1
|
Zeng C, Lei D, Lu Y, Huang Q, Wu Y, Yang S, Wu Y. Parvalbumin in the metabolic pathway of glutamate and γ-aminobutyric acid: Influence on expression of GAD65 and GAD67. Arch Biochem Biophys 2023; 734:109499. [PMID: 36587827 DOI: 10.1016/j.abb.2022.109499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Parvalbumin-expressing neurons are a type of inhibitory intermediate neuron that play an important role in terminating seizures. The aim of the present study was to use lentiviral construction and packaging technology to overexpress and silence the parvalbumin gene in pheochromocytoma (PC12) cells, and to evaluate how parvalbumin influences the metabolic pathway involving glutamate and γ-aminobutyric acid (GABA). In this work, Immunofluorescence staining was used to verify the differentiation of PC12 cells into neurons after adding nerve growth factor (NGF). Western blotting and real-time quantitative polymerase chain reaction (qRT-PCR) were used to confirm lentivirus-mediated knockdown or overexpression of parvalbumin. Expression of parvalbumin, the 65-kDa GAD isoform (GAD65), and the 67-kDa GAD isoform (GAD67) in neuronal cells was examined at the mRNA and protein levels using qRT-PCR, western blotting and immunofluorescence staining, while intracellular glutamate and GABA levels were determined by high performance liquid chromatography (HPLC). We demonstrate that the expression of parvalbumin is associated with GAD65 and GAD67. Interestingly, overexpression of parvalbumin up-regulated GAD65 and GAD67, increased GABA concentration, and decreased glutamate concentration. Silencing of parvalbumin led to the opposite effects. Altogether, parvalbumin affected the expression of GAD65 and GAD67, thereby influencing the metabolic pathway involving glutamate and GABA.
Collapse
Affiliation(s)
- Chunmei Zeng
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, #6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Danqing Lei
- Experimental Center of Life Sciences Institutes, Guangxi Medical University, #22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Yuling Lu
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, #6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Qi Huang
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, #6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Ying Wu
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, #6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Shengyu Yang
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, #6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Yuan Wu
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, #6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Hamid OIA, Domouky AM, El-Fakharany YM. Molecular evidence of the amelioration of toluene induced encephalopathy by human breast milk mesenchymal stem cells. Sci Rep 2022; 12:9194. [PMID: 35654991 PMCID: PMC9163168 DOI: 10.1038/s41598-022-13173-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/18/2022] [Indexed: 11/09/2022] Open
Abstract
Toluene was widely used volatile organic compound that accumulates in tissues with high lipid content. Stem cells have been proposed as an increasingly attractive approach for repair of damaged nervous system, we aimed to evaluate the ability of breast milk mesenchymal stem cells (MSc) to ameliorate toluene-induced encephalopathy. Sixty adult male albino rats were assigned to 3 groups, control, toluene, and toluene/breast milk-MSc. Neurological assessment was evaluated as well as serum levels of glial fibrillary acidic protein (GFAP), tumor necrosis factor-alpha (TNF-α), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), tissue dopamine and oxidative markers. Gene expression of peroxisome Proliferator-Activated Receptor-Gamma (PPAR-ɣ), nuclear factor-kappaB (NF-kB), and interleukin-6 (IL-6) were evaluated. Moreover, histological and immunohistochemical investigation were done. Results revealed that toluene caused cerebral injury, as evidenced by a significant increase in serum GFAP, TNF-α, malondialdehyde (MDA) and nitric oxide (NO), a significant decrease in serum NGF, tissue dopamine and oxidative markers, besides, a non-significant change in VEGF. Toluene also caused changes in normal cerebral structure and cellular degeneration, including a significant decrease in the total number of neurons and thickness of frontal cortex. Meninges showing signs of inflammation with inflammatory cell infiltration and exudation, a significant decrease in MBP immunoreactivity, and increase in the percent of high motility group box protein-1 (HMGB1) positive cells. PPAR- ɣ, NF-kB, and IL-6 gene expression were all considerably elevated by toluene. These changes were greatly improved by breast milk MSc. Therefore, we conclude that breast milk MSc can attenuate toluene-induced encephalopathy.
Collapse
Affiliation(s)
- Omaima I Abdel Hamid
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Alsharquiah, 44519, Egypt
| | - Ayat M Domouky
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Alsharquiah, 44519, Egypt.
| | - Yara M El-Fakharany
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Alsharquiah, 44519, Egypt
| |
Collapse
|
3
|
Kolesnikova IM, Rumyantsev SA, Volkova NI, Gaponov AM, Grigor’eva TV, Laikov AV, Makarov VV, Yudin SM, Borisenko OV, Shestopalov AV. Influence of Obesity and Its Metabolic Type on the Serum Concentration of Neurotrophins. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Pinto C, Ibáñez MR, Loyola G, León L, Salvatore Y, González C, Barraza V, Castañeda F, Aldunate R, Contreras-Porcia L, Fuenzalida K, Bronfman FC. Characterization of an Agarophyton chilense Oleoresin Containing PPARγ Natural Ligands with Insulin-Sensitizing Effects in a C57Bl/6J Mouse Model of Diet-Induced Obesity and Antioxidant Activity in Caenorhabditis elegans. Nutrients 2021; 13:1828. [PMID: 34071972 PMCID: PMC8227508 DOI: 10.3390/nu13061828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/27/2022] Open
Abstract
The biomedical potential of the edible red seaweed Agarophyton chilense (formerly Gracilaria chilensis) has not been explored. Red seaweeds are enriched in polyunsaturated fatty acids and eicosanoids, which are known natural ligands of the PPARγ nuclear receptor. PPARγ is the molecular target of thiazolidinediones (TZDs), drugs used as insulin sensitizers to treat type 2 diabetes mellitus. Medical use of TZDs is limited due to undesired side effects, a problem that has triggered the search for selective PPARγ modulators (SPPARMs) without the TZD side effects. We produced Agarophyton chilense oleoresin (Gracilex®), which induces PPARγ activation without inducing adipocyte differentiation, similar to SPPARMs. In a diet-induced obesity model of male mice, we showed that treatment with Gracilex® improves insulin sensitivity by normalizing altered glucose and insulin parameters. Gracilex® is enriched in palmitic acid, arachidonic acid, oleic acid, and lipophilic antioxidants such as tocopherols and β-carotene. Accordingly, Gracilex® possesses antioxidant activity in vitro and increased antioxidant capacity in vivo in Caenorhabditis elegans. These findings support the idea that Gracilex® represents a good source of natural PPARγ ligands and antioxidants with the potential to mitigate metabolic disorders. Thus, its nutraceutical value in humans warrants further investigation.
Collapse
Affiliation(s)
- Claudio Pinto
- Postgraduate Department, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile;
- Center for Aging and Regeneration (CARE), Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| | - María Raquel Ibáñez
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.R.I.); (G.L.); (L.L.); (Y.S.); (C.G.); (V.B.)
