1
|
Liu B, Xu Y, Zhang W. Transcriptome analysis of Apis mellifera antennae reveals molecular divergence underlying the division of labour in worker bees. INSECT MOLECULAR BIOLOGY 2024; 33:101-111. [PMID: 37864451 DOI: 10.1111/imb.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 09/28/2023] [Indexed: 10/22/2023]
Abstract
The olfactory system plays a fundamental role in mediating insect behaviour. Worker bees exhibit an age-dependent division of labour, performing discrete sets of behaviours throughout their lifespan. The behavioural states of bees rely on their sense of the environment and chemical communication via their olfactory system, the antennae. However, the olfactory adaptation mechanism of worker bees during their behavioural development remains unclear. In this study, we conducted a comprehensive and quantitative analysis of antennal gene expression in the Apis mellifera of newly emerged workers, nurses, foragers and defenders using RNA-seq. We found that the antenna tissues of honey bees continued developing after transformation from newly emerged workers to adults. Additionally, we identified differentially expressed genes associated with bee development and division of labour. We validated that major royal jelly protein genes are highly and specifically expressed in nurse honey bee workers. Furthermore, we identified and validated significant alternative splicing events correlated with the development and division of labour. These findings provide a comprehensive transcriptome profile and a new perspective on the molecular mechanisms that may underlie the worker honey bee division of labour.
Collapse
Affiliation(s)
- Bairu Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yicong Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Weixing Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Zhang Y, Yan M, Yu Y, Wang J, Jiao Y, Zheng M, Zhang S. 14-3-3ε: a protein with complex physiology function but promising therapeutic potential in cancer. Cell Commun Signal 2024; 22:72. [PMID: 38279176 PMCID: PMC10811864 DOI: 10.1186/s12964-023-01420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/02/2023] [Indexed: 01/28/2024] Open
Abstract
Over the past decade, the role of the 14-3-3 protein has received increasing interest. Seven subtypes of 14-3-3 proteins exhibit high homology; however, each subtype maintains its specificity. The 14-3-3ε protein is involved in various physiological processes, including signal transduction, cell proliferation, apoptosis, autophagy, cell cycle regulation, repolarization of cardiac action, cardiac development, intracellular electrolyte homeostasis, neurodevelopment, and innate immunity. It also plays a significant role in the development and progression of various diseases, such as cardiovascular diseases, inflammatory diseases, neurodegenerative disorders, and cancer. These immense and various involvements of 14-3-3ε in diverse processes makes it a promising target for drug development. Although extensive research has been conducted on 14-3-3 dimers, studies on 14-3-3 monomers are limited. This review aimed to provide an overview of recent reports on the molecular mechanisms involved in the regulation of binding partners by 14-3-3ε, focusing on issues that could help advance the frontiers of this field. Video Abstract.
Collapse
Affiliation(s)
- Yue Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Man Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yongjun Yu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Jiangping Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuqi Jiao
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300071, People's Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
3
|
Staehr C, Aalkjaer C, Matchkov V. The vascular Na,K-ATPase: clinical implications in stroke, migraine, and hypertension. Clin Sci (Lond) 2023; 137:1595-1618. [PMID: 37877226 PMCID: PMC10600256 DOI: 10.1042/cs20220796] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
In the vascular wall, the Na,K-ATPase plays an important role in the control of arterial tone. Through cSrc signaling, it contributes to the modulation of Ca2+ sensitivity in vascular smooth muscle cells. This review focuses on the potential implication of Na,K-ATPase-dependent intracellular signaling pathways in severe vascular disorders; ischemic stroke, familial migraine, and arterial hypertension. We propose similarity in the detrimental Na,K-ATPase-dependent signaling seen in these pathological conditions. The review includes a retrospective proteomics analysis investigating temporal changes after ischemic stroke. The analysis revealed that the expression of Na,K-ATPase α isoforms is down-regulated in the days and weeks following reperfusion, while downstream Na,K-ATPase-dependent cSrc kinase is up-regulated. These results are important since previous studies have linked the Na,K-ATPase-dependent cSrc signaling to futile recanalization and vasospasm after stroke. The review also explores a link between the Na,K-ATPase and migraine with aura, as reduced expression or pharmacological inhibition of the Na,K-ATPase leads to cSrc kinase signaling up-regulation and cerebral hypoperfusion. The review discusses the role of an endogenous cardiotonic steroid-like compound, ouabain, which binds to the Na,K-ATPase and initiates the intracellular cSrc signaling, in the pathophysiology of arterial hypertension. Currently, our understanding of the precise control mechanisms governing the Na,K-ATPase/cSrc kinase regulation in the vascular wall is limited. Understanding the role of vascular Na,K-ATPase signaling is essential for developing targeted treatments for cerebrovascular disorders and hypertension, as the Na,K-ATPase is implicated in the pathogenesis of these conditions and may contribute to their comorbidity.
Collapse
Affiliation(s)
- Christian Staehr
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, Aarhus, Denmark
| | - Christian Aalkjaer
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
- Danish Cardiovascular Academy, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
| | - Vladimir V. Matchkov
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
| |
Collapse
|
4
|
Zhang X, Pan L, Wei C, Tong R, Li Y, Ding M, Wang H. Crustacean hyperglycemic hormone (CHH) regulates the ammonia excretion and metabolism in white shrimp, Litopenaeus vannamei under ammonia-N stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138128. [PMID: 32222513 DOI: 10.1016/j.scitotenv.2020.138128] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 05/21/2023]
Abstract
To understand the adaptation of Litopenaeus vannamei to high environmental ammonia-N, RNA interference was used to investigate the function of crustacean hyperglycemic hormone (CHH) in the physiological process of neuroendocrine signaling transduction, and ammonia excretion and metabolism. The shrimp were exposed to 25 mg/L NH4Cl and injected with 20 μg/shrimp CHH dsRNA for 72 h. The results showed that hemolymph ammonia content increased under ammonia-N stress and further increased after CHH knockdown, suggesting that CHH can promote ammonia excretion. Moreover, after CHH knockdown, the levels of CHH, DA, and Wnts decreased significantly, the expression of receptor GC, DA1R, Frizzled and LRP 5/6 also decreased, while DA4R increased remarkably. Moreover, PKA and PKG decreased, while PKC markedly increased, and nuclear transcription factors (CREB and TCF) as well as effector proteins (β-catenin, FXYD2, and 14-3-3) were significantly downregulated. Furthermore, ammonia transporters Na+/K+-ATPase (NKA), K+channel, Rh protein, AQP, V-ATPase, and VAMP decreased significantly, while Na+/H+ exchangers (NHE) and Na+/K+/2Cl- cotransporter (NKCC) increased significantly. These results suggest that CHH regulates ammonia excretion in three ways: 1) by mainly regulating ion channels via PKA, PKC, and PKG signaling pathways; 2) by activating related proteins primarily through Wnt signaling pathway; and 3) by exocytosis, mostly induced by the PKA signaling pathway. In addition, the levels of Gln, uric acid, and urea increased in accordance with the activities of GDH/GS, XDH, and arginase, respectively, suggesting that ammonia excretion was inhibited but ammonia metabolism was slightly enhanced. This study deepens our understanding of the mechanism by which crustaceans respond to high environmental ammonia-N.
