1
|
Advances in the development of connexin hemichannel inhibitors selective toward Cx43. Future Med Chem 2021; 13:379-392. [PMID: 33399487 DOI: 10.4155/fmc-2020-0291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Gap-junction channels formed by two connexin hemichannels play diverse and pivotal roles in intercellular communication and regulation. Normally hemichannels at the plasma membrane participate in autocrine and paracrine signaling, but abnormal increase in their activity can lead or contribute to various diseases. Selective inhibitors toward connexin hemichannels are of great interest. Among more than 20 identified isoforms of connexins, connexin 43 (Cx43) attracts the most interest due to its prevalence and link to cell damage in many disorders or diseases. Traditional antibacterial kanamycin decorated with hydrophobic groups yields amphiphilic kanamycins that show low cytotoxicity and prominent inhibitory effect against Cx43. This review focuses on the development of amphiphilic kanamycins as connexin hemichannel inhibitors and their future perspective.
Collapse
|
2
|
Fiori MC, Krishnan S, Kjellgren A, Cuello LG, Altenberg GA. Inhibition by Commercial Aminoglycosides of Human Connexin Hemichannels Expressed in Bacteria. Molecules 2017; 22:molecules22122063. [PMID: 29186829 PMCID: PMC6149774 DOI: 10.3390/molecules22122063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 12/16/2022] Open
Abstract
In addition to gap junctional channels that mediate cell-to-cell communication, connexins form hemichannels that are present at the plasma membrane. Since hemichannels are permeable to small hydrophilic compounds, including metabolites and signaling molecules, their abnormal opening can cause or contribute to cell damage in disorders such as cardiac infarct, stroke, deafness, skin diseases, and cataracts. Therefore, hemichannels are potential pharmacological targets. A few aminoglycosides, well-known broad-spectrum antibiotics, have been shown to inhibit hemichannels. Here, we tested several commercially available aminoglycosides for inhibition of human connexin hemichannels using a cell-based bacterial growth complementation assay that we developed recently. We found that kanamycin A, kanamycin B, geneticin, neomycin, and paromomycin are effective inhibitors of hemichannels formed by connexins 26, 43, and 46 (Cx26, Cx43, and Cx46). Because of the >70 years of clinical experience with aminoglycosides and the fact that several of the aminoglycosides tested here have been used in humans, they are promising starting points for the development of effective connexin hemichannel inhibitors.
Collapse
Affiliation(s)
- Mariana C Fiori
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6551, USA.
| | - Srinivasan Krishnan
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6551, USA.
| | - Abbey Kjellgren
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6551, USA.
- Honors College, McClellan Hall, Box 41017, Texas Tech University, Lubbock, TX 79409-1017, USA.
| | - Luis G Cuello
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6551, USA.
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6551, USA.
| |
Collapse
|
3
|
Bermejo IL, Arnulphi C, Ibáñez de Opakua A, Alonso-Mariño M, Goñi FM, Viguera AR. Membrane partitioning of the pore-forming domain of colicin A. Role of the hydrophobic helical hairpin. Biophys J 2014; 105:1432-43. [PMID: 24047995 DOI: 10.1016/j.bpj.2013.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022] Open
Abstract
The colicins are bacteriocins that target Escherichia coli and kill bacterial cells through different mechanisms. Colicin A forms ion channels in the inner membranes of nonimmune bacteria. This activity resides exclusively in its C-terminal fragment (residues 387-592). The soluble free form of this domain is a 10 α-helix bundle. The hydrophobic helical hairpin, H8-H9, is buried inside the structure and shielded by eight amphipathic surface helices. The interaction of the C-terminal colicin A domain and several chimeric variants with lipidic vesicles was examined here by isothermal titration calorimetry. In the mutant constructions, natural sequences of the hydrophobic helices H8 and H9 were either removed or substituted by polyalanine or polyleucine. All the constructions fully associated with DOPG liposomes including the mutant that lacked helices H8 and H9, indicating that amphipathic rather than hydrophobic helices were the major determinants of the exothermic binding reactions. Alanine is not specially favored in the lipid-bound form; the chimeric construct with polyalanine produced lower enthalpy gain. On the other hand, the large negative heat capacities associated with partitioning, a characteristic feature of the hydrophobic effect, were found to be dependent on the sequence hydrophobicity of helices H8 and H9.