- Institute of Biomedical Sciences (ICB), Faculty of Medicine, Universidad Andres Bello, Santiago 8320000, Chile
| | - Gloria Loyola
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.R.I.); (G.L.); (L.L.); (Y.S.); (C.G.); (V.B.)
- Institute of Biomedical Sciences (ICB), Faculty of Medicine, Universidad Andres Bello, Santiago 8320000, Chile
| | - Luisa León
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.R.I.); (G.L.); (L.L.); (Y.S.); (C.G.); (V.B.)
| | - Yasmin Salvatore
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.R.I.); (G.L.); (L.L.); (Y.S.); (C.G.); (V.B.)
| | - Carla González
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.R.I.); (G.L.); (L.L.); (Y.S.); (C.G.); (V.B.)
| | - Víctor Barraza
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.R.I.); (G.L.); (L.L.); (Y.S.); (C.G.); (V.B.)
| | - Francisco Castañeda
- Department of Ecology and Biodiversity, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8320000, Chile; (F.C.); (L.C.-P.)
- Quintay Marine Research Center (CIMARQ), Faculty of Life Sciences, Universidad Andres Bello, Valparaiso, Quintay 2480000, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
| | - Rebeca Aldunate
- Faculty of Sciences, School of Biotechnology, Universidad Santo Tomas, Santiago 8320000, Chile;
| | - Loretto Contreras-Porcia
- Department of Ecology and Biodiversity, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8320000, Chile; (F.C.); (L.C.-P.)
- Quintay Marine Research Center (CIMARQ), Faculty of Life Sciences, Universidad Andres Bello, Valparaiso, Quintay 2480000, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
| | - Karen Fuenzalida
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.R.I.); (G.L.); (L.L.); (Y.S.); (C.G.); (V.B.)
- Institute of Biomedical Sciences (ICB), Faculty of Medicine, Universidad Andres Bello, Santiago 8320000, Chile
| | - Francisca C. Bronfman
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.R.I.); (G.L.); (L.L.); (Y.S.); (C.G.); (V.B.)
- Institute of Biomedical Sciences (ICB), Faculty of Medicine, Universidad Andres Bello, Santiago 8320000, Chile
| |
Collapse
|
5
|
Kotha S, B S, Kulkarni VM, S RS, B HK, R H. An in-silico approach: identification of PPAR-γ agonists from seaweeds for the management of Alzheimer's Disease. J Biomol Struct Dyn 2020; 39:2210-2229. [PMID: 32216605 DOI: 10.1080/07391102.2020.1747543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Alzheimer's Disease is a complex progressive neurodegenerative disorder characterized by neurofibrillary tangles and senile plaques in various parts of the brain particularly cerebral cortex affecting memory and cognition. Nuclear receptors such as Peroxisome proliferator-activated receptor γ [PPAR-γ] is reported to have a role in lipid and glucose homeostasis in the brain, reduces the synthesis of Aβ (beta-amyloid plaques) and also regulates mitochondrial biogenesis and inhibit the neuro-inflammation, which contributes for the improvement in the cognitive function in AD. Hence PPAR-γ is one of the newer targets for the researchers to understand the pathology of AD and to evolve the novel strategy to retard/reverse the progression of AD. PPAR-γ agonists such as Rosiglitazone and Pioglitazone have shown promising results in AD by decreasing neuro-inflammation and restoring glucose dysmetabolism leading to a reduction in neuronal deterioration. These agonists possess poor blood-brain permeability and are poor candidates for clinical use in AD. Therefore, search, design, and development for new PPAR- γ agonists with improved BBB penetration ability are imperative. The present work deals with the use of computational tools and techniques such as molecular docking, molecular dynamics to discover PPAR-γ agonists from the unexplored Seaweed Metabolite Database and predicts it's toxicological and physiochemical profile, thereby saving time and resources. Out of 1,110 seaweed compounds, the hit molecule BS052 displayed a strong binding affinity towards PPAR-γ, which possessed better lipid solubility indicating the potential to be considered as a PPAR-γ agonist, which may be useful in the management of AD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Satvik Kotha
- Department of Pharmacology, Government College of Pharmacy, Bengaluru, India
| | - Swapna B
- Department of Pharmacology, Government College of Pharmacy, Bengaluru, India
| | - Vithal M Kulkarni
- Department of Chemistry, Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Pune, India
| | - Ramachandra Setty S
- Department of Pharmacology, Government College of Pharmacy, Bengaluru, India
| | - Harish Kumar B
- Department of Pharmacology, Government College of Pharmacy, Bengaluru, India
| | - Harisha R
- Department of Pharmacology, Government College of Pharmacy, Bengaluru, India
| |
Collapse
|
6
|
Govindarajulu M, Pinky PD, Bloemer J, Ghanei N, Suppiramaniam V, Amin R. Signaling Mechanisms of Selective PPAR γ Modulators in Alzheimer's Disease. PPAR Res 2018; 2018:2010675. [PMID: 30420872 PMCID: PMC6215547 DOI: 10.1155/2018/2010675] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/31/2018] [Accepted: 09/13/2018] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by abnormal protein accumulation, synaptic dysfunction, and cognitive impairment. The continuous increase in the incidence of AD with the aged population and mortality rate indicates the urgent need for establishing novel molecular targets for therapeutic potential. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists such as rosiglitazone and pioglitazone reduce amyloid and tau pathologies, inhibit neuroinflammation, and improve memory impairments in several rodent models and in humans with mild-to-moderate AD. However, these agonists display poor blood brain barrier permeability resulting in inadequate bioavailability in the brain and thus requiring high dosing with chronic time frames. Furthermore, these dosing levels are associated with several adverse effects including increased incidence of weight gain, liver abnormalities, and heart failure. Therefore, there is a need for identifying novel compounds which target PPARγ more selectively in the brain and could provide therapeutic benefits without a high incidence of adverse effects. This review focuses on how PPARγ agonists influence various pathologies in AD with emphasis on development of novel selective PPARγ modulators.