Collapse
Affiliation(s)
- Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Cun Wei
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yufen Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Min Ding
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Hongdan Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
5
|
The Na/K-ATPase α1 and c-Src form signaling complex under native condition: A crosslinking approach. Sci Rep 2020; 10:6006. [PMID: 32265464 PMCID: PMC7138855 DOI: 10.1038/s41598-020-61920-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/04/2020] [Indexed: 11/09/2022] Open
Abstract
The protein-protein interactions amongst the Na/K-ATPase α1 subunit, c-Src, and caveolin-1 (cav-1) are essential for the Na/K-ATPase signaling functions. However, there are arguments concerning the interaction model. The present study aims to clarify the interactions amongst the endogenous native proteins in live cells under native resting condition. Under native condition, Blue Native-PAGE and Blue Native-PAGE/SDS-PAGE 2D analyses demonstrated co-existence of the α1 subunit and c-Src in same protein complex, as well as a direct interaction between the α1 subunit and c-Src. By comparison of cleavable and non-cleavable cysteine-cysteine crosslinked samples, capillary immunoblotting analysis demonstrated that depletion of Src kinase family members (c-Src, Yes, and Fyn) or cav-1 clearly reduced the interactions of the α1 subunit with proteins, but depletion of cav-1 did not affect the interaction of c-Src with the α1 subunit. The data indicated that there are direct interactions between the α1 subunit and c-Src as well as between the α1 subunit and cav-1, but argued about the interaction between c-Src and cav-1 under the condition. Furthermore, the data also indicated the existence of different protein complexes containing the α1 subunit and c-Src, which might have different signaling functions.
Collapse
|
6
|
Rajamanickam GD, Kastelic JP, Thundathil JC. Testis-Specific Isoform of Na/K-ATPase (ATP1A4) Interactome in Raft and Non-Raft Membrane Fractions from Capacitated Bovine Sperm. Int J Mol Sci 2019; 20:E3159. [PMID: 31261667 PMCID: PMC6651793 DOI: 10.3390/ijms20133159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 05/16/2019] [Indexed: 11/28/2022] Open
Abstract
The plasma membrane of sperm contains highly dynamic lipid microdomains (rafts), which house signaling proteins with a role in regulating capacitation. We reported that ATP1A4, the testis-specific isoform of Na/K-ATPase, interacted with caveolin-1, Src, epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinases 1/2 (ERK1/2) in raft and non-raft domains of the plasma membrane of bovine sperm during capacitation. The objective of the present study was to use a proteomic approach to characterize the ATP1A4 interactome in rafts and non-rafts from capacitated bovine sperm. The non-raft interactome included hexokinase 1, plakophilin 1, desmoglein 1, 14-3-3 protein ζ/δ, cathepsin D and heat shock protein beta1 proteins exclusively, whereas glutathione S-transferase and annexin A2 were unique to raft interactome. However, a disintegrin and metalloprotease 32 (ADAM 32), histone H4, actin, acrosin, serum albumin and plakoglobin were identified in both raft and non-raft fractions of capacitated sperm. Based on gene ontology studies, these differentially interacted proteins were implicated in cell-cell adhesion, signal transduction, fertilization, metabolism, proteolysis and DNA replication, in addition to acting as transport/carrier and cytoskeletal proteins. Overall, we identified proteins not previously reported to interact with ATP1A4; furthermore, we inferred that ATP1A4 may have a role in sperm capacitation.
Collapse
Affiliation(s)
- Gayathri D Rajamanickam
- Department of Veterinary Clinical and Diagnostic Services, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jacob C Thundathil
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
7
|
Hsu YD, Huang YF, Pan YJ, Huang LK, Liao YY, Lin WH, Liu TY, Lee CH, Pan RL. Regulation of H +-pyrophosphatase by 14-3-3 Proteins from Arabidopsis thaliana. J Membr Biol 2018; 251:263-276. [PMID: 29453559 DOI: 10.1007/s00232-018-0020-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 02/10/2018] [Indexed: 12/29/2022]
Abstract
Plant vacuolar H+-transporting inorganic pyrophosphatase (V-PPase; EC 3.6.1.1) is a crucial enzyme that exists on the tonoplast to maintain pH homeostasis across the vacuolar membrane. This enzyme generates proton gradient between cytosol and vacuolar lumen by hydrolysis of a metabolic byproduct, pyrophosphate (PP i ). The regulation of V-PPase at protein level has drawn attentions of many workers for decades, but its mechanism is still unclear. In this work, we show that AVP1, the V-PPase from Arabidopsis thaliana, is a target protein for regulatory 14-3-3 proteins at the vacuolar membrane, and all twelve 14-3-3 isoforms were analyzed for their association with AVP1. In the presence of 14-3-3ν, -µ, -ο, and -ι, both enzymatic activities and its associated proton pumping of AVP1 were increased. Among these 14-3-3 proteins, 14-3-3 µ shows the highest stimulation on coupling efficiency. Furthermore, 14-3-3ν, -µ, -ο, and -ι exerted protection of AVP1 against the inhibition of suicidal substrate PP i at high concentration. Moreover, the thermal profile revealed the presence of 14-3-3ο improves the structural stability of AVP1 against high temperature deterioration. Additionally, the 14-3-3 proteins mitigate the inhibition of Na+ to AVP1. Besides, the binding sites/motifs of AVP1 were identified for each 14-3-3 protein. Taken together, a working model was proposed to elucidate the association of 14-3-3 proteins with AVP1 for stimulation of its enzymatic activity.