Collapse
Affiliation(s)
- Ivan L Bermejo
- Unidad de Biofísica (CSIC, UPV/EHU), Barrio Sarriena s/n, Leioa, Spain
| | | | | | | | | | | |
Collapse
|
4
|
Fiori MC, Reuss L, Cuello LG, Altenberg GA. Functional analysis and regulation of purified connexin hemichannels. Front Physiol 2014; 5:71. [PMID: 24611052 PMCID: PMC3933781 DOI: 10.3389/fphys.2014.00071] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/06/2014] [Indexed: 01/08/2023] Open
Abstract
Gap-junction channels (GJCs) are aqueous channels that communicate adjacent cells. They are formed by head-to-head association of two hemichannels (HCs), one from each of the adjacent cells. Functional HCs are connexin hexamers composed of one or more connexin isoforms. Deafness is the most frequent sensineural disorder, and mutations of Cx26 are the most common cause of genetic deafness. Cx43 is the most ubiquitous connexin, expressed in many organs, tissues, and cell types, including heart, brain, and kidney. Alterations in its expression and function play important roles in the pathophysiology of very frequent medical problems such as those related to cardiac and brain ischemia. There is extensive information on the relationship between phosphorylation and Cx43 targeting, location, and function from experiments in cells and organs in normal and pathological conditions. However, the molecular mechanisms of Cx43 regulation by phosphorylation are hard to tackle in complex systems. Here, we present the use of purified HCs as a model for functional and structural studies. Cx26 and Cx43 are the only isoforms that have been purified, reconstituted, and subjected to functional and structural analysis. Purified Cx26 and Cx43 HCs have properties compatible with those demonstrated in cells, and present methodologies for the functional analysis of purified HCs reconstituted in liposomes. We show that phosphorylation of serine 368 by PKC produces a partial closure of the Cx43 HCs, changing solute selectivity. We also present evidence that the effect of phosphorylation is highly cooperative, requiring modification of several connexin subunits, and that phosphorylation of serine 368 elicits conformational changes in the purified HCs. The use of purified HCs is starting to provide critical data to understand the regulation of HCs at the molecular level.
Collapse
Affiliation(s)
- Mariana C Fiori
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center Lubbock, TX, USA
| | - Luis Reuss
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center Lubbock, TX, USA
| | - Luis G Cuello
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center Lubbock, TX, USA
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center Lubbock, TX, USA
| |
Collapse
|
5
|
Bao X, Kolli D, Ren J, Liu T, Garofalo RP, Casola A. Human metapneumovirus glycoprotein G disrupts mitochondrial signaling in airway epithelial cells. PLoS One 2013; 8:e62568. [PMID: 23626834 PMCID: PMC3633857 DOI: 10.1371/journal.pone.0062568] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/22/2013] [Indexed: 12/21/2022] Open
Abstract
Human metapneumovirus (hMPV) is a recently identified RNA virus belonging to the Paramyxoviridae family. It is a common cause of respiratory tract infections in children, adults, and immunocompromised patients, for which no specific treatment or vaccine is available. Recent investigations in our lab identified hMPV glycoprotein G as an important virulence factor, as a recombinant virus lacking the G protein (rhMPV-ΔG) exhibited enhanced production of important immune and antiviral mediators, such as cytokines, chemokines and type I interferon (IFN) in airway epithelial cells, and expression of G protein alone inhibits cellular signaling dependent on retinoic induced gene (RIG)-I, a RNA helicase with a fundamental role in initiating hMPV-induced cellular responses. In this study, we have further investigated the mechanism underlying the inhibitory role of hMPV G protein on RIG-I-dependent signaling. We found that the interaction of hMPV G with RIG-I occurs primarily through the CARD domains of RIG-I N-terminus, preventing RIG-I association with the adaptor protein MAVS (mitochondrial antiviral signaling protein), recruitment of RIG-I to mitochondria, as well as the interaction between mitochondria and mitochondria-associated membrane (MAM) component of the endoplasmic reticulum (ER), which contains STINGS, an important part of the viral-induced RIG-I/MAVS signaling pathway, leading in the end to the inhibition of cytokine, chemokine and type I IFN expression. Mutagenesis analysis showed that hMPV G protein cytoplasmic domain played a major role in the observed inhibitory activity, and recombinant viruses expressing a G protein with amino acid substitution in position 2 and 3 recapitulated most of the phenotype observed with rhMPV-ΔG mutant upon infection of airway epithelial cells.
Collapse
Affiliation(s)
- Xiaoyong Bao
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail: (XB); (AC)
| | - Deepthi Kolli
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Junping Ren
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Tianshuang Liu
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Roberto P. Garofalo
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Antonella Casola
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail: (XB); (AC)
| |
Collapse
|
6
|
Allen MJ, Gemel J, Beyer EC, Lal R. Atomic force microscopy of Connexin40 gap junction hemichannels reveals calcium-dependent three-dimensional molecular topography and open-closed conformations of both the extracellular and cytoplasmic faces. J Biol Chem 2011; 286:22139-46. [PMID: 21543330 PMCID: PMC3121358 DOI: 10.1074/jbc.m111.240002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/19/2011] [Indexed: 11/06/2022] Open
Abstract
Atomic force microscopy was used to study the three-dimensional molecular topography and calcium-sensitive conformational changes of Connexin40 hemichannels (connexons) reconstituted in 1,2-dioeloyl-sn-glycero-3-phosphatidylcholine lipid bilayers. Two classes of objects were observed that differed in their protrusion heights above the bilayer (2.6 versus 4.2 nm). Comparison to reconstituted connexons containing Connexin40 truncated to eliminate most of its C-terminal cytoplasmic domain showed that the two height classes corresponded to the shorter extracellular and taller cytoplasmic aspects of the hemichannels and that the C-terminal tail of Connexin40 contributes ∼1.6 nm in thickness. Hemichannels imaged in solutions containing < 10 μm Ca(2+) showed 3.1-3.2 nm depressions (openings) in 30% of the cytoplasmic faces and 65% of the extracellular faces, and high-resolution three-dimensional topography of extracellular or cytoplasmic aspects of some connexons was observed. After addition of 3.6 mm Ca(2+), > 75% of the connexons in either orientation adopted closed conformations. In contrast, hemichannels imaged in the presence of 0.1 mm EDTA showed large (5.6- to 5.8-nm diameter) openings in nearly all hemichannels regardless of orientation, and detailed topography was visible in many connexons. Real-time imaging following the addition of 3.6 mm Ca(2+) showed transitions of both extracellular and cytoplasmic orientations from "open" into "closed" conformations within several minutes. These studies provide the first high-resolution topographic information regarding a connexin with a large cytoplasmic domain and suggest that the extramembranous portions of Connexin40 contribute to a channel entrance that is relaxed by chelation of residual divalent cations.
Collapse
Affiliation(s)
- Michael J. Allen
- From the Section of Pulmonary/Critical Care, Center for Nanomedicine, Department of Medicine, and
| | - Joanna Gemel
- the Section of Hematology/Oncology, Department of Pediatrics, University of Chicago, Chicago, Illinois 60637, and
| | - Eric C. Beyer
- the Section of Hematology/Oncology, Department of Pediatrics, University of Chicago, Chicago, Illinois 60637, and
| | - Ratnesh Lal
- the Departments of Mechanical and Aerospace Engineering and Bioengineering, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
7
|
Maeno K, Nakajima A, Conseil G, Rothnie A, Deeley RG, Cole SPC. Molecular Basis for Reduced Estrone Sulfate Transport and Altered Modulator Sensitivity of Transmembrane Helix (TM) 6 and TM17 Mutants of Multidrug Resistance Protein 1 (ABCC1). Drug Metab Dispos 2009; 37:1411-20. [DOI: 10.1124/dmd.109.026633] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Kouzayha A, Nasir MN, Buchet R, Wattraint O, Sarazin C, Besson F. Conformational and Interfacial Analyses of K3A18K3 and Alamethicin in Model Membranes. J Phys Chem B 2009; 113:7012-9. [DOI: 10.1021/jp810539b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Achraf Kouzayha
- Université de Lyon, Université Lyon 1, INSA de Lyon, and ICBMS CNRS UMR 5246, Villeurbanne, F-69622, France, CPE Lyon, Villeurbanne, F-69616, France, and Unité de Génie Enzymatique et Cellulaire, UMR 6022 du CNRS—Université de Picardie Jules Verne, Amiens, France
| | - Mehmet N. Nasir
- Université de Lyon, Université Lyon 1, INSA de Lyon, and ICBMS CNRS UMR 5246, Villeurbanne, F-69622, France, CPE Lyon, Villeurbanne, F-69616, France, and Unité de Génie Enzymatique et Cellulaire, UMR 6022 du CNRS—Université de Picardie Jules Verne, Amiens, France
| | - René Buchet
- Université de Lyon, Université Lyon 1, INSA de Lyon, and ICBMS CNRS UMR 5246, Villeurbanne, F-69622, France, CPE Lyon, Villeurbanne, F-69616, France, and Unité de Génie Enzymatique et Cellulaire, UMR 6022 du CNRS—Université de Picardie Jules Verne, Amiens, France
| | - Olivier Wattraint
- Université de Lyon, Université Lyon 1, INSA de Lyon, and ICBMS CNRS UMR 5246, Villeurbanne, F-69622, France, CPE Lyon, Villeurbanne, F-69616, France, and Unité de Génie Enzymatique et Cellulaire, UMR 6022 du CNRS—Université de Picardie Jules Verne, Amiens, France
| | - Catherine Sarazin
- Université de Lyon, Université Lyon 1, INSA de Lyon, and ICBMS CNRS UMR 5246, Villeurbanne, F-69622, France, CPE Lyon, Villeurbanne, F-69616, France, and Unité de Génie Enzymatique et Cellulaire, UMR 6022 du CNRS—Université de Picardie Jules Verne, Amiens, France
| | - Françoise Besson
- Université de Lyon, Université Lyon 1, INSA de Lyon, and ICBMS CNRS UMR 5246, Villeurbanne, F-69622, France, CPE Lyon, Villeurbanne, F-69616, France, and Unité de Génie Enzymatique et Cellulaire, UMR 6022 du CNRS—Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
9
|
Loo TW, Clarke DM. Mutational analysis of ABC proteins. Arch Biochem Biophys 2008; 476:51-64. [DOI: 10.1016/j.abb.2008.02.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 02/14/2008] [Accepted: 02/17/2008] [Indexed: 01/06/2023]
|
10
|
Gap junction channel structure in the early 21st century: facts and fantasies. Curr Opin Cell Biol 2007; 19:521-8. [PMID: 17945477 DOI: 10.1016/j.ceb.2007.09.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 09/05/2007] [Indexed: 02/04/2023]
Abstract
Gap junction channels connect the cytoplasms of adjacent cells through the end-to-end docking of single-membrane structures called connexons, formed by a ring of six connexin monomers. Each monomer contains four transmembrane alpha-helices, for a total of 24 alpha-helices in a connexon. The fundamental structure of the connexon pore is probably similar in unpaired connexons and junctional channels, and for channels formed by different connexin isoforms. Nevertheless, variability in results from structurally focused mutagenesis and electrophysiological studies raise uncertainty about the specific assignments of the transmembrane helices. Mapping of human mutations onto a suggested C(alpha) model predicts that mutations that disrupt helix-helix packing impair channel function. An experimentally determined structure at atomic resolution will be essential to confirm and resolve these concepts.
Collapse
|
11
|
Kovacs JA, Baker KA, Altenberg GA, Abagyan R, Yeager M. Molecular modeling and mutagenesis of gap junction channels. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 94:15-28. [PMID: 17524457 PMCID: PMC2819402 DOI: 10.1016/j.pbiomolbio.2007.03.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gap junction channels connect the cytoplasms of adjacent cells through the end-to-end docking of hexameric hemichannels called connexons. Each connexon is formed by a ring of 24 alpha-helices that are staggered by 30 degrees with respect to those in the apposed connexon. Current evidence suggests that the two connexons are docked by interdigitated, anti-parallel beta strands across the extracellular gap. The second extracellular loop, E2, guides selectivity in docking between connexons formed by different isoforms. There is considerably more sequence variability of the N-terminal portion of E2, suggesting that this region dictates connexon coupling. Mutagenesis, biochemical, dye-transfer and electrophysiological data, combined with computational studies, have suggested possible assignments for the four transmembrane alpha-helices within each subunit. Most current models assign M3 as the major pore-lining helix. Mapping of human mutations onto a C(alpha) model suggested that native helix packing is important for the formation of fully functional channels. Nevertheless, a mutant in which the M4 helix has been replaced with polyalanine is functional, suggesting that M4 is located on the perimeter of the channel. In spite of this substantial progress in understanding the structural biology of gap junction channels, an experimentally determined structure at atomic resolution will be essential to confirm these concepts.
Collapse
Affiliation(s)
- Julio A Kovacs
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
12
|
Deng Y, Chen Y, Reuss L, Altenberg GA. Mutations of connexin 26 at position 75 and dominant deafness: essential role of arginine for the generation of functional gap-junctional channels. Hear Res 2006; 220:87-94. [PMID: 16945493 DOI: 10.1016/j.heares.2006.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 07/11/2006] [Accepted: 07/13/2006] [Indexed: 11/27/2022]
Abstract
Gap-junctional channels are large intercellular aqueous pores formed by head-to-head association of two gap-junctional hemichannels (connexin hexamers), one from each of the adjacent cells. The mechano-transduction of sound waves into electrical impulses occurs in the cochlea, which houses the organ of Corti. Hereditary deafness is frequent and mutations of connexin 26, the predominant connexin of the cochlea, are its most frequent cause. Mutations of R75 cause deafness and disrupt gap-junctional communication. Here, we determined the effects of substitutions of R75 with different residues (alanine, asparagine, aspartic acid, lysine, phenylalanine, tyrosine or tryptophan) on formation of gap-junctional channels and hemichannels. We show that connexin 26 R75 is essential for the formation of gap-junctional channels. Substitution of R75 with aromatic residues yields functional hemichannels that display altered voltage dependence, whereas substitution with other residues yields non-functional hemichannels. The expression of R75 mutants has a dominant negative effect on gap-junctional communication mediated by wild-type connexin 26, independently of the ability of the mutants to form functional gap-junctional hemichannels. Our results show that the arginine located at position 75 of connexin 26 is essential for function, and cannot be replaced by other residues.
Collapse
Affiliation(s)
- Yanqin Deng
- Department of Neuroscience and Cell Biology, and the Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555-0437, United States
| | | | | | | |
Collapse
|
13
|
Deeley RG, Westlake C, Cole SPC. Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol Rev 2006; 86:849-99. [PMID: 16816140 DOI: 10.1152/physrev.00035.2005] [Citation(s) in RCA: 533] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multidrug Resistance Proteins (MRPs), together with the cystic fibrosis conductance regulator (CFTR/ABCC7) and the sulfonylurea receptors (SUR1/ABCC8 and SUR2/ABCC9) comprise the 13 members of the human "C" branch of the ATP binding cassette (ABC) superfamily. All C branch proteins share conserved structural features in their nucleotide binding domains (NBDs) that distinguish them from other ABC proteins. The MRPs can be further divided into two subfamilies "long" (MRP1, -2, -3, -6, and -7) and "short" (MRP4, -5, -8, -9, and -10). The short MRPs have a typical ABC transporter structure with two polytropic membrane spanning domains (MSDs) and two NBDs, while the long MRPs have an additional NH2-terminal MSD. In vitro, the MRPs can collectively confer resistance to natural product drugs and their conjugated metabolites, platinum compounds, folate antimetabolites, nucleoside and nucleotide analogs, arsenical and antimonial oxyanions, peptide-based agents, and, under certain circumstances, alkylating agents. The MRPs are also primary active transporters of other structurally diverse compounds, including glutathione, glucuronide, and sulfate conjugates of a large number of xeno- and endobiotics. In vivo, several MRPs are major contributors to the distribution and elimination of a wide range of both anticancer and non-anticancer drugs and metabolites. In this review, we describe what is known of the structure of the MRPs and the mechanisms by which they recognize and transport their diverse substrates. We also summarize knowledge of their possible physiological functions and evidence that they may be involved in the clinical drug resistance of various forms of cancer.
Collapse
Affiliation(s)
- Roger G Deeley
- Division of Cancer Biology and Genetics, Cancer Research Institute and Department of Biochemistry, Queen's University Kingdom, Ontario, Canada.
| | | | | |
Collapse
|
14
|
Abstract
Gap junctional hemichannels mediate cell-extracellular communication. A hemichannel is made of six connexin (Cx) subunits; each connexin has four transmembrane domains, two extracellular loops, and cytoplasmic amino- and carboxyl-terminals (CTs). The extracellular domains are arranged differently at non-junctional and junctional (gap junction) regions, although very little is known about their flexibility and conformational energetics. The cytoplasmic tail differs considerably in the size and amino acid sequence for different connexins and is predicted to be involved in the channel open and closed conformations. For large connexins, such as Cx43, the CT makes large cytoplasmic fuzz visible under electron microscopy. If this CT domain controls channel permeability by physical occlusion of the pore mouth, movement of this portion could open or close the channel. We used atomic force microscopy-based single molecule spectroscopy with antibody-modified atomic force microscopy tips and connexin mimetic peptide modified tips to examine the flexibility of extracellular loop and CT domains and to estimate the energetics of their movements. Antibody to the CT portion closer to the membrane stretches the tail to a shorter length, and the antibody to CT tail stretches the tail to a longer length. The stretch length and the energy required for stretching the various portions of the carboxyl tail support the ball and chain model for hemichannel conformational changes.
Collapse
Affiliation(s)
- Fei Liu
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106, USA
| | | | | | | |
Collapse
|
15
|
Cole SPC, Deeley RG. Transport of glutathione and glutathione conjugates by MRP1. Trends Pharmacol Sci 2006; 27:438-46. [PMID: 16820223 DOI: 10.1016/j.tips.2006.06.008] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 04/25/2006] [Accepted: 06/19/2006] [Indexed: 11/30/2022]
Abstract
Glutathione (GSH)-conjugated xenobiotics and GSH-conjugated metabolites (e.g. the cysteinyl leukotriene C4) must be exported from the cells in which they are formed before they can be eliminated from the body or act on their cellular targets. This efflux is often mediated by the multidrug resistance protein 1 (MRP1) transporter, which also confers drug resistance to tumour cells and can protect normal cells from toxic insults. In addition to drugs and GSH conjugates, MRP1 exports GSH and GSH disulfide, and might thus have a role in cellular responses to oxidative stress. The transport of several drugs and conjugated organic anions by MRP1 requires the presence of GSH, but it is not well understood how GSH (and its analogues) enhances transport. Site-directed mutagenesis studies and biophysical analyses have provided important insights into the structural determinants of MRP1 that influence GSH and GSH conjugate binding and transport.
Collapse
Affiliation(s)
- Susan P C Cole
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | | |
Collapse
|
16
|
Deeley RG, Cole SPC. Substrate recognition and transport by multidrug resistance protein 1 (ABCC1). FEBS Lett 2005; 580:1103-11. [PMID: 16387301 DOI: 10.1016/j.febslet.2005.12.036] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 12/09/2005] [Accepted: 12/13/2005] [Indexed: 12/16/2022]
Abstract
Multidrug resistance protein (MRP) 1 belongs to the 'C' branch of the ABC transporter superfamily. MRP1 is a high-affinity transporter of the cysteinyl leukotriene C(4) and is responsible for the systemic release of this cytokine in response to an inflammatory stimulus. However, the substrate specificity of MRP1 is extremely broad and includes many organic anion conjugates of structurally unrelated endo- and xenobiotics. In addition, MRP1 transports unmodified hydrophobic compounds, such as natural product type chemotherapeutic agents and mutagens, such as aflatoxin B(1). Transport of several of these compounds has been shown to be dependent on the presence of reduced glutathione (GSH). More recently, GSH has also been shown to stimulate the transport of some conjugated compounds, including sulfates and glucuronides. Here, we summarize current knowledge of the substrate specificity and modes of transport of MRP1 and discuss how the protein may recognize its structurally diverse substrates.
Collapse
Affiliation(s)
- Roger G Deeley
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ont., Canada K7L 3N6.
| | | |
Collapse
|
17
|
Wu P, Oleschuk CJ, Mao Q, Keller BO, Deeley RG, Cole SPC. Analysis of human multidrug resistance protein 1 (ABCC1) by matrix-assisted laser desorption ionization/time of flight mass spectrometry: toward identification of leukotriene C4 binding sites. Mol Pharmacol 2005; 68:1455-65. [PMID: 16105987 DOI: 10.1124/mol.105.016576] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multidrug resistance in tumor cells may be caused by reduced drug accumulation resulting from expression of one or more proteins belonging to the ATP-binding cassette (ABC) transporter superfamily. In addition to their drug efflux properties, certain ABC proteins such as multidrug resistance protein 1 (MRP1) (ABCC1) mediate the ATP-dependent transport of a broad array of organic anions. The intrinsically photoreactive glutathione-conjugated cysteinyl leukotriene C4 (LTC4) is a high-affinity physiological substrate of MRP1 and is widely regarded as a model compound for evaluating the substrate binding and transport properties of wild-type and mutant forms of the transporter. In the present study, we have optimized high-level expression of recombinant human MRP1 in Pichia pastoris and developed a two-step purification scheme that results in purification of the transporter to >90% homogeneity. Peptide mapping by matrix-assisted laser desorption ionization/time of flight mass spectrometry of the peptides generated by in-gel protease digestions of purified underglycosylated MRP1 identified 96.7% of the MRP1 sequence with >98% coverage of its 17 transmembrane helices. Subsequent comparisons with mass spectra of MRP1 photolabeled with LTC4 identified six candidate LTC4-modified peptide fragments that are consistent with the conclusion that the intracellular juxtamembrane positions of transmembrane helices 6, 7, 10, 17, and a COOH-proximal portion of the cytoplasmic loop that links the first and second membrane spanning domains are part of the LTC4 binding site of the transporter. Our studies confirm the usefulness of mass spectrometry for analysis of mammalian polytopic membrane proteins and for identification of substrate binding sites of human MRP1.
Collapse
Affiliation(s)
- Peng Wu
- Division of Cancer Biology and Genetics, Cancer Research Institute, 3rd Floor Botterell Hall, Queen's University, Kingston, ON, Canada K7L 3N6
| | | | | | | | | | | |
Collapse
|