasma membrane and increased in the Golgi apparatus, and a significant reduction in insulin gene expression was detected. Similar results were obtained after specific BACE2 silencing in MIN6 cells. All these data point to a role for BACE2 in the IRβ trafficking and insulin signaling. In conclusion, BACE2 is hereby presented as an important enzyme in β-cell function.
Collapse
Affiliation(s)
- Silvia Casas
- Hospital Clínic de Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Petit D, Mir AM, Petit JM, Thisse C, Delannoy P, Oriol R, Thisse B, Harduin-Lepers A. Molecular phylogeny and functional genomics of beta-galactoside alpha2,6-sialyltransferases that explain ubiquitous expression of st6gal1 gene in amniotes. J Biol Chem 2010; 285:38399-414. [PMID: 20855889 DOI: 10.1074/jbc.m110.163931] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sialyltransferases are key enzymes in the biosynthesis of sialoglycoconjugates that catalyze the transfer of sialic residue from its activated form to an oligosaccharidic acceptor. β-Galactoside α2,6-sialyltransferases ST6Gal I and ST6Gal II are the two unique members of the ST6Gal family described in higher vertebrates. The availability of genome sequences enabled the identification of more distantly related invertebrates' st6gal gene sequences and allowed us to propose a scenario of their evolution. Using a phylogenomic approach, we present further evidence of an accelerated evolution of the st6gal1 genes both in their genomic regulatory sequences and in their coding sequence in reptiles, birds, and mammals known as amniotes, whereas st6gal2 genes conserve an ancestral profile of expression throughout vertebrate evolution.
Collapse
Affiliation(s)
- Daniel Petit
- Unité de Génétique Moléculaire Animale, Université de Limoges Faculté des Sciences et Techniques, INRA UMR 1061, 123 Avenue Albert Thomas, 87060 Limoges, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Klaver DW, Wilce MC, Cui H, Hung AC, Gasperini R, Foa L, Small DH. Is BACE1 a suitable therapeutic target for the treatment of Alzheimer's disease? Current strategies and future directions. Biol Chem 2010; 391:849-59. [DOI: 10.1515/bc.2010.089] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
Alzheimer's disease (AD) is characterized by the extracellular deposition of the β-amyloid protein (Aβ). Aβ is a fragment of a much larger precursor protein, the amyloid precursor protein (APP). Sequential proteolytic cleavage of APP by β-secretase and γ-secretase liberates Aβ from APP. The aspartyl protease BACE1 (β-site APP-cleaving enzyme 1) catalyses the rate-limiting step in the production of Aβ, and as such it is considered to be a major target for drug development in Alzheimer's disease. However, the development of a BACE1 inhibitor therapy is problematic for two reasons. First, BACE1 has been found to have important physiological roles. Therefore, inhibition of the enzyme could have toxic consequences. Second, the active site of BACE1 is relatively large, and many of the bulky compounds that are needed to inhibit BACE1 activity are unlikely to cross the blood-brain barrier. This review focuses on the structure BACE1, current therapeutic strategies based on developing active-site inhibitors, and new approaches to therapy involving targeting the expression or post-translational regulation of BACE1.
Collapse
|
50
|
Jones MB, Nasirikenari M, Feng L, Migliore MT, Choi KS, Kazim L, Lau JTY. Role for hepatic and circulatory ST6Gal-1 sialyltransferase in regulating myelopoiesis. J Biol Chem 2010; 285:25009-17. [PMID: 20529847 DOI: 10.1074/jbc.m110.104406] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recent findings have established a role for the ST6Gal-1 sialyltransferase in modulating inflammatory cell production during Th1 and Th2 responses. ST6Gal-1 synthesizes the Sia(alpha2,6) to Gal(beta1,4)GlcNAc linkage on glycoproteins on cell surfaces and in systemic circulation. Engagement of P1, one of six promoter/regulatory regions driving murine ST6Gal-1 gene expression, generates the ST6Gal-1 for myelopoietic regulation. P1 utilization, however, is restricted to the liver and silent in hematopoietic cells. We considered the possibility that myelopoiesis is responsive to the sialylation of liver-derived circulatory glycoproteins, such that reduced alpha2,6-sialylation results in elevated myelopoiesis. However, 2-dimensional differential in gel electrophoresis (2D-DIGE) analysis disclosed only minimal alterations in the sialylation of sera glycoproteins of ST6Gal-1-deficient mice when compared with wild-type controls, either at baseline or during an acute phase response when the demand for sialylation is greatest. Furthermore, sera from ST6Gal-1-deficient animals did not enhance myelopoietic activity in ex vivo colony formation assays. Whereas there was only minimal consequence to the alpha2,6-sialylation of circulatory glycoproteins, ablation of the P1 promoter did result in strikingly depressed levels of ST6Gal-1 released into systemic circulation. Therefore, we considered the alternative possibility that myelopoiesis may be regulated not by the hepatic sialyl glycoproteins, but by the ST6Gal-1 that was released directly into circulation. Supporting this, ex vivo colony formation was notably attenuated upon introduction of physiologic levels of ST6Gal-1 into the culture medium. Our data support the idea that circulatory ST6Gal-1, mostly of hepatic origin, limits myelopoiesis by a mechanism independent of hepatic sialylation of serum glycoproteins.
Collapse
Affiliation(s)
- Mark B Jones
- Departments of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | | | |
Collapse
|