1
|
Elsakka EGE, Midan HM, Abulsoud AI, Fathi D, Abdelmaksoud NM, Abdel Mageed SS, Zaki MB, Abd-Elmawla MA, Rizk NI, Elrebehy MA, Abdelghany TM, Elesawy AE, Shahin RK, El Tabaa MM, Mohammed OA, Abdel-Reheim MA, Elballal MS, Doghish AS. Emerging insights: miRNA modulation of ferroptosis pathways in lung cancer. Exp Cell Res 2024; 442:114272. [PMID: 39362302 DOI: 10.1016/j.yexcr.2024.114272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
The newly discovered programmed iron-dependent necrosis, ferroptosis, is a novel pathway that is controlled by iron-dependent lipid peroxidation and cellular redox changes. It can be triggered intrinsically by low antioxidant enzyme activity or extrinsically by blocking amino acid transporters or activating iron transporters. The induction of ferroptosis involves the activation of specific proteins, suppression of transporters, and increased endoplasmic reticulum (ER) stress (a condition in which the ER, a crucial organelle involved in protein folding and processing, becomes overwhelmed by an accumulation of misfolded or unfolded proteins. This situation disrupts the normal functioning of the ER, leading to a cellular stress response known as the unfolded protein response), leading to lipid peroxidation byproduct accumulation and toxic reactive oxygen species (ROS), which are highly reactive molecules derived from diatomic oxygen and include various forms such as superoxide (O₂⁻), hydroxyl radicals (•OH), and hydrogen peroxide (H₂O₂). Ferroptosis is closely associated with signaling molecules in lung cancer, including epidermal growth factor receptor (EGFR), mitogen-activated protein kinase (MAPK), hypoxia-inducible factor 1-alpha (HIF-1α), and P53, and is regulated by epigenetic factors such as microRNAs (miRNAs). miRNAs are small non-coding RNA molecules that regulate gene expression by binding to target messenger RNAs (mRNAs), leading to translational repression or degradation. Several miRNAs have been found to modulate ferroptosis by targeting key genes involved in iron metabolism, lipid peroxidation, and antioxidant defense pathways. The research on ferroptosis has expanded to target its role in lung cancer treatment and resistance prevention. This review encapsulates the significance of ferroptosis in lung cancer. Understanding the mechanisms and implications of ferroptosis in lung cancer cells may lead to targeted therapies exploiting cancer cell vulnerabilities to ferroptosis Also, improving treatment outcomes, and overcoming resistance.
Collapse
Affiliation(s)
- Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Nourhan M Abdelmaksoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020, El Salam, 11785, Cairo, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
2
|
Roh JL. Targeting ferroptosis suppressor protein 1 in cancer therapy: Implications and perspectives, with emphasis on head and neck cancer. Crit Rev Oncol Hematol 2024; 202:104440. [PMID: 38986728 DOI: 10.1016/j.critrevonc.2024.104440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024] Open
Abstract
The diverse functions of ferroptosis suppressor protein 1 (FSP1/AIFM2) in cancer have positioned it as a promising therapeutic target across various malignancies, including head and neck cancer (HNC). Initially characterized as a potential tumor suppressor due to its involvement in apoptosis and ferroptosis, recent studies have revealed its complex role in tumor growth, metabolism, and therapy resistance. Pharmacological inhibition of FSP1 shows potential in sensitizing cancer cells to ferroptosis and overcoming resistance to conventional therapies, offering new avenues for precision medicine approaches. Identifying novel FSP1 inhibitors and their synergistic effects with existing therapies presents exciting opportunities for therapeutic development. However, translating preclinical findings into clinical practice requires the refinement of FSP1 inhibitors, robust biomarkers for patient stratification, and further investigations into the molecular mechanisms underlying FSP1-mediated therapy resistance. Integrating FSP1-targeted therapies into comprehensive treatment regimens holds promise for improving outcomes in cancer patients and advancing the field of precision oncology.
Collapse
Affiliation(s)
- Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Pocheon, Republic of Korea.
| |
Collapse
|
3
|
Lan H, Gao Y, Hong T, Chang Z, Zhao Z, Wang Y, Wang F. Structural insight into 6-OH-FAD-dependent activation of hFSP1 for ferroptosis suppression. Cell Discov 2024; 10:88. [PMID: 39160155 PMCID: PMC11333494 DOI: 10.1038/s41421-024-00723-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Affiliation(s)
- Hongying Lan
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Yu Gao
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Ting Hong
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Zihan Chang
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Zhengyang Zhao
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
4
|
Duță C, Muscurel C, Dogaru CB, Stoian I. Ferroptosis-A Shared Mechanism for Parkinson's Disease and Type 2 Diabetes. Int J Mol Sci 2024; 25:8838. [PMID: 39201524 PMCID: PMC11354749 DOI: 10.3390/ijms25168838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Type 2 diabetes (T2D) and Parkinson's disease (PD) are the two most frequent age-related chronic diseases. There are many similarities between the two diseases: both are chronic diseases; both are the result of a decrease in a specific substance-insulin in T2D and dopamine in PD; and both are caused by the destruction of specific cells-beta pancreatic cells in T2D and dopaminergic neurons in PD. Recent epidemiological and experimental studies have found that there are common underlying mechanisms in the pathophysiology of T2D and PD: chronic inflammation, mitochondrial dysfunction, impaired protein handling and ferroptosis. Epidemiological research has indicated that there is a higher risk of PD in individuals with T2D. Moreover, clinical studies have observed that the symptoms of Parkinson's disease worsen significantly after the onset of T2D. This article provides an up-to-date review on the intricate interplay between oxidative stress, reactive oxygen species (ROS) and ferroptosis in PD and T2D. By understanding the shared molecular pathways and how they can be modulated, we can develop more effective therapies, or we can repurpose existing drugs to improve patient outcomes in both disorders.
Collapse
|
5
|
Guo K, Lu M, Bi J, Yao T, Gao J, Ren F, Zhu L. Ferroptosis: mechanism, immunotherapy and role in ovarian cancer. Front Immunol 2024; 15:1410018. [PMID: 39192972 PMCID: PMC11347334 DOI: 10.3389/fimmu.2024.1410018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Ovarian cancer is currently the second most common malignant tumor among gynecological cancers worldwide, primarily due to challenges in early diagnosis, high recurrence rates, and resistance to existing treatments. Current therapeutic options are inadequate for addressing the needs of ovarian cancer patients. Ferroptosis, a novel form of regulated cell death with demonstrated tumor-suppressive properties, has gained increasing attention in ovarian malignancy research. A growing body of evidence suggests that ferroptosis plays a significant role in the onset, progression, and incidence of ovarian cancer. Additionally, it has been found that immunotherapy, an emerging frontier in tumor treatment, synergizes with ferroptosis in the context of ovarian cancer. Consequently, ferroptosis is likely to become a critical target in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ke Guo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Miao Lu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianlei Bi
- Department of Obstetrics and Gynecology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Tianyu Yao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fang Ren
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liancheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Tan X, He Y, Yu P, Deng Y, Xie Z, Guo J, Hou Q, Li P, Lin X, Ouyang S, Ma W, Xie Y, Guo Z, Chen D, Zhang Z, Zhu Y, Huang F, Zhao Z, Zhang C, Guo Z, Chen X, Peng T, Li L, Xie W. The dual role of FSP1 in programmed cell death: resisting ferroptosis in the cell membrane and promoting necroptosis in the nucleus of THP-1 cells. Mol Med 2024; 30:102. [PMID: 39009982 PMCID: PMC11247902 DOI: 10.1186/s10020-024-00861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/10/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Acute monocytic leukemia-M5 (AML-M5) remains a challenging disease due to its high morbidity and poor prognosis. In addition to the evidence mentioned earlier, several studies have shown that programmed cell death (PCD) serves a critical function in treatment of AML-M5. However, the role and relationship between ferroptosis and necroptosis in AML-M5 remains unclear. METHODS THP-1 cells were mainly treated with Erastin and IMP-366. The changes of ferroptosis and necroptosis levels were detected by CCK-8, western blot, quantitative real-time PCR, and electron microscopy. Flow cytometry was applied to detect the ROS and lipid ROS levels. MDA, 4-HNE, GSH and GSSG were assessed by ELISA kits. Intracellular distribution of FSP1 was studied by immunofluorescent staining and western blot. RESULTS The addition of the myristoylation inhibitor IMP-366 to erastin-treated acute monocytic leukemia cell line THP-1 cell not only resulted in greater susceptibility to ferroptosis characterized by lipid peroxidation, glutathione (GSH) depletion and mitochondrial shrinkage, as the FSP1 position on membrane was inhibited, but also increased p-RIPK1 and p-MLKL protein expression, as well as a decrease in caspase-8 expression, and triggered the characteristic necroptosis phenomena, including cytoplasmic translucency, mitochondrial swelling, membranous fractures by FSP1 migration into the nucleus via binding importin α2. It is interesting to note that ferroptosis inhibitor fer-1 reversed necroptosis. CONCLUSION We demonstrated that inhibition of myristoylation by IMP-366 is capable of switching ferroptosis and ferroptosis-dependent necroptosis in THP-1 cells. In these findings, FSP1-mediated ferroptosis and necroptosis are described as alternative mechanisms of PCD of THP-1 cells, providing potential therapeutic strategies and targets for AML-M5.
Collapse
Affiliation(s)
- Xiaoqian Tan
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Basic Medical Sciences, Xiangnan University, Chenzhou, 423000, Hunan, China
| | - Yinling He
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Panpan Yu
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yunong Deng
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhongcheng Xie
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jiami Guo
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Qin Hou
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Pin Li
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoyan Lin
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Siyu Ouyang
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wentao Ma
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yushu Xie
- Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Zilong Guo
- Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Dandan Chen
- Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Zhixia Zhang
- Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Yunyu Zhu
- Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Fei Huang
- Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Ziye Zhao
- Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Cen Zhang
- Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Zhirong Guo
- Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Xi Chen
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Tianhong Peng
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Liang Li
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Wei Xie
- Department of Physiology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
7
|
Ma Y, Cong L, Shen W, Yang C, Ye K. Ferroptosis defense mechanisms: The future and hope for treating osteosarcoma. Cell Biochem Funct 2024; 42:e4080. [PMID: 38924104 DOI: 10.1002/cbf.4080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Currently, challenges such as chemotherapy resistance, resulting from preoperative and postoperative chemotherapy, postoperative recurrence, and poor bone regeneration quality, are becoming increasingly prominent in osteosarcoma (OS) treatment. There is an urgent need to find more effective ways to address these issues. Ferroptosis is a novel form of iron-dependent programmed cell death, distinct from other forms of cell death. In this paper, we summarize how, through the three major defense systems of ferroptosis, not only can substances from traditional Chinese medicine, antitumor drugs, and nano-drug carriers induce ferroptosis in OS cells, but they can also be combined with immunotherapy, differentiation therapy, and other treatment modalities to significantly enhance chemotherapy sensitivity and inhibit tumor growth. Thus, ferroptosis holds great potential in treating OS, offering more choices and possibilities for future clinical interventions.
Collapse
Affiliation(s)
- Yulong Ma
- Department of Orthopedics, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Bone and Joint Diseases of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Liming Cong
- Department of Orthopedics, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Bone and Joint Diseases of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Wenxiang Shen
- Department of Orthopedics, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Bone and Joint Diseases of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Chunwang Yang
- Department of Orthopedics, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Bone and Joint Diseases of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Kaishan Ye
- Department of Orthopedics, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Liu Z, Zhang H, Hong G, Bi X, Hu J, Zhang T, An Y, Guo N, Dong F, Xiao Y, Li W, Zhao X, Chu B, Guo S, Zhang X, Chai R, Fu X. Inhibition of Gpx4-mediated ferroptosis alleviates cisplatin-induced hearing loss in C57BL/6 mice. Mol Ther 2024; 32:1387-1406. [PMID: 38414247 PMCID: PMC11081921 DOI: 10.1016/j.ymthe.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024] Open
Abstract
Cisplatin-induced hearing loss is a common side effect of cancer chemotherapy in clinics; however, the mechanism of cisplatin-induced ototoxicity is still not completely clarified. Cisplatin-induced ototoxicity is mainly associated with the production of reactive oxygen species, activation of apoptosis, and accumulation of intracellular lipid peroxidation, which also is involved in ferroptosis induction. In this study, the expression of TfR1, a ferroptosis biomarker, was upregulated in the outer hair cells of cisplatin-treated mice. Moreover, several key ferroptosis regulator genes were altered in cisplatin-damaged cochlear explants based on RNA sequencing, implying the induction of ferroptosis. Ferroptosis-related Gpx4 and Fsp1 knockout mice were established to investigate the specific mechanisms associated with ferroptosis in cochleae. Severe outer hair cell loss and progressive damage of synapses in inner hair cells were observed in Atoh1-Gpx4-/- mice. However, Fsp1-/- mice showed no significant hearing phenotype, demonstrating that Gpx4, but not Fsp1, may play an important role in the functional maintenance of HCs. Moreover, findings showed that FDA-approved luteolin could specifically inhibit ferroptosis and alleviate cisplatin-induced ototoxicity through decreased expression of transferrin and intracellular concentration of ferrous ions. This study indicated that ferroptosis inhibition through the reduction of intracellular ferrous ions might be a potential strategy to prevent cisplatin-induced hearing loss.
Collapse
MESH Headings
- Animals
- Cisplatin/adverse effects
- Ferroptosis/drug effects
- Ferroptosis/genetics
- Mice
- Hearing Loss/chemically induced
- Hearing Loss/genetics
- Hearing Loss/metabolism
- Mice, Knockout
- Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
- Phospholipid Hydroperoxide Glutathione Peroxidase/genetics
- Mice, Inbred C57BL
- Disease Models, Animal
- Receptors, Transferrin/metabolism
- Receptors, Transferrin/genetics
- Reactive Oxygen Species/metabolism
- Lipid Peroxidation/drug effects
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/pathology
- Ototoxicity/etiology
- Ototoxicity/metabolism
- Antineoplastic Agents/adverse effects
- Apoptosis/drug effects
Collapse
Affiliation(s)
- Ziyi Liu
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Hanbing Zhang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong 250012, China
| | - Guodong Hong
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiuli Bi
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jun Hu
- Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Tiancheng Zhang
- Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yachun An
- School of Life Science, Shandong University, Qingdao, Shandong 266237, China
| | - Na Guo
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fengyue Dong
- School of Life Science, Shandong University, Qingdao, Shandong 266237, China
| | - Yu Xiao
- School of Life Science, Shandong University, Qingdao, Shandong 266237, China
| | - Wen Li
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiaoxu Zhao
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250102, China
| | - Siwei Guo
- School of Life Science, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaohan Zhang
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Renjie Chai
- Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China; Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Southeast University Shenzhen Research Institute, Shenzhen, Guangdong 518063, China.
| | - Xiaolong Fu
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
9
|
Chen Y, Zhao W, Hu A, Lin S, Chen P, Yang B, Fan Z, Qi J, Zhang W, Gao H, Yu X, Chen H, Chen L, Wang H. Type 2 diabetic mellitus related osteoporosis: focusing on ferroptosis. J Transl Med 2024; 22:409. [PMID: 38693581 PMCID: PMC11064363 DOI: 10.1186/s12967-024-05191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024] Open
Abstract
With the aging global population, type 2 diabetes mellitus (T2DM) and osteoporosis(OP) are becoming increasingly prevalent. Diabetic osteoporosis (DOP) is a metabolic bone disorder characterized by abnormal bone tissue structure and reduced bone strength in patients with diabetes. Studies have revealed a close association among diabetes, increased fracture risk, and disturbances in iron metabolism. This review explores the concept of ferroptosis, a non-apoptotic cell death process dependent on intracellular iron, focusing on its role in DOP. Iron-dependent lipid peroxidation, particularly impacting pancreatic β-cells, osteoblasts (OBs) and osteoclasts (OCs), contributes to DOP. The intricate interplay between iron dysregulation, which comprises deficiency and overload, and DOP has been discussed, emphasizing how excessive iron accumulation triggers ferroptosis in DOP. This concise overview highlights the need to understand the complex relationship between T2DM and OP, particularly ferroptosis. This review aimed to elucidate the pathogenesis of ferroptosis in DOP and provide a prospective for future research targeting interventions in the field of ferroptosis.
Collapse
Affiliation(s)
- Yili Chen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wen Zhao
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - An Hu
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Shi Lin
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Ping Chen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bing Yang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhirong Fan
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ji Qi
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wenhui Zhang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Huanhuan Gao
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiubing Yu
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Haiyun Chen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Luyuan Chen
- Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 510086, China.
| | - Haizhou Wang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Miao H, Meng H, Zhang Y, Chen T, Zhang L, Cheng W. FSP1 inhibition enhances olaparib sensitivity in BRCA-proficient ovarian cancer patients via a nonferroptosis mechanism. Cell Death Differ 2024; 31:497-510. [PMID: 38374229 PMCID: PMC11043371 DOI: 10.1038/s41418-024-01263-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Poly ADP-ribose polymerase inhibitors (PARPis) exhibit promising efficacy in patients with BRCA mutations or homologous repair deficiency (HRD) in ovarian cancer (OC). However, less than 40% of patients have HRD, it is vital to expand the indications for PARPis in BRCA-proficient patients. Ferroptosis suppressor protein 1 (FSP1) is a key protein in a newly identified ferroptosis-protective mechanism that occurs in parallel with the GPX4-mediated pathway and is associated with chemoresistance in several cancers. Herein, FSP1 is reported to be negatively correlated with the prognosis in OC patients. Combination therapy comprising olaparib and iFSP1 (a FSP1 inhibitor) strongly inhibited tumour proliferation in BRCA-proficient OC cell lines, patient-derived organoids (PDOs) and xenograft mouse models. Surprisingly, the synergistic killing effect could not be reversed by ferroptosis inhibitors, indicating that mechanisms other than ferroptosis were responsible for the synergistic lethality. In addition, cotreatment was shown to induce increased γH2A.X foci and to impair nonhomologous end joining (NHEJ) activity to a greater extent than did any single drug. Mass spectrometry and immunoprecipitation analyses revealed that FSP1 interacted with Ku70, a classical component recruited to and occupying the end of double-strand breaks (DSBs) in the NHEJ process. FSP1 inhibition decreased Ku70 PARylation, impaired subsequent DNA-PKcs recruitment to the Ku complex at DSB sites and was rescued by restoring PARylation. These findings unprecedentedly reveal a novel role of FSP1 in DNA damage repair and provide new insights into how to sensitize OC patients to PARPi treatment.
Collapse
Affiliation(s)
- Huixian Miao
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China
| | - Huangyang Meng
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China
| | - Yashuang Zhang
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China
| | - Tian Chen
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China
| | - Lin Zhang
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China.
| | - Wenjun Cheng
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
11
|
Lv Y, Liang C, Sun Q, Zhu J, Xu H, Li X, Li YY, Wang Q, Yuan H, Chu B, Zhu D. Structural insights into FSP1 catalysis and ferroptosis inhibition. Nat Commun 2023; 14:5933. [PMID: 37739943 PMCID: PMC10516921 DOI: 10.1038/s41467-023-41626-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/11/2023] [Indexed: 09/24/2023] Open
Abstract
Ferroptosis suppressor protein 1 (FSP1, also known as AIMF2, AMID or PRG3) is a recently identified glutathione-independent ferroptosis suppressor1-3, but its underlying structural mechanism remains unknown. Here we report the crystal structures of Gallus gallus FSP1 in its substrate-free and ubiquinone-bound forms. The structures reveal a FAD-binding domain and a NAD(P)H-binding domain, both of which are shared with AIF and NADH oxidoreductases4-9, and a characteristic carboxy-terminal domain as well. We demonstrate that the carboxy-terminal domain is crucial for the catalytic activity and ferroptosis inhibition of FSP1 by mediating the functional dimerization of FSP1, and the formation of two active sites located on two sides of FAD, which are responsible for ubiquinone reduction and a unique FAD hydroxylation respectively. We also identify that FSP1 can catalyze the production of H2O2 and the conversion of FAD to 6-hydroxy-FAD in the presence of oxygen and NAD(P)H in vitro, and 6-hydroxy-FAD directly inhibits ferroptosis in cells. Together, these findings further our understanding on the catalytic and ferroptosis suppression mechanisms of FSP1 and establish 6-hydroxy-FAD as an active cofactor in FSP1 and a potent radical-trapping antioxidant in ferroptosis inhibition.
Collapse
Affiliation(s)
- Yun Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chunhui Liang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qichao Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jing Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Haiyan Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xiaoqing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yao-Yao Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qihai Wang
- School of bioengineering, Jingchu University of Technology, Jingmen, 448000, China.
| | - Huiqing Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- Key Laboratory of Experimental Teratology of Ministry of Education, Institute of Medical Sciences, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250031, China.
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Deyu Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
12
|
Guo S, Li F, Liang Y, Zheng Y, Mo Y, Zhao D, Jiang Z, Cui M, Qi L, Chen J, Wan L, Chen G, Wei S, Yang Q, Liu J. AIFM2 promotes hepatocellular carcinoma metastasis by enhancing mitochondrial biogenesis through activation of SIRT1/PGC-1α signaling. Oncogenesis 2023; 12:46. [PMID: 37735151 PMCID: PMC10514190 DOI: 10.1038/s41389-023-00491-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
AIFM2 is a crucial NADH oxidase involved in the regulation of cytosolic NAD+. However, the role of AIFM2 in the progression of human cancers remains largely unexplored. Here, we elucidated the clinical implications, biological functions, and molecular mechanisms of AIFM2 in hepatocellular carcinoma (HCC). We found that AIFM2 is significantly upregulated in HCC, which is most probably caused by DNA hypomethylation and downregulation of miR-150-5p. High expression of AIFM2 is markedly associated with poor survival in patients with HCC. Knockdown of AIFM2 significantly impaired, while forced expression of AIFM2 enhanced the metastasis of HCC both in vitro and in vivo. Mechanistically, increased mitochondrial biogenesis and oxidative phosphorylation by activation of SIRT1/PGC-1α signaling contributed to the promotion of metastasis by AIFM2 in HCC. In conclusion, AIFM2 upregulation plays a crucial role in the promotion of HCC metastasis by activating SIRT1/PGC-1α signaling, which strongly suggests that AIFM2 could be targeted for the treatment of HCC.
Collapse
Affiliation(s)
- Sanxing Guo
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Fengying Li
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yixuan Liang
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, 475004, Kaifeng, Henan, China
| | - Yufei Zheng
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yingyi Mo
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Deyao Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Zhixiong Jiang
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, 475004, Kaifeng, Henan, China
| | - Mengmeng Cui
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, 475004, Kaifeng, Henan, China
| | - Lixia Qi
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, 475004, Kaifeng, Henan, China
| | - Jiaxing Chen
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, 475004, Kaifeng, Henan, China
| | - Lixin Wan
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, 475004, Kaifeng, Henan, China
| | - Guoyong Chen
- Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital; Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, Henan, China
| | - Sidong Wei
- Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital; Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, Henan, China
| | - Qi Yang
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, 475004, Kaifeng, Henan, China.
- School of Life Sciences, Henan University, 475004, Kaifeng, Henan, China.
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
13
|
Lee J, Roh JL. Unleashing Ferroptosis in Human Cancers: Targeting Ferroptosis Suppressor Protein 1 for Overcoming Therapy Resistance. Antioxidants (Basel) 2023; 12:1218. [PMID: 37371948 DOI: 10.3390/antiox12061218] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Ferroptosis, a recently identified form of regulated cell death characterized by the iron-dependent accumulation of lethal lipid peroxidation, has gained increasing attention in cancer therapy. Ferroptosis suppressor protein 1 (FSP1), an NAD(P)H-ubiquinone oxidoreductase that reduces ubiquinone to ubiquinol, has emerged as a critical player in the regulation of ferroptosis. FSP1 operates independently of the canonical system xc-/glutathione peroxidase 4 pathway, making it a promising target for inducing ferroptosis in cancer cells and overcoming ferroptosis resistance. This review provides a comprehensive overview of FSP1 and ferroptosis, emphasizing the importance of FSP1 modulation and its potential as a therapeutic target in cancer treatment. We also discuss recent progress in developing FSP1 inhibitors and their implications for cancer therapy. Despite the challenges associated with targeting FSP1, advances in this field may provide a strong foundation for developing innovative and effective treatments for cancer and other diseases.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do 13496, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do 13496, Republic of Korea
| |
Collapse
|
14
|
Xie L, Fang B, Zhang C. The role of ferroptosis in metabolic diseases. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119480. [PMID: 37127193 DOI: 10.1016/j.bbamcr.2023.119480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
The annual incidence of metabolic diseases such as diabetes, non-alcoholic fatty liver disease (NAFLD), osteoporosis, and atherosclerosis (AS) is increasing, resulting in a heavy burden on human health and the social economy. Ferroptosis is a novel form of programmed cell death driven by iron-dependent lipid peroxidation, which was discovered in recent years. Emerging evidence has suggested that ferroptosis contributes to the development of metabolic diseases. Here, we summarize the mechanisms and molecular signaling pathways involved in ferroptosis. Then we discuss the role of ferroptosis in metabolic diseases. Finally, we analyze the potential of targeting ferroptosis as a promising therapeutic approach for metabolic diseases.
Collapse
Affiliation(s)
- Ling Xie
- Department of Nephrology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430072, Hubei, China
| | - Bin Fang
- Department of Nephrology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430072, Hubei, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430072, Hubei, China.
| |
Collapse
|
15
|
Xing N, Du Q, Guo S, Xiang G, Zhang Y, Meng X, Xiang L, Wang S. Ferroptosis in lung cancer: a novel pathway regulating cell death and a promising target for drug therapy. Cell Death Discov 2023; 9:110. [PMID: 37005430 PMCID: PMC10067943 DOI: 10.1038/s41420-023-01407-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/04/2023] Open
Abstract
Lung cancer is a common malignant tumor that occurs in the human body and poses a serious threat to human health and quality of life. The existing treatment methods mainly include surgical treatment, chemotherapy, and radiotherapy. However, due to the strong metastatic characteristics of lung cancer and the emergence of related drug resistance and radiation resistance, the overall survival rate of lung cancer patients is not ideal. There is an urgent need to develop new treatment strategies or new effective drugs to treat lung cancer. Ferroptosis, a novel type of programmed cell death, is different from the traditional cell death pathways such as apoptosis, necrosis, pyroptosis and so on. It is caused by the increase of iron-dependent reactive oxygen species due to intracellular iron overload, which leads to the accumulation of lipid peroxides, thus inducing cell membrane oxidative damage, affecting the normal life process of cells, and finally promoting the process of ferroptosis. The regulation of ferroptosis is closely related to the normal physiological process of cells, and it involves iron metabolism, lipid metabolism, and the balance between oxygen-free radical reaction and lipid peroxidation. A large number of studies have confirmed that ferroptosis is a result of the combined action of the cellular oxidation/antioxidant system and cell membrane damage/repair, which has great potential application in tumor therapy. Therefore, this review aims to explore potential therapeutic targets for ferroptosis in lung cancer by clarifying the regulatory pathway of ferroptosis. Based on the study of ferroptosis, the regulation mechanism of ferroptosis in lung cancer was understood and the existing chemical drugs and natural compounds targeting ferroptosis in lung cancer were summarized, with the aim of providing new ideas for the treatment of lung cancer. In addition, it also provides the basis for the discovery and clinical application of chemical drugs and natural compounds targeting ferroptosis to effectively treat lung cancer.
Collapse
Affiliation(s)
- Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Sa Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gelin Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China.
| |
Collapse
|
16
|
Xu L, Liu Y, Chen X, Zhong H, Wang Y. Ferroptosis in life: To be or not to be. Biomed Pharmacother 2023; 159:114241. [PMID: 36634587 DOI: 10.1016/j.biopha.2023.114241] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Ferroptosis is a novel type of programmed cell death, characterized by a dysregulated iron metabolism and accumulation of lipid peroxides. It features the alteration of mitochondria and aberrant accumulation of excessive iron as well as loss of the cysteine-glutathione-GPX4 axis. Eventually, the accumulated lipid peroxides result in lethal damage to the cells. Ferroptosis is induced by the overloading of iron and the accumulation of ROS and can be inhibited by the activation of the GPX4 pathway, FS1-CoQ10 pathway, GCH1-BH4 pathway, and the DHODH pathway, it is also regulated by the oncogenes and tumor suppressors. Ferroptosis involves various physiological and pathological processes, and increasing evidence indicates that ferroptosis play a critical role in cancers and other diseases. It inhibits the proliferation of malignant cells in various types of cancers and inducing ferroptosis may become a new method of cancer treatment. Many inhibitors targeting the key factors of ferroptosis such as SLC7A11, GPX4, and iron overload have been developed. The application of ferroptosis is mainly divided into two directions, i.e. to avoid ferroptosis in healthy cells and selectively induce ferroptosis in cancers. In this review, we provide a critical analysis of the concept, and regulation pathways of ferroptosis and explored its roles in various diseases, we also summarized the compounds targeting ferroptosis, aiming to promote the speed of clinical use of ferroptosis induction in cancer treatment.
Collapse
Affiliation(s)
- Ling Xu
- Department of Internal Medicine of Traditional Chinese Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| | - Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Xi Chen
- Xi Chen, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hua Zhong
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA 96813
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
17
|
Li X, Zhu S, Qi F. Blue light pollution causes retinal damage and degeneration by inducing ferroptosis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112617. [PMID: 36495671 DOI: 10.1016/j.jphotobiol.2022.112617] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/20/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
With the development of technology and electronic products, the problem of light pollution is becoming more and more serious. Blue light, the most energetic light in visible light, is the main culprit of teenage vision problems in the modern environment. As the tissue with the highest oxygen consumption, the retina is vulnerable to oxidative stress. However, the exact way in which blue light-triggered reactive oxygen species (ROS) cause retinal cell death remains unclear. Ferroptosis is a newly defined cell death pathway, whose core molecular mechanism is cell death caused by excessive lipid peroxidation. In this study, the results indicated that blue light-triggered ROS burst in retinal cells, in the meantime, intracellular Fe2+ levels were also significantly up-regulated. Further, deferoxamine (DFO) significantly improved blue light-triggered lipid peroxidation and cell death in ARPE-19 cells, and ferrostatin-1 (Fer-1) alleviated retinal oxidative stress and degeneration in rats. Furthermore, the GSH-GPX4 and FSP1-CoQ10-NADH systems served as key systems for cellular defense against ferroptosis, and interestingly, our results demonstrated that blue light triggered imbalance of the GSH-GPX4 and FSP1-CoQ10-NADH systems in retinal cells. Taken together, these pieces of evidence suggest that ferroptosis may be a crucial pathway for blue light-induced retinal damage and degeneration, which helps us to understand exactly why blue light pollution causes visual impairment in adolescents.
Collapse
Affiliation(s)
- Xuan Li
- Lanzhou University Second Hospital, Lanzhou, China
| | - Sen Zhu
- School of Life Sciences, Lanzhou University, Lanzhou, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China..
| | - Fujian Qi
- School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
18
|
Ma PW, Wang WL, Chen JW, Yuan H, Lu PH, Gao W, Ding XR, Lun YQ, Liang R, He ZH, Yang Q, Lu LJ. Treatment with the Ferroptosis Inhibitor Ferrostatin-1 Attenuates Noise-Induced Hearing Loss by Suppressing Ferroptosis and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3373828. [PMID: 36531206 PMCID: PMC9750774 DOI: 10.1155/2022/3373828] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/29/2022] [Accepted: 11/12/2022] [Indexed: 08/17/2023]
Abstract
Hair cell death induced by excessive reactive oxygen species (ROS) has been identified as the major pathogenesis of noise-induced hearing loss (NIHL). Recent studies have demonstrated that cisplatin- and neomycin-induced ototoxicity can be alleviated by ferroptosis inhibitors. However, whether ferroptosis inhibitors have a protective effect against NIHL remains unknown. We investigated the protective effect of the ferroptosis inhibitor ferrostatin-1 (Fer-1) on NIHL in vivo in CBA/J mice and investigated the protective effect of Fer-1 on tert-butyl hydroperoxide (TBHP)-induced hair cell damage in vitro in cochlear explants and HEI-OC1 cells. We observed ROS overload and lipid peroxidation, which led to outer hair cell (OHC) apoptosis and ferroptosis, in the mouse cochlea after noise exposure. The expression level of apoptosis-inducing factor mitochondria-associated 2 (AIFM2) was substantially increased following elevation of the expression of its upstream protein P53 after noise exposure. The ferroptosis inhibitor Fer-1was demonstrated to enter the inner ear after the systemic administration. Administration of Fer-1 significantly alleviated noise-induced auditory threshold elevation and reduced the loss of OHCs, inner hair cell (IHC) ribbon synapses, and auditory nerve fibers (ANFs) caused by noise. Mechanistically, Fer-1 significantly reduced noise- and TBHP-induced lipid peroxidation and iron accumulation in hair cells, alleviating ferroptosis in cochlear cells consequently. Furthermore, Fer-1 treatment decreased the levels of TfR1, P53, and AIFM2. These results suggest that Fer-1 exerted its protective effects by scavenging of ROS and inhibition of TfR1-mediated ferroptosis and P53-AIFM2 signaling pathway-mediated apoptosis. Our findings suggest that Fer-1 is a promising drug for treating NIHL because of its ability to inhibit noise-induced hair cell apoptosis and ferroptosis, opening new avenues for the treatment of NIHL.
Collapse
Affiliation(s)
- Peng-Wei Ma
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Wei-Long Wang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jia-Wei Chen
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Hao Yuan
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Pei-Heng Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Wei Gao
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xue-Rui Ding
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yu-Qiang Lun
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Rui Liang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Zu-Hong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Lian-Jun Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
19
|
Gotorbe C, Durivault J, Meira W, Cassim S, Ždralević M, Pouysségur J, Vučetić M. Metabolic Rewiring toward Oxidative Phosphorylation Disrupts Intrinsic Resistance to Ferroptosis of the Colon Adenocarcinoma Cells. Antioxidants (Basel) 2022; 11:antiox11122412. [PMID: 36552620 PMCID: PMC9774558 DOI: 10.3390/antiox11122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Glutathione peroxidase 4 (GPX4) has been reported as one of the major targets for ferroptosis induction, due to its pivotal role in lipid hydroperoxide removal. However, recent studies pointed toward alternative antioxidant systems in this context, such as the Coenzyme Q-FSP1 pathway. To investigate how effective these alternative pathways are in different cellular contexts, we used human colon adenocarcinoma (CRC) cells, highly resistant to GPX4 inhibition. Data obtained in the study showed that simultaneous pharmacological inhibition of GPX4 and FSP1 strongly compromised the survival of the CRC cells, which was prevented by the ferroptosis inhibitor, ferrostatin-1. Nonetheless, this could not be phenocopied by genetic deletion of FSP1, suggesting the development of resistance to ferroptosis in FSP1-KO CRC cells. Considering that CRC cells are highly glycolytic, we used CRC Warburg-incompetent cells, to investigate the role metabolism plays in this phenomenon. Indeed, the sensitivity to inhibition of both anti-ferroptotic axes (GPx4 and FSP1) was fully revealed in these cells, showing typical features of ferroptosis. Collectively, data indicate that two independent anti-ferroptotic pathways (GPX4-GSH and CoQ10-FSP1) operate within the overall physiological context of cancer cells and in some instances, their inhibition should be coupled with other metabolic modulators, such as inhibitors of glycolysis/Warburg effect.
Collapse
Affiliation(s)
- Célia Gotorbe
- Medical Biology Department, Centre Scientifique de Monaco (CSM), 98000 Monaco, Monaco
| | - Jérôme Durivault
- Medical Biology Department, Centre Scientifique de Monaco (CSM), 98000 Monaco, Monaco
| | - Willian Meira
- Medical Biology Department, Centre Scientifique de Monaco (CSM), 98000 Monaco, Monaco
| | - Shamir Cassim
- Medical Biology Department, Centre Scientifique de Monaco (CSM), 98000 Monaco, Monaco
| | - Maša Ždralević
- Centre A. Lacassagne, University Côte d’Azur, Institute for Research on Cancer & Aging (IRCAN), CNRS, INSERM, 06100 Nice, France
| | - Jacques Pouysségur
- Medical Biology Department, Centre Scientifique de Monaco (CSM), 98000 Monaco, Monaco
- Centre A. Lacassagne, University Côte d’Azur, Institute for Research on Cancer & Aging (IRCAN), CNRS, INSERM, 06100 Nice, France
- Correspondence: (J.P.); (M.V.)
| | - Milica Vučetić
- Medical Biology Department, Centre Scientifique de Monaco (CSM), 98000 Monaco, Monaco
- Correspondence: (J.P.); (M.V.)
| |
Collapse
|
20
|
Yang X, Kawasaki NK, Min J, Matsui T, Wang F. Ferroptosis in heart failure. J Mol Cell Cardiol 2022; 173:141-153. [PMID: 36273661 PMCID: PMC11225968 DOI: 10.1016/j.yjmcc.2022.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/18/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
With its complicated pathobiology and pathophysiology, heart failure (HF) remains an increasingly prevalent epidemic that threatens global human health. Ferroptosis is a form of regulated cell death characterized by the iron-dependent lethal accumulation of lipid peroxides in the membrane system and is different from other types of cell death such as apoptosis and necrosis. Mounting evidence supports the claim that ferroptosis is mainly regulated by several biological pathways including iron handling, redox homeostasis, and lipid metabolism. Recently, ferroptosis has been identified to play an important role in HF induced by different stimuli such as myocardial infarction, myocardial ischemia reperfusion, chemotherapy, and others. Thus, it is of great significance to deeply explore the role of ferroptosis in HF, which might be a prerequisite to precise drug targets and novel therapeutic strategies based on ferroptosis-related medicine. Here, we review current knowledge on the link between ferroptosis and HF, followed by critical perspectives on the development and progression of ferroptotic signals and cardiac remodeling in HF.
Collapse
Affiliation(s)
- Xinquan Yang
- The Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Nicholas K Kawasaki
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Junxia Min
- The Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Takashi Matsui
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI, USA.
| | - Fudi Wang
- The Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
21
|
Dai SM, Li FJ, Long HZ, Zhou ZW, Luo HY, Xu SG, Gao LC. Relationship between miRNA and ferroptosis in tumors. Front Pharmacol 2022; 13:977062. [PMID: 36408273 PMCID: PMC9672467 DOI: 10.3389/fphar.2022.977062] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/21/2022] [Indexed: 07/20/2023] Open
Abstract
Malignant tumor is a major killer that seriously endangers human health. At present, the methods of treating tumors include surgical resection, chemotherapy, radiotherapy and immunotherapy. However, the survival rate of patients is still very low due to the complicated mechanism of tumor occurrence and development and high recurrence rate. Individualized treatment will be the main direction of tumor treatment in the future. Because only by understanding the molecular mechanism of tumor development and differentially expressed genes can we carry out accurate treatment and improve the therapeutic effect. MicroRNA (miRNA) is a kind of small non coding RNA, which regulates gene expression at mRNA level and plays a key role in tumor regulation. Ferroptosis is a kind of programmed death caused by iron dependent lipid peroxidation, which is different from apoptosis, necrosis and other cell death modes. Now it has been found that ferroptosis plays an important role in the occurrence and development of tumors and drug resistance. More and more studies have found that miRNAs can regulate tumor development and drug resistance through ferroptosis. Therefore, in this review, the mechanism of ferroptosis is briefly outlined, and the relationship between miRNAs and ferroptosis in tumors is reviewed.
Collapse
Affiliation(s)
- Shang-Ming Dai
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Feng-Jiao Li
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hui-Zhi Long
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Zi-Wei Zhou
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hong-Yu Luo
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shuo-Guo Xu
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Li-Chen Gao
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| |
Collapse
|
22
|
Gelbrich N, Miebach L, Berner J, Freund E, Saadati F, Schmidt A, Stope M, Zimmermann U, Burchardt M, Bekeschus S. Non-invasive medical gas plasma augments bladder cancer cell toxicity in preclinical models and patient-derived tumor tissues. J Adv Res 2022; 47:209-223. [PMID: 35931323 PMCID: PMC10173201 DOI: 10.1016/j.jare.2022.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/08/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Medical gas plasma therapy has been successfully applied to several types of cancer in preclinical models. First palliative tumor patients suffering from advanced head and neck cancer benefited from this novel therapeutic modality. The gas plasma-induced biological effects of reactive oxygen and nitrogen species (ROS/RNS) generated in the plasma gas phase result in oxidation-induced lethal damage to tumor cells. OBJECTIVES This study aimed to verify these anti-tumor effects of gas plasma exposure on urinary bladder cancer. METHODS 2D cell culture models, 3D tumor spheroids, 3D vascularized tumors grown on the chicken chorion-allantois-membrane (CAM) in ovo, and patient-derived primary cancer tissue gas plasma-treated ex vivo were used. RESULTS Gas plasma treatment led to oxidation, growth retardation, motility inhibition, and cell death in 2D and 3D tumor models. A marked decline in tumor growth was also observed in the tumors grown in ovo. In addition, results of gas plasma treatment on primary urothelial carcinoma tissues ex vivo highlighted the selective tumor-toxic effects as non-malignant tissue exposed to gas plasma was less affected. Whole-transcriptome gene expression analysis revealed downregulation of tumor-promoting fibroblast growth factor receptor 3 (FGFR3) accompanied by upregulation of apoptosis-inducing factor 2 (AIFm2), which plays a central role in caspase-independent cell death signaling. CONCLUSION Gas plasma treatment induced cytotoxicity in patient-derived cancer tissue and slowed tumor growth in an organoid model of urinary bladder carcinoma, along with less severe effects in non-malignant tissues. Studies on the potential clinical benefits of this local and safe ROS therapy are awaited.
Collapse
Affiliation(s)
- Nadine Gelbrich
- Clinic and Policlinic for Urology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Clinic and Policlinic for General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Julia Berner
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Clinic and Policlinic for Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Clinic and Policlinic for General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Fariba Saadati
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Clinic and Policlinic of Dermatology and Venerology, Rostock University Medical Center, Stempelstr. 13, 18057 Rostock, Germany
| | - Anke Schmidt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Matthias Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Uwe Zimmermann
- Clinic and Policlinic for Urology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Martin Burchardt
- Clinic and Policlinic for Urology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| |
Collapse
|
23
|
Targeting ferroptosis as a vulnerability in pulmonary diseases. Cell Death Dis 2022; 13:649. [PMID: 35882850 PMCID: PMC9315842 DOI: 10.1038/s41419-022-05070-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 01/21/2023]
Abstract
Ferroptosis is an iron-dependent regulated cell death marked by excessive oxidative phospholipids (PLs). The polyunsaturated fatty acids-containing phospholipids (PUFA-PLs) are highly susceptible to lipid peroxidation under oxidative stress. Numerous pulmonary diseases occurrences and degenerative pathologies are driven by ferroptosis. This review discusses the role of ferroptosis in the pathogenesis of pulmonary diseases including asthma, lung injury, lung cancer, fibrotic lung diseases, and pulmonary infection. Additionally, it is proposed that targeting ferroptosis is a potential treatment for pulmonary diseases, particularly drug-resistant lung cancer or antibiotic-resistant pulmonary infection, and reduces treatment-related adverse events.
Collapse
|
24
|
Qiu C, Liu T, Luo D, Luan D, Cheng L, Wang S. Novel Therapeutic Savior for Osteosarcoma: The Endorsement of Ferroptosis. Front Oncol 2022; 12:746030. [PMID: 35402247 PMCID: PMC8987436 DOI: 10.3389/fonc.2022.746030] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
Ferroptosis has recently been discovered as an iron-dependent and non-apoptotic regulated mechanism of cell death. The induction of ferroptosis in tumor cells improves tumor treatment, making it a current research hotspot. Mechanistically, it starts by lipid peroxidation, iron accumulation, reactive oxygen species (ROS) production, and glutathione deprivation, highlighting novel treatment opportunities for many tumors and neurodegenerative disorders. Several tumor cell lines are resistant to ferroptosis inducers, even when the ferroptosis key enzyme glutathione peroxidase 4 (GPX4) is blocked, indicating that other important elements are also involved in this process. Ferroptosis-suppressor-protein 1 (FSP1) was discovered to be one of these elements in addition to a few others such as ferroptotic gatekeepers like GTP cyclohydrolase 1 (GCH1) and dihydroorotate dehydrogenase (DHODH). Osteosarcoma is the most common primary malignant bone tumor observed most frequently in children and adolescents. Several studies demonstrated that ferroptosis plays a critical role in the treatment of osteosarcoma, in particular drug-resistant osteosarcoma cells. We outlined four primary regulators involved in ferroptosis in this article, reviewed previously published studies of ferroptosis in osteosarcoma to provide covert insights about osteosarcoma treatment, and highlighted several critical issues to point out future research possibilities.
Collapse
Affiliation(s)
- Cheng Qiu
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tianyi Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Luo
- College of Stomatology, Qingdao University, Qingdao, China
| | - Dongyang Luan
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lin Cheng
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Lin Cheng, ; Songgang Wang,
| | - Songgang Wang
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Lin Cheng, ; Songgang Wang,
| |
Collapse
|
25
|
Pei Y, Qian Y, Wang H, Tan L. Epigenetic Regulation of Ferroptosis-Associated Genes and Its Implication in Cancer Therapy. Front Oncol 2022; 12:771870. [PMID: 35174081 PMCID: PMC8841808 DOI: 10.3389/fonc.2022.771870] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Ferroptosis is an evolutionarily conserved form of regulated cell death triggered by iron-dependent phospholipid peroxidation. Ferroptosis contributes to the maintenance of tissue homeostasis under physiological conditions while its aberration is tightly connected with lots of pathophysiological processes such as acute tissue injury, chronic degenerative disease, and tumorigenesis. Epigenetic regulation controls chromatin structure and gene expression by writing/reading/erasing the covalent modifications on DNA, histone, and RNA, without altering the DNA sequence. Accumulating evidences suggest that epigenetic regulation is involved in the determination of cellular vulnerability to ferroptosis. Here, we summarize the recent advances on the epigenetic mechanisms that control the expression of ferroptosis-associated genes and thereby the ferroptosis process. Moreover, the potential value of epigenetic drugs in targeting or synergizing ferroptosis during cancer therapy is also discussed.
Collapse
Affiliation(s)
- Yanzi Pei
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yujie Qian
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Li Tan, ; Hao Wang,
| | - Li Tan
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- *Correspondence: Li Tan, ; Hao Wang,
| |
Collapse
|
26
|
Zhou LP, Zhang RJ, Jia CY, Kang L, Zhang ZG, Zhang HQ, Wang JQ, Zhang B, Shen CL. Ferroptosis: A potential target for the intervention of intervertebral disc degeneration. Front Endocrinol (Lausanne) 2022; 13:1042060. [PMID: 36339421 PMCID: PMC9630850 DOI: 10.3389/fendo.2022.1042060] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/04/2022] [Indexed: 12/05/2022] Open
Abstract
Ferroptosis, an iron-dependent form of programmed cell death marked by phospholipid peroxidation, is regulated by complex cellular metabolic pathways including lipid metabolism, iron balance, redox homeostasis, and mitochondrial activity. Initial research regarding the mechanism of ferroptosis mainly focused on the solute carrier family 7 member 11/glutathione/glutathione peroxidase 4 (GPX4) signal pathway. Recently, novel mechanisms of ferroptosis, independent of GPX4, have been discovered. Numerous pathologies associated with extensive lipid peroxidation, such as drug-resistant cancers, ischemic organ injuries, and neurodegenerative diseases, are driven by ferroptosis. Ferroptosis is a new therapeutic target for the intervention of IVDD. The role of ferroptosis in the modulation of intervertebral disc degeneration (IVDD) is a significant topic of interest. This is a novel research topic, and research on the mechanisms of IVDD and ferroptosis is ongoing. Herein, we aim to review and discuss the literature to explore the mechanisms of ferroptosis, the relationship between IVDD and ferroptosis, and the regulatory networks in the cells of the nucleus pulposus, annulus fibrosus, and cartilage endplate to provide references for future basic research and clinical translation for IVDD treatment.
Collapse
|
27
|
Li JY, Liu SQ, Yao RQ, Tian YP, Yao YM. A Novel Insight Into the Fate of Cardiomyocytes in Ischemia-Reperfusion Injury: From Iron Metabolism to Ferroptosis. Front Cell Dev Biol 2021; 9:799499. [PMID: 34926476 PMCID: PMC8675329 DOI: 10.3389/fcell.2021.799499] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Ischemia-reperfusion injury (IRI), critically involved in the pathology of reperfusion therapy for myocardial infarction, is closely related to oxidative stress the inflammatory response, and disturbances in energy metabolism. Emerging evidence shows that metabolic imbalances of iron participate in the pathophysiological process of cardiomyocyte IRI [also termed as myocardial ischemia-reperfusion injury (MIRI)]. Iron is an essential mineral required for vital physiological functions, including cellular respiration, lipid and oxygen metabolism, and protein synthesis. Nevertheless, cardiomyocyte homeostasis and viability are inclined to be jeopardized by iron-induced toxicity under pathological conditions, which is defined as ferroptosis. Upon the occurrence of IRI, excessive iron is transported into cells that drive cardiomyocytes more vulnerable to ferroptosis by the accumulation of reactive oxygen species (ROS) through Fenton reaction and Haber–Weiss reaction. The increased ROS production in ferroptosis correspondingly leads cardiomyocytes to become more sensitive to oxidative stress under the exposure of excess iron. Therefore, ferroptosis might play an important role in the pathogenic progression of MIRI, and precisely targeting ferroptosis mechanisms may be a promising therapeutic option to revert myocardial remodeling. Notably, targeting inhibitors are expected to prevent MIRI deterioration by suppressing cardiomyocyte ferroptosis. Here, we review the pathophysiological alterations from iron homeostasis to ferroptosis together with potential pathways regarding ferroptosis secondary to cardiovascular IRI. We also provide a comprehensive analysis of ferroptosis inhibitors and initiators, as well as regulatory genes involved in the setting of MIRI.
Collapse
Affiliation(s)
- Jing-yan Li
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuang-qing Liu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Ren-qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Ying-ping Tian
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Ying-ping Tian, ; Yong-ming Yao,
| | - Yong-ming Yao
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- *Correspondence: Ying-ping Tian, ; Yong-ming Yao,
| |
Collapse
|
28
|
The molecular mechanisms of ferroptosis and its role in cardiovascular disease. Biomed Pharmacother 2021; 145:112423. [PMID: 34800783 DOI: 10.1016/j.biopha.2021.112423] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is a programmed iron-dependent cell death characterized by accumulation of lipid peroxides (LOOH) and redox disequilibrium. Ferroptosis shows unique characteristics in biology, chemistry, and gene levels, compared to other cell death forms. The metabolic disorder of intracellular LOOH catalyzed by iron causes the inactivity of GPX4, disrupts the redox balance, and triggers cell death. Metabolism of amino acid, iron, and lipid, including associated pathways, is considered as a specific hallmark of ferroptosis. Epidemiological studies and animal experiments have shown that ferroptosis plays an important character in the pathophysiology of cardiovascular disease such as atherosclerosis, myocardial infarction (MI), ischemia/reperfusion (I/R), heart failure (HF), cardiac hypertrophy, cardiomyopathy, and abdominal aortic aneurysm (AAA). This review systematically summarized the latest research progress on the mechanisms of ferroptosis. Then we report the contribution of ferroptosis in cardiovascular diseases. Finally, we discuss and analyze the therapeutic approaches targeting for ferroptosis associated with cardiovascular diseases.
Collapse
|
29
|
Li JY, Yao YM, Tian YP. Ferroptosis: A Trigger of Proinflammatory State Progression to Immunogenicity in Necroinflammatory Disease. Front Immunol 2021; 12:701163. [PMID: 34489948 PMCID: PMC8418153 DOI: 10.3389/fimmu.2021.701163] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/02/2021] [Indexed: 01/02/2023] Open
Abstract
Until recently, necrosis is generally regarded as traumatic cell death due to mechanical shear stress or other physicochemical factors, while apoptosis is commonly thought to be programmed cell death, which is silent to immunological response. Actually, multiple modalities of cell death are programmed to maintain systematic immunity. Programmed necrosis, such as necrosis, pyroptosis, and ferroptosis, are inherently more immunogenic than apoptosis. Programmed necrosis leads to the release of inflammatory cytokines, defined as danger-associated molecular patterns (DAMPs), resulting in a necroinflammatory response, which can drive the proinflammatory state under certain biological circumstances. Ferroptosis as a newly discovered non-apoptotic form of cell death, is characterized by excessive lipid peroxidation and overload iron, which occurs in cancer, neurodegeneration, immune and inflammatory diseases, as well as ischemia/reperfusion (I/R) injury. It is triggered by a surplus of reactive oxygen species (ROS) induced in an imbalanced redox reaction due to the decrease in glutathione synthesis and inaction of enzyme glutathione peroxidase 4 (GPX4). Ferroptosis is considered as a potential therapeutic and molecular target for the treatment of necroinflammatory disease, and further investigation into the underlying pathophysiological characteristics and molecular mechanisms implicated may lay the foundations for an interventional therapeutic strategy. This review aims to demonstrate the key roles of ferroptosis in the development of necroinflammatory diseases, the major regulatory mechanisms involved, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Jing-yan Li
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong-ming Yao
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Ying-ping Tian
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
30
|
Anaerobic Stopped-Flow Spectrophotometry with Photodiode Array Detection in the Presteady State: An Application to Elucidate Oxidoreduction Mechanisms in Flavoproteins. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2280:135-155. [PMID: 33751433 DOI: 10.1007/978-1-0716-1286-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Anaerobic stopped-flow (SF) spectrophotometry is a powerful biophysical tool that allows a complete kinetic characterization of protein interactions with other molecules when they are in different redox states, as well as of the redox processes consequence of such interactions. Differences in the absorption spectroscopic properties of oxidized, semiquinone and hydroquinone states of flavoproteins, as well as the appearance of transient spectroscopic features produced by the flavin cofactor during substrate binding and electron transfer processes, have made SF a suitable technique for kinetically dissecting their mechanisms of reaction. In addition, SF coupled to photodiode array detection, enables kinetic data collection in a wavelength range. When such type of data are available for a flavoprotein reaction, they allow for obtaining detailed information of individual reaction steps, including intermolecular dissociation constants as well as electron transfer rate constants. Methodologies for the mechanistic characterization of flavoproteins involved in redox processes by SF spectrophotometry are described in this chapter.
Collapse
|
31
|
Lei G, Mao C, Yan Y, Zhuang L, Gan B. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell 2021; 12:836-857. [PMID: 33891303 PMCID: PMC8563889 DOI: 10.1007/s13238-021-00841-y] [Citation(s) in RCA: 215] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death driven by peroxidative damages of polyunsaturated-fatty-acid-containing phospholipids in cellular membranes, has recently been revealed to play an important role in radiotherapy-induced cell death and tumor suppression, and to mediate the synergy between radiotherapy and immunotherapy. In this review, we summarize known as well as putative mechanisms underlying the crosstalk between radiotherapy and ferroptosis, discuss the interactions between ferroptosis and other forms of regulated cell death induced by radiotherapy, and explore combination therapeutic strategies targeting ferroptosis in radiotherapy and immunotherapy. This review will provide important frameworks for future investigations of ferroptosis in cancer therapy.
Collapse
Affiliation(s)
- Guang Lei
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.,Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chao Mao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuelong Yan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
32
|
Arizmendi-Izazaga A, Navarro-Tito N, Jiménez-Wences H, Mendoza-Catalán MA, Martínez-Carrillo DN, Zacapala-Gómez AE, Olea-Flores M, Dircio-Maldonado R, Torres-Rojas FI, Soto-Flores DG, Illades-Aguiar B, Ortiz-Ortiz J. Metabolic Reprogramming in Cancer: Role of HPV 16 Variants. Pathogens 2021; 10:pathogens10030347. [PMID: 33809480 PMCID: PMC7999907 DOI: 10.3390/pathogens10030347] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/13/2021] [Accepted: 03/14/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic reprogramming is considered one of the hallmarks in cancer and is characterized by increased glycolysis and lactate production, even in the presence of oxygen, which leads the cancer cells to a process called “aerobic glycolysis” or “Warburg effect”. The E6 and E7 oncoproteins of human papillomavirus 16 (HPV 16) favor the Warburg effect through their interaction with a molecule that regulates cellular metabolism, such as p53, retinoblastoma protein (pRb), c-Myc, and hypoxia inducible factor 1α (HIF-1α). Besides, the impact of the E6 and E7 variants of HPV 16 on metabolic reprogramming through proteins such as HIF-1α may be related to their oncogenicity by favoring cellular metabolism modifications to satisfy the energy demands necessary for viral persistence and cancer development. This review will discuss the role of HPV 16 E6 and E7 variants in metabolic reprogramming and their contribution to developing and preserving the malignant phenotype of cancers associated with HPV 16 infection.
Collapse
Affiliation(s)
- Adán Arizmendi-Izazaga
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (M.A.M.-C.); (A.E.Z.-G.); (F.I.T.-R.); (D.G.S.-F.); (B.I.-A.)
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (N.N.-T.); (M.O.-F.)
| | - Hilda Jiménez-Wences
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (H.J.-W.); (D.N.M.-C.)
- Laboratorio de Investigación Clínica, Facultad de Ciencias, Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico;
| | - Miguel A. Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (M.A.M.-C.); (A.E.Z.-G.); (F.I.T.-R.); (D.G.S.-F.); (B.I.-A.)
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (H.J.-W.); (D.N.M.-C.)
| | - Dinorah N. Martínez-Carrillo
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (H.J.-W.); (D.N.M.-C.)
- Laboratorio de Investigación Clínica, Facultad de Ciencias, Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico;
| | - Ana E. Zacapala-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (M.A.M.-C.); (A.E.Z.-G.); (F.I.T.-R.); (D.G.S.-F.); (B.I.-A.)
| | - Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (N.N.-T.); (M.O.-F.)
| | - Roberto Dircio-Maldonado
- Laboratorio de Investigación Clínica, Facultad de Ciencias, Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico;
- Laboratorio de Diagnóstico e Investigación en Salud, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
| | - Francisco I. Torres-Rojas
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (M.A.M.-C.); (A.E.Z.-G.); (F.I.T.-R.); (D.G.S.-F.); (B.I.-A.)
| | - Diana G. Soto-Flores
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (M.A.M.-C.); (A.E.Z.-G.); (F.I.T.-R.); (D.G.S.-F.); (B.I.-A.)
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (M.A.M.-C.); (A.E.Z.-G.); (F.I.T.-R.); (D.G.S.-F.); (B.I.-A.)
- Laboratorio de Diagnóstico e Investigación en Salud, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
| | - Julio Ortiz-Ortiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (M.A.M.-C.); (A.E.Z.-G.); (F.I.T.-R.); (D.G.S.-F.); (B.I.-A.)
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (H.J.-W.); (D.N.M.-C.)
- Correspondence: ; Tel.: +52-747-471-0901
| |
Collapse
|
33
|
Novo N, Ferreira P, Medina M. The apoptosis-inducing factor family: Moonlighting proteins in the crosstalk between mitochondria and nuclei. IUBMB Life 2021; 73:568-581. [PMID: 33035389 DOI: 10.1002/iub.2390] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
In Homo sapiens, the apoptosis-inducing factor (AIF) family is represented by three different proteins, known as AIF, AMID and AIFL, that have in common the mitochondrial localisation in healthy cells, the presence of FAD- and NADH-dependent domains involved in an -albeit yet not well understood- oxidoreductase function and their capability to induce programmed cell death. AIF is the best characterised family member, while the information about AMID and AIFL is much scarcer. Nonetheless, available data support different roles as well as mechanisms of action of their particular apoptogenic and redox domains regarding both pro-apoptotic and anti-apoptotic activities. Moreover, diverse cellular functions, to date far from fully clarified, are envisaged for the transcripts corresponding to these three proteins. Here, we review the so far available knowledge on the moonlighting human AIF family from their molecular properties to their relevance in health and disease, through the evaluation of their potential cell death and redox functions in their different subcellular locations. This picture emerging from the current knowledge of the AIF family envisages its contribution to regulate signalling and transcription machineries in the crosstalk among mitochondria, the cytoplasm and the nucleus.
Collapse
Affiliation(s)
- Nerea Novo
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, Zaragoza, Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI-IQFR and CBsC-CSIC Joint Units, University of Zaragoza, Zaragoza, Spain
| | - Patricia Ferreira
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, Zaragoza, Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI-IQFR and CBsC-CSIC Joint Units, University of Zaragoza, Zaragoza, Spain
| | - Milagros Medina
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, Zaragoza, Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI-IQFR and CBsC-CSIC Joint Units, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
34
|
Xie Z, Hou H, Luo D, An R, Zhao Y, Qiu C. ROS-Dependent Lipid Peroxidation and Reliant Antioxidant Ferroptosis-Suppressor-Protein 1 in Rheumatoid Arthritis: a Covert Clue for Potential Therapy. Inflammation 2021; 44:35-47. [PMID: 32920707 DOI: 10.1007/s10753-020-01338-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/23/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is a common systemic autoimmune disease with a prevalence of about 1% in which genetic and environmental risk factors both participate in performance of disease. Though several studies contributed in identifying its etiology and pathogenesis, the underlying mechanisms are still unknown. To date, so as palliative for RA, cure strategies are still popular. Hypoxia and oxidative stress are implicated to RA development and subsequent ROS-mediated cell death which is a critical feature for RA progression. As for cell death and lipid peroxidation, ferroptosis is a newly discovered, iron-dependent, and non-apoptotic cell death which draws various attention due to its potential strategies for cancer therapy. Meanwhile, ferroptosis-suppressor-protein 1 (FSP1) is recently identified as a seminal breakthrough owing to its property of versus ferroptosis. By virtue of the complicated research progress on FSP1 with ferroptosis, in this review, we summarize the whole region of relevance between ROS and RA. Taken together, we hypothesize that ROS accompanied with ferroptosis may function as a reciprocal with cell death that interplays with RA; besides, FSP1 might become a potential therapeutic target for RA because of its potential interaction with TNF-α/ROS-positive feedback loop. This review systematically concludes the previous understandings about identification of ROS and FSP1 and, in turn, aims to provide references for further achievements of them and hints on elucidation of its thorough underlying mechanisms.
Collapse
Affiliation(s)
- Zhaoxiang Xie
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Haodong Hou
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Dan Luo
- College of Stomatology, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Ran An
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Yunpeng Zhao
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| | - Cheng Qiu
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
35
|
Ferroptosis-Related Flavoproteins: Their Function and Stability. Int J Mol Sci 2021; 22:ijms22010430. [PMID: 33406703 PMCID: PMC7796112 DOI: 10.3390/ijms22010430] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Ferroptosis has been described recently as an iron-dependent cell death driven by peroxidation of membrane lipids. It is involved in the pathogenesis of a number of diverse diseases. From the other side, the induction of ferroptosis can be used to kill tumor cells as a novel therapeutic approach. Because of the broad clinical relevance, a comprehensive understanding of the ferroptosis-controlling protein network is necessary. Noteworthy, several proteins from this network are flavoenzymes. This review is an attempt to present the ferroptosis-related flavoproteins in light of their involvement in anti-ferroptotic and pro-ferroptotic roles. When available, the data on the structural stability of mutants and cofactor-free apoenzymes are discussed. The stability of the flavoproteins could be an important component of the cellular death processes.
Collapse
|
36
|
Posttranslational Modifications in Ferroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8832043. [PMID: 33294126 PMCID: PMC7718049 DOI: 10.1155/2020/8832043] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Ferroptosis was first coined in 2012 to describe the form of regulated cell death (RCD) characterized by iron-dependent lipid peroxidation. To date, ferroptosis has been implicated in many diseases, such as carcinogenesis, degenerative diseases (e.g., Huntington's, Alzheimer's, and Parkinson's diseases), ischemia-reperfusion injury, and cardiovascular diseases. Previous studies have identified numerous targets involved in ferroptosis; for example, acyl-CoA synthetase long-chain family member 4 (ACSL4) and p53 induce while glutathione peroxidase 4 (GPX4) and apoptosis-inducing factor mitochondria-associated 2 (AIFM2, also known as FSP1) inhibit ferroptosis. At least three major pathways (the glutathione-GPX4, FSP1-coenzyme Q10 (CoQ10), and GTP cyclohydrolase-1- (GCH1-) tetrahydrobiopterin (BH4) pathways) have been identified to participate in ferroptosis regulation. Recent advances have also highlighted the crucial roles of posttranslational modifications (PTMs) of proteins in ferroptosis. Here, we summarize the recently discovered knowledge regarding the mechanisms underlying ferroptosis, particularly the roles of PTMs in ferroptosis regulation.
Collapse
|
37
|
Nehring H, Meierjohann S, Friedmann Angeli JP. Emerging aspects in the regulation of ferroptosis. Biochem Soc Trans 2020; 48:2253-2259. [PMID: 33125483 DOI: 10.1042/bst20200523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
Abstract
Lipid peroxidation has been associated with a wide array of (patho)physiological conditions. Remarkably, in the last few years, a novel cell death modality termed ferroptosis was recognized as a process initiated by iron-dependent oxidation of lipids. The sensitivity to ferroptosis is determined by the activity of antioxidant systems working on the repair of oxidized phospholipids and also metabolic pathways controlling the availability of substrates susceptible to lipid peroxidation. Non-enzymatic antioxidants such as vitamin E, which has long been acknowledged as an efficient inhibitor of lipid peroxidation, play an important and often neglected role in subverting ferroptosis. Recent works dissecting the mechanisms that determine ferroptosis sensitivity have provided further insights into the contribution of alternative metabolic pathways able to suppress lipid peroxidation. Specifically, the role of ubiquinone and tetrahydrobiopterin (BH4) has been brought forth, with the identification of specific enzymatic systems responsible for their regeneration, as critical factors suppressing ferroptosis. Therefore, in the present manuscript, we address these emerging concepts and propose that the characterization of these antioxidant repair mechanisms will not only open a new understanding of disease conditions where ferroptosis plays a role but also offer opportunities to identify and sensitize cells to ferroptosis in the context of cancer treatment.
Collapse
Affiliation(s)
- Helene Nehring
- Rudolf Virchow Center for Integrative Bioimaging, University of Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
38
|
O'Doherty C, Keenan J, O'Neill F, Clynes M, Sinkunaite I, Horgan K, Murphy R, O'Sullivan F. Gene expression profiling of copper-resistant Caco-2 clones. Metallomics 2020; 12:1521-1529. [PMID: 32760989 DOI: 10.1039/d0mt00126k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Caco-2 cell line is composed of a heterogeneous mix of cells; isolation of individual clonal populations from this mix allows for specific mechanisms and phenotypes to be further explored. Previously we exposed Caco-2 cells to inorganic copper sulphate or organic copper proteinate to generate resistant variant populations. Here we describe the isolation and characterisation of clonal subpopulations from these resistant variants to organic (clone Or1, Or2, Or3) or inorganic (clone In1 and In2) copper. The clones show considerable homogeneity in response to Cu-induced toxicity and heterogeneity in morphology with variations in level of cross-resistance to other metals and doxorubicin. Population growth was reduced for Cu-resistant clones In2 and Or3 in selective pressure relative to parental Caco-2 cells. Gene expression analysis identified 4026 total (2102 unique and 1924 shared) differentially expressed genes including those involved in the MAP Kinase and Rap1 signalling pathways, and in the focal adhesion and ECM-receptor contact pathways. Gene expression changes common to all clones included upregulation of ANXA13 and GPx2. Our analysis additionally identified differential expression of multiple genes specific to copper proteinate exposure (including overexpressed UPK1B) in isolated clones Or1, Or2 and Or3 and CuSO4 exposure (including decreased AIFM2 expression) in isolated clones In1 and In2. The adaptive transcriptional responses established in this study indicate a cohort of genes, which may be involved in copper resistance regulation and chronic copper exposure.
Collapse
Affiliation(s)
- Charles O'Doherty
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland.
| | - Joanne Keenan
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland.
| | - Fiona O'Neill
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland.
| | - Martin Clynes
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland.
| | - Indre Sinkunaite
- Alltech Ireland, European Bioscience Centre, Summerhill Rd, Sarney, Dunboyne, Co, Meath, Ireland
| | - Karina Horgan
- Alltech Ireland, European Bioscience Centre, Summerhill Rd, Sarney, Dunboyne, Co, Meath, Ireland
| | - Richard Murphy
- Alltech Ireland, European Bioscience Centre, Summerhill Rd, Sarney, Dunboyne, Co, Meath, Ireland
| | - Finbarr O'Sullivan
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland.
| |
Collapse
|
39
|
Gai Z, Gui T, Kullak-Ublick GA, Li Y, Visentin M. The Role of Mitochondria in Drug-Induced Kidney Injury. Front Physiol 2020; 11:1079. [PMID: 33013462 PMCID: PMC7500167 DOI: 10.3389/fphys.2020.01079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
The kidneys utilize roughly 10% of the body’s oxygen supply to produce the energy required for accomplishing their primary function: the regulation of body fluid composition through secreting, filtering, and reabsorbing metabolites and nutrients. To ensure an adequate ATP supply, the kidneys are particularly enriched in mitochondria, having the second highest mitochondrial content and thus oxygen consumption of our body. The bulk of the ATP generated in the kidneys is consumed to move solutes toward (reabsorption) or from (secretion) the peritubular capillaries through the concerted action of an array of ATP-binding cassette (ABC) pumps and transporters. ABC pumps function upon direct ATP hydrolysis. Transporters are driven by the ion electrochemical gradients and the membrane potential generated by the asymmetric transport of ions across the plasma membrane mediated by the ATPase pumps. Some of these transporters, namely the polyspecific organic anion transporters (OATs), the organic anion transporting polypeptides (OATPs), and the organic cation transporters (OCTs) are highly expressed on the proximal tubular cell membranes and happen to also transport drugs whose levels in the proximal tubular cells can rapidly rise, thereby damaging the mitochondria and resulting in cell death and kidney injury. Drug-induced kidney injury (DIKI) is a growing public health concern and a major cause of drug attrition in drug development and post-marketing approval. As part of the article collection “Mitochondria in Renal Health and Disease,” here, we provide a critical overview of the main molecular mechanisms underlying the mitochondrial damage caused by drugs inducing nephrotoxicity.
Collapse
Affiliation(s)
- Zhibo Gai
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ting Gui
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,The Third Department of Cardiovascular Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Tan JH, Cao RC, Zhou L, Zhou ZT, Chen HJ, Xu J, Chen XM, Jin YC, Lin JY, Zeng JL, Li SJ, Luo M, Hu GD, Yang XB, Jin J, Zhang GW. ATF6 aggravates acinar cell apoptosis and injury by regulating p53/AIFM2 transcription in Severe Acute Pancreatitis. Theranostics 2020; 10:8298-8314. [PMID: 32724472 PMCID: PMC7381726 DOI: 10.7150/thno.46934] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Background: There is no curative therapy for severe acute pancreatitis (SAP) due to poor understanding of its molecular mechanisms. Endoplasmic reticulum (ER) stress is involved in SAP and increased expression of ATF6 has been detected in SAP patients. Here, we aimed to investigate the role of ATF6 in a preclinical SAP mouse model and characterize its regulatory mechanism. Methods: Pancreatic tissues of healthy and SAP patients were collected during surgery. Humanized PRSS1 transgenic mice were treated with caerulein to mimic the SAP development, which was crossed to an ATF6 knockout mouse line, and pancreatic tissues from the resulting pups were screened by proteomics. Adenovirus-mediated delivery to the pancreas of SAP mice was used for shRNA-based knockdown or overexpression. The potential functions and mechanisms of ATF6 were clarified by immunofluorescence, immunoelectron microscopy, Western blotting, qRT-PCR, ChIP-qPCR and luciferase reporter assay. Results: Increased expression of ATF6 was associated with elevated apoptosis, ER and mitochondrial disorder in pancreatic tissues from SAP patients and PRSS1 mice. Knockout of ATF6 in SAP mice attenuated acinar injury, apoptosis and ER disorder. AIFM2, known as a p53 target gene, was identified as a downstream regulatory partner of ATF6, whose expression was increased in SAP. Functionally, AIFM2 could reestablish the pathological disorder in SAP tissues in the absence of ATF6. p53 expression was also increased in SAP mice, which was downregulated by ATF6 knockout. p53 knockout significantly suppressed acinar apoptosis and injury in SAP model. Mechanistically, ATF6 promoted AIFM2 transcription by binding to p53 and AIFM2 promoters. Conclusion: These results reveal that ATF6/p53/AIFM2 pathway plays a critical role in acinar apoptosis during SAP progression, highlighting novel therapeutic target molecules for SAP.
Collapse
Affiliation(s)
- Jie-Hui Tan
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong-Chang Cao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zhou
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi-Tao Zhou
- Department of the Electronic Microscope Room, Central Laboratory, Southern Medical University, Guangzhou, China
| | - Huo-Ji Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jia Xu
- Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Xue-Mei Chen
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yang-Chen Jin
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Jia-Yu Lin
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Jun-Ling Zeng
- Laboratory Animal Research Center of Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shu-Ji Li
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Min Luo
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Dong Hu
- Department of Respiratory and Crit Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Bing Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Institute, Guangzhou, China
| | - Jin Jin
- Department of Gynaecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Wei Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
41
|
Riboflavin Deficiency-Implications for General Human Health and Inborn Errors of Metabolism. Int J Mol Sci 2020; 21:ijms21113847. [PMID: 32481712 PMCID: PMC7312377 DOI: 10.3390/ijms21113847] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 01/13/2023] Open
Abstract
As an essential vitamin, the role of riboflavin in human diet and health is increasingly being highlighted. Insufficient dietary intake of riboflavin is often reported in nutritional surveys and population studies, even in non-developing countries with abundant sources of riboflavin-rich dietary products. A latent subclinical riboflavin deficiency can result in a significant clinical phenotype when combined with inborn genetic disturbances or environmental and physiological factors like infections, exercise, diet, aging and pregnancy. Riboflavin, and more importantly its derivatives, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), play a crucial role in essential cellular processes including mitochondrial energy metabolism, stress responses, vitamin and cofactor biogenesis, where they function as cofactors to ensure the catalytic activity and folding/stability of flavoenzymes. Numerous inborn errors of flavin metabolism and flavoenzyme function have been described, and supplementation with riboflavin has in many cases been shown to be lifesaving or to mitigate symptoms. This review discusses the environmental, physiological and genetic factors that affect cellular riboflavin status. We describe the crucial role of riboflavin for general human health, and the clear benefits of riboflavin treatment in patients with inborn errors of metabolism.
Collapse
|
42
|
Nguyen HP, Yi D, Lin F, Viscarra JA, Tabuchi C, Ngo K, Shin G, Lee AYF, Wang Y, Sul HS. Aifm2, a NADH Oxidase, Supports Robust Glycolysis and Is Required for Cold- and Diet-Induced Thermogenesis. Mol Cell 2020; 77:600-617.e4. [PMID: 31952989 PMCID: PMC7031813 DOI: 10.1016/j.molcel.2019.12.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/10/2019] [Accepted: 12/03/2019] [Indexed: 01/22/2023]
Abstract
Brown adipose tissue (BAT) is highly metabolically active tissue that dissipates energy via UCP1 as heat, and BAT mass is correlated negatively with obesity. The presence of BAT/BAT-like tissue in humans renders BAT as an attractive target against obesity and insulin resistance. Here, we identify Aifm2, a NADH oxidoreductase domain containing flavoprotein, as a lipid droplet (LD)-associated protein highly enriched in BAT. Aifm2 is induced by cold as well as by diet. Upon cold or β-adrenergic stimulation, Aifm2 associates with the outer side of the mitochondrial inner membrane. As a unique BAT-specific first mammalian NDE (external NADH dehydrogenase)-like enzyme, Aifm2 oxidizes NADH to maintain high cytosolic NAD levels in supporting robust glycolysis and to transfer electrons to the electron transport chain (ETC) for fueling thermogenesis. Aifm2 in BAT and subcutaneous white adipose tissue (WAT) promotes oxygen consumption, uncoupled respiration, and heat production during cold- and diet-induced thermogenesis. Aifm2, thus, can ameliorate diet-induced obesity and insulin resistance.
Collapse
Affiliation(s)
- Hai P Nguyen
- Endocrinology Program, University of California, Berkeley, Berkeley, CA, USA; Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Danielle Yi
- Endocrinology Program, University of California, Berkeley, Berkeley, CA, USA; Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Frances Lin
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Jose A Viscarra
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Chihiro Tabuchi
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Katina Ngo
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Gawon Shin
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Angus Yiu-Fai Lee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Yuhui Wang
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Hei Sook Sul
- Endocrinology Program, University of California, Berkeley, Berkeley, CA, USA; Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
43
|
Clark DL, Velleman SG, Bernier M, McCormick J, Blakeslee JJ. Research Note: The effect of selection for 16-week body weight on turkey serum metabolome. Poult Sci 2020; 99:517-525. [PMID: 32416838 PMCID: PMC7587827 DOI: 10.3382/ps/pez493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/06/2019] [Indexed: 11/24/2022] Open
Abstract
The phenotype of modern commercial turkeys is substantially different than that of unselected, heritage turkey lines. These phenotypic changes have arisen from alterations in the genome/transcriptome, as well as the influence of many external factors on growth performance including nutrition, environment, and management. To investigate the phenotypic changes resulting from genetic selection for increased body weight, The Ohio State University maintains 2 unique genetic turkey lines: the randombred control (RBC2) line, which is comprised of genetics from 1960 era commercial turkeys and has been maintained without conscious selection for any trait; and the F line, which was originally selected from the RBC2 line and has been selected for increased 16 wk body weight for over 50 generations. This study used broad-spectrum mass-spectrometry profiling techniques to identify and quantify differences in the metabolome of the serum of F and RBC2 turkey lines. Serum samples from both F and RBC2 turkeys were subject to quantitative time of flight liquid chromatography tandem mass spectrometry analyses. Principle component analyses showed distinct populations of metabolites in the F vs. RBC2 serum, suggesting that increased body weight is associated with the accumulation of several metabolites. Comparing the spectral features to online databases resulted in the selection of 104 features with potentially identifiable chemical structures. Of these 104 features, 25 were found at higher levels in the serum of the RBC2 line turkeys, while 79 were found at a greater abundance in the F line turkeys. A more detailed analysis of these 104 features allowed for the putative identification of 49 compounds, which were clustered into 6 functional groups: 1) energy metabolism; 2) vitamins; 3) hormones and signaling molecules; 4) lipid derivatives, fatty acid metabolites, and membrane components; 5) amino acid/protein metabolism; and 6) microbial metabolites. Further validation and experimentation is needed to confirm the identity of these metabolites and understand their biological relevance and association with selection for increased body weight.
Collapse
Affiliation(s)
- Daniel L Clark
- Ohio Agricultural Research and Development Center, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691.
| | - Sandra G Velleman
- Ohio Agricultural Research and Development Center, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691
| | - Matthew Bernier
- Campus Chemical Instrumentation Center (CCIC), The Ohio State University, Columbus, OH 43210
| | - Janet McCormick
- Ohio Agricultural Research and Development Center, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691
| | - Joshua J Blakeslee
- Ohio Agricultural Research and Development Center, Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH 44691; Ohio Agricultural Research and Development Center, OARDC Metabolite Analysis Cluster, The Ohio State University, Wooster, OH 44691
| |
Collapse
|
44
|
Mondal P, Huix-Rotllant M. Theoretical insights into the formation and stability of radical oxygen species in cryptochromes. Phys Chem Chem Phys 2019; 21:8874-8882. [PMID: 30977757 DOI: 10.1039/c9cp00782b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cryptochrome is a blue-light absorbing flavoprotein containing a flavin adenine dinucleotide (FAD) cofactor. FAD can accept up to two electrons and two protons, which can be subsequently transferred to substrates present in the binding pocket. It is well known that reactive oxygen species are generated when triplet molecular oxygen is present in the cavity. Here, we investigate the formation and stability of radical oxygen species in Drosophila melanogaster cryptochrome using molecular dynamics simulations and electronic structure calculations. We find that the superoxide and hydroxyl radicals in doublet spin states are stabilized in the pocket due to the attractive electrostatic interactions and hydrogen bonding with partially reduced FAD. These findings validate from a molecular dynamics perspective that [FAD˙--HO2˙] or [FADH˙-O2˙-] can be alternative radical pairs at the origin of magnetoreception.
Collapse
|
45
|
Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, Bassik MC, Nomura DK, Dixon SJ, Olzmann JA. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 2019; 575:688-692. [PMID: 31634900 PMCID: PMC6883167 DOI: 10.1038/s41586-019-1705-2] [Citation(s) in RCA: 1958] [Impact Index Per Article: 391.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023]
Abstract
Ferroptosis is a form of regulated cell death that is caused by the iron-dependent peroxidation of lipids1,2. The glutathione-dependent lipid hydroperoxidase glutathione peroxidase 4 (GPX4) prevents ferroptosis by converting lipid hydroperoxides into non-toxic lipid alcohols3,4. Ferroptosis has previously been implicated in the cell death that underlies several degenerative conditions2, and induction of ferroptosis by the inhibition of GPX4 has emerged as a therapeutic strategy to trigger cancer cell death5. However, sensitivity to GPX4 inhibitors varies greatly across cancer cell lines6, which suggests that additional factors govern resistance to ferroptosis. Here, using a synthetic lethal CRISPR-Cas9 screen, we identify ferroptosis suppressor protein 1 (FSP1) (previously known as apoptosis-inducing factor mitochondrial 2 (AIFM2)) as a potent ferroptosis-resistance factor. Our data indicate that myristoylation recruits FSP1 to the plasma membrane where it functions as an oxidoreductase that reduces coenzyme Q10 (CoQ) (also known as ubiquinone-10), which acts as a lipophilic radical-trapping antioxidant that halts the propagation of lipid peroxides. We further find that FSP1 expression positively correlates with ferroptosis resistance across hundreds of cancer cell lines, and that FSP1 mediates resistance to ferroptosis in lung cancer cells in culture and in mouse tumour xenografts. Thus, our data identify FSP1 as a key component of a non-mitochondrial CoQ antioxidant system that acts in parallel to the canonical glutathione-based GPX4 pathway. These findings define a ferroptosis suppression pathway and indicate that pharmacological inhibition of FSP1 may provide an effective strategy to sensitize cancer cells to ferroptosis-inducing chemotherapeutic agents.
Collapse
Affiliation(s)
- Kirill Bersuker
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Joseph M Hendricks
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Zhipeng Li
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Breanna Ford
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Peter H Tang
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Melissa A Roberts
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Bingqi Tong
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Thomas J Maimone
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Michael C Bassik
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel K Nomura
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - James A Olzmann
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
46
|
Molecular Mechanisms of Colistin-Induced Nephrotoxicity. Molecules 2019; 24:molecules24030653. [PMID: 30759858 PMCID: PMC6384669 DOI: 10.3390/molecules24030653] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 12/25/2022] Open
Abstract
The emergence of multidrug resistant (MDR) infections and the shortage of new therapeutic options have made colistin, a polymyxin antibiotic, the main option for the treatment of MDR Gram-negative bacterial infections in the last decade. However, the rapid onset of renal damage often prevents the achievement of optimal therapeutic doses and/or forces the physicians to interrupt the therapy, increasing the risk of drug resistance. The proper management of colistin-induced nephrotoxicity remains challenging, mostly because the investigation of the cellular and molecular pharmacology of this drug, off the market for decades, has been largely neglected. For years, the renal damage induced by colistin was considered a mere consequence of the detergent activity of this drug on the cell membrane of proximal tubule cells. Lately, it has been proposed that the intracellular accumulation is a precondition for colistin-mediated renal damage, and that mitochondria might be a primary site of damage. Antioxidant approaches (e.g., ascorbic acid) have shown promising results in protecting the kidney of rodents exposed to colistin, yet none of these strategies have yet reached the bedside. Here we provide a critical overview of the possible mechanisms that may contribute to colistin-induced renal damage and the potential protective strategies under investigation.
Collapse
|
47
|
Refojo PN, Sena FV, Calisto F, Sousa FM, Pereira MM. The plethora of membrane respiratory chains in the phyla of life. Adv Microb Physiol 2019; 74:331-414. [PMID: 31126533 DOI: 10.1016/bs.ampbs.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The diversity of microbial cells is reflected in differences in cell size and shape, motility, mechanisms of cell division, pathogenicity or adaptation to different environmental niches. All these variations are achieved by the distinct metabolic strategies adopted by the organisms. The respiratory chains are integral parts of those strategies especially because they perform the most or, at least, most efficient energy conservation in the cell. Respiratory chains are composed of several membrane proteins, which perform a stepwise oxidation of metabolites toward the reduction of terminal electron acceptors. Many of these membrane proteins use the energy released from the oxidoreduction reaction they catalyze to translocate charges across the membrane and thus contribute to the establishment of the membrane potential, i.e. they conserve energy. In this work we illustrate and discuss the composition of the respiratory chains of different taxonomic clades, based on bioinformatic analyses and on biochemical data available in the literature. We explore the diversity of the respiratory chains of Animals, Plants, Fungi and Protists kingdoms as well as of Prokaryotes, including Bacteria and Archaea. The prokaryotic phyla studied in this work are Gammaproteobacteria, Betaproteobacteria, Epsilonproteobacteria, Deltaproteobacteria, Alphaproteobacteria, Firmicutes, Actinobacteria, Chlamydiae, Verrucomicrobia, Acidobacteria, Planctomycetes, Cyanobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Aquificae, Thermotogae, Deferribacteres, Nitrospirae, Euryarchaeota, Crenarchaeota and Thaumarchaeota.
Collapse
Affiliation(s)
- Patrícia N Refojo
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa Calisto
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal; University of Lisboa, Faculty of Sciences, BIOISI- Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| |
Collapse
|
48
|
Overexpression of riboflavin transporter 2 contributes toward progression and invasion of glioma. Neuroreport 2018; 27:1167-73. [PMID: 27584688 DOI: 10.1097/wnr.0000000000000674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human riboflavin transporter 2 (RFT2) encoded by the SLC52A3 gene is a member of the SLC52 family that has been shown to play a key role in riboflavin homeostasis. Recently, a number of studies have shown that RFT2 is important in the development of several cancers, including esophageal squamous cell carcinoma, gastric cancer, and cervical cancer. However, its expression and function in glioma have not yet been explored. In this study, we found that RFT2 was overexpressed in glioma samples compared with normal brain tissue. Furthermore, RFT2 expression was correlated with WHO grade (P<0.001). Silencing of RFT2 resulted in inhibition of glioma cell proliferation through promotion of cell cycle arrest and apoptosis. Expression of proteins known to regulate cell cycle or apoptosis including p21, p27, BCL-2, and BAX was notably altered in RFT2-depleted cells. Furthermore, silencing of RFT2 impeded the migration and invasion of glioma cells through suppression of matrix metalloproteinase-2 and matrix metalloproteinase-9 expression. In addition to blocking cell proliferation in vitro, reduction of RFT2 levels also decreased tumor growth in vivo. These data suggest that RFT2 could be an attractive therapeutic target for the treatment of glioma.
Collapse
|
49
|
Graf MMH, Weber S, Kracher D, Kittl R, Sygmund C, Ludwig R, Peterbauer C, Haltrich D. Characterization of three pyranose dehydrogenase isoforms from the litter-decomposing basidiomycete Leucoagaricus meleagris (syn. Agaricus meleagris). Appl Microbiol Biotechnol 2017; 101:2879-2891. [PMID: 27995309 PMCID: PMC5352738 DOI: 10.1007/s00253-016-8051-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/29/2016] [Accepted: 12/04/2016] [Indexed: 11/02/2022]
Abstract
Multigenicity is commonly found in fungal enzyme systems, with the purpose of functional compensation upon deficiency of one of its members or leading to enzyme isoforms with new functionalities through gene diversification. Three genes of the flavin-dependent glucose-methanol-choline (GMC) oxidoreductase pyranose dehydrogenase (AmPDH) were previously identified in the litter-degrading fungus Agaricus (Leucoagaricus) meleagris, of which only AmPDH1 was successfully expressed and characterized. The aim of this work was to study the biophysical and biochemical properties of AmPDH2 and AmPDH3 and compare them with those of AmPDH1. AmPDH1, AmPDH2 and AmPDH3 showed negligible oxygen reactivity and possess a covalently tethered FAD cofactor. All three isoforms can oxidise a range of different monosaccarides and oligosaccharides including glucose, mannose, galactose and xylose, which are the main constituent sugars of cellulose and hemicelluloses, and judging from the apparent steady-state kinetics determined for these sugars, the three isoforms do not show significant differences pertaining to their reaction with sugar substrates. They oxidize glucose both at C2 and C3 and upon prolonged reaction C2 and C3 double-oxidized glucose is obtained, confirming that the A. meleagris genes pdh2 (AY753308.1) and pdh3 (DQ117577.1) indeed encode CAZy class AA3_2 pyranose dehydrogenases. While reactivity with electron donor substrates was comparable for the three AmPDH isoforms, their kinetic properties differed significantly for the model electron acceptor substrates tested, a radical (the 2,2'-azino-bis[3-ethylbenzothiazoline-6-sulphonic acid] cation radical), a quinone (benzoquinone) and a complexed iron ion (the ferricenium ion). Thus, a possible explanation for this PDH multiplicity in A. meleagris could be that different isoforms react preferentially with structurally different electron acceptors in vivo.
Collapse
Affiliation(s)
- Michael M H Graf
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
- BioToP-The Doctoral Programme on Biomolecular Technology of Proteins, Muthgasse 18, 1190, Vienna, Austria
| | - Sandra Weber
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Daniel Kracher
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
- BioToP-The Doctoral Programme on Biomolecular Technology of Proteins, Muthgasse 18, 1190, Vienna, Austria
| | - Roman Kittl
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Christoph Sygmund
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Roland Ludwig
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
- BioToP-The Doctoral Programme on Biomolecular Technology of Proteins, Muthgasse 18, 1190, Vienna, Austria
| | - Clemens Peterbauer
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
- BioToP-The Doctoral Programme on Biomolecular Technology of Proteins, Muthgasse 18, 1190, Vienna, Austria
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria.
- BioToP-The Doctoral Programme on Biomolecular Technology of Proteins, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
50
|
Marreiros BC, Sena FV, Sousa FM, Batista AP, Pereira MM. Type II NADH:quinone oxidoreductase family: phylogenetic distribution, structural diversity and evolutionary divergences. Environ Microbiol 2016; 18:4697-4709. [PMID: 27105286 DOI: 10.1111/1462-2920.13352] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2016] [Indexed: 12/17/2022]
Abstract
Type II NADH:quinone oxidoreductases (NDH-2s) are membrane proteins, crucial for the catabolic metabolism, because they contribute to the maintenance of the NADH/NAD+ balance. In several pathogenic bacteria and protists, NDH-2s are the only enzymes performing respiratory NADH:quinone oxidoreductase activity. For this reason and for being considered absent in mammals, NDH-2s were proposed as suitable targets for novel antimicrobial therapies. We selected all sequences of genes encoding NDH-2s from fully sequenced genomes present in the KEGG database. These genes were present in 61% of the 1805 species belonging to Eukarya (83%), Bacteria (60%) and Archaea (32%). Notably sequences from mammal species including humans were retrieved in our selection as NDH-2s. The data obtained and the already available information allowed systematizing several properties of NDH-2s: (i) the existence of additional sequence motifs with putative regulatory functions, (ii) specificity towards NADH or NADPH and (iii) the type of quinone binding motif. We observed that NDH-2 family distribution is not congruent with the taxonomic tree, suggesting different origins for the eukaryotic sequences and possible lateral gene transfer among prokaryotes. We note the absence of genes coding for NDH-2 in anaerobic phyla and the presence of multiple copies in several genomes, specifically in cyanobacteria. These observations inspired us to propose a metabolic hypothesis for the appearance of NDH-2s.
Collapse
Affiliation(s)
- Bruno C Marreiros
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Ana P Batista
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| |
Collapse
|