Collapse
Affiliation(s)
- Yu-Di Hsu
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu, 30013, Taiwan, Republic of China
| | - Yu-Fen Huang
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu, 30013, Taiwan, Republic of China
| | - Yih-Jiuan Pan
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu, 30013, Taiwan, Republic of China
| | - Li-Kun Huang
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu, 30013, Taiwan, Republic of China
| | - Ya-Yun Liao
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu, 30013, Taiwan, Republic of China
| | - Wei-Hua Lin
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu, 30013, Taiwan, Republic of China
| | - Tzu-Yin Liu
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu, 30013, Taiwan, Republic of China
| | - Ching-Hung Lee
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu, 30013, Taiwan, Republic of China.
| | - Rong-Long Pan
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu, 30013, Taiwan, Republic of China.
| |
Collapse
|
8
|
Cui X, Xie Z. Protein Interaction and Na/K-ATPase-Mediated Signal Transduction. Molecules 2017; 22:molecules22060990. [PMID: 28613263 PMCID: PMC6152704 DOI: 10.3390/molecules22060990] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 02/05/2023] Open
Abstract
The Na/K-ATPase (NKA), or Na pump, is a member of the P-type ATPase superfamily. In addition to pumping ions across cell membrane, it is engaged in assembly of multiple protein complexes in the plasma membrane. This assembly allows NKA to perform many non-pumping functions including signal transduction that are important for animal physiology and disease progression. This article will focus on the role of protein interaction in NKA-mediated signal transduction, and its potential utility as target for developing new therapeutics.
Collapse
Affiliation(s)
- Xiaoyu Cui
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA.
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA.
| |
Collapse
|
9
|
Wang X, Liu J, Drummond CA, Shapiro JI. Sodium potassium adenosine triphosphatase (Na/K-ATPase) as a therapeutic target for uremic cardiomyopathy. Expert Opin Ther Targets 2017; 21:531-541. [PMID: 28338377 PMCID: PMC5590225 DOI: 10.1080/14728222.2017.1311864] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/23/2017] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Clinically, patients with significant reductions in renal function present with cardiovascular dysfunction typically termed, uremic cardiomyopathy. It is a progressive series of cardiac pathophysiological changes, including left ventricular diastolic dysfunction and hypertrophy (LVH) which sometimes progress to left ventricular dilation (LVD) and systolic dysfunction in the setting of chronic kidney disease (CKD). Uremic cardiomyopathy is almost ubiquitous in patients afflicted with end stage renal disease (ESRD). Areas covered: This article reviews recent epidemiology, pathophysiology of uremic cardiomyopathy and provide a board overview of Na/K-ATPase research with detailed discussion on the mechanisms of Na/K-ATPase/Src/ROS amplification loop. We also present clinical and preclinical evidences as well as molecular mechanism of this amplification loop in the development of uremic cardiomyopathy. A potential therapeutic peptide that targets on this loop is discussed. Expert opinion: Current clinical treatment for uremic cardiomyopathy remains disappointing. Targeting the ROS amplification loop mediated by the Na/K-ATPase signaling function may provide a novel therapeutic target for uremic cardiomyopathy and related diseases. Additional studies of Na/K-ATPase and other strategies that regulate this loop will lead to new therapeutics.
Collapse
Affiliation(s)
- Xiaoliang Wang
- a Joan C Edwards School of Medicine at Marshall University , Huntington , WV , United States
- b University of Toledo College of Medicine and Life Sciences , Toledo , OH , United States
| | - Jiang Liu
- a Joan C Edwards School of Medicine at Marshall University , Huntington , WV , United States
| | - Christopher A Drummond
- b University of Toledo College of Medicine and Life Sciences , Toledo , OH , United States
| | - Joseph I Shapiro
- a Joan C Edwards School of Medicine at Marshall University , Huntington , WV , United States
| |
Collapse
|
10
|
Subcellular Trafficking of Mammalian Lysosomal Proteins: An Extended View. Int J Mol Sci 2016; 18:ijms18010047. [PMID: 28036022 PMCID: PMC5297682 DOI: 10.3390/ijms18010047] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/15/2016] [Accepted: 12/18/2016] [Indexed: 01/02/2023] Open
Abstract
Lysosomes clear macromolecules, maintain nutrient and cholesterol homeostasis, participate in tissue repair, and in many other cellular functions. To assume these tasks, lysosomes rely on their large arsenal of acid hydrolases, transmembrane proteins and membrane-associated proteins. It is therefore imperative that, post-synthesis, these proteins are specifically recognized as lysosomal components and are correctly sorted to this organelle through the endosomes. Lysosomal transmembrane proteins contain consensus motifs in their cytosolic regions (tyrosine- or dileucine-based) that serve as sorting signals to the endosomes, whereas most lysosomal acid hydrolases acquire mannose 6-phosphate (Man-6-P) moieties that mediate binding to two membrane receptors with endosomal sorting motifs in their cytosolic tails. These tyrosine- and dileucine-based motifs are tickets for boarding in clathrin-coated carriers that transport their cargo from the trans-Golgi network and plasma membrane to the endosomes. However, increasing evidence points to additional mechanisms participating in the biogenesis of lysosomes. In some cell types, for example, there are alternatives to the Man-6-P receptors for the transport of some acid hydrolases. In addition, several “non-consensus” sorting motifs have been identified, and atypical transport routes to endolysosomes have been brought to light. These “unconventional” or “less known” transport mechanisms are the focus of this review.
Collapse
|
11
|
Matchkov VV, Krivoi II. Specialized Functional Diversity and Interactions of the Na,K-ATPase. Front Physiol 2016; 7:179. [PMID: 27252653 PMCID: PMC4879863 DOI: 10.3389/fphys.2016.00179] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022] Open
Abstract
Na,K-ATPase is a protein ubiquitously expressed in the plasma membrane of all animal cells and vitally essential for their functions. A specialized functional diversity of the Na,K-ATPase isozymes is provided by molecular heterogeneity, distinct subcellular localizations, and functional interactions with molecular environment. Studies over the last decades clearly demonstrated complex and isoform-specific reciprocal functional interactions between the Na,K-ATPase and neighboring proteins and lipids. These interactions are enabled by a spatially restricted ion homeostasis, direct protein-protein/lipid interactions, and protein kinase signaling pathways. In addition to its "classical" function in ion translocation, the Na,K-ATPase is now considered as one of the most important signaling molecules in neuronal, epithelial, skeletal, cardiac and vascular tissues. Accordingly, the Na,K-ATPase forms specialized sub-cellular multimolecular microdomains which act as receptors to circulating endogenous cardiotonic steroids (CTS) triggering a number of signaling pathways. Changes in these endogenous cardiotonic steroid levels and initiated signaling responses have significant adaptive values for tissues and whole organisms under numerous physiological and pathophysiological conditions. This review discusses recent progress in the studies of functional interactions between the Na,K-ATPase and molecular microenvironment, the Na,K-ATPase-dependent signaling pathways and their significance for diversity of cell function.