Collapse
Affiliation(s)
- Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Priyanka D. Pinky
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Jenna Bloemer
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Nila Ghanei
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
- Center for Neuroscience, Auburn University, Auburn, AL, USA
| | - Rajesh Amin
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
- Center for Neuroscience, Auburn University, Auburn, AL, USA
| |
Collapse
|
7
|
Garcinia xanthochymus extract protects PC12 cells from H 2O 2-induced apoptosis through modulation of PI3K/AKT and NRF2/HO-1 pathways. Chin J Nat Med 2018; 15:825-833. [PMID: 29329609 DOI: 10.1016/s1875-5364(18)30016-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Indexed: 02/02/2023]
Abstract
The aim of the present study was to investigate the protective effects and underlying mechanisms of Garcinia xanthochymus, a perennial medicinal plant native to Yunnan, China, against H2O2-induced oxidative damage in rat pheochromacytoma PC12 cells. Preincubation of PC12 cells with fruit EtOAc fraction (fruit-EFr., 12.5-50 µmol·L-1) of G. xanthochymus for 24 h prior to H2O2 exposure markedly improved cell viability and increased the activities of antioxidant enzymes (superoxide dismutase, catalase, and heme oxygenase-1 [HO-1]), prevented lactate dehydrogenase release and lipid peroxidation malondialdehyde production, attenuated the decrease of matrix metalloproteinases (MMP), and scavenged reactive oxygen species (ROS). Fruit-EFr. also reduced BAX and cytochrome C expression and improved BCL-2 expression, thereby decreasing the ratio of BAX to BCL-2. Fruit-EFr. activated the nuclear translocation of NRF2 to increase HO-1 and induced the phosphorylation of AKT. Its cytoprotective effect was abolished by LY294002, a specific inhibitor of PI3K. Taken together, the above findings suggested that fruit-EFr.of G. xanthochymus could enhance cellular antioxidant defense capacity, at least in part, through upregulating HO-1 expression and activating the PI3K/AKT pathway and that it could suppress H2O2-induced oxidative damage via PI3K/AKT and NRF2/HO-1 signaling pathways.
Collapse
|
8
|
Neuroprotective Potential of Gentongping in Rat Model of Cervical Spondylotic Radiculopathy Targeting PPAR- γ Pathway. J Immunol Res 2017; 2017:9152960. [PMID: 29230425 PMCID: PMC5694586 DOI: 10.1155/2017/9152960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/15/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022] Open
Abstract
Cervical spondylotic radiculopathy (CSR) is the most general form of spinal degenerative disease and is characterized by pain and numbness of the neck and arm. Gentongping (GTP) granule, as a classical Chinese patent medicine, has been widely used in curing CSR, whereas the underlying mechanism remains unclear. Therefore, the aim of this study is to explore the pharmacological mechanisms of GTP on CSR. The rat model of CSR was induced by spinal cord injury (SCI). Our results showed that GTP could significantly alleviate spontaneous pain as well as ameliorate gait. The HE staining and Western blot results showed that GTP could increase the quantity of motoneuron and enhance the activation of peroxisome proliferator-activated receptor gamma (PPAR-γ) in the spinal cord tissues. Meanwhile, immunofluorescence staining analysis indicated that GTP could reduce the expression of TNF-α in the spinal cord tissues. Furthermore, the protein level of Bax was decreased whereas the protein levels of Bcl-2 and NF200 were increased after the GTP treatment. These findings demonstrated that GTP might modulate the PPAR-γ pathway by inhibiting the inflammatory response and apoptosis as well as by protecting the cytoskeletal integrity of the spinal cord, ultimately play a neuroprotective role in CSR.
Collapse
|
9
|
Esmaeili M, Ghaedi K, Shoaraye Nejati A, Nematollahi M, Shiralyian H, Nasr-Esfahani MH. Pioglitazone significantly prevented decreased rate of neural differentiation of mouse embryonic stem cells which was reduced by Pex11β knock-down. Neuroscience 2015; 312:35-47. [PMID: 26562432 DOI: 10.1016/j.neuroscience.2015.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022]
Abstract
Peroxisomes constitute special cellular organelles which display a variety of metabolic functions including fatty acid oxidation and free radical elimination. Abundance of these flexible organelles varies in response to different environmental stimuli. It has been demonstrated that PEX11β, a peroxisomal membrane elongation factor, is involved in the regulation of size, shape and number of peroxisomes. To investigate the role of PEX11β in neural differentiation of mouse embryonic stem cells (mESCs), we generated a stably transduced mESCs line that derives the expression of a short hairpin RNA against Pex11β gene following doxycycline (Dox) induction. Knock-down of Pex11β, during neural differentiation, significantly reduced the expression of neural progenitor cells and mature neuronal markers (p<0.05) indicating that decreased expression of PEX11β suppresses neuronal maturation. Additionally, mRNA levels of other peroxisome-related genes such as PMP70, Pex11α, Catalase, Pex19 and Pex5 were also significantly reduced by Pex11β knock-down (p<0.05). Interestingly, pretreatment of transduced mESCs with peroxisome proliferator-activated receptor γ agonist (pioglitazone (Pio)) ameliorated the inhibitory effects of Pex11β knock down on neural differentiation. Pio also significantly (p<0.05) increased the expression of neural progenitor and mature neuronal markers besides the expression of peroxisomal genes in transduced mESC. Results elucidated the importance of Pex11β expression in neural differentiation of mESCs, thereby highlighting the essential role of peroxisomes in mammalian neural differentiation. The observation that Pio recovered peroxisomal function and improved neural differentiation of Pex11β knocked-down mESCs, proposes a potential new pharmacological implication of Pio for neurogenesis in patients with peroxisomal defects.
Collapse
Affiliation(s)
- M Esmaeili
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - K Ghaedi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Division of Cellular and Molecular Biology, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
| | - A Shoaraye Nejati
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - M Nematollahi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - H Shiralyian
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - M H Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
10
|
Lezana JP, Dagan SY, Robinson A, Goldstein RS, Fainzilber M, Bronfman FC, Bronfman M. Axonal PPARγ promotes neuronal regeneration after injury. Dev Neurobiol 2015; 76:688-701. [PMID: 26446277 DOI: 10.1002/dneu.22353] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 09/15/2015] [Accepted: 10/01/2015] [Indexed: 11/09/2022]
Abstract
PPARγ is a ligand-activated nuclear receptor best known for its involvement in adipogenesis and glucose homeostasis. PPARγ activity has also been associated with neuroprotection in different neurological disorders, but the mechanisms involved in PPARγ effects in the nervous system are still unknown. Here we describe a new functional role for PPARγ in neuronal responses to injury. We found both PPAR transcripts and protein within sensory axons and observed an increase in PPARγ protein levels after sciatic nerve crush. This was correlated with increased retrograde transport of PPARγ after injury, increased association of PPARγ with the molecular motor dynein, and increased nuclear accumulation of PPARγ in cell bodies of sensory neurons. Furthermore, PPARγ antagonists attenuated the response of sensory neurons to sciatic nerve injury, and inhibited axonal growth of both sensory and cortical neurons in culture. Thus, axonal PPARγ is involved in neuronal injury responses required for axonal regeneration. Since PPARγ is a major molecular target of the thiazolidinedione (TZD) class of drugs used in the treatment of type II diabetes, several pharmaceutical agents with acceptable safety profiles in humans are available. Our findings provide motivation and rationale for the evaluation of such agents for efficacy in central and peripheral nerve injuries.
Collapse
Affiliation(s)
- Juan Pablo Lezana
- Department of Physiology, Millenium Nucleus in Regenerative Biology (MINREB) and CARE Center, Pontificia Universidad Católica De Chile, Santiago, Chile.,Department of Cellular and Molecular Biology, CARE Center, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Shachar Y Dagan
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ari Robinson
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Ronald S Goldstein
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Mike Fainzilber
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Francisca C Bronfman
- Department of Physiology, Millenium Nucleus in Regenerative Biology (MINREB) and CARE Center, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Miguel Bronfman
- Department of Cellular and Molecular Biology, CARE Center, Pontificia Universidad Católica De Chile, Santiago, Chile
| |
Collapse
|
11
|
Tang KS. Protective effect of arachidonic acid and linoleic acid on 1-methyl-4-phenylpyridinium-induced toxicity in PC12 cells. Lipids Health Dis 2014; 13:197. [PMID: 25522984 PMCID: PMC4320435 DOI: 10.1186/1476-511x-13-197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/01/2014] [Indexed: 01/13/2023] Open
Abstract
Background Parkinson’s disease is a neurodegenerative disorder that is being characterized by the progressive loss of dopaminergic neurons of the nigrostriatal pathway in the brain. The protective effect of omega-6 fatty acids is unclear. There are lots of contradictions in the literature with regard to the cytoprotective role of arachidonic acid. To date, there is no solid evidence that shows the protective role of omega-6 fatty acids in Parkinson’s disease. In the current study, the potential of two omega-6 fatty acids (i.e. arachidonic acid and linoleic acid) in alleviating 1-methyl-4-phenylpyridinium (MPP+)-induced cytotoxicity in PC12 cells was examined. Methods Cultured PC12 cells were either treated with MPP+ alone or co-treated with one of the omega-6 fatty acids for 1 day. Cell viability was then assessed by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results Cells treated with 500 μM MPP+ for a day reduced cell viability to ~70% as compared to control group. Linoleic acid (50 and 100 μM) significantly reduced MPP+-induced cell death back to ~85-90% of the control value. The protective effect could be mimicked by arachidonic acid, but not by ciglitazone. Conclusions Both linoleic acid and arachidonic acid are able to inhibit MPP+-induced toxicity in PC12 cells. The protection is not mediated via peroxisome proliferator-activated receptor gamma (PPAR-γ). Overall, the results suggest the potential role of omega-6 fatty acids in the treatment of Parkinson’s disease.
Collapse
Affiliation(s)
- Kim San Tang
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
12
|
Abstract
Traumatic injury or disease of the spinal cord and brain elicits multiple cellular and biochemical reactions that together cause or are associated with neuropathology. Specifically, injury or disease elicits acute infiltration and activation of immune cells, death of neurons and glia, mitochondrial dysfunction, and the secretion of substrates that inhibit axon regeneration. In some diseases, inflammation is chronic or non-resolving. Ligands that target PPARs (peroxisome proliferator-activated receptors), a group of ligand-activated transcription factors, are promising therapeutics for neurologic disease and CNS injury because their activation affects many, if not all, of these interrelated pathologic mechanisms. PPAR activation can simultaneously weaken or reprogram the immune response, stimulate metabolic and mitochondrial function, promote axon growth and induce progenitor cells to differentiate into myelinating oligodendrocytes. PPAR activation has beneficial effects in many pre-clinical models of neurodegenerative diseases and CNS injury; however, the mechanisms through which PPARs exert these effects have yet to be fully elucidated. In this review we discuss current literature supporting the role of PPAR activation as a therapeutic target for treating traumatic injury and degenerative diseases of the CNS.
Collapse
|
13
|
The Angiotensin II Type 2 Receptor in Brain Functions: An Update. Int J Hypertens 2012; 2012:351758. [PMID: 23320146 PMCID: PMC3540774 DOI: 10.1155/2012/351758] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/29/2012] [Indexed: 02/07/2023] Open
Abstract
Angiotensin II (Ang II) is the main active product of the renin-angiotensin system (RAS), mediating its action via two major receptors, namely, the Ang II type 1 (AT1) receptor and the type 2 (AT2) receptor. Recent results also implicate several other members of the renin-angiotensin system in various aspects of brain functions. The first aim of this paper is to summarize the current state of knowledge regarding the properties and signaling of the AT2 receptor, its expression in the brain, and its well-established effects. Secondly, we will highlight the potential role of the AT2 receptor in cognitive function, neurological disorders and in the regulation of appetite and the possible link with development of metabolic disorders. The potential utility of novel nonpeptide selective AT2 receptor ligands in clarifying potential roles of this receptor in physiology will also be discussed. If confirmed, these new pharmacological tools should help to improve impaired cognitive performance, not only through its action on brain microcirculation and inflammation, but also through more specific effects on neurons. However, the overall physiological relevance of the AT2 receptor in the brain must also consider the Ang IV/AT4 receptor.
Collapse
|
14
|
Chuang YC, Lin TK, Huang HY, Chang WN, Liou CW, Chen SD, Chang AYW, Chan SHH. Peroxisome proliferator-activated receptors γ/mitochondrial uncoupling protein 2 signaling protects against seizure-induced neuronal cell death in the hippocampus following experimental status epilepticus. J Neuroinflammation 2012; 9:184. [PMID: 22849356 PMCID: PMC3444895 DOI: 10.1186/1742-2094-9-184] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/20/2012] [Indexed: 11/23/2022] Open
Abstract
Background Status epilepticus induces subcellular changes that may lead to neuronal cell death in the hippocampus. However, the mechanism of seizure-induced neuronal cell death remains unclear. The mitochondrial uncoupling protein 2 (UCP2) is expressed in selected regions of the brain and is emerged as an endogenous neuroprotective molecule in many neurological disorders. We evaluated the neuroprotective role of UCP2 against seizure-induced hippocampal neuronal cell death under experimental status epilepticus. Methods In Sprague–Dawley rats, kainic acid (KA) was microinjected unilaterally into the hippocampal CA3 subfield to induce prolonged bilateral seizure activity. Oxidized protein level, translocation of Bcl-2, Bax and cytochrome c between cytosol and mitochondria, and expression of peroxisome proliferator-activated receptors γ (PPARγ) and UCP2 were examined in the hippocampal CA3 subfield following KA-induced status epilepticus. The effects of microinjection bilaterally into CA3 area of a PPARγ agonist, rosiglitazone or a PPARγ antagonist, GW9662 on UCP2 expression, induced superoxide anion (O2· -) production, oxidized protein level, mitochondrial respiratory chain enzyme activities, translocation of Bcl-2, Bax and cytochrome c, and DNA fragmentation in bilateral CA3 subfields were examined. Results Increased oxidized proteins and mitochondrial or cytosol translocation of Bax or cytochrome c in the hippocampal CA3 subfield was observed 3–48 h after experimental status epilepticus. Expression of PPARγ and UCP2 increased 12–48 h after KA-induced status epilepticus. Pretreatment with rosiglitazone increased UCP2 expression, reduced protein oxidation, O2· - overproduction and dysfunction of mitochondrial Complex I, hindered the translocation of Bax and cytochrome c, and reduced DNA fragmentation in the CA3 subfield. Pretreatment with GW9662 produced opposite effects. Conclusions Activation of PPARγ upregulated mitochondrial UCP2 expression, which decreased overproduction of reactive oxygen species, improved mitochondrial Complex I dysfunction, inhibited mitochondrial translocation of Bax and prevented cytosolic release of cytochrome c by stabilizing the mitochondrial transmembrane potential, leading to amelioration of apoptotic neuronal cell death in the hippocampus following status epilepticus.
Collapse
Affiliation(s)
- Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
NGF blocks polyunsaturated fatty acids biosynthesis in n−3 fatty acid-supplemented PC12 cells. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1022-30. [DOI: 10.1016/j.bbalip.2012.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 04/19/2012] [Accepted: 04/22/2012] [Indexed: 11/19/2022]
|
16
|
Huang HL, Lin CC, Jeng KCG, Yao PW, Chuang LT, Kuo SL, Hou CW. Fresh green tea and gallic acid ameliorate oxidative stress in kainic acid-induced status epilepticus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:2328-2336. [PMID: 22324774 DOI: 10.1021/jf203709q] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Green tea is one of the most-consumed beverages due to its taste and antioxidative polyphenols. However, the protective effects of green tea and its constituent, gallic acid (GA), against kainic acid (KA)-induced seizure have not been studied. We investigated the effect of fresh green tea leaf (GTL) and GA on KA-induced neuronal injury in vivo and in vitro. The results showed that GTL and GA reduced the maximal seizure classes, predominant behavioral seizure patterns, and lipid peroxidation in male FVB mice with status epilepticus (SE). GTL extract and GA provided effective protection against KA-stressed PC12 cells in a dose-dependent manner. In the protective mechanism study, GTL and GA decreased Ca(2+) release, ROS, and lipid peroxidation from KA-stressed PC12 cells. Western blot results revealed that mitogen-activated protein kinases (MAPKs), RhoA, and COX-2 expression were increased in PC12 cells under KA stress, and expression of COX-2 and p38 MAPK, but not RhoA, was significantly reduced by GTL and GA. Furthermore, GTL and GA were able to reduce PGE(2) production from KA-stressed PC12 cells. Taken together, the results showed that GTL and GA provided neuroprotective effects against excitotoxins and may have a clinical application in epilepsy.
Collapse
Affiliation(s)
- Hsiao-Ling Huang
- Department of Healthcare Management, Yuanpei University, Hsinchu, Taiwan
| | | | | | | | | | | | | |
Collapse
|
17
|
Guimond MO, Gallo-Payet N. How does angiotensin AT(2) receptor activation help neuronal differentiation and improve neuronal pathological situations? Front Endocrinol (Lausanne) 2012; 3:164. [PMID: 23267346 PMCID: PMC3525946 DOI: 10.3389/fendo.2012.00164] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 11/29/2012] [Indexed: 01/08/2023] Open
Abstract
The angiotensin type 2 (AT(2)) receptor of angiotensin II has long been thought to be limited to few tissues, with the primary effect of counteracting the angiotensin type 1 (AT(1)) receptor. Functional studies in neuronal cells have demonstrated AT(2) receptor capability to modulate neuronal excitability, neurite elongation, and neuronal migration, suggesting that it may be an important regulator of brain functions. The observation that the AT(2) receptor was expressed in brain areas implicated in learning and memory led to the hypothesis that it may also be implicated in cognitive functions. However, linking signaling pathways to physiological effects has always proven challenging since information relative to its physiological functions has mainly emerged from indirect observations, either from the blockade of the AT(1) receptor or through the use of transgenic animals. From a mechanistic standpoint, the main intracellular pathways linked to AT(2) receptor stimulation include modulation of phosphorylation by activation of kinases and phosphatases or the production of nitric oxide and cGMP, some of which are associated with the Gi-coupling protein. The receptor can also interact with other receptors, either G protein-coupled such as bradykinin, or growth factor receptors such as nerve growth factor or platelet-derived growth factor receptors. More recently, new advances have also led to identification of various partner proteins, thus providing new insights into this receptor's mechanism of action. This review summarizes the recent advances regarding the signaling pathways induced by the AT(2) receptor in neuronal cells, and discussed the potential therapeutic relevance of central actions of this enigmatic receptor. In particular, we highlight the possibility that selective AT(2) receptor activation by non-peptide and selective agonists could represent new pharmacological tools that may help to improve impaired cognitive performance in Alzheimer's disease and other neurological cognitive disorders.
Collapse
Affiliation(s)
| | - Nicole Gallo-Payet
- *Correspondence: Nicole Gallo-Payet, Service d’Endocrinologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC, Canada J1H 5N4. e-mail:
| |
Collapse
|
18
|
Meng B, Zhang Q, Huang C, Zhang HT, Tang T, Yang HL. Effects of a single dose of methylprednisolone versus three doses of rosiglitazone on nerve growth factor levels after spinal cord injury. J Int Med Res 2011; 39:805-14. [PMID: 21819712 DOI: 10.1177/147323001103900313] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Acute spinal cord lesions result in dramatic changes in neuronal function. Studies have shown that the peroxisome proliferator-activated receptor-γ agonist, rosiglitazone, has neuroprotective properties. The effect of rosiglitazone after acute spinal cord injury was examined in the present study. Rats were subjected to laminectomy only; laminectomy with spinal cord contusion injury; laminectomy with contusion injury plus 30 mg/kg body weight methylprednisolone administered 5 min after surgery; or laminectomy with contusion injury plus 2 mg/kg body weight rosiglitazone administered intraperitoneally 5 min, 6 h and 24 h after surgery. Both drugs increased neurotrophin gene and protein expression 24 h after injury compared with injured rats without drug treatment. Rosiglitazone increased neurotrophin expression at 7 days to a greater extent than methylprednisolone. Early functional recovery was observed in rats treated with rosiglitazone. The greater increase in rosiglitazone-induced nerve growth factor expression soon after injury could explain, at least in part, the improved recovery of motor function compared with methylprednisolone or saline.
Collapse
Affiliation(s)
- B Meng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | | | | | | | | | | |
Collapse
|
19
|
Hou CW. Pu-Erh tea and GABA attenuates oxidative stress in kainic acid-induced status epilepticus. J Biomed Sci 2011; 18:75. [PMID: 22014163 PMCID: PMC3217899 DOI: 10.1186/1423-0127-18-75] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/20/2011] [Indexed: 12/19/2022] Open
Abstract
Background Pu-Erh tea is one of the most-consumed beverages due to its taste and the anti-anxiety-producing effect of the gamma-aminobutyric acid (GABA) if contains. However the protective effects of Pu-Erh tea and its constituent, GABA to kainic acid (KA)-induced seizure have not been fully investigated. Methods We analyzed the effect of Pu-Erh tea leaf (PETL) and GABA on KA-induced neuronal injury in vivo and in vitro. Results PETL and GABA reduced the maximal seizure classes, predominant behavioral seizure patterns, and lipid peroxidation in male FVB mice with status epilepticus. PETL extracts and GABA were effective in protecting KA-treated PC12 cells in a dose-dependent manner and they decreased Ca2+ release, ROS production and lipid peroxidation from KA-stressed PC12 cells. Western blot results revealed that mitogen-activated protein kinases (MAPKs), RhoA and cyclo-oxygenase-2 (COX-2) expression were increased in PC12 cells under KA stress, and PETL and GABA significantly reduced COX-2 and p38 MAPK expression, but not that of RhoA. Furthermore, PETL and GABA reduced PGE2 production from KA-induced PC12 cells. Conclusions Taken together, PETL and GABA have neuroprotective effects against excitotoxins that may have clinical applications in epilepsy.
Collapse
Affiliation(s)
- Chien-Wei Hou
- Department of Biotechnology, Yuanpei University, Hsinchu, Taiwan.
| |
Collapse
|
20
|
To Live or to Die: Prosurvival Activity of PPARgamma in Cancers. PPAR Res 2011; 2008:209629. [PMID: 18784849 PMCID: PMC2532487 DOI: 10.1155/2008/209629] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Accepted: 05/03/2008] [Indexed: 11/21/2022] Open
Abstract
The role of PPARγ in tumorigenesis is controversial. In this article, we review and analyze literature from the past decade that highlights the potential proneoplastic activity of PPARγ. We discuss the following five aspects of the nuclear hormone receptor and its agonists: (1) relative expression of PPARγ in human tumor versus normal tissues; (2) receptor-dependent proneoplastic effects; (3) impact of PPARγ and its agonists on tumors in animal models; (4) clinical trials of thiazolidinediones (TZDs) in human malignancies; (5) TZDs as chemopreventive agents in epidemiology studies. The focus is placed on the most relevant in vivo animal models and human data. In vitro cell line studies are included only when the effects are shown to be dependent on the PPARγ receptor.
Collapse
|
21
|
Leisewitz AV, Zimmerman EI, Huang M, Jones SZ, Yang J, Graves LM. Regulation of ENT1 expression and ENT1-dependent nucleoside transport by c-Jun N-terminal kinase. Biochem Biophys Res Commun 2010; 404:370-5. [PMID: 21145879 DOI: 10.1016/j.bbrc.2010.11.125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 11/27/2010] [Indexed: 01/17/2023]
Abstract
Equilibrative nucleoside transporters (ENTs) are facilitative transporters broadly selective for pyrimidine and purine nucleosides and are essential for the modulation of nucleoside concentration and nucleoside analog availability. Resistance to nucleoside-derived drugs strongly correlates with a deficiency of ENT1 expression in several tumor cells. Thus, it is crucial to understand the mechanisms by which this transporter is modulated. Using a mouse myeloid leukemic cell line as a model, we investigated whether stress-activated kinases regulate ENT1 expression and function. JNK activation, but not p38 MAPK results in rapid loss of mENT1 function, mRNA expression and promoter activity. c-Jun but not the mutant c-Jun Ser63/73Ala, decreased mENT1 promoter activity. Moreover cJun bound to an AP-1 site identified at -1196 of the promoter, suggesting a specific role for this transcription factor in mENT1 regulation. We propose that activation of JNK-cJun pathway negatively regulates mENT1 and suggest that this mechanism might contribute to the development of nucleoside analog-derived drug resistance.
Collapse
Affiliation(s)
- Andrea V Leisewitz
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC 27599-7365, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Goto J, Otsuka F, Yamashita M, Suzuki J, Otani H, Takahashi H, Miyoshi T, Mimura Y, Ogura T, Makino H. Enhancement of aldosterone-induced catecholamine production by bone morphogenetic protein-4 through activating Rho and SAPK/JNK pathway in adrenomedullar cells. Am J Physiol Endocrinol Metab 2009; 296:E904-16. [PMID: 19190257 DOI: 10.1152/ajpendo.90840.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we investigated the effects of mineralocorticoid in the regulation of catecholamine biosynthesis using rat pheochromocytoma PC12 cells. Expression of mineralocorticoid receptor (MR) was confirmed in undifferentiated PC12 cells. Aldosterone stimulated dopamine production by PC12 cells without any increase in cAMP activity. Aldosterone-induced dopamine accumulation was enhanced in accordance with the increase in the rate-limiting enzyme tyrosine hydroxylase (TH). Blocking MR with eplerenone suppressed aldosterone-induced increases of TH mRNA and dopamine production. A glucocorticoid receptor (GR) antagonist, RU-486, attenuated dexamethasone- but not aldosterone-induced TH expression. Cycloheximide reduced both aldosterone- and dexamethasone-induced TH mRNA. A SAPK/JNK inhibitor, SP600125, suppressed aldosterone-induced TH mRNA expression; however, the aldosterone-induced TH expression was not affected by inhibition of ERK1/2, p38-MAPK, Rho-kinase, PI 3-kinase, and PKC. It was of note that cotreatment with eplerenone and SP600125 restored aldosterone-induced TH mRNA expression to basal levels. To investigate the involvement of bone morphogenetic protein (BMP) actions in aldosterone-induced catecholamine production, we examined the effects of BMP-4 and BMP-7, which are expressed in the adrenal medulla, on catecholamine biosynthesis. BMP-4 preferentially enhanced aldosterone-induced TH mRNA and dopamine production, although BMP-4 alone did not affect TH expression. The BMP-4 enhancement of aldosterone-induced TH expression was not observed in cells treated with eplerenone. BMP-4 did not affect MR expression of PC12 cells; however, it did enhance aldosterone-induced SAPK/JNK phosphorylation. Inhibition of SAPK/JNK or Rho suppressed BMP-4 enhancement of aldosterone-induced TH expression. Collectively, our findings demonstrate that aldosterone stimulates catecholamine biosynthesis in adrenomedullar cells via MR through genomic action and partly through nongenomic action by Rho-SAPK/JNK signaling, the latter of which is facilitated by BMP-4. A functional link between MR actions and endogenous BMP may be involved in the catecholamine production.
Collapse
Affiliation(s)
- Junko Goto
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama City, 700-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Leisewitz AV, Urrutia CR, Martinez GR, Loyola G, Bronfman M. A PPARs cross-talk concertedly commits C6 glioma cells to oligodendrocytes and induces enzymes involved in myelin synthesis. J Cell Physiol 2008; 217:367-76. [DOI: 10.1002/jcp.21509] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Liu JW, Almaguel FG, Bu L, De Leon DD, De Leon M. Expression of E-FABP in PC12 cells increases neurite extension during differentiation: involvement of n-3 and n-6 fatty acids. J Neurochem 2008; 106:2015-29. [PMID: 18513372 DOI: 10.1111/j.1471-4159.2008.05507.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidermal fatty acid-binding protein (E-FABP), a member of the family of FABPs, exhibits a robust expression in neurons during axonal growth in development and in nerve regeneration following nerve injury. This study examines the impact of E-FABP expression in normal neurite extension in differentiating pheochromocytoma cell (PC12) cultures supplemented with selected long chain free fatty acids (LCFFA). We found that E-FABP binds to a broad range of saturated and unsaturated LCFFAs, including those with potential interest for neuronal differentiation and axonal growth such as C22:6n-3 docosahexaenoic acid (DHA), C20:5n-3 eicosapentaenoic acid (EPA), and C20:4n-6 arachidonic acid (ARA). PC12 cells exposed to nerve growth factor (NGFDPC12) exhibit high E-FABP expression that is blocked by mitogen-activated protein kinase kinase (MEK) inhibitor U0126. Nerve growth factor-differentiated pheochromocytoma cells (NGFDPC12) antisense clones (NGFDPC12-AS) which exhibit low E-FABP expression have fewer/shorter neurites than cells transfected with vector only or NGFDPC12 sense cells (NGFDPC12-S). Replenishing NGFDPC12-AS cells with biotinylated recombinant E-FABP (biotin-E-FABP) protein restores normal neurite outgrowth. Cellular localization of biotin-E-FABP in NGFDPC12 was detected mostly in the cytoplasm and in the nuclear region. Treatment of NGFDPC12 with DHA, EPA, or ARA further enhances neurite length but it does not trigger further induction of TrkA or MEK phosphorylation or E-FABP mRNA observed in differentiating PC12 cells without LCFFA supplementation. Significantly, DHA and EPA neurite stimulating effects are higher in NGFDPC12-S than in NGFDPC12-AS cells. These findings are consistent with the scenario that neurite extension of differentiating PC12 cells, including further stimulation by DHA and EPA, requires sufficient cellular levels of E-FABP.
Collapse
Affiliation(s)
- Jo-Wen Liu
- Center for Health Disparities and Molecular Medicine, Department of Basic Science, Loma Linda University, California 92350, USA
| | | | | | | | | |
Collapse
|
25
|
Kim SW, Choi OK, Chang MS, Shin CS, Park KS, Kim SY. Thiazolidinediones inhibit the growth of PC12 cells both in vitro and in vivo. Biochem Biophys Res Commun 2008; 371:197-202. [PMID: 18423377 DOI: 10.1016/j.bbrc.2008.04.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 04/03/2008] [Indexed: 11/24/2022]
Abstract
Thiazolidinediones (TZDs) have recently been proposed as a therapy for PPARgamma-expressing tumors. Pheochromocytoma (PHEO) is associated with high morbidity and mortality due to excess catecholamine production, and few effective drug therapies currently exist. We investigated the effects of TZDs on PHEO both in vitro and in vivo. PPARgamma protein was expressed in human adrenal PHEO tissues as well as in rat PHEO cells, PC12. TZDs, including rosiglitazone (RGZ) and pioglitazone (PGZ), inhibited proliferation of PC12 cells in a dose-dependent manner and increased casapse-3 expression of PC12 cells. TZDs also reduced expression of cyclin E and cyclin-dependent kinase2. RGZ inhibited nerve growth factor-induced neurite outgrowth and reduced expression of catecholamine-synthesizing enzymes. Finally, rat PHEO growth generated by subcutaneous injection of PC12 cells was slowed in an RGZ-treated mouse. These data suggest that TZDs may be a promising therapeutic approach for medical treatment for PHEO.
Collapse
Affiliation(s)
- Sang Wan Kim
- Department of Internal Medicine, Seoul National University, College of Medicine, 28 Yungun-Dong, Chongno-Gu, Seoul 110-774, Republic of Korea
| | | | | | | | | | | |
Collapse
|
26
|
Yamagishi SI, Ogasawara S, Mizukami H, Yajima N, Wada RI, Sugawara A, Yagihashi S. Correction of protein kinase C activity and macrophage migration in peripheral nerve by pioglitazone, peroxisome proliferator activated-gamma-ligand, in insulin-deficient diabetic rats. J Neurochem 2007; 104:491-9. [PMID: 17995925 DOI: 10.1111/j.1471-4159.2007.05050.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pioglitazone, one of thiazolidinediones, a peroxisome proliferator-activated receptor (PPAR)-gamma ligand, is known to have beneficial effects on macrovascular complications in diabetes, but the effect on diabetic neuropathy is not well addressed. We demonstrated the expression of PPAR-gamma in Schwann cells and vascular walls in peripheral nerve and then evaluated the effect of pioglitazone treatment for 12 weeks (10 mg/kg/day, orally) on neuropathy in streptozotocin-diabetic rats. At end, pioglitazone treatment improved nerve conduction delay in diabetic rats without affecting the expression of PPAR-gamma. Diabetic rats showed suppressed protein kinase C (PKC) activity of endoneurial membrane fraction with decreased expression of PKC-alpha. These alterations were normalized in the treated group. Enhanced expression of phosphorylated extracellular signal-regulated kinase detected in diabetic rats was inhibited by the treatment. Increased numbers of macrophages positive for ED-1 and 8-hydroxydeoxyguanosine-positive Schwann cells in diabetic rats were also corrected by the treatment. Pioglitazone lowered blood lipid levels of diabetic rats, but blood glucose and nerve sorbitol levels were not affected by the treatment. In conclusion, our study showed that pioglitazone was beneficial for experimental diabetic neuropathy via correction of impaired PKC pathway and proinflammatory process, independent of polyol pathway.
Collapse
Affiliation(s)
- Shin-Ichiro Yamagishi
- Department of Pathology and Molecular Medicine, Hirosaki University School of Medicine, Hirosaki, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Fuenzalida K, Quintanilla R, Ramos P, Piderit D, Fuentealba RA, Martinez G, Inestrosa NC, Bronfman M. Peroxisome proliferator-activated receptor gamma up-regulates the Bcl-2 anti-apoptotic protein in neurons and induces mitochondrial stabilization and protection against oxidative stress and apoptosis. J Biol Chem 2007; 282:37006-15. [PMID: 17965419 DOI: 10.1074/jbc.m700447200] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) has been proposed as a therapeutic target for neurodegenerative diseases because of its anti-inflammatory action in glial cells. However, PPARgamma agonists preventbeta-amyloid (Abeta)-induced neurodegeneration in hippocampal neurons, and PPARgamma is activated by the nerve growth factor (NGF) survival pathway, suggesting a neuroprotective anti-inflammatory independent action. Here we show that the PPARgamma agonist rosiglitazone (RGZ) protects hippocampal and dorsal root ganglion neurons against Abeta-induced mitochondrial damage and NGF deprivation-induced apoptosis, respectively, and promotes PC12 cell survival. In neurons and in PC12 cells RGZ protective effects are associated with increased expression of the Bcl-2 anti-apoptotic protein. NGF-differentiated PC12 neuronal cells constitutively overexpressing PPARgamma are resistant to Abeta-induced apoptosis and morphological changes and show functionally intact mitochondria and no increase in reactive oxygen species when challenged with up to 50 microM H2O2. Conversely, cells expressing a dominant negative mutant of PPARgamma show increased Abeta-induced apoptosis and disruption of neuronal-like morphology and are highly sensitive to oxidative stress-induced impairment of mitochondrial function. Cells overexpressing PPARgamma present a 4- to 5-fold increase in Bcl-2 protein content, whereas in dominant negative PPARgamma-expressing cells, Bcl-2 is barely detected. Bcl-2 knockdown by small interfering RNA in cells overexpressing PPARgamma results in increased sensitivity to Abeta and oxidative stress, further suggesting that Bcl-2 up-regulation mediates PPARgamma protective effects. PPARgamma prosurvival action is independent of the signal-regulated MAPK or the Akt prosurvival pathways. Altogether, these data suggest that PPARgamma supports survival in neurons in part through a mechanism involving increased expression of Bcl-2.
Collapse
Affiliation(s)
- Karen Fuenzalida
- Centro de Regulación Celular y Patologia Joaquín V. Luco and Millennium Institute for Fundamental and Applied Biology, Department of Cellular and Molecular Biology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Culman J, Zhao Y, Gohlke P, Herdegen T. PPAR-gamma: therapeutic target for ischemic stroke. Trends Pharmacol Sci 2007; 28:244-9. [PMID: 17416424 DOI: 10.1016/j.tips.2007.03.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 02/12/2007] [Accepted: 03/21/2007] [Indexed: 12/13/2022]
Abstract
The peroxisome proliferator activated receptors (PPARs), which belong to the nuclear receptor superfamily, are key regulators of glucose and fat metabolism. The PPAR-gamma isoform is involved in the regulation of cellular glucose uptake, protection against atherosclerosis and control of immune reactions. In addition, the activation of PPAR-gamma effectively attenuates neurodegenerative and inflammatory processes in the brain. Here, we review a novel aspect of beneficial and clinically relevant PPAR-gamma actions: neuroprotection against ischemic injury mediated by intracerebral PPAR-gamma, which is expressed in neurons and microglia. Together with the recent observation that the PPAR-gamma ligand pioglitazone reduces the incidence of stroke in patients with type 2 diabetes, this review supports the concept that activators of PPAR-gamma are effective drugs against ischemic injury.
Collapse
Affiliation(s)
- Juraj Culman
- Institute of Pharmacology, University Hospital of Schleswig-Holstein, Campus Kiel, Hospitalstrasse 4, 24105 Kiel, Germany
| | | | | | | |
Collapse
|
29
|
Luo Y, Yin W, Signore AP, Zhang F, Hong Z, Wang S, Graham SH, Chen J. Neuroprotection against focal ischemic brain injury by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. J Neurochem 2006; 97:435-48. [PMID: 16539667 DOI: 10.1111/j.1471-4159.2006.03758.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a nuclear membrane-associated transcription factor that governs the expression of various inflammatory genes. PPAR-gamma agonists protect peripheral organs from ischemic injury. In the present study, we investigated whether the PPAR-gamma agonist rosiglitazone is neuroprotective against focal ischemic brain injury. C57/B6 mice underwent 1.5-h middle cerebral artery occlusion, and received either vehicle or rosiglitazone treatment of 0.75, 1.5, 3, 6 or 12 mg/kg (n = 9 per group). Cerebral infarct volume, neurological function, expression of pro-inflammatory proteins and neutrophil accumulation were assessed after ischemia and reperfusion. At 48 h after ischemia, infarct volume was significantly decreased with 3-12 mg/kg of rosiglitazone, with a time window of efficacy of 2 h after ischemia at the optimal dose (6 mg/kg). Neutrophil accumulation was significantly decreased in the brain parenchyma of rosiglitazone-treated mice. Ischemia-induced expression of several inflammatory cytokines and chemokines was markedly reduced in rosiglitazone-treated brains, as determined using proteomic-array analysis. Rosiglitazone treatment improved neurological function at 7 days after ischemia. Moreover, in cultured cortical primary microglia, rosiglitazone attenuated inflammatory responses by decreasing lipopolysaccharide-induced release of tumor necrosis factor-alpha, interleukin (IL)-1beta and IL-6. These results suggest that the PPAR-gamma agonist rosiglitazone has neuroprotective properties that are at least partially mediated via anti-inflammatory actions, and is thus a potential novel therapeutic agent for stroke.
Collapse
Affiliation(s)
- Yumin Luo
- Department of Neurology, University of Pittsburgh School of Medicine, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ryan CM, Freed MI, Rood JA, Cobitz AR, Waterhouse BR, Strachan MWJ. Improving metabolic control leads to better working memory in adults with type 2 diabetes. Diabetes Care 2006; 29:345-51. [PMID: 16443885 DOI: 10.2337/diacare.29.02.06.dc05-1626] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The goals of this study were to determine whether improvements in metabolic control can ameliorate the cognitive dysfunction associated with type 2 diabetes and evaluate the possibility that such improvements are mediated by changes in circulating insulin or insulin resistance. RESEARCH DESIGN AND METHODS This randomized double-blind trial enrolled 145 subjects at 18 centers in the U.S. Older adults with type 2 diabetes receiving metformin monotherapy received add-on therapy with either rosiglitazone, a thiazolidinedione insulin sensitizer, or glyburide. Cognitive function was assessed at baseline and week 24 using the Digit Symbol Substitution Test, the Rey Auditory Verbal Learning Test, and the Cambridge Neuropsychological Test Automated Battery. RESULTS Pretreatment fasting plasma glucose (FPG) in both groups was similar, and after 24 weeks both treatment groups showed similar significant reductions in FPG (2.1-2.3 mmol/l). Working memory improved with both rosiglitazone (P < 0.001) and glyburide (P = 0.017). Improvement (25-31% reduction in errors) was most evident on the Paired Associates Learning Test and was significantly correlated (r = 0.30) with improved glycemic control as measured by FPG. CONCLUSIONS Similar and statistically significant cognitive improvement was observed with both rosiglitazone and glyburide therapy, and the magnitude of this effect was correlated with the degree to which FPG improved. These results suggest that a cognitive benefit is achievable with pharmacological interventions targeting glycemic control.
Collapse
Affiliation(s)
- Christopher M Ryan
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | |
Collapse
|