1
|
Xiang H, Pan Y, Sze MA, Wlodarska M, Li L, van de Mark KA, Qamar H, Moure CJ, Linn DE, Hai J, Huo Y, Clarke J, Tan TG, Ho S, Teng KW, Ramli MN, Nebozhyn M, Zhang C, Barlow J, Gustafson CE, Gornisiewicz S, Albertson TP, Korle SL, Bueno R, Moy LY, Vollmann EH, Chiang DY, Brandish PE, Loboda A. Single-Cell Analysis Identifies NOTCH3-Mediated Interactions between Stromal Cells That Promote Microenvironment Remodeling and Invasion in Lung Adenocarcinoma. Cancer Res 2024; 84:1410-1425. [PMID: 38335304 PMCID: PMC11063690 DOI: 10.1158/0008-5472.can-23-1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/15/2023] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
Cancer immunotherapy has revolutionized the treatment of lung adenocarcinoma (LUAD); however, a significant proportion of patients do not respond. Recent transcriptomic studies to understand determinants of immunotherapy response have pinpointed stromal-mediated resistance mechanisms. To gain a better understanding of stromal biology at the cellular and molecular level in LUAD, we performed single-cell RNA sequencing of 256,379 cells, including 13,857 mesenchymal cells, from 9 treatment-naïve patients. Among the mesenchymal cell subsets, FAP+PDPN+ cancer-associated fibroblasts (CAF) and ACTA2+MCAM+ pericytes were enriched in tumors and differentiated from lung-resident fibroblasts. Imaging mass cytometry revealed that both subsets were topographically adjacent to the perivascular niche and had close spatial interactions with endothelial cells (EC). Modeling of ligand and receptor interactomes between mesenchymal and ECs identified that NOTCH signaling drives these cell-to-cell interactions in tumors, with pericytes and CAFs as the signal receivers and arterial and PLVAPhigh immature neovascular ECs as the signal senders. Either pharmacologically blocking NOTCH signaling or genetically depleting NOTCH3 levels in mesenchymal cells significantly reduced collagen production and suppressed cell invasion. Bulk RNA sequencing data demonstrated that NOTCH3 expression correlated with poor survival in stroma-rich patients and that a T cell-inflamed gene signature only predicted survival in patients with low NOTCH3. Collectively, this study provides valuable insights into the role of NOTCH3 in regulating tumor stroma biology, warranting further studies to elucidate the clinical implications of targeting NOTCH3 signaling. SIGNIFICANCE NOTCH3 signaling activates tumor-associated mesenchymal cells, increases collagen production, and augments cell invasion in lung adenocarcinoma, suggesting its critical role in remodeling tumor stroma.
Collapse
Affiliation(s)
- Handan Xiang
- Discovery Immunology, Merck & Co., Inc., Cambridge, Massachusetts
| | - Yidan Pan
- Data and Genome Sciences, Merck & Co., Inc., Boston, Massachusetts
| | - Marc A. Sze
- Data and Genome Sciences, Merck & Co., Inc., Boston, Massachusetts
| | - Marta Wlodarska
- Discovery Oncology, Merck & Co., Inc., Boston, Massachusetts
| | - Ling Li
- Quantitative Bioscience, MSD, Singapore
| | | | - Haleema Qamar
- Discovery Immunology, Merck & Co., Inc., Cambridge, Massachusetts
| | - Casey J. Moure
- Discovery Oncology, Merck & Co., Inc., Boston, Massachusetts
| | - Douglas E. Linn
- Quantitative Bioscience, Merck & Co., Inc., Boston, Massachusetts
| | - Josephine Hai
- Quantitative Bioscience, Merck & Co., Inc., Boston, Massachusetts
| | - Ying Huo
- Quantitative Bioscience, Merck & Co., Inc., Boston, Massachusetts
| | - James Clarke
- Data and Genome Sciences, Merck & Co., Inc., Boston, Massachusetts
| | - Tze Guan Tan
- Discovery Cardiometabolic Diseases, MSD, Singapore
| | - Samantha Ho
- Discovery Cardiometabolic Diseases, MSD, Singapore
| | | | | | - Michael Nebozhyn
- Data and Genome Sciences, Merck & Co., Inc., Boston, Massachusetts
| | - Chunsheng Zhang
- Data and Genome Sciences, Merck & Co., Inc., Boston, Massachusetts
| | - Julianne Barlow
- The Division of Thoracic Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Corinne E. Gustafson
- The Division of Thoracic Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Savanna Gornisiewicz
- The Division of Thoracic Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Thomas P. Albertson
- The Division of Thoracic Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stephanie L. Korle
- The Division of Thoracic Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raphael Bueno
- The Division of Thoracic Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lily Y. Moy
- Quantitative Bioscience, Merck & Co., Inc., Boston, Massachusetts
| | | | - Derek Y. Chiang
- Data and Genome Sciences, Merck & Co., Inc., Boston, Massachusetts
| | | | - Andrey Loboda
- Data and Genome Sciences, Merck & Co., Inc., Boston, Massachusetts
| |
Collapse
|
2
|
Corcoran E, Olayinka A, di Luca M, Gusti Y, Hakimjavadi R, O'Connor B, Redmond EM, Cahill PA. N-Glycans on the extracellular domain of the Notch1 receptor control Jagged-1 induced Notch signalling and myogenic differentiation of S100β resident vascular stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567576. [PMID: 38014317 PMCID: PMC10680845 DOI: 10.1101/2023.11.17.567576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Notch signalling, critical for development and postnatal homeostasis of the vascular system, is highly regulated by several mechanisms including glycosylation. While the importance of O-linked glycosylation is widely accepted, the structure and function of N-glycans has yet to be defined. Here, we take advantage of lectin binding assays in combination with pharmacological, molecular, and site-directed mutagenetic approaches to study N-glycosylation of the Notch1 receptor. We find that several key oligosaccharides containing bisecting or core fucosylated structures decorate the receptor, control expression and receptor trafficking, and dictate Jagged-1 activation of Notch target genes and myogenic differentiation of multipotent S100β vascular stem cells. N-glycans at asparagine (N) 1241 and 1587 protect the receptor from accelerated degradation, while the oligosaccharide at N888 directly affects signal transduction. Conversely, N-linked glycans at N959, N1179, N1489 do not impact canonical signalling but inhibit differentiation. Our work highlights a novel functional role for N-glycans in controlling Notch1 signalling and differentiation of vascular stem cells.
Collapse
Affiliation(s)
- Eoin Corcoran
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Abidemi Olayinka
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Mariana di Luca
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Yusof Gusti
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Roya Hakimjavadi
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Brendan O'Connor
- School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Eileen M Redmond
- Department of Surgery, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, United States
| | - Paul A Cahill
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| |
Collapse
|
3
|
Ma B, Cao Y, Qin J, Chen Z, Hu G, Li Q. Pulmonary artery smooth muscle cell phenotypic switching: A key event in the early stage of pulmonary artery hypertension. Drug Discov Today 2023; 28:103559. [PMID: 36958640 DOI: 10.1016/j.drudis.2023.103559] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a currently incurable pulmonary vascular disease. Since current research on PAH is mainly aimed at the middle and late stages of disease progression, no satisfactory results have been achieved. This has led researchers to focus on the early stages of PAH. This review highlights for the first time a key event in the early stages of PAH progression, namely, the occurrence of pulmonary arterial smooth muscle cell (PASMC) phenotypic switching. Summarizing the related reports of performance conversion provides new perspectives and directions for the early pathological progression and treatment strategies for PAH.
Collapse
Affiliation(s)
- Binghao Ma
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Yuanyuan Cao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Jia Qin
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China.
| |
Collapse
|
4
|
Dong CX, Malecki C, Robertson E, Hambly B, Jeremy R. Molecular Mechanisms in Genetic Aortopathy-Signaling Pathways and Potential Interventions. Int J Mol Sci 2023; 24:ijms24021795. [PMID: 36675309 PMCID: PMC9865322 DOI: 10.3390/ijms24021795] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Thoracic aortic disease affects people of all ages and the majority of those aged <60 years have an underlying genetic cause. There is presently no effective medical therapy for thoracic aneurysm and surgery remains the principal intervention. Unlike abdominal aortic aneurysm, for which the inflammatory/atherosclerotic pathogenesis is well established, the mechanism of thoracic aneurysm is less understood. This paper examines the key cell signaling systems responsible for the growth and development of the aorta, homeostasis of endothelial and vascular smooth muscle cells and interactions between pathways. The evidence supporting a role for individual signaling pathways in pathogenesis of thoracic aortic aneurysm is examined and potential novel therapeutic approaches are reviewed. Several key signaling pathways, notably TGF-β, WNT, NOTCH, PI3K/AKT and ANGII contribute to growth, proliferation, cell phenotype and survival for both vascular smooth muscle and endothelial cells. There is crosstalk between pathways, and between vascular smooth muscle and endothelial cells, with both synergistic and antagonistic interactions. A common feature of the activation of each is response to injury or abnormal cell stress. Considerable experimental evidence supports a contribution of each of these pathways to aneurysm formation. Although human information is less, there is sufficient data to implicate each pathway in the pathogenesis of human thoracic aneurysm. As some pathways i.e., WNT and NOTCH, play key roles in tissue growth and organogenesis in early life, it is possible that dysregulation of these pathways results in an abnormal aortic architecture even in infancy, thereby setting the stage for aneurysm development in later life. Given the fine tuning of these signaling systems, functional polymorphisms in key signaling elements may set up a future risk of thoracic aneurysm. Multiple novel therapeutic agents have been developed, targeting cell signaling pathways, predominantly in cancer medicine. Future investigations addressing cell specific targeting, reduced toxicity and also less intense treatment effects may hold promise for effective new medical treatments of thoracic aortic aneurysm.
Collapse
Affiliation(s)
- Charlotte Xue Dong
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Cassandra Malecki
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
- The Baird Institute, Camperdown, NSW 2042, Australia
| | - Elizabeth Robertson
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Brett Hambly
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Richmond Jeremy
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
- The Baird Institute, Camperdown, NSW 2042, Australia
- Correspondence:
| |
Collapse
|
5
|
Cao G, Xuan X, Hu J, Zhang R, Jin H, Dong H. How vascular smooth muscle cell phenotype switching contributes to vascular disease. Cell Commun Signal 2022; 20:180. [PMID: 36411459 PMCID: PMC9677683 DOI: 10.1186/s12964-022-00993-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/22/2022] [Indexed: 11/22/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the most abundant cell in vessels. Earlier experiments have found that VSMCs possess high plasticity. Vascular injury stimulates VSMCs to switch into a dedifferentiated type, also known as synthetic VSMCs, with a high migration and proliferation capacity for repairing vascular injury. In recent years, largely owing to rapid technological advances in single-cell sequencing and cell-lineage tracing techniques, multiple VSMCs phenotypes have been uncovered in vascular aging, atherosclerosis (AS), aortic aneurysm (AA), etc. These VSMCs all down-regulate contractile proteins such as α-SMA and calponin1, and obtain specific markers and similar cellular functions of osteoblast, fibroblast, macrophage, and mesenchymal cells. This highly plastic phenotype transformation is regulated by a complex network consisting of circulating plasma substances, transcription factors, growth factors, inflammatory factors, non-coding RNAs, integrin family, and Notch pathway. This review focuses on phenotypic characteristics, molecular profile and the functional role of VSMCs phenotype landscape; the molecular mechanism regulating VSMCs phenotype switching; and the contribution of VSMCs phenotype switching to vascular aging, AS, and AA. Video Abstract.
Collapse
Affiliation(s)
- Genmao Cao
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Xuezhen Xuan
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Jie Hu
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Ruijing Zhang
- grid.452845.a0000 0004 1799 2077Department of Nephrology, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Haijiang Jin
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Honglin Dong
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| |
Collapse
|
6
|
Khachigian LM, Black BL, Ferdinandy P, De Caterina R, Madonna R, Geng YJ. Transcriptional regulation of vascular smooth muscle cell proliferation, differentiation and senescence: Novel targets for therapy. Vascul Pharmacol 2022; 146:107091. [PMID: 35896140 DOI: 10.1016/j.vph.2022.107091] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Vascular smooth muscle cells (SMC) possess a unique cytoplasticity, regulated by transcriptional, translational and phenotypic transformation in response to a diverse range of extrinsic and intrinsic pathogenic factors. The mature, differentiated SMC phenotype is physiologically typified transcriptionally by expression of genes encoding "contractile" proteins, such as SMα-actin (ACTA2), SM-MHC (myosin-11) and SM22α (transgelin). When exposed to various pathological conditions (e.g., pro-atherogenic risk factors, hypertension), SMC undergo phenotypic modulation, a bioprocess enabling SMC to de-differentiate in immature stages or trans-differentiate into other cell phenotypes. As recent studies suggest, the process of SMC phenotypic transformation involves five distinct states characterized by different patterns of cell growth, differentiation, migration, matrix protein expression and declined contractility. These changes are mediated via the action of several transcriptional regulators, including myocardin and serum response factor. Conversely, other factors, including Kruppel-like factor 4 and nuclear factor-κB, can inhibit SMC differentiation and growth arrest, while factors such as yin yang-1, can promote SMC differentiation whilst inhibiting proliferation. This article reviews recent advances in our understanding of regulatory mechanisms governing SMC phenotypic modulation. We propose the concept that transcription factors mediating this switching are important biomarkers and potential pharmacological targets for therapeutic intervention in cardiovascular disease.
Collapse
Affiliation(s)
- Levon M Khachigian
- Vascular Biology and Translational Research, Department of Pathology, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States of America
| | - Péter Ferdinandy
- Cardiovascular and Metabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Raffaele De Caterina
- Cardiovascular Division, Pisa University Hospital & University of Pisa, Via Paradisa, 2, Pisa 56124, Italy
| | - Rosalinda Madonna
- Cardiovascular Division, Pisa University Hospital & University of Pisa, Via Paradisa, 2, Pisa 56124, Italy; Division of Cardiovascular Medicine, Department of Internal Medicine, The Center for Cardiovascular Biology and Atherosclerosis Research, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Yong-Jian Geng
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Center for Cardiovascular Biology and Atherosclerosis Research, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| |
Collapse
|
7
|
Abstract
Notch signalling is an evolutionarily highly conserved signalling mechanism governing differentiation and regulating homeostasis in many tissues. In this review, we discuss recent advances in our understanding of the roles that Notch signalling plays in the vasculature. We describe how Notch signalling regulates different steps during the genesis and remodelling of blood vessels (vasculogenesis and angiogenesis), including critical roles in assigning arterial and venous identities to the emerging blood vessels and regulation of their branching. We then proceed to discuss how experimental perturbation of Notch signalling in the vasculature later in development affects vascular homeostasis. In this review, we also describe how dysregulated Notch signalling, as a consequence of direct mutations of genes in the Notch pathway or aberrant Notch signalling output, contributes to various types of vascular disease, including CADASIL, Snedden syndrome and pulmonary arterial hypertension. Finally, we point out some of the current knowledge gaps and identify remaining challenges in understanding the role of Notch in the vasculature, which need to be addressed to pave the way for Notch-based therapies to cure or ameliorate vascular disease.
Collapse
Affiliation(s)
- Francesca Del Gaudio
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Dongli Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden,Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
8
|
Creamer TJ, Bramel EE, MacFarlane EG. Insights on the Pathogenesis of Aneurysm through the Study of Hereditary Aortopathies. Genes (Basel) 2021; 12:183. [PMID: 33514025 PMCID: PMC7912671 DOI: 10.3390/genes12020183] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Thoracic aortic aneurysms (TAA) are permanent and localized dilations of the aorta that predispose patients to a life-threatening risk of aortic dissection or rupture. The identification of pathogenic variants that cause hereditary forms of TAA has delineated fundamental molecular processes required to maintain aortic homeostasis. Vascular smooth muscle cells (VSMCs) elaborate and remodel the extracellular matrix (ECM) in response to mechanical and biochemical cues from their environment. Causal variants for hereditary forms of aneurysm compromise the function of gene products involved in the transmission or interpretation of these signals, initiating processes that eventually lead to degeneration and mechanical failure of the vessel. These include mutations that interfere with transduction of stimuli from the matrix to the actin-myosin cytoskeleton through integrins, and those that impair signaling pathways activated by transforming growth factor-β (TGF-β). In this review, we summarize the features of the healthy aortic wall, the major pathways involved in the modulation of VSMC phenotypes, and the basic molecular functions impaired by TAA-associated mutations. We also discuss how the heterogeneity and balance of adaptive and maladaptive responses to the initial genetic insult might contribute to disease.
Collapse
Affiliation(s)
- Tyler J. Creamer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily E. Bramel
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Predoctoral Training in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elena Gallo MacFarlane
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Pourbagher-Shahri AM, Farkhondeh T, Ashrafizadeh M, Talebi M, Samargahndian S. Curcumin and cardiovascular diseases: Focus on cellular targets and cascades. Biomed Pharmacother 2021; 136:111214. [PMID: 33450488 DOI: 10.1016/j.biopha.2020.111214] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases (CVDs) are one of the leading causes of the most considerable mortality globally, and it has been tried to find the molecular mechanisms and design new drugs that triggered the molecular target. Curcumin is the main ingredient of Curcuma longa (turmeric) that has been used in traditional medicine for treating several diseases for years. Numerous investigations have indicated the beneficial effect of Curcumin in modulating multiple signaling pathways involved in oxidative stress, inflammation, apoptosis, and proliferation. The cardiovascular protective effects of Curcumin against CVDs have been indicated in several studies. In the current review study, we provided novel information on Curcumin's protective effects against various CVDs and potential molecular signaling targets of Curcumin. Nonetheless, more studies should be performed to discover the exact molecular target of Curcumin against CVDs.
Collapse
Affiliation(s)
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran; Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Marjan Talebi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 19968 35115, Iran
| | - Saeed Samargahndian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
10
|
Notch3 signalling and vascular remodelling in pulmonary arterial hypertension. Clin Sci (Lond) 2020; 133:2481-2498. [PMID: 31868216 PMCID: PMC6928565 DOI: 10.1042/cs20190835] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/27/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Notch signalling is critically involved in vascular morphogenesis and function. Four Notch isoforms (Notch1–4) regulating diverse cellular processes have been identified. Of these, Notch3 is expressed almost exclusively in vascular smooth muscle cells (VSMCs), where it is critically involved in vascular development and differentiation. Under pathological conditions, Notch3 regulates VSMC switching between the contractile and synthetic phenotypes. Abnormal Notch3 signalling plays an important role in vascular remodelling, a hallmark of several cardiovascular diseases, including pulmonary arterial hypertension (PAH). Because of the importance of Notch3 in VSMC (de)differentiation, Notch3 has been implicated in the pathophysiology of pulmonary vascular remodelling in PAH. Here we review the current literature on the role of Notch in VSMC function with a focus on Notch3 signalling in pulmonary artery VSMCs, and discuss potential implications in pulmonary artery remodelling in PAH.
Collapse
|
11
|
Malashicheva A, Kostina A, Kostareva A, Irtyuga O, Gordeev M, Uspensky V. Notch signaling in the pathogenesis of thoracic aortic aneurysms: A bridge between embryonic and adult states. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165631. [PMID: 31816439 DOI: 10.1016/j.bbadis.2019.165631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/23/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022]
Abstract
Aneurysms of the thoracic aorta are a "silent killer" with no evident clinical signs until the fatal outcome. Molecular and genetic bases of thoracic aortic aneurysms mainly include transforming growth factor beta signaling, smooth muscle contractile units and metabolism genes, and extracellular matrix genes. In recent studies, a role of Notch signaling, among other pathways, has emerged in disease pathogenesis. Notch is a highly conserved signaling pathway that regulates the development and differentiation of many types of tissues and influences major cellular processes such as cell proliferation, differentiation and apoptosis. Mutations in several Notch signaling components have been associated with a number of heart defects, demonstrating an essential role of Notch signaling both in cardiovascular system development and its maintenance during postnatal life. This review discusses the role of Notch signaling in the pathogenesis of thoracic aortic aneurysms considering development and maintenance of the aortic root and how developmental regulations by Notch signaling may influence thoracic aortic aneurysms.
Collapse
Affiliation(s)
- Anna Malashicheva
- Almazov National Medical Research Centre, Akkuratova, 2, 197341 Saint Petersburg, Russia; Institute of Cytology, Russian Academy of Sciences, Tikhoretskiy, 4, 194064 Saint Petersburg, Russia; Saint Petersburg State University, Department of Embryology, Universitetskaya nab., 7/9, 199034, Saint Petersburg, Russia.
| | - Aleksandra Kostina
- Almazov National Medical Research Centre, Akkuratova, 2, 197341 Saint Petersburg, Russia; Institute of Cytology, Russian Academy of Sciences, Tikhoretskiy, 4, 194064 Saint Petersburg, Russia
| | - Anna Kostareva
- Almazov National Medical Research Centre, Akkuratova, 2, 197341 Saint Petersburg, Russia
| | - Olga Irtyuga
- Almazov National Medical Research Centre, Akkuratova, 2, 197341 Saint Petersburg, Russia
| | - Mikhail Gordeev
- Almazov National Medical Research Centre, Akkuratova, 2, 197341 Saint Petersburg, Russia
| | - Vladimir Uspensky
- Almazov National Medical Research Centre, Akkuratova, 2, 197341 Saint Petersburg, Russia
| |
Collapse
|
12
|
Harrison OJ, Torrens C, Salhiyyah K, Modi A, Moorjani N, Townsend PA, Ohri SK, Cagampang F. Defective NOTCH signalling drives smooth muscle cell death and differentiation in bicuspid aortic valve aortopathy. Eur J Cardiothorac Surg 2019; 56:117-125. [DOI: 10.1093/ejcts/ezy464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/02/2018] [Accepted: 12/10/2018] [Indexed: 01/05/2023] Open
Affiliation(s)
- Oliver J Harrison
- Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Cardiac Surgery, University Hospital Southampton, Southampton, UK
| | - Christopher Torrens
- Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Kareem Salhiyyah
- Department of Cardiac Surgery, University Hospital Southampton, Southampton, UK
| | | | - Narain Moorjani
- Department of Cardiac Surgery, Royal Papworth Hospital, University of Cambridge, Cambridge, UK
| | - Paul A Townsend
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Sunil K Ohri
- Department of Cardiac Surgery, University Hospital Southampton, Southampton, UK
| | - Felino Cagampang
- Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
13
|
Defective NOTCH signaling drives increased vascular smooth muscle cell apoptosis and contractile differentiation in bicuspid aortic valve aortopathy: A review of the evidence and future directions. Trends Cardiovasc Med 2018; 29:61-68. [PMID: 30621852 DOI: 10.1016/j.tcm.2018.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 12/23/2022]
Abstract
Bicuspid aortic valve (BAV) disease remains the most common congenital cardiac disease and is associated with an increased risk of potentially fatal aortopathy including aortic aneurysm and dissection. Mutations in the NOTCH1 gene are one of only a few genetic anomalies identified in BAV disease; however evidence for defective NOTCH signaling, and its involvement in the characteristic histological changes of VSMC apoptosis and differentiation in ascending aortae of BAV patients is lacking. This review scrutinizes the evidence for the interactions of NOTCH signaling, cellular differentiation and apoptosis in the context of aortic VSMCs and provides focus for future research efforts in the diagnosis of BAV aortopathy and prevention of catastrophic complications through NOTCH signaling manipulation.
Collapse
|
14
|
Roostalu U, Wong JK. Arterial smooth muscle dynamics in development and repair. Dev Biol 2018; 435:109-121. [PMID: 29397877 DOI: 10.1016/j.ydbio.2018.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/08/2018] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
Abstract
Arterial vasculature distributes blood from early embryonic development and provides a nutrient highway to maintain tissue viability. Atherosclerosis, peripheral artery diseases, stroke and aortic aneurysm represent the most frequent causes of death and are all directly related to abnormalities in the function of arteries. Vascular intervention techniques have been established for the treatment of all of these pathologies, yet arterial surgery can itself lead to biological changes in which uncontrolled arterial wall cell proliferation leads to restricted blood flow. In this review we describe the intricate cellular composition of arteries, demonstrating how a variety of distinct cell types in the vascular walls regulate the function of arteries. We provide an overview of the developmental origin of arteries and perivascular cells and focus on cellular dynamics in arterial repair. We summarize the current knowledge of the molecular signaling pathways that regulate vascular smooth muscle differentiation in the embryo and in arterial injury response. Our review aims to highlight the similarities as well as differences between cellular and molecular mechanisms that control arterial development and repair.
Collapse
Affiliation(s)
- Urmas Roostalu
- Manchester Academic Health Science Centre, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK.
| | - Jason Kf Wong
- Manchester Academic Health Science Centre, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK; Department of Plastic Surgery, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, UK.
| |
Collapse
|
15
|
Sun SW, Tong WJ, Guo ZF, Tuo QH, Lei XY, Zhang CP, Liao DF, Chen JX. Curcumin enhances vascular contractility via induction of myocardin in mouse smooth muscle cells. Acta Pharmacol Sin 2017; 38:1329-1339. [PMID: 28504250 DOI: 10.1038/aps.2017.18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 02/20/2017] [Indexed: 12/13/2022] Open
Abstract
A variety of cardiovascular diseases is accompanied by the loss of vascular contractility. This study sought to investigate the effects of curcumin, a natural polyphenolic compound present in turmeric, on mouse vascular contractility and the underlying mechanisms. After mice were administered curcumin (100 mg·kg-1·d-1, ig) for 6 weeks, the contractile responses of the thoracic aorta to KCl and phenylephrine were significantly enhanced compared with the control group. Furthermore, the contractility of vascular smooth muscle (SM) was significantly enhanced after incubation in curcumin (25 μmol/L) for 4 days, which was accompanied by upregulated expression of SM marker contractile proteins SM22α and SM α-actin. In cultured vascular smooth muscle cells (VSMCs), curcumin (10, 25, 50 μmol/L) significantly increased the expression of myocardin, a "master regulator" of SM gene expression. Curcumin treatment also significantly increased the levels of caveolin-1 in VSMCs. We found that as a result of the upregulation of caveolin-1, curcumin blocked the activation of notch1 and thereby abolished Notch1-inhibited myocardin expression. Knockdown of caveolin-1 or activation of Notch1 signaling with Jagged1 (2 μg/mL) diminished these effects of curcumin in VSMCs. These findings suggest that curcumin induces the expression of myocardin in mouse smooth muscle cells via a variety of mechanisms, including caveolin-1-mediated inhibition of notch1 activation and Notch1-mediated repression of myocardin expression. This may represent a novel pathway, through which curcumin protects blood vessels via the beneficial regulation of SM contractility.
Collapse
|
16
|
Siebel C, Lendahl U. Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiol Rev 2017; 97:1235-1294. [PMID: 28794168 DOI: 10.1152/physrev.00005.2017] [Citation(s) in RCA: 627] [Impact Index Per Article: 89.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Notch signaling is an evolutionarily highly conserved signaling mechanism, but in contrast to signaling pathways such as Wnt, Sonic Hedgehog, and BMP/TGF-β, Notch signaling occurs via cell-cell communication, where transmembrane ligands on one cell activate transmembrane receptors on a juxtaposed cell. Originally discovered through mutations in Drosophila more than 100 yr ago, and with the first Notch gene cloned more than 30 yr ago, we are still gaining new insights into the broad effects of Notch signaling in organisms across the metazoan spectrum and its requirement for normal development of most organs in the body. In this review, we provide an overview of the Notch signaling mechanism at the molecular level and discuss how the pathway, which is architecturally quite simple, is able to engage in the control of cell fates in a broad variety of cell types. We discuss the current understanding of how Notch signaling can become derailed, either by direct mutations or by aberrant regulation, and the expanding spectrum of diseases and cancers that is a consequence of Notch dysregulation. Finally, we explore the emerging field of Notch in the control of tissue homeostasis, with examples from skin, liver, lung, intestine, and the vasculature.
Collapse
Affiliation(s)
- Chris Siebel
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Urban Lendahl
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
17
|
Yin Q, Wang W, Cui G, Yan L, Zhang S. Potential role of the Jagged1/Notch1 signaling pathway in the endothelial-myofibroblast transition during BLM-induced pulmonary fibrosis. J Cell Physiol 2017; 233:2451-2463. [PMID: 28776666 DOI: 10.1002/jcp.26122] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 08/01/2017] [Indexed: 01/06/2023]
Abstract
Endothelial cell myofibroblast transition (EndoMT) is found during the process of bleomycin (BLM)-induced pulmonary fibrosis in rats, and plays a very important role in sustaining inflammation and collagen secretion. Moreover, some studies have suggested that the Notch1 signaling pathway may be involved in the expression of α-smooth muscle actin (α-SMA) in pulmonary microvascular endothelial cells (PMVECs), a protein marker of EndoMT. Therefore, we aimed to investigate the expression level of α-SMA and Notch1-related signaling molecules in PMVECs from BLM-induced rats and determine the relationship between the Notch1 signaling pathway and the expression of α-SMA in PMVECs. We found that the expression levels of α-SMA, Notch1, and Jagged1 were upregulated, while the expression levels of Dll4 were downregulated. Furthermore, there was a positive correlation between the expression of Jagged1 and the α-SMA proteins in PMVECs, and NF-κB was downregulated by decreasing the expression of Jagged1. In conclusion, the Jagged1/Notch1 signaling pathway is activated in PMVECs during the pathogenesis of BLM-induced pulmonary fibrosis in rats, and it may induce α-SMA expression via a non-canonical pathway involving NF-κB as the target molecule. The precise mechanism and the molecules involved in this signaling pathway need to be further elucidated.
Collapse
Affiliation(s)
- Qian Yin
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xian, P. R. China
| | - Weihua Wang
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xian, P. R. China
| | - Linfeng Yan
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xian, P. R. China
| | - Song Zhang
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xian, P. R. China
| |
Collapse
|
18
|
Ignatieva E, Kostina D, Irtyuga O, Uspensky V, Golovkin A, Gavriliuk N, Moiseeva O, Kostareva A, Malashicheva A. Mechanisms of Smooth Muscle Cell Differentiation Are Distinctly Altered in Thoracic Aortic Aneurysms Associated with Bicuspid or Tricuspid Aortic Valves. Front Physiol 2017; 8:536. [PMID: 28790933 PMCID: PMC5524772 DOI: 10.3389/fphys.2017.00536] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/10/2017] [Indexed: 12/30/2022] Open
Abstract
Cellular and molecular mechanisms of thoracic aortic aneurysm are not clear and therapeutic approaches are mostly absent. Thoracic aortic aneurysm is associated with defective differentiation of smooth muscle cells (SMC) of aortic wall. Bicuspid aortic valve (BAV) comparing to tricuspid aortic valve (TAV) significantly predisposes to a risk of thoracic aortic aneurysms. It has been suggested recently that BAV-associated aortopathies represent a separate pathology comparing to TAV-associated dilations. The only proven candidate gene that has been associated with BAV remains NOTCH1. In this study we tested the hypothesis that Notch-dependent and related TGF-β and BMP differentiation pathways are differently altered in aortic SMC of BAV- vs. TAV-associated aortic aneurysms. SMC were isolated from aortic tissues of the patients with BAV- or TAV-associated aortic aneurysms and from healthy donors used as controls. Gene expression was verified by qPCR and Western blotting. For TGF-β induced differentiation SMC were treated with the medium containing TGF-β1. To induce proosteogenic signaling we cultured SMC in the presence of specific osteogenic factors. Notch-dependent differentiation was induced via lentiviral transduction of SMC with activated Notch1 domain. MYOCD expression, a master gene of SMC differentiation, was down regulated in SMC of both BAV and TAV patients. Discriminant analysis of gene expression patterns included a set of contractile genes specific for SMC, Notch-related genes and proosteogenic genes and revealed that control cells form a separate cluster from both BAV and TAV group, while BAV- and TAV-derived SMC are partially distinct with some overlapping. In differentiation experiments TGF-β caused similar patterns of target gene expression for BAV- and TAV derived cells while the induction was higher in the diseased cells than in control ones. Osteogenic induction caused significant change in RUNX2 expression exclusively in BAV group. Notch activation induced significant ACTA2 expression also exclusively in BAV group. We show that Notch acts synergistically with proosteogenic factors to induce ACTA2 transcription and osteogenic differentiation. In conclusion we have found differences in responsiveness of SMC to Notch and to proosteogenic induction between BAV- and TAV-associated aortic aneurysms.
Collapse
Affiliation(s)
- Elena Ignatieva
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Daria Kostina
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia.,Department of Medical Physics, Peter the Great Saint-Petersburg Polytechnic UniversitySaint Petersburg, Russia
| | - Olga Irtyuga
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Vladimir Uspensky
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Alexey Golovkin
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Natalia Gavriliuk
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Olga Moiseeva
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Anna Kostareva
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia.,Laboratory of Bioinformatics and Genomics, Institute of Translational Medicine, ITMO UniversitySaint Petersburg, Russia
| | - Anna Malashicheva
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia.,Laboratory of Bioinformatics and Genomics, Institute of Translational Medicine, ITMO UniversitySaint Petersburg, Russia.,Faculty of Biology, Saint-Petersburg State UniversitySaint Petersburg, Russia
| |
Collapse
|
19
|
Herring BP, Hoggatt AM, Griffith SL, McClintick JN, Gallagher PJ. Inflammation and vascular smooth muscle cell dedifferentiation following carotid artery ligation. Physiol Genomics 2016; 49:115-126. [PMID: 28039430 PMCID: PMC5374455 DOI: 10.1152/physiolgenomics.00095.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 11/22/2022] Open
Abstract
Following vascular injury medial smooth muscle cells dedifferentiate and migrate through the internal elastic lamina where they form a neointima. The goal of the current study was to identify changes in gene expression that occur before the development of neointima and are associated with the early response to injury. Vascular injury was induced in C57BL/6 mice and in Myh11-creER(T2) mTmG reporter mice by complete ligation of the left carotid artery. Reporter mice were used to visualize cellular changes in the injured vessels. Total RNA was isolated from control carotid arteries or from carotid arteries 3 days following ligation of C57BL/6 mice and analyzed by Affymetrix microarray and quantitative RT-PCR. This analysis revealed decreased expression of mRNAs encoding smooth muscle-specific contractile proteins that was accompanied by a marked increase in a host of mRNAs encoding inflammatory cytokines following injury. There was also marked decrease in molecules associated with BMP, Wnt, and Hedgehog signaling and an increase in those associated with B cell, T cell, and macrophage signaling. Expression of a number of noncoding RNAs were also altered following injury with microRNAs 143/145 being dramatically downregulated and microRNAs 1949 and 142 upregulated. Several long noncoding RNAs showed altered expression that mirrored the expression of their nearest coding genes. These data demonstrate that following carotid artery ligation an inflammatory cascade is initiated that is associated with the downregulation of coding and noncoding RNAs that are normally required to maintain smooth muscle cells in a differentiated state.
Collapse
Affiliation(s)
- B Paul Herring
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - April M Hoggatt
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Sarah L Griffith
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Jeanette N McClintick
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Patricia J Gallagher
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and
| |
Collapse
|
20
|
Guo Q, Xu H, Yang X, Zhao D, Liu S, Sun X, Huang JA. Notch activation of Ca 2+-sensing receptor mediates hypoxia-induced pulmonary hypertension. Hypertens Res 2016; 40:117-129. [PMID: 27581537 DOI: 10.1038/hr.2016.118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/15/2016] [Accepted: 07/25/2016] [Indexed: 12/13/2022]
Abstract
A recent study from our group demonstrated that the Ca2+-sensing receptor (CaSR) was upregulated and that the extracellular Ca2+-induced increase in the cytosolic Ca2+ concentration [Ca2+]cyt was enhanced in pulmonary arterial smooth muscle cells (PASMCs) from patients with idiopathic pulmonary arterial hypertension. Here, we examined whether hypoxia-induced activation of Notch signaling leads to the activation and upregulation of CaSR in hypoxia-induced pulmonary hypertension (HPH). The activation of Notch signaling with Jag-1, a Notch ligand, can activate the function and increase the expression of CaSR in acute and chronic hypoxic PASMCs. Downregulation of Notch3 with a siRNA attenuates the extracellular Ca2+-induced increase in [Ca2+]cyt and the increase in hypoxia-induced PASMC proliferation in acute hypoxic rat PASMCs. Furthermore, we tested the prevention and rescue effects of a γ-secretase inhibitor (DAPT) in HPH rats. For the Jag-1-treated group, right ventricular systolic pressure (RVSP), right heart hypertrophy (RV/LV+S ratio), and the level of right ventricular myocardial fibrosis were higher than the hypoxia alone group. Meanwhile, DAPT treatment prevented and rescued pulmonary hypertension in HPH rats. The Notch activation of CaSR mediates hypoxia-induced pulmonary hypertension. Understanding the new molecular mechanisms that regulate [Ca2+]cyt and PASMC proliferation is critical to elucidating the pathogenesis of HPH and the development of novel therapies for pulmonary hypertension.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Medicine, Respiratory, Emergency and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Xu
- Department of Medicine, Respiratory, Emergency and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinjing Yang
- Department of Medicine, Respiratory, Emergency and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Daguo Zhao
- Department of Medicine, Respiratory, Emergency and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shenlang Liu
- Department of Medicine, Respiratory, Emergency and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xue Sun
- Department of Medicine, Respiratory, Emergency and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-An Huang
- Department of Medicine, Respiratory, Emergency and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
21
|
Baeten JT, Lilly B. Notch Signaling in Vascular Smooth Muscle Cells. ADVANCES IN PHARMACOLOGY 2016; 78:351-382. [PMID: 28212801 DOI: 10.1016/bs.apha.2016.07.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Notch signaling pathway is a highly conserved pathway involved in cell fate determination in embryonic development and also functions in the regulation of physiological processes in several systems. It plays an especially important role in vascular development and physiology by influencing angiogenesis, vessel patterning, arterial/venous specification, and vascular smooth muscle biology. Aberrant or dysregulated Notch signaling is the cause of or a contributing factor to many vascular disorders, including inherited vascular diseases, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, associated with degeneration of the smooth muscle layer in cerebral arteries. Like most signaling pathways, the Notch signaling axis is influenced by complex interactions with mediators of other signaling pathways. This complexity is also compounded by different members of the Notch family having both overlapping and unique functions. Thus, it is vital to fully understand the roles and interactions of each Notch family member in order to effectively and specifically target their exact contributions to vascular disease. In this chapter, we will review the Notch signaling pathway in vascular smooth muscle cells as it relates to vascular development and human disease.
Collapse
Affiliation(s)
- J T Baeten
- The Center for Cardiovascular Research and The Heart Center at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, United States
| | - B Lilly
- The Center for Cardiovascular Research and The Heart Center at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
22
|
Coll-Bonfill N, de la Cruz-Thea B, Pisano MV, Musri MM. Noncoding RNAs in smooth muscle cell homeostasis: implications in phenotypic switch and vascular disorders. Pflugers Arch 2016; 468:1071-87. [PMID: 27109570 DOI: 10.1007/s00424-016-1821-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/04/2016] [Indexed: 12/16/2022]
Abstract
Vascular smooth muscle cells (SMC) are a highly specialized cell type that exhibit extraordinary plasticity in adult animals in response to a number of environmental cues. Upon vascular injury, SMC undergo phenotypic switch from a contractile-differentiated to a proliferative/migratory-dedifferentiated phenotype. This process plays a major role in vascular lesion formation and during the development of vascular remodeling. Vascular remodeling comprises the accumulation of dedifferentiated SMC in the intima of arteries and is central to a number of vascular diseases such as arteriosclerosis, chronic obstructive pulmonary disease or pulmonary hypertension. Therefore, it is critical to understand the molecular mechanisms that govern SMC phenotype. In the last decade, a number of new classes of noncoding RNAs have been described. These molecules have emerged as key factors controlling tissue homeostasis during physiological and pathological conditions. In this review, we will discuss the role of noncoding RNAs, including microRNAs and long noncoding RNAs, in the regulation of SMC plasticity.
Collapse
Affiliation(s)
- N Coll-Bonfill
- Department of Pulmonary Medicine Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - B de la Cruz-Thea
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina
| | - M V Pisano
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina
| | - M M Musri
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina.
| |
Collapse
|
23
|
Basu S, Proweller A. Autoregulatory Control of Smooth Muscle Myosin Light Chain Kinase Promoter by Notch Signaling. J Biol Chem 2015; 291:2988-99. [PMID: 26703474 DOI: 10.1074/jbc.m115.679803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Indexed: 11/06/2022] Open
Abstract
Smooth muscle myosin light chain kinase (SM-MLCK) is the key enzyme responsible for phosphorylation of regulatory myosin light chain (MLC20), resulting in actin-myosin cross-bridging and force generation in vascular smooth muscle required for physiological vasoreactivity and blood pressure control. In this study, we investigated the combinatorial role of myocardin/serum response factor (SRF) and Notch signaling in the transcriptional regulation of MLCK gene expression. Promoter reporter analyses in rat A10 smooth muscle cells revealed a bimodal pattern of MLCK promoter activity and gene expression upon stimulation with constitutively active Notch1 in presence of myocardin or by Jagged1 ligand stimulation. An initial Notch1-induced increase in MLCK transcription was followed by loss in promoter sensitivity, which could be restored with further Notch1 dose escalation. Real-time PCR analyses revealed that endogenous levels of Hairy Related Transcription (HRT) factor 2 (HRT2) peaked concurrently with inhibitory concentrations of Notch1. Forced expression of HRT2 demonstrated simultaneous repression of both myocardin- and Notch1-induced MLCK promoter activity. HRT2-mediated repression was further confirmed by HRT2 truncations and siHRT2 treatments that rescued MLCK promoter activity and gene expression. Chromatin immunoprecipitation studies revealed both Jagged1 ligand- and Notch1-enhanced myocardin/SRF complex formation at the promoter CArG element. In contrast, heightened levels of HRT2 concomitantly disrupted myocardin/SRF and Notch transcription complex formation at respective CArG and CSL binding elements. Taken together, SM-MLCK promoter activity appears highly sensitive to the relative levels of Notch1 signaling, HRT2, and myocardin. These findings identify a novel Notch-dependent HRT2 autoregulatory circuit coordinating transcriptional regulation of SM-MLCK.
Collapse
Affiliation(s)
- Sanchita Basu
- From the Department of Medicine, Case Cardiovascular Research Institute and University Hospitals Harrington Heart and Vascular Institute, Case Western Reserve University, Cleveland, Ohio 44106
| | - Aaron Proweller
- From the Department of Medicine, Case Cardiovascular Research Institute and University Hospitals Harrington Heart and Vascular Institute, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
24
|
Smith KA, Voiriot G, Tang H, Fraidenburg DR, Song S, Yamamura H, Yamamura A, Guo Q, Wan J, Pohl NM, Tauseef M, Bodmer R, Ocorr K, Thistlethwaite PA, Haddad GG, Powell FL, Makino A, Mehta D, Yuan JXJ. Notch Activation of Ca(2+) Signaling in the Development of Hypoxic Pulmonary Vasoconstriction and Pulmonary Hypertension. Am J Respir Cell Mol Biol 2015; 53:355-67. [PMID: 25569851 DOI: 10.1165/rcmb.2014-0235oc] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hypoxic pulmonary vasoconstriction (HPV) is an important physiological response that optimizes the ventilation/perfusion ratio. Chronic hypoxia causes vascular remodeling, which is central to the pathogenesis of hypoxia-induced pulmonary hypertension (HPH). We have previously shown that Notch3 is up-regulated in HPH and that activation of Notch signaling enhances store-operated Ca(2+) entry (SOCE), an important mechanism that contributes to pulmonary arterial smooth muscle cell (PASMC) proliferation and contraction. Here, we investigate the role of Notch signaling in HPV and hypoxia-induced enhancement of SOCE. We examined SOCE in human PASMCs exposed to hypoxia and pulmonary arterial pressure in mice using the isolated perfused/ventilated lung method. Wild-type and canonical transient receptor potential (TRPC) 6(-/-) mice were exposed to chronic hypoxia to induce HPH. Inhibition of Notch signaling with a γ-secretase inhibitor attenuates hypoxia-enhanced SOCE in PASMCs and hypoxia-induced increase in pulmonary arterial pressure. Our results demonstrate that hypoxia activates Notch signaling and up-regulates TRPC6 channels. Additionally, treatment with a Notch ligand can mimic hypoxic responses. Finally, inhibition of TRPC6, either pharmacologically or genetically, attenuates HPV, hypoxia-enhanced SOCE, and the development of HPH. These results demonstrate that hypoxia-induced activation of Notch signaling mediates HPV and the development of HPH via functional activation and up-regulation of TRPC6 channels. Understanding the molecular mechanisms that regulate cytosolic free Ca(2+) concentration and PASMC proliferation is critical to elucidation of the pathogenesis of HPH. Targeting Notch regulation of TRPC6 will be beneficial in the development of novel therapies for pulmonary hypertension associated with hypoxia.
Collapse
Affiliation(s)
- Kimberly A Smith
- Departments of 1 Medicine and.,2 Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Guillaume Voiriot
- Departments of 1 Medicine and.,2 Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Haiyang Tang
- Departments of 1 Medicine and.,2 Pharmacology, University of Illinois at Chicago, Chicago, Illinois.,3 Division of Translational and Regenerative Medicine, Department of Medicine and
| | - Dustin R Fraidenburg
- Departments of 1 Medicine and.,2 Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Shanshan Song
- Departments of 1 Medicine and.,2 Pharmacology, University of Illinois at Chicago, Chicago, Illinois.,3 Division of Translational and Regenerative Medicine, Department of Medicine and
| | - Hisao Yamamura
- Departments of 1 Medicine and.,2 Pharmacology, University of Illinois at Chicago, Chicago, Illinois.,4 Department of Molecular & Cellular Pharmacology, Nagoya City University, Nagoya, Japan
| | - Aya Yamamura
- Departments of 1 Medicine and.,2 Pharmacology, University of Illinois at Chicago, Chicago, Illinois.,5 Department of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Qiang Guo
- Departments of 1 Medicine and.,2 Pharmacology, University of Illinois at Chicago, Chicago, Illinois.,6 First Affiliated Hospital, Soochow University, Suzhou, China
| | - Jun Wan
- Departments of 1 Medicine and.,2 Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Nicole M Pohl
- Departments of 1 Medicine and.,2 Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Mohammad Tauseef
- 2 Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Rolf Bodmer
- 7 Development, Aging, and Regeneration Program, Sanford-Burnham Institute for Medical Research, La Jolla, California
| | - Karen Ocorr
- 7 Development, Aging, and Regeneration Program, Sanford-Burnham Institute for Medical Research, La Jolla, California
| | | | | | - Frank L Powell
- 10 Medicine, University of California, San Diego, La Jolla, California; and
| | - Ayako Makino
- Departments of 1 Medicine and.,11 Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Dolly Mehta
- 2 Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Jason X-J Yuan
- Departments of 1 Medicine and.,2 Pharmacology, University of Illinois at Chicago, Chicago, Illinois.,3 Division of Translational and Regenerative Medicine, Department of Medicine and.,11 Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
25
|
Qiu H, Tang X, Ma J, Shaverdashvili K, Zhang K, Bedogni B. Notch1 Autoactivation via Transcriptional Regulation of Furin, Which Sustains Notch1 Signaling by Processing Notch1-Activating Proteases ADAM10 and Membrane Type 1 Matrix Metalloproteinase. Mol Cell Biol 2015; 35:3622-32. [PMID: 26283728 PMCID: PMC4589600 DOI: 10.1128/mcb.00116-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 02/27/2015] [Accepted: 08/02/2015] [Indexed: 01/06/2023] Open
Abstract
Notch1 is an evolutionarily conserved transmembrane receptor involved in melanoma growth. Notch1 is first cleaved by furin in the Golgi apparatus to produce the biologically active heterodimer. Following ligand binding, Notch1 is cleaved at the cell membrane by proteases such as ADAM10 and -17 and membrane type 1 matrix metalloproteinase (MT1-MMP), the latter of which we recently identified as a novel protease involved in Notch1 processing. The final cleavage is γ-secretase dependent and releases the active Notch intracellular domain (NIC). We now demonstrate that Notch1 directly regulates furin expression. Aside from activating Notch1, furin cleaves and activates several proteases, including MT1-MMP, ADAM10, and ADAM17. By chromatin immunoprecipitation and a reporter assay, we demonstrate that Notch1 binds at position -1236 of the furin promoter and drives furin expression. The Notch1-dependent enhancement of furin expression increases the activities of MT1-MMP and ADAM10 but not that of ADAM17, as demonstrated by short hairpin RNA (shRNA) knockdown of furin, and promotes the cleavage of Notch1 itself. These data highlight a novel positive-feedback loop whereby Notch1-dependent furin expression can induce Notch1 signaling by increasing Notch1 processing and by potentiating the activity of the proteases responsible for Notch1 activation. This leads to Notch1 signal amplification, which can promote melanoma tumor growth and progression, as demonstrated by the inhibition of cell migration and invasion upon furin inhibition downstream of Notch1. Disruption of such feedback signaling might represent an avenue for the treatment of melanoma.
Collapse
Affiliation(s)
- Hong Qiu
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Xiaoying Tang
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Jun Ma
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Khvaramze Shaverdashvili
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Keman Zhang
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Barbara Bedogni
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
26
|
Shi N, Chen SY. Smooth Muscle Cell Differentiation: Model Systems, Regulatory Mechanisms, and Vascular Diseases. J Cell Physiol 2015; 231:777-87. [DOI: 10.1002/jcp.25208] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Ning Shi
- Department of Physiology and Pharmacology; University of Georgia; Athens Georgia
| | - Shi-You Chen
- Department of Physiology and Pharmacology; University of Georgia; Athens Georgia
| |
Collapse
|
27
|
Hatch E, Morrow D, Liu W, Cahill PA, Redmond EM. Ethanol inhibits γ-secretase proteolytic activity in vascular smooth muscle cells. Alcohol Clin Exp Res 2015; 39:2115-22. [PMID: 26443551 DOI: 10.1111/acer.12875] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/11/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Ethanol (EtOH) inhibits Notch-mediated vascular smooth muscle cell (SMC) proliferation, an event that is key in vessel remodeling and atherogenesis. The object of this study was to determine whether EtOH inhibits Notch signaling in SMC at the level of γ-secretase, a protease that in concert with α-secretase catalyzes the release of the intracellular domain of the Notch receptor necessary for signaling. METHODS Human coronary artery SMCs (HCASMCs) were treated with a recombinant soluble Notch ligand, Delta-like ligand 4 (DLL4) (2 μg/ml), or transfected with a constitutively active Notch 1 intracellular domain (N1ICD), in the absence or presence of EtOH. EtOH (25 mM) treatment inhibited DLL4-stimulated CBF-1/RBP-Jk-dependent promoter activity (determined by luciferase assay) and downstream target gene HRT-3 mRNA levels. In contrast, EtOH had no effect on N1ICD-driven CBF-1/RBP-Jk-dependent promoter activity or HRT-3 expression. RESULTS These data suggest that EtOH inhibits Notch signaling at, or prior to, Notch intracellular domain (NICD) generation. γ-Secretase activity was determined in solubilized membrane preparations from HCASMC treated with/without EtOH (25 mM) or the γ-secretase inhibitor DAPT (20 μM) using (i) a fluorometric assay and (ii) Western blot detection of cleavage products using a Flag-tagged Notch-based substrate, N100Flag. EtOH inhibited basal and DLL4-stimulated γ-secretase activity, and SMC growth to a similar extent as DAPT, whereas it had no effect on α-secretase (TACE/ADAM17) activity also determined by fluorometric assay. Moreover, EtOH treatment inhibited the expression of caveolin-1, a lipid raft protein implicated in regulating γ-secretase activity, and altered its cellular distribution in HCASMC. CONCLUSIONS EtOH inhibits Notch signaling in vascular SMCs at the level of γ-secretase activity, possibly by affecting lipid raft function. Such a response might be expected to result in attenuation of pathologic vessel remodeling and thus may contribute to moderate alcohols' cardioprotective effects.
Collapse
Affiliation(s)
- Ekaterina Hatch
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
| | - David Morrow
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
| | - Weimin Liu
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
| | - Paul A Cahill
- Vascular Health Research Centre, Dublin City University, Dublin, Ireland
| | - Eileen M Redmond
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
28
|
Briot A, Jaroszewicz A, Warren CM, Lu J, Touma M, Rudat C, Hofmann JJ, Airik R, Weinmaster G, Lyons K, Wang Y, Kispert A, Pellegrini M, Iruela-Arispe ML. Repression of Sox9 by Jag1 is continuously required to suppress the default chondrogenic fate of vascular smooth muscle cells. Dev Cell 2015; 31:707-21. [PMID: 25535917 DOI: 10.1016/j.devcel.2014.11.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 09/11/2014] [Accepted: 11/13/2014] [Indexed: 01/15/2023]
Abstract
Acquisition and maintenance of vascular smooth muscle fate are essential for the morphogenesis and function of the circulatory system. Loss of contractile properties or changes in the identity of vascular smooth muscle cells (vSMCs) can result in structural alterations associated with aneurysms and vascular wall calcification. Here we report that maturation of sclerotome-derived vSMCs depends on a transcriptional switch between mouse embryonic days 13 and 14.5. At this time, Notch/Jag1-mediated repression of sclerotome transcription factors Pax1, Scx, and Sox9 is necessary to fully enable vSMC maturation. Specifically, Notch signaling in vSMCs antagonizes sclerotome and cartilage transcription factors and promotes upregulation of contractile genes. In the absence of the Notch ligand Jag1, vSMCs acquire a chondrocytic transcriptional repertoire that can lead to ossification. Importantly, our findings suggest that sustained Notch signaling is essential throughout vSMC life to maintain contractile function, prevent vSMC reprogramming, and promote vascular wall integrity.
Collapse
Affiliation(s)
- Anaïs Briot
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Artur Jaroszewicz
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Carmen M Warren
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jing Lu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marlin Touma
- Division of Anesthesiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Carsten Rudat
- Institut fur Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Jennifer J Hofmann
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rannar Airik
- Institut fur Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Gerry Weinmaster
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Karen Lyons
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yibin Wang
- Division of Anesthesiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andreas Kispert
- Institut fur Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - M Luisa Iruela-Arispe
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
29
|
Granata A, Bernard WG, Zhao N, Mccafferty J, Lilly B, Sinha S. Temporal and embryonic lineage-dependent regulation of human vascular SMC development by NOTCH3. Stem Cells Dev 2015; 24:846-56. [PMID: 25539150 PMCID: PMC4367523 DOI: 10.1089/scd.2014.0520] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vascular smooth muscle cells (SMCs), which arise from multiple embryonic progenitors, have unique lineage-specific properties and this diversity may contribute to spatial patterns of vascular diseases. We developed in vitro methods to generate distinct vascular SMC subtypes from human pluripotent stem cells, allowing us to explore their intrinsic differences and the mechanisms involved in SMC development. Since Notch signaling is thought to be one of the several key regulators of SMC differentiation and function, we profiled the expression of Notch receptors, ligands, and downstream elements during the development of origin-specific SMC subtypes. NOTCH3 expression in our in vitro model varied in a lineage- and developmental stage-specific manner so that the highest expression in mature SMCs was in those derived from paraxial mesoderm (PM). This pattern was consistent with the high expression level of NOTCH3 observed in the 8-9 week human fetal descending aorta, which is populated by SMCs of PM origin. Silencing NOTCH3 in mature SMCs in vitro reduced SMC markers in cells of PM origin preferentially. Conversely, during early development, NOTCH3 was highly expressed in vitro in SMCs of neuroectoderm (NE) origin. Inhibition of NOTCH3 in early development resulted in a significant downregulation of specific SMC markers exclusively in the NE lineage. Corresponding to this prediction, the Notch3-null mouse showed reduced expression of Acta2 in the neural crest-derived SMCs of the aortic arch. Thus, Notch3 signaling emerges as one of the key regulators of vascular SMC differentiation and maturation in vitro and in vivo in a lineage- and temporal-dependent manner.
Collapse
Affiliation(s)
- Alessandra Granata
- 1 Anne Mclaren Laboratory for Regenerative Medicine, Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute, University of Cambridge , Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
30
|
Zhou X, Xiao Y, Mao Z, Huang J, Geng Q, Wang W, Dong P. Soluble Jagged-1 inhibits restenosis of vein graft by attenuating Notch signaling. Microvasc Res 2015; 100:9-16. [PMID: 25660475 DOI: 10.1016/j.mvr.2015.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/20/2014] [Accepted: 01/28/2015] [Indexed: 01/08/2023]
Abstract
The excessive proliferation of vascular smooth muscle cells was key factor in the restenosis of vein graft. And the Notch signaling was demonstrated to regulate vSMC proliferation and differentiation. Soluble Jagged-1 (sJag1) can inhibit Notch signaling in vitro and in vivo; however, its capacity to suppress restenosis of vein graft remains unknown. Under the microscope, the left jugular vein of these rats was interposed into the left common carotid artery, followed without any treatment (control), or with Ad-Jag1 (treatment) or placebo (DMSO) post operation. We showed that Ad-Jag1 can attenuate restenosis of vein graft by inducing decreased proliferation and increased apoptosis in vivo. Notch1-Hey2 signaling is critical for the development of intima thickening by controlling vSMC-fate determination. By blocking Notch signaling, Ad-Jag1 can significantly inhibit intima thickening. These studies identify that Ad-Jag1 can restore the vSMC phenotype and inhibit the vSMC proliferation by suppression of Notch1 signaling, and thus open a new avenue for the treatment of restenosis in vein graft.
Collapse
Affiliation(s)
- Xinming Zhou
- Department of Thoracic Surgery, People's Hospital of New District Longhua, Jianshedong Road, Longhua, Shenzhen, Guangzhou Province 518109, China.
| | - Yongguang Xiao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang, Wuhan City, Hubei Province 430060, China.
| | - Zhifu Mao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang, Wuhan City, Hubei Province 430060, China.
| | - Jie Huang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang, Wuhan City, Hubei Province 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang, Wuhan City, Hubei Province 430060, China.
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang, Wuhan City, Hubei Province 430060, China.
| | - Ping Dong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang, Wuhan City, Hubei Province 430060, China.
| |
Collapse
|
31
|
Rozenberg JM, Tesfu DB, Musunuri S, Taylor JM, Mack CP. DNA methylation of a GC repressor element in the smooth muscle myosin heavy chain promoter facilitates binding of the Notch-associated transcription factor, RBPJ/CSL1. Arterioscler Thromb Vasc Biol 2014; 34:2624-31. [PMID: 25324571 DOI: 10.1161/atvbaha.114.304634] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The goal of the present study was to identify novel mechanisms that regulate smooth muscle cell (SMC) differentiation marker gene expression. APPROACH AND RESULTS We demonstrate that the CArG-containing regions of many SMC-specific promoters are imbedded within CpG islands. A previously identified GC repressor element in the SM myosin heavy chain (MHC) promoter was highly methylated in cultured aortic SMC but not in the aorta, and this difference was inversely correlated with SM MHC expression. Using an affinity chromatography/mass spectroscopy-based approach, we identified the multifunctional Notch transcription factor, recombination signal binding protein for immunoglobulin κ J region (RBPJ), as a methylated GC repressor-binding protein. RBPJ protein levels and binding to the endogenous SM MHC GC repressor were enhanced by platelet-derived growth factor-BB treatment. A methylation mimetic mutation to the GC repressor that facilitated RBPJ binding inhibited SM MHC promoter activity as did overexpression of RBPJ. Consistent with this, knockdown of RBPJ in phenotypically modulated human aortic SMC enhanced endogenous SMC marker gene expression, an effect likely mediated by increased recruitment of serum response factor and Pol II to the SMC-specific promoters. In contrast, the depletion of RBPJ in differentiated transforming growth factor-β-treated SMC inhibited SMC-specific gene activation, supporting the idea that the effects of RBPJ/Notch signaling are context dependent. CONCLUSIONS Our results indicate that methylation-dependent binding of RBPJ to a GC repressor element can negatively regulate SM MHC promoter activity and that RBPJ can inhibit SMC marker gene expression in phenotypically modulated SMC. These results will have important implications on the regulation of SMC phenotype and on Notch-dependent transcription.
Collapse
Affiliation(s)
- Julian M Rozenberg
- From the Department of Pathology, University of North Carolina, Chapel Hill
| | - Daniel B Tesfu
- From the Department of Pathology, University of North Carolina, Chapel Hill
| | - Srilaxmi Musunuri
- From the Department of Pathology, University of North Carolina, Chapel Hill
| | - Joan M Taylor
- From the Department of Pathology, University of North Carolina, Chapel Hill
| | - Christopher P Mack
- From the Department of Pathology, University of North Carolina, Chapel Hill.
| |
Collapse
|
32
|
γ-Secretase inhibitor DAPT attenuates intimal hyperplasia of vein grafts by inhibition of Notch1 signaling. J Transl Med 2014; 94:654-62. [PMID: 24751889 DOI: 10.1038/labinvest.2014.58] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/14/2014] [Accepted: 02/18/2014] [Indexed: 02/05/2023] Open
Abstract
The proliferation and high plasticity of vascular smooth muscle cells (vSMCs) are the major reasons for restenosis of vein grafts. N-[N-(3, 5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT), specific inhibitor of γ-secretase, has been shown to regulate vSMC proliferation and differentiation through the Notch signaling pathway, but the pathophysiological importance of these findings in venous grafts has not yet been determined. A rat vein graft model was employed wherein the left jugular vein was surgically interposed into the left common carotid artery. Daily subcutaneous injections of DAPT or placebo (DMSO) were administered postoperatively (control animals received no treatment). We showed that DAPT can inhibit restenosis of vein grafts by inhibiting vSMC proliferation and increasing apoptosis in vivo. Notch1 signaling was highly active during the development of intima thickening. By blocking the Notch signaling pathway, the γ-secretase inhibitor DAPT can significantly attenuated intima thickening. These changes in vein grafts coincided with enhanced binding of myocardin to the smooth muscle-specific protein SM22 and smooth muscle myosin heavy chain at the promoters of vSMC differentiation-specific genes. These studies showed that DAPT can restore the vSMC phenotype and inhibit vSMC proliferation through suppression of the Notch1 signaling pathway, and thus opens a new avenue for the treatment of restenosis in vein grafts.
Collapse
|
33
|
Ma J, Tang X, Wong P, Jacobs B, Borden EC, Bedogni B. Noncanonical activation of Notch1 protein by membrane type 1 matrix metalloproteinase (MT1-MMP) controls melanoma cell proliferation. J Biol Chem 2014; 289:8442-9. [PMID: 24492617 DOI: 10.1074/jbc.m113.516039] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Notch1 is an evolutionarily conserved signaling molecule required for stem cell maintenance that is inappropriately reactivated in several cancers. We have previously shown that melanomas reactivate Notch1 and require its function for growth and survival. However, no Notch1-activating mutations have been observed in melanoma, suggesting the involvement of other activating mechanisms. Notch1 activation requires two cleavage steps: first by a protease and then by γ-secretase, which releases the active intracellular domain (Notch1(NIC)). Interestingly, although ADAM10 and -17 are generally accepted as the proteases responsible of Notch1 cleavage, here we show that MT1-MMP, a membrane-tethered matrix metalloproteinase involved in the pathogenesis of a number of tumors, is a novel protease required for the cleavage of Notch1 in melanoma cells. We find that active Notch1 and MT1-MMP expression correlate significantly in over 70% of melanoma tumors and 80% of melanoma cell lines, whereas such correlation does not exist between Notch1(NIC) and ADAM10 or -17. Modulation of MT1-MMP expression in melanoma cells affects Notch1 cleavage, whereas MT1-MMP expression in ADAM10/17 double knock-out fibroblasts restores the processing of Notch1, indicating that MT1-MMP is sufficient to promote Notch1 activation independently of the canonical proteases. Importantly, we find that MT1-MMP interacts with Notch1 at the cell membrane, supporting a potential direct cleavage mechanism of MT1-MMP on Notch1, and that MT1-MMP-dependent activation of Notch1 sustains melanoma cell growth. Together, the data highlight a novel mechanism of activation of Notch1 in melanoma cells and identify Notch1 as a new MT1-MMP substrate that plays important biological roles in melanoma.
Collapse
Affiliation(s)
- Jun Ma
- From the Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and
| | | | | | | | | | | |
Collapse
|
34
|
Zheng XL. Myocardin and smooth muscle differentiation. Arch Biochem Biophys 2014; 543:48-56. [DOI: 10.1016/j.abb.2013.12.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/15/2013] [Accepted: 12/18/2013] [Indexed: 01/08/2023]
|
35
|
Abstract
Hey bHLH transcription factors are direct targets of canonical Notch signaling. The three mammalian Hey proteins are closely related to Hes proteins and they primarily repress target genes by either directly binding to core promoters or by inhibiting other transcriptional activators. Individual candidate gene approaches and systematic screens identified a number of Hey target genes, which often encode other transcription factors involved in various developmental processes. Here, we review data on interaction partners and target genes and conclude with a model for Hey target gene regulation. Furthermore, we discuss how expression of Hey proteins affects processes like cell fate decisions and differentiation, e.g., in cardiovascular, skeletal, and neural development or oncogenesis and how this relates to the observed developmental defects and phenotypes observed in various knockout mice.
Collapse
Affiliation(s)
- David Weber
- Developmental Biochemistry, Theodor-Boveri-Institute/Biocenter, Wuerzburg University, Wuerzburg, Germany
| | - Cornelia Wiese
- Developmental Biochemistry, Theodor-Boveri-Institute/Biocenter, Wuerzburg University, Wuerzburg, Germany
| | - Manfred Gessler
- Developmental Biochemistry, Theodor-Boveri-Institute/Biocenter, Wuerzburg University, Wuerzburg, Germany; Comprehensive Cancer Center Mainfranken, Wuerzburg University, Wuerzburg, Germany.
| |
Collapse
|
36
|
Wang Y, Pan L, Moens CB, Appel B. Notch3 establishes brain vascular integrity by regulating pericyte number. Development 2013; 141:307-17. [PMID: 24306108 DOI: 10.1242/dev.096107] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Brain pericytes are important regulators of brain vascular integrity, permeability and blood flow. Deficiencies of brain pericytes are associated with neonatal intracranial hemorrhage in human fetuses, as well as stroke and neurodegeneration in adults. Despite the important functions of brain pericytes, the mechanisms underlying their development are not well understood and little is known about how pericyte density is regulated across the brain. The Notch signaling pathway has been implicated in pericyte development, but its exact roles remain ill defined. Here, we report an investigation of the Notch3 receptor using zebrafish as a model system. We show that zebrafish brain pericytes express notch3 and that notch3 mutant zebrafish have a deficit of brain pericytes and impaired blood-brain barrier function. Conditional loss- and gain-of-function experiments provide evidence that Notch3 signaling positively regulates brain pericyte proliferation. These findings establish a new role for Notch signaling in brain vascular development whereby Notch3 signaling promotes expansion of the brain pericyte population.
Collapse
Affiliation(s)
- Yuying Wang
- Departments of Pediatrics and Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
37
|
Lin EE, Sequeira-Lopez MLS, Gomez RA. RBP-J in FOXD1+ renal stromal progenitors is crucial for the proper development and assembly of the kidney vasculature and glomerular mesangial cells. Am J Physiol Renal Physiol 2013; 306:F249-58. [PMID: 24226518 DOI: 10.1152/ajprenal.00313.2013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms underlying the establishment, development, and maintenance of the renal vasculature are poorly understood. Here, we propose that the transcription factor "recombination signal binding protein for immunoglobulin kappa J region" (RBP-J) plays a key role in the differentiation of the mural cells of the kidney arteries and arterioles, as well as the mesangial cells of the glomerulus. Deletion of RBP-J in renal stromal cells of the forkhead box D1 (FOXD1) lineage, which differentiate into all the mural cells of the kidney arterioles along with mesangial cells and pericytes, resulted in significant kidney abnormalities and mortality by day 30 postpartum (P30). In newborn mutant animals, we observed a decrease in the total number of arteries and arterioles, along with thinner vessel walls, and depletion of renin cells. Glomeruli displayed striking abnormalities, including a failure of FOXD1-descendent cells to populate the glomerulus, an absence of mesangial cells, and in some cases complete loss of glomerular interior structure and the development of aneurysms. By P30, the kidney malformations were accentuated by extensive secondary fibrosis and glomerulosclerosis. We conclude that RBP-J is essential for proper formation and maintenance of the kidney vasculature and glomeruli.
Collapse
Affiliation(s)
- E E Lin
- MR4 Bldg. Rm. 2001, Univ. of Virginia School of Medicine, 409 Lane Rd., Charlottesville, VA 22908.
| | | | | |
Collapse
|
38
|
Xiao Y, Gong D, Wang W. Soluble JAGGED1 inhibits pulmonary hypertension by attenuating notch signaling. Arterioscler Thromb Vasc Biol 2013; 33:2733-9. [PMID: 24072692 DOI: 10.1161/atvbaha.113.302062] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Notch signaling has been implicated in the development of pulmonary arterial hypertension (PH) as reflected by increased expression of Notch member proteins that induce the proliferation of pulmonary arterial smooth muscle cells (PASMCs). Soluble Jagged1 (sJag1) has been shown to inhibit Notch signaling in vitro and in vivo; however, its capacity to suppress PH remains unknown. APPROACH AND RESULTS Notch1, Notch3, Jagged1, and Herp2 protein were highly expressed in both the mouse model of hypoxia-induced PH and the rat model of monocrotaline-induced PH. By attenuation and reversal of multiple pathological processes that were associated with PH, adenoviral sJag1 transfection significantly reduced the proliferation and enhanced the apoptosis of PASMCs in PH, whereas vehicle had no effect. The sJag1 inhibitory effect on Notch activation is likely related to its interference with ligand-induced signaling. Importantly, the administration with adenoviral sJag1 improved the survival rate of PH rats. Furthermore, sJag1 can restore the PH-PASMCs phenotype from the dedifferentiated to the differentiated state, by giving a positive effect on the physical binding of myocardin to the CC(A/T)nGG (CArG)-containing regions of vascular smooth muscle cells-specific promoters. CONCLUSIONS Our results demonstrated that the potential therapeutic use of the sJag1 may not only inhibit the proliferation of PASMCs but also restore the PH-PASMCs phenotype from the dedifferentiated to the differentiated state through interference with Notch-Herp2 signaling.
Collapse
Affiliation(s)
- Yongguang Xiao
- From the Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | | | | |
Collapse
|
39
|
Meng H, Zhang X, Lee SJ, Wang MM. Von Willebrand factor inhibits mature smooth muscle gene expression through impairment of Notch signaling. PLoS One 2013; 8:e75808. [PMID: 24086636 PMCID: PMC3781053 DOI: 10.1371/journal.pone.0075808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 08/20/2013] [Indexed: 12/30/2022] Open
Abstract
Von Willebrand factor (vWF), a hemostatic protein normally synthesized and stored by endothelial cells and platelets, has been localized beyond the endothelium in vascular disease states. Previous studies have implicated potential non-hemostatic functions of vWF, but signaling mechanisms underlying its effects are currently undefined. We present evidence that vWF breaches the endothelium and is expressed in a transmural distribution pattern in cerebral small vessel disease (SVD). To determine the potential molecular consequences of vWF permeation into the vessel wall, we also tested whether vWF impairs Notch regulation of key smooth muscle marker genes. In a co-culture system using Notch ligand expressing cells to stimulate Notch in A7R5 cells, vWF strongly inhibited both the Notch pathway and the activation of mature smooth muscle gene promoters. Similar repressive effects were observed in primary human cerebral vascular smooth muscle cells. Expression of the intracellular domain of NOTCH3 allowed cells to bypass the inhibitory effects of vWF. Moreover, vWF forms molecular complexes with all four mammalian Notch ectodomains, suggesting a novel function of vWF as an extracellular inhibitor of Notch signaling. In sum, these studies demonstrate vWF in the vessel wall as a common feature of cerebral SVD; furthermore, we provide a plausible mechanism by which non-hemostatic vWF may play a novel role in the promotion of vascular disease.
Collapse
Affiliation(s)
- He Meng
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Xiaojie Zhang
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Soo Jung Lee
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michael M. Wang
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
40
|
von Gise A, Archer SL, Maclean MR, Hansmann G. The first Keystone Symposia Conference on pulmonary vascular isease and right ventricular dysfunction: Current concepts and future therapies. Pulm Circ 2013; 3:275-7. [PMID: 24015328 PMCID: PMC3757822 DOI: 10.4103/2045-8932.114751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
41
|
Malenfant S, Neyron AS, Paulin R, Potus F, Meloche J, Provencher S, Bonnet S. Signal transduction in the development of pulmonary arterial hypertension. Pulm Circ 2013; 3:278-93. [PMID: 24015329 PMCID: PMC3757823 DOI: 10.4103/2045-8932.114752] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a unique disease. Properly speaking, it is not a disease of the lung. It can be seen more as a microvascular disease occurring mainly in the lungs and affecting the heart. At the cellular level, the PAH paradigm is characterized by inflammation, vascular tone imbalance, pulmonary arterial smooth muscle cell proliferation and resistance to apoptosis and the presence of in situ thrombosis. At a clinical level, the aforementioned abnormal vascular properties alter physically the pulmonary circulation and ventilation, which greatly influence the right ventricle function as it highly correlates with disease severity. Consequently, right heart failure remains the principal cause of death within this cohort of patients. While current treatment modestly improve patients' conditions, none of them are curative and, as of today, new therapies are lacking. However, the future holds potential new therapies that might have positive influence on the quality of life of the patient. This article will first review the clinical presentation of the disease and the different molecular pathways implicated in the pathobiology of PAH. The second part will review tomorrow's future putative therapies for PAH.
Collapse
Affiliation(s)
- Simon Malenfant
- Pulmonary Hypertension Research Group of the Institut universitaire de cardiologie et de pneumologie de Quebec Research Center, Laval University, Quebec City, Canada
| | - Anne-Sophie Neyron
- Pulmonary Hypertension Research Group of the Institut universitaire de cardiologie et de pneumologie de Quebec Research Center, Laval University, Quebec City, Canada
| | - Roxane Paulin
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - François Potus
- Pulmonary Hypertension Research Group of the Institut universitaire de cardiologie et de pneumologie de Quebec Research Center, Laval University, Quebec City, Canada
| | - Jolyane Meloche
- Pulmonary Hypertension Research Group of the Institut universitaire de cardiologie et de pneumologie de Quebec Research Center, Laval University, Quebec City, Canada
| | - Steeve Provencher
- Pulmonary Hypertension Research Group of the Institut universitaire de cardiologie et de pneumologie de Quebec Research Center, Laval University, Quebec City, Canada
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group of the Institut universitaire de cardiologie et de pneumologie de Quebec Research Center, Laval University, Quebec City, Canada
| |
Collapse
|
42
|
Impact of notch signaling on inflammatory responses in cardiovascular disorders. Int J Mol Sci 2013; 14:6863-88. [PMID: 23531541 PMCID: PMC3645668 DOI: 10.3390/ijms14046863] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/01/2013] [Accepted: 03/15/2013] [Indexed: 01/22/2023] Open
Abstract
Notch signaling is a major pathway in cell fate decisions. Since the first reports showing the major role of Notch in embryonic development, a considerable and still growing literature further highlights its key contributions in various pathological processes during adult life. In particular, Notch is now considered as a major player in vascular homeostasis through the control of key cellular functions. In parallel, confounding evidence emerged that inflammatory responses regulate Notch signaling in vitro in endothelial cells, smooth muscle cells or vascular infiltrating cells and in vivo in vascular and inflammatory disorders and in cardiovascular diseases. This review presents how inflammation influences Notch in vascular cells and, reciprocally, emphasizes the functional role of Notch on inflammatory processes, notably by regulating key cell functions (differentiation, proliferation, apoptosis/survival, activation). Understanding how the disparity of Notch receptors and ligands impacts on vasculature biology remains critical for the design of relevant and adequate therapeutic strategies targeting Notch in this major pathological context.
Collapse
|
43
|
Basu S, Srinivasan DK, Yang K, Raina H, Banerjee S, Zhang R, Fisher SA, Proweller A. Notch transcriptional control of vascular smooth muscle regulatory gene expression and function. J Biol Chem 2013; 288:11191-202. [PMID: 23482558 DOI: 10.1074/jbc.m112.442996] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Notch receptors and ligands mediate heterotypic cell signaling that is required for normal vascular development. Dysregulation of select Notch receptors in mouse vascular smooth muscle (VSM) and in genetic human syndromes causes functional impairment in some regional circulations, the mechanistic basis of which is undefined. In this study, we used a dominant-negative Mastermind-like (DNMAML1) to block signaling through all Notch receptors specifically in VSM to more broadly test a functional role for this pathway in vivo. Mutant DNMAML1-expressing mice exhibited blunted blood pressure responses to vasoconstrictors, and their aortic, femoral, and mesenteric arteries had reduced contractile responses to agonists and depolarization in vitro. The mutant arteries had significant and specific reduction in the expression and activity of myosin light chain kinase (MLCK), a primary regulator of VSM force production. Conversely, activated Notch signaling in VSM cells induced endogenous MLCK transcript levels. We identified MLCK as a direct target of activated Notch receptor as demonstrated by an evolutionarily conserved Notch-responsive element within the MLCK promoter that binds the Notch receptor complex and is required for transcriptional activity. We conclude that Notch signaling through the transcriptional control of key regulatory proteins is required for contractile responses of mature VSM. Genetic or pharmacological manipulation of Notch signaling is a potential strategy for modulating arterial function in human disease.
Collapse
Affiliation(s)
- Sanchita Basu
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Qiao L, Xie L, Shi K, Zhou T, Hua Y, Liu H. Notch signaling change in pulmonary vascular remodeling in rats with pulmonary hypertension and its implication for therapeutic intervention. PLoS One 2012; 7:e51514. [PMID: 23251561 PMCID: PMC3520790 DOI: 10.1371/journal.pone.0051514] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 11/01/2012] [Indexed: 11/23/2022] Open
Abstract
Pulmonary hypertension (PH) is a fatal disease that lacks an effective therapy. Notch signaling pathway plays a crucial role in the angiogenesis and vascular remodeling. However, its roles in vascular remodeling in PH have not been well studied. In the current study, using hypoxia-induced PH model in rat, we examined the expression of Notch and its downstream factors. Then, we used vessel strip culture system and γ-secretase inhibitor DAPT, a Notch signaling inhibitor to determine the effect of Notch signaling in vascular remodeling and its potential therapeutic value. Our results indicated that Notch 1–4 were detected in the lung tissue with variable levels in different cell types such as smooth muscle cells and endothelial cells of pulmonary artery, bronchia, and alveoli. In addition, following the PH induction, all of Notch1, Notch3, Notch4 receptor, and downstream factor, HERP1 in pulmonary arteries, mRNA expressions were increased with a peak at 1–2 weeks. Furthermore, the vessel wall thickness from rats with hypoxia treatment increased after cultured for 8 days, which could be decreased approximately 30% by DAPT, accompanied with significant increase of expression level of apoptotic factors (caspase-3 and Bax) and transformation of vascular smooth muscle cell (VSMC) phenotype from synthetic towards contractile. In conclusion, the current study suggested Notch pathway plays an important role in pulmonary vascular remodeling in PH and targeting Notch signaling pathway could be a valuable approach to design new therapy for PH.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Blood Vessels/drug effects
- Blood Vessels/pathology
- Blood Vessels/physiopathology
- Cell Proliferation/drug effects
- Cells, Cultured
- Dipeptides/pharmacology
- Disease Models, Animal
- Gene Expression Regulation/drug effects
- Hypertension, Pulmonary/complications
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/therapy
- Hypoxia/complications
- Hypoxia/metabolism
- Hypoxia/physiopathology
- Immunohistochemistry
- In Vitro Techniques
- Lung/blood supply
- Lung/metabolism
- Lung/pathology
- Lung/physiopathology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Rats
- Rats, Wistar
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Reproducibility of Results
- Signal Transduction/drug effects
- Staining and Labeling
Collapse
Affiliation(s)
- Lina Qiao
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, China.
| | | | | | | | | | | |
Collapse
|
45
|
Jalali S, Ramanathan GK, Parthasarathy PT, Aljubran S, Galam L, Yunus A, Garcia S, Cox RR, Lockey RF, Kolliputi N. Mir-206 regulates pulmonary artery smooth muscle cell proliferation and differentiation. PLoS One 2012; 7:e46808. [PMID: 23071643 PMCID: PMC3468623 DOI: 10.1371/journal.pone.0046808] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 09/10/2012] [Indexed: 12/28/2022] Open
Abstract
Pulmonary Arterial Hypertension (PAH) is a progressive devastating disease characterized by excessive proliferation of the Pulmonary Arterial Smooth Muscle Cells (PASMCs). Studies suggest that PAH and cancers share an apoptosis-resistant state featuring excessive cell proliferation. MicroRNA-206 (miR-206) is known to regulate proliferation and is implicated in various types of cancers. However, the role of miR-206 in PAH has not been studied. In this study, it is hypothesized that miR-206 could play a role in the proliferation of PASMCs. In the present study, the expression patterns of miR-206 were investigated in normal and hypertensive mouse PASMCs. The effects of miR-206 in modulating cell proliferation, apoptosis and smooth muscle cell markers in human pulmonary artery smooth muscle cells (hPASMCs) were investigated in vitro. miR-206 expression in mouse PASMCs was correlated with an increase in right ventricular systolic pressure. Reduction of miR-206 levels in hPASMCs causes increased proliferation and reduced apoptosis and these effects were reversed by the overexpression of miR-206. miR-206 over expression also increased the levels of smooth muscle cell differentiation markers α-smooth muscle actin and calponin implicating its importance in the differentiation of SMCs. miR-206 overexpression down regulated Notch-3 expression, which is key a factor in PAH development. These results suggest that miR-206 is a potential regulator of proliferation, apoptosis and differentiation of PASMCs, and that it could be used as a novel treatment strategy in PAH.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Blotting, Western
- Cell Differentiation/genetics
- Cell Movement/genetics
- Cell Proliferation
- Cells, Cultured
- Down-Regulation
- Familial Primary Pulmonary Hypertension
- Female
- Gene Expression Profiling
- Humans
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypoxia
- Male
- Mice
- Mice, Inbred C57BL
- MicroRNAs/genetics
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Pulmonary Artery/cytology
- Receptor, Notch3
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Samuel Jalali
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Florida, United States of America
| | - Gurukumar K. Ramanathan
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Florida, United States of America
| | - Prasanna Tamarapu Parthasarathy
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Florida, United States of America
| | - Salman Aljubran
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Florida, United States of America
| | - Lakshmi Galam
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Florida, United States of America
| | - Asfiya Yunus
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Florida, United States of America
| | - Sara Garcia
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Florida, United States of America
| | - Ruan R. Cox
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Florida, United States of America
| | - Richard F. Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Florida, United States of America
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Florida, United States of America
- * E-mail:
| |
Collapse
|
46
|
Tang Y, Boucher JM, Liaw L. Histone deacetylase activity selectively regulates notch-mediated smooth muscle differentiation in human vascular cells. J Am Heart Assoc 2012; 1:e000901. [PMID: 23130137 PMCID: PMC3487326 DOI: 10.1161/jaha.112.000901] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 05/16/2012] [Indexed: 12/17/2022]
Abstract
Background Histone deacetylases (HDACs) modify smooth muscle cell (SMC) proliferation and affect neointimal lesion formation by regulating cell cycle progression. HDACs might also regulate SMC differentiation, although this is not as well characterized. Methods and Results Notch signaling activates SMC contractile markers and the differentiated phenotype in human aortic SMCs. Using this model, we found that HDAC inhibition antagonized the ability of Notch to increase levels of smooth muscle α-actin, calponin1, smooth muscle 22α, and smooth muscle myosin heavy chain. However, inhibition of HDAC activity did not suppress Notch activation of the HRT target genes. In fact, HDAC inhibition increased activation of the canonical C-promoter binding factor-1 (CBF-1)–mediated Notch pathway, which activates HRT transcription. Although CBF-1–mediated Notch signaling was increased by HDAC inhibition in human SMCs and in a C3H10T1/2 model, SMC differentiation was inhibited in both cases. Further characterization of downstream Notch signaling pathways showed activation of the c-Jun N-terminal kinase, p38 mitogen-activated protein kinase, and PI3K/Akt pathways. The activation of these pathways was sensitive to HDAC inhibition and was positively correlated with the differentiated phenotype. Conclusions Our studies define novel signaling pathways downstream of Notch signaling in human SMCs. In addition to the canonical CBF-1 pathway, Notch stimulates c-Jun N-terminal kinase, mitogen-activated protein kinase, and PI3K cascades. Both canonical and noncanonical pathways downstream of Notch promote a differentiated, contractile phenotype in SMCs. Although CBF-1–mediated Notch signaling is not suppressed by HDAC inhibition, HDAC activity is required for Notch differentiation signals through mitogen-activated protein kinase and PI3K pathways in SMCs. (J Am Heart Assoc. 2012;1:e000901 doi: 10.1161/JAHA.112.000901)
Collapse
Affiliation(s)
- Yuefeng Tang
- Center for Molecular Medicine, Maine Medical Center Research Institute Scarborough, ME
| | | | | |
Collapse
|
47
|
Keuylian Z, de Baaij JHF, Gueguen M, Glorian M, Rouxel C, Merlet E, Lipskaia L, Blaise R, Mateo V, Limon I. The Notch pathway attenuates interleukin 1β (IL1β)-mediated induction of adenylyl cyclase 8 (AC8) expression during vascular smooth muscle cell (VSMC) trans-differentiation. J Biol Chem 2012; 287:24978-89. [PMID: 22613711 DOI: 10.1074/jbc.m111.292516] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) trans-differentiation, or their switch from a contractile/quiescent to a secretory/inflammatory/migratory state, is known to play an important role in pathological vascular remodeling including atherosclerosis and postangioplasty restenosis. Several reports have established the Notch pathway as tightly regulating VSMC response to various stress factors through growth, migration, apoptosis, and de-differentiation. More recently, we showed that alterations of the Notch pathway also govern VSMC acquisition of the inflammatory state, one of the major events accelerating atherosclerosis. We also evidenced that the inflammatory context of atherosclerosis triggers a de novo expression of adenylyl cyclase isoform 8 (AC8), associated with the properties developed by trans-differentiated VSMCs. As an initial approach to understanding the regulation of AC8 expression, we examined the role of the Notch pathway. Here we show that inhibiting the Notch pathway enhances the effect of IL1β on AC8 expression, amplifies its deleterious effects on the VSMC trans-differentiated phenotype, and decreases Notch target genes Hrt1 and Hrt3. Conversely, Notch activation resulted in blocking AC8 expression and up-regulated Hrt1 and Hrt3 expression. Furthermore, overexpressing Hrt1 and Hrt3 significantly decreased IL1β-induced AC8 expression. In agreement with these in vitro findings, the in vivo rat carotid balloon-injury model of restenosis evidenced that AC8 de novo expression coincided with down-regulation of the Notch3 pathway. These results, demonstrating that the Notch pathway attenuates IL1β-mediated AC8 up-regulation in trans-differentiated VSMCs, suggest that AC8 expression, besides being induced by the proinflammatory cytokine IL1β, is also dependent on down-regulation of the Notch pathway occurring in an inflammatory context.
Collapse
|
48
|
Boucher J, Gridley T, Liaw L. Molecular pathways of notch signaling in vascular smooth muscle cells. Front Physiol 2012; 3:81. [PMID: 22509166 PMCID: PMC3321637 DOI: 10.3389/fphys.2012.00081] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 03/19/2012] [Indexed: 11/20/2022] Open
Abstract
Notch signaling in the cardiovascular system is important during embryonic development, vascular repair of injury, and vascular pathology in humans. The vascular smooth muscle cell (VSMC) expresses multiple Notch receptors throughout its life cycle, and responds to Notch ligands as a regulatory mechanism of differentiation, recruitment to growing vessels, and maturation. The goal of this review is to provide an overview of the current understanding of the molecular basis for Notch regulation of VSMC phenotype. Further, we will explore Notch interaction with other signaling pathways important in VSMC.
Collapse
Affiliation(s)
- Joshua Boucher
- Center for Molecular Medicine, Maine Medical Center Research Institute Scarborough, ME, USA
| | | | | |
Collapse
|
49
|
Xia Y, Bhattacharyya A, Roszell EE, Sandig M, Mequanint K. The role of endothelial cell-bound Jagged1 in Notch3-induced human coronary artery smooth muscle cell differentiation. Biomaterials 2012; 33:2462-72. [DOI: 10.1016/j.biomaterials.2011.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/01/2011] [Indexed: 01/02/2023]
|
50
|
Chen L, Ashraf M, Wang Y, Zhou M, Zhang J, Qin G, Rubinstein J, Weintraub NL, Tang Y. The role of notch 1 activation in cardiosphere derived cell differentiation. Stem Cells Dev 2012; 21:2122-9. [PMID: 22239539 DOI: 10.1089/scd.2011.0463] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cardiosphere derived cells (CDC) are present in the human heart and include heterogeneous cell populations of cardiac progenitor cells, multipotent progenitors that play critical roles in the physiological and pathological turnover of heart tissue. Little is known about the molecular pathways that control the differentiation of CDC. In this study, we examined the role of Notch 1/J kappa-recombining binding protein (RBPJ) signaling, a critical cell-fate decision pathway, in CDC differentiation. We isolated CDC from mouse cardiospheres and analyzed the differentiation of transduced cells expressing the Notch1 intracellular domain (N1-ICD), the active form of Notch1, using a terminal differentiation marker polymerase chain reaction (PCR) array. We found that Notch1 primarily supported the differentiation of CDC into smooth muscle cells (SMC), as demonstrated by the upreguation of key SMC proteins, including smooth muscle myosin heavy chain (Myh11) and SM22α (Tagln), in N1-ICD expressing CDC. Conversely, genetic ablation of RBPJ in CDC diminished the expression of SMC differentiation markers, confirming that SMC differentiation CDC is dependent on RBPJ. Finally, in vivo experiments demonstrate enhanced numbers of smooth muscle actin-expressing implanted cells after an injection of N1-ICD-expressing CDC into ischemic myocardium (44±8/high power field (hpf) vs. 11±4/high power field (hpf), n=7 sections, P<0.05). Taken together, these results provide strong evidence that Notch1 promotes SMC differentiation of CDC through an RBPJ-dependent signaling pathway in vitro, which may have important implications for progenitor cell-mediated angiogenesis.
Collapse
Affiliation(s)
- Lijuan Chen
- Division of Cardiovascular Disease, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45243, USA
| | | | | | | | | | | | | | | | | |
Collapse
|