Collapse
Affiliation(s)
| | - Igor I Krivoi
- Department of General Physiology, St. Petersburg State University St. Petersburg, Russia
| |
Collapse
|
12
|
Massey KJ, Li Q, Rossi NF, Keezer SM, Mattingly RR, Yingst DR. Phosphorylation of rat kidney Na-K pump at Ser938 is required for rapid angiotensin II-dependent stimulation of activity and trafficking in proximal tubule cells. Am J Physiol Cell Physiol 2015; 310:C227-32. [PMID: 26582472 DOI: 10.1152/ajpcell.00113.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 11/09/2015] [Indexed: 12/23/2022]
Abstract
How angiotensin (ANG) II acutely stimulates the Na-K pump in proximal tubules is only partially understood, limiting insight into how ANG II increases blood pressure. First, we tested whether ANG II increases the number of pumps in plasma membranes of native rat proximal tubules under conditions of rapid activation. We found that exposure to 100 pM ANG II for 2 min, which was previously shown to increase affinity of the Na-K pump for Na and stimulate activity threefold, increased the amount of the Na-K pump in plasma membranes of native tubules by 33%. Second, we tested whether previously observed increases in phosphorylation of the Na-K pump at Ser(938) were part of the stimulatory mechanism. These experiments were carried out in opossum kidney cells, cultured proximal tubules stably coexpressing the ANG type 1 (AT1) receptor, and either wild-type or a S938A mutant of rat kidney Na-K pump under conditions found by others to stimulate activity. We found that 10 min of incubation in 10 pM ANG II stimulated activity of wild-type pumps from 2.3 to 3.5 nmol K · mg protein(-1) · min(-1) and increased the amount of the pump in the plasma membrane by 80% but had no effect on cells expressing the S938A mutant. We conclude that acute stimulation of Na-K pump activity in native rat proximal tubules includes increased trafficking to the plasma membrane and that phosphorylation at Ser(938) is part of the mechanism by which ANG II directly stimulates activity and trafficking of the rat kidney Na-K pump in opossum kidney cells.
Collapse
Affiliation(s)
- Katherine J Massey
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Quanwen Li
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Noreen F Rossi
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan; Department of Internal Medicine, School of Medicine, Wayne State University, Detroit, Michigan; John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan
| | | | - Raymond R Mattingly
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Douglas R Yingst
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan;
| |
Collapse
|
13
|
Lind U, Alm Rosenblad M, Wrange AL, Sundell KS, Jonsson PR, André C, Havenhand J, Blomberg A. Molecular characterization of the α-subunit of Na⁺/K⁺ ATPase from the euryhaline barnacle Balanus improvisus reveals multiple genes and differential expression of alternative splice variants. PLoS One 2013; 8:e77069. [PMID: 24130836 PMCID: PMC3793950 DOI: 10.1371/journal.pone.0077069] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 09/06/2013] [Indexed: 01/28/2023] Open
Abstract
The euryhaline bay barnacle Balanus improvisus has one of the broadest salinity tolerances of any barnacle species. It is able to complete its life cycle in salinities close to freshwater (3 PSU) up to fully marine conditions (35 PSU) and is regarded as one of few truly brackish-water species. Na+/K+ ATPase (NAK) has been shown to be important for osmoregulation when marine organisms are challenged by changing salinities, and we therefore cloned and examined the expression of different NAKs from B. improvisus. We found two main gene variants, NAK1 and NAK2, which were approximately 70% identical at the protein level. The NAK1 mRNA existed in a long and short variant with the encoded proteins differing only by 27 N-terminal amino acids. This N-terminal stretch was coded for by a separate exon, and the two variants of NAK1 mRNAs appeared to be created by alternative splicing. We furthermore showed that the two NAK1 isoforms were differentially expressed in different life stages and in various tissues of adult barnacle, i.e the long isoform was predominant in cyprids and in adult cirri. In barnacle cyprid larvae that were exposed to a combination of different salinities and pCO2 levels, the expression of the long NAK1 mRNA increased relative to the short in low salinities. We suggest that the alternatively spliced long variant of the Nak1 protein might be of importance for osmoregulation in B. improvisus in low salinity conditions.
Collapse
Affiliation(s)
- Ulrika Lind
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Alm Rosenblad
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Anna-Lisa Wrange
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Kristina S. Sundell
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Per R. Jonsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Carl André
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jonathan Havenhand
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Anders Blomberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
14
|
Kaeodee M, Pongsomboon S, Tassanakajon A. Expression analysis and response of Penaeus monodon 14-3-3 genes to salinity stress. Comp Biochem Physiol B Biochem Mol Biol 2011; 159:244-51. [DOI: 10.1016/j.cbpb.2011.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/12/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
|
15
|
Bełtowski J. Leptin and the Regulation of Renal Sodium Handling and Renal Na-Transporting ATPases: Role in the Pathogenesis of Arterial Hypertension. Curr Cardiol Rev 2011; 6:31-40. [PMID: 21286276 PMCID: PMC2845792 DOI: 10.2174/157340310790231644] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 08/03/2009] [Accepted: 08/03/2009] [Indexed: 12/13/2022] Open
Abstract
Leptin, an adipose tissue hormone which regulates food intake, is also involved in the pathogenesis of arterial hypertension. Plasma leptin concentration is increased in obese individuals. Chronic leptin administration or transgenic overexpression increases blood pressure in experimental animals, and some studies indicate that plasma leptin is elevated in hypertensive subjects independently of body weight. Leptin has a dose- and time-dependent effect on urinary sodium excretion. High doses of leptin increase Na(+) excretion in the short run; partially by decreasing renal Na(+),K(+)-ATPase (sodium pump) activity. This effect is mediated by phosphatidylinositol 3-kinase (PI3K) and is impaired in animals with dietary-induced obesity. In contrast to acute, chronic elevation of plasma leptin to the level observed in patients with the metabolic syndrome impairs renal Na(+) excretion, which is associated with the increase in renal Na(+),K(+)-ATPase activity. This effect results from oxidative stress-induced deficiency of nitric oxide and/or transactivation of epidermal growth factor receptor and subsequent stimulation of extracellular signal-regulated kinases. Ameliorating "renal leptin resistance" or reducing leptin level and/or leptin signaling in states of chronic hyperleptinemia may be a novel strategy for the treatment of arterial hypertension associated with the metabolic syndrome.
Collapse
Affiliation(s)
- Jerzy Bełtowski
- Dept. of Pathophysiology, Medical University, Lublin, Poland
| |
Collapse
|
16
|
Abstract
Dopamine is an important regulator of systemic blood pressure via multiple mechanisms. It affects fluid and electrolyte balance by its actions on renal hemodynamics and epithelial ion and water transport and by regulation of hormones and humoral agents. The kidney synthesizes dopamine from circulating or filtered L-DOPA independently from innervation. The major determinants of the renal tubular synthesis/release of dopamine are probably sodium intake and intracellular sodium. Dopamine exerts its actions via two families of cell surface receptors, D1-like receptors comprising D1R and D5R, and D2-like receptors comprising D2R, D3R, and D4R, and by interactions with other G protein-coupled receptors. D1-like receptors are linked to vasodilation, while the effect of D2-like receptors on the vasculature is variable and probably dependent upon the state of nerve activity. Dopamine secreted into the tubular lumen acts mainly via D1-like receptors in an autocrine/paracrine manner to regulate ion transport in the proximal and distal nephron. These effects are mediated mainly by tubular mechanisms and augmented by hemodynamic mechanisms. The natriuretic effect of D1-like receptors is caused by inhibition of ion transport in the apical and basolateral membranes. D2-like receptors participate in the inhibition of ion transport during conditions of euvolemia and moderate volume expansion. Dopamine also controls ion transport and blood pressure by regulating the production of reactive oxygen species and the inflammatory response. Essential hypertension is associated with abnormalities in dopamine production, receptor number, and/or posttranslational modification.
Collapse
Affiliation(s)
- Ines Armando
- Children’s National Medical Center—Center for Molecular Physiology Research, Washington, District of Columbia
| | - Van Anthony M. Villar
- Children’s National Medical Center—Center for Molecular Physiology Research, Washington, District of Columbia
| | - Pedro A. Jose
- Children’s National Medical Center—Center for Molecular Physiology Research, Washington, District of Columbia
| |
Collapse
|
17
|
Welling PA, Weisz OA. Sorting it out in endosomes: an emerging concept in renal epithelial cell transport regulation. Physiology (Bethesda) 2011; 25:280-92. [PMID: 20940433 DOI: 10.1152/physiol.00022.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ion and water transport by the kidney is continually adjusted in response to physiological cues. Selective endocytosis and endosomal trafficking of ion transporters are increasingly appreciated as mechanisms to acutely modulate renal function. Here, we discuss emerging paradigms in this new area of investigation.
Collapse
Affiliation(s)
- Paul A Welling
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
18
|
MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis. Immunol Cell Biol 2010; 88:851-6. [PMID: 20458337 DOI: 10.1038/icb.2010.64] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Professional antigen-presenting cells secrete major histocompatibility complex class II (MHC II) carrying exosomes with unclear physiological function(s). Exosomes are first generated as the intraluminal vesicles (ILVs) of a specific type of multivesicular body, and are then secreted by fusion of this compartment with the plasma membrane. We have previously shown that in contrast to the sorting of MHC II at lysosomally targeted multivesicular bodies, sorting of MHC II into exosomes does not rely on MHC II ubiquitination. In search for proteins that drive the incorporation of MHC II into exosomes or functionally discriminate exosomal from plasma membrane MHC II, we first analyzed the total proteome of highly purified B cell-derived exosomes using sensitive and accurate mass spectrometry (MS), and identified 539 proteins, including known and not previously identified constituents. Using quantitative MS, we then identified a small subset of proteins that were specifically co-immunoprecipitated with MHC II from detergent-solubilized exosomes. These include HSC71, HSP90, 14-3-3ɛ, CD20 and pyruvate kinase type M2 (PKM2), and we speculate on the functionality of their interaction with exosomal MHC II.
Collapse
|
19
|
Jose PA, Soares-da-Silva P, Eisner GM, Felder RA. Dopamine and G protein-coupled receptor kinase 4 in the kidney: role in blood pressure regulation. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1259-67. [PMID: 20153824 DOI: 10.1016/j.bbadis.2010.02.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 02/05/2010] [Accepted: 02/07/2010] [Indexed: 12/11/2022]
Abstract
Complex interactions between genes and environment result in a sodium-induced elevation in blood pressure (salt sensitivity) and/or hypertension that lead to significant morbidity and mortality affecting up to 25% of the middle-aged adult population worldwide. Determining the etiology of genetic and/or environmentally-induced high blood pressure has been difficult because of the many interacting systems involved. Two main pathways have been implicated as principal determinants of blood pressure since they are located in the kidney (the key organ responsible for blood pressure regulation), and have profound effects on sodium balance: the dopaminergic and renin-angiotensin systems. These systems counteract or modulate each other, in concert with a host of intracellular second messenger pathways to regulate sodium and water balance. In particular, the G protein-coupled receptor kinase type 4 (GRK4) appears to play a key role in regulating dopaminergic-mediated natriuresis. Constitutively activated GRK4 gene variants (R65L, A142V, and A486V), by themselves or by their interaction with other genes involved in blood pressure regulation, are associated with essential hypertension and/or salt-sensitive hypertension in several ethnic groups. GRK4γ 142Vtransgenic mice are hypertensive on normal salt intake while GRK4γ 486V transgenic mice develop hypertension only with an increase in salt intake. GRK4 gene variants have been shown to hyperphosphorylate, desensitize, and internalize two members of the dopamine receptor family, the D(1) (D(1)R) and D(3) (D(3)R) dopamine receptors, but also increase the expression of a key receptor of the renin-angiotensin system, the angiotensin type 1 receptor (AT(1)R). Knowledge of the numerous blood pressure regulatory pathways involving angiotensin and dopamine may provide new therapeutic approaches to the pharmacological regulation of sodium excretion and ultimately blood pressure control.
Collapse
Affiliation(s)
- Pedro A Jose
- Children's National Medical Center, George Washington University for the Health Sciences, Washington, DC, USA.
| | | | | | | |
Collapse
|
20
|
Gildea JJ, Israel JA, Johnson AK, Zhang J, Jose PA, Felder RA. Caveolin-1 and dopamine-mediated internalization of NaKATPase in human renal proximal tubule cells. Hypertension 2009; 54:1070-6. [PMID: 19752292 DOI: 10.1161/hypertensionaha.109.134338] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In moderate sodium-replete states, dopamine 1-like receptors (D1R/D5R) are responsible for regulating >50% of renal sodium excretion. This is partly mediated by internalization and inactivation of NaKATPase, when associated with adapter protein 2. We used dopaminergic stimulation via fenoldopam (D1-like receptor agonist) to study the interaction among D1-like receptors, caveolin-1 (CAV1), and the G protein-coupled receptor kinase type 4 in cultured human renal proximal tubule cells (RPTCs). We compared 2 groups of RPTCs, 1 of cell lines that were isolated from normal subjects (nRPTCs) and a second group of cell lines that have D1-like receptors that are uncoupled (uncoupled RPTCs) from adenylyl cyclase second messengers. In nRPTCs, fenoldopam increased the plasma membrane expression of D1R (10.0-fold) and CAV1 (1.3-fold) and markedly decreased G protein-coupled receptor kinase type 4 by 94+/-8%; no effects were seen in uncoupled RPTCs. Fenoldopam also increased the association of adapter protein 2 and NaKATPase by 53+/-9% in nRPTCs but not in uncoupled RPTCs. When CAV1 expression was reduced by 86.0+/-8.5% using small interfering RNA, restimulation of the D1-like receptors with fenoldopam in nRPTCs resulted in only a 7+/-9% increase in association between adapter protein 2 and NaKATPase. Basal CAV1 expression and association with G protein-coupled receptor kinase type 4 was decreased in uncoupled RPTCs (58+/-5% decrease in association) relative to nRPTCs. We conclude that the scaffolding protein CAV1 is necessary for the association of D1-like receptors with G protein-coupled receptor kinase type 4 and the adapter protein 2-associated reduction in plasma membrane NaKATPase.
Collapse
Affiliation(s)
- John J Gildea
- Department of Pathology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
21
|
Chen Z, Leibiger I, Katz AI, Bertorello AM. Pals-associated tight junction protein functionally links dopamine and angiotensin II to the regulation of sodium transport in renal epithelial cells. Br J Pharmacol 2009; 158:486-93. [PMID: 19563532 DOI: 10.1111/j.1476-5381.2009.00299.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Dopamine inhibits renal cell Na(+),K(+)-ATPase activity and cell sodium transport by promoting the internalization of active molecules from the plasma membrane, whereas angiotensin II (ATII) stimulates its activity by recruiting new molecules to the plasma membrane. They achieve such effects by activating multiple and distinct signalling molecules in a hierarchical manner. The purpose of this study was to investigate whether dopamine and ATII utilize scaffold organizer proteins as components of their signalling networks, in order to avoid deleterious cross talk. EXPERIMENTAL APPROACH Attention was focused on a multiple PDZ domain protein, Pals-associated tight junction protein (PATJ). Ectopic expression of PATJ in renal epithelial cells in culture was used to study its interaction with components of the dopamine signalling cascade. Similarly, expression of PATJ deletion mutants was employed to analyse its functional relevance during dopamine-, ATII- and insulin-dependent regulation of Na(+),K(+)-ATPase. KEY RESULTS Dopamine receptors and components of its signalling cascade mediating inhibition of Na(+),K(+)-ATPase interact with PATJ. Inhibition of Na(+),K(+)-ATPase by dopamine was prevented by expression of mutants of PATJ lacking PDZ domains 2, 4 or 5; whereas the stimulatory effect of ATII and insulin on Na(+),K(+)-ATPase was blocked by expression of PATJ lacking PDZ domains 1, 4 or 5. CONCLUSIONS AND IMPLICATIONS A multiple PDZ domain protein may add functionality to G protein-coupled and tyrosine kinase receptors signalling during regulation of Na(+),K(+)-ATPase. Signalling molecules and effectors can be integrated into a functional network by the scaffold organizer protein PATJ via its multiple PDZ domains.
Collapse
Affiliation(s)
- Z Chen
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital-Solna, Stockholm, Sweden
| | | | | | | |
Collapse
|
22
|
Bertorello AM, Zhu JK. SIK1/SOS2 networks: decoding sodium signals via calcium-responsive protein kinase pathways. Pflugers Arch 2009; 458:613-9. [PMID: 19247687 PMCID: PMC2691526 DOI: 10.1007/s00424-009-0646-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 02/03/2009] [Indexed: 01/11/2023]
Abstract
Changes in cellular ion levels can modulate distinct signaling networks aimed at correcting major disruptions in ion balances that might otherwise threaten cell growth and development. Salt-inducible kinase 1 (SIK1) and salt overly sensitive 2 (SOS2) are key protein kinases within such networks in mammalian and plant cells, respectively. In animals, SIK1 expression and activity are regulated in response to the salt content of the diet, and in plants SOS2 activity is controlled by the salinity of the soil. The specific ionic stress (elevated intracellular sodium) is followed by changes in intracellular calcium; the calcium signals are sensed by calcium-binding proteins and lead to activation of SIK1 or SOS2. These kinases target major plasma membrane transporters such as the Na+,K+-ATPase in mammalian cells, and Na+/H+ exchangers in the plasma membrane and membranes of intracellular vacuoles of plant cells. Activation of these networks prevents abnormal increases in intracellular sodium concentration.
Collapse
Affiliation(s)
- Alejandro Mario Bertorello
- Membrane Signaling Networks, Atherosclerosis Research Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital-Solna, Stockholm, Sweden.
| | | |
Collapse
|
23
|
Abstract
The Na-K-ATPase is an energy-transducing ion pump that converts the free energy of ATP into transmembrane ion gradients. It also serves as a functional receptor for cardiotonic steroids such as ouabain and digoxin. Binding of ouabain to the Na-K-ATPase can activate calcium signaling in a cell-specific manner. The exquisite calcium modulation via the Na-K-ATPase is achieved by the ability of the pump to integrate signals from numerous protein and non-protein molecules, including ion transporters, channels, protein kinases/phosphatases, as well as cellular Na+. This review focuses on the unique properties of the Na-K-ATPase and its role in the formation of different calcium-signaling microdomains.
Collapse
Affiliation(s)
- Jiang Tian
- Department of Physiology and Pharmacology, University of Toledo Health Science Campus, Toledo, Ohio, USA
| | | |
Collapse
|
24
|
Cinelli AR, Efendiev R, Pedemonte CH. Trafficking of Na-K-ATPase and dopamine receptor molecules induced by changes in intracellular sodium concentration of renal epithelial cells. Am J Physiol Renal Physiol 2008; 295:F1117-25. [PMID: 18701625 DOI: 10.1152/ajprenal.90317.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Most of the transepithelial transport of sodium in proximal tubules occurs through the coordinated action of the apical sodium/proton exchanger and the basolateral Na-K-ATPase. Hormones that regulate proximal tubule sodium excretion regulate the activities of these proteins. We have previously demonstrated that the level of intracellular sodium concentration modulates the regulation of Na-K-ATPase activity by angiotensin II and dopamine. An increase of a few millimolars in intracellular sodium concentration leads to increased Na-K-ATPase activity without a statistically significant increase in the number of plasma membrane Na-K-ATPase molecules, as determined by cell surface protein biotinylation. Using total internal reflection fluorescence, we detected an increased number of Na-K-ATPase molecules in cytosolic compartments adjacent to the plasma membrane, suggesting that the increased intracellular sodium concentration induces a movement of Na-K-ATPase molecules toward the plasma membrane. While intracellular compartments containing Na-K-ATPase molecules are very close to the plasma membrane, compartments containing type 1 dopamine receptors (D1Rs) are distributed in different parts of the cell cytosol. Fluorescence determinations indicate that an increased intracellular sodium concentration induces the increased colocalization of dopamine receptors with Na-K-ATPase molecules in the region of the plasma membrane. We propose that under in vivo conditions, in response to a sodium load in the lumen of proximal tubules, an increased level of intracellular sodium in epithelial cells is an early event that triggers the cellular response that leads to dopamine inhibition of proximal tubule sodium reabsorption.
Collapse
Affiliation(s)
- Angel R Cinelli
- Department of Anatomy and Cell Biology, State University of New York at Brooklyn, Brooklyn, NY, USA
| | | | | |
Collapse
|
25
|
Tomassi L, Costantini A, Corallino S, Santonico E, Carducci M, Cesareni G, Castagnoli L. The central proline rich region of POB1/REPS2 plays a regulatory role in epidermal growth factor receptor endocytosis by binding to 14-3-3 and SH3 domain-containing proteins. BMC BIOCHEMISTRY 2008; 9:21. [PMID: 18647389 PMCID: PMC2494995 DOI: 10.1186/1471-2091-9-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 07/22/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND The human POB1/REPS2 (Partner of RalBP1) protein is highly conserved in mammals where it has been suggested to function as a molecular scaffold recruiting proteins involved in vesicular traffic and linking them to the actin cytoskeleton remodeling machinery. More recently POB1/REPS2 was found highly expressed in androgen-dependent prostate cancer cell lines, while one of its isoforms (isoform 2) is down regulated during prostate cancer progression. RESULTS In this report we characterize the central proline rich domain of POB1/REPS2 and we describe for the first time its functional role in receptor endocytosis. We show that the ectopic expression of this domain has a dominant negative effect on the endocytosis of activated epidermal growth factor receptor (EGFR) while leaving transferrin receptor endocytosis unaffected. By a combination of different approaches (phage display, bioinformatics predictions, peptide arrays, mutagenic analysis, in vivo co-immunoprecipitation), we have identified two closely spaced binding motifs for 14-3-3 and for the SH3 of the proteins Amphiphysin II and Grb2. Differently from wild type, proline rich domains that are altered in these motifs do not inhibit EGFR endocytosis, suggesting that these binding motifs play a functional role in this process. CONCLUSION Our findings are relevant to the characterization of the molecular mechanism underlying the involvement of POB1/REPS2, SH3 and 14-3-3 proteins in receptor endocytosis, suggesting that 14-3-3 could work by bridging the EGF receptor and the scaffold protein POB1/REPS2.
Collapse
Affiliation(s)
- Laura Tomassi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
26
|
Kimura T, Allen PB, Nairn AC, Caplan MJ. Arrestins and spinophilin competitively regulate Na+,K+-ATPase trafficking through association with a large cytoplasmic loop of the Na+,K+-ATPase. Mol Biol Cell 2007; 18:4508-18. [PMID: 17804821 PMCID: PMC2043564 DOI: 10.1091/mbc.e06-08-0711] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The activity and trafficking of the Na(+),K(+)-ATPase are regulated by several hormones, including dopamine, vasopressin, and adrenergic hormones through the action of G-protein-coupled receptors (GPCRs). Arrestins, GPCR kinases (GRKs), 14-3-3 proteins, and spinophilin interact with GPCRs and modulate the duration and magnitude of receptor signaling. We have found that arrestin 2 and 3, GRK 2 and 3, 14-3-3 epsilon, and spinophilin directly associate with the Na(+),K(+)-ATPase and that the associations with arrestins, GRKs, or 14-3-3 epsilon are blocked in the presence of spinophilin. In COS cells that overexpressed arrestin, the Na(+),K(+)-ATPase was redistributed to intracellular compartments. This effect was not seen in mock-transfected cells or in cells expressing spinophilin. Furthermore, expression of spinophilin appeared to slow, whereas overexpression of beta-arrestins accelerated internalization of the Na(+),K(+)-ATPase endocytosis. We also find that GRKs phosphorylate the Na(+),K(+)-ATPase in vitro on its large cytoplasmic loop. Taken together, it appears that association with arrestins, GRKs, 14-3-3 epsilon, and spinophilin may be important modulators of Na(+),K(+)-ATPase trafficking.
Collapse
Affiliation(s)
- Tohru Kimura
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026, USA
| | | | | | | |
Collapse
|
27
|
Jayasundara N, Towle DW, Weihrauch D, Spanings-Pierrot C. Gill-specific transcriptional regulation of Na+/K+ -ATPase alpha-subunit in the euryhaline shore crab Pachygrapsus marmoratus: sequence variants and promoter structure. ACTA ACUST UNITED AC 2007; 210:2070-81. [PMID: 17562880 DOI: 10.1242/jeb.004309] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sodium pump (Na+/K+ -ATPase) has been implicated in osmoregulatory ion transport in many aquatic animals. In the euryhaline hyper-hypoosmoregulating shore crab Pachygrapsus marmoratus, induction of Na+/K+ -ATPase alpha-subunit mRNA varies between gills in response to osmotic stress. Following transfer of crabs from normal seawater (36 per thousand salinity) to diluted seawater (10 per thousand), a condition in which gills exhibit net ion uptake, alpha-subunit mRNA expression is upregulated in all tested gills, albeit with differing time courses. By contrast, following transfer from seawater to hypertonic (45 per thousand) seawater, a condition in which the animal is excreting ions, alpha-subunit mRNA is induced primarily in gill no. 7 (nine in total), suggesting that this gill may be associated specifically with ion excretion in P. marmoratus. Full-length sequencing of alpha-subunit cDNA revealed the existence of two isoforms differing only in the inclusion of an 81-nucleotide segment within the N-terminal open reading frame of the long (D) form in comparison to the short (C) form. The 81-nucleotide segment encodes a 14-3-3 protein binding site that may facilitate movement of the alpha-subunit protein between intracellular compartments and the plasma membrane. mRNA expression of the two forms followed similar patterns upon salinity transfer. Genomic DNA sequencing of the putative promoter region of the alpha-subunit gene demonstrated a spectrum of predicted transcription factor binding sites that are likely associated with the complex expression pattern observed among gills following osmotic stress.
Collapse
Affiliation(s)
- Nishad Jayasundara
- Center for Marine Functional Genomics, Mount Desert Island Biological Laboratory, Salsbury Cove, ME 04672, USA.
| | | | | | | |
Collapse
|
28
|
Efendiev R, Das-Panja K, Cinelli AR, Bertorello AM, Pedemonte CH. Localization of intracellular compartments that exchange Na,K-ATPase molecules with the plasma membrane in a hormone-dependent manner. Br J Pharmacol 2007; 151:1006-13. [PMID: 17533417 PMCID: PMC2042937 DOI: 10.1038/sj.bjp.0707304] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Dopamine is a major regulator of sodium reabsorption in proximal tubule epithelia. By binding to D1-receptors, dopamine induces endocytosis of plasma membrane Na,K-ATPase, resulting in a reduced capacity of the cells to transport sodium, thus contributing to natriuresis. We have previously demonstrated several aspects of the molecular mechanism by which dopamine induces Na,K-ATPase endocytosis; however, the location of intracellular compartments containing Na,K-ATPase molecules has not been identified. EXPERIMENTAL APPROACH In this study, we used different approaches to determine the localization of Na,K-ATPase-containing intracellular compartments. By expression of fluorescent-tagged Na,K-ATPase molecules in opossum kidney cells, a cell culture model of proximal tubule epithelia, we used fluorescence microscopy to determine cellular distribution of the fluorescent molecules and the effects of dopamine on this distribution. By labelling cell surface Na,K-ATPase molecules from the cell exterior with either biotin or an epitope-tagged antibody, we determined the localization of the tagged Na,K-ATPase molecules after endocytosis induced by dopamine. KEY RESULTS In cells expressing fluorescent-tagged Na,K-ATPase molecules, there were intracellular compartments containing Na,K-ATPase molecules. These compartments were in very close proximity to the plasma membrane. Upon treatment of the cells with dopamine, the fluorescence labelling of these compartments was increased. The labelling of these compartments was also observed when the endocytosis of biotin- or antibody-tagged plasma membrane Na,K-ATPase molecules was induced by dopamine. CONCLUSIONS AND IMPLICATIONS The intracellular compartments containing Na,K-ATPase molecules are located just underneath the plasma membrane.
Collapse
Affiliation(s)
- R Efendiev
- College of Pharmacy, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA.
| | | | | | | | | |
Collapse
|
29
|
Nesher M, Shpolansky U, Rosen H, Lichtstein D. The digitalis-like steroid hormones: new mechanisms of action and biological significance. Life Sci 2007; 80:2093-2107. [PMID: 17499813 DOI: 10.1016/j.lfs.2007.03.013] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 03/08/2007] [Accepted: 03/14/2007] [Indexed: 12/25/2022]
Abstract
Digitalis-like compounds (DLC) are a family of steroid hormones synthesized in and released from the adrenal gland. DLC, the structure of which resembles that of plant cardiac glycosides, bind to and inhibit the activity of the ubiquitous cell surface enzyme Na(+), K(+)-ATPase. However, there is a large body of evidence suggesting that the regulation of ion transport by Na(+), K(+)-ATPase is not the only physiological role of DLC. The binding of DLC to Na(+), K(+)-ATPase induces the activation of various signal transduction cascades that activate changes in intracellular Ca(++) homeostasis, and in specific gene expression. These, in turn, stimulate endocytosis and affect cell growth and proliferation. At the systemic level, DLC were shown to be involved in the regulation of major physiological parameters including water and salt homeostasis, cardiac contractility and rhythm, systemic blood pressure and behavior. Furthermore, the DLC system has been implicated in several pathological conditions, including cardiac arrhythmias, hypertension, cancer and depressive disorders. This review evaluates the evidence for the different aspects of DLC action and delineates open questions in the field.
Collapse
Affiliation(s)
- Maoz Nesher
- Department of Physiology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Uri Shpolansky
- Department of Physiology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Haim Rosen
- The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - David Lichtstein
- Department of Physiology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
30
|
Silva E, Gomes P, Soares-da-Silva P. Overexpression of Na(+)/K (+)-ATPase parallels the increase in sodium transport and potassium recycling in an in vitro model of proximal tubule cellular ageing. J Membr Biol 2007; 212:163-75. [PMID: 17334838 DOI: 10.1007/s00232-005-7017-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 05/11/2006] [Indexed: 11/26/2022]
Abstract
Na(+)/K(+)-ATPase plays a key role in the transport of Na(+) throughout the nephron, but ageing appears to be accompanied by changes in the regulation and localization of the pump. In the present study, we examined the effect of in vitro cell ageing on the transport of Na(+) and K(+) ions in opossum kidney (OK) cells in culture. Cells were aged by repeated passing, and Na(+)/K(+)-ATPase activity and K(+) conductance were evaluated using electrophysiological methods. Na(+)K(+)-ATPase alpha(1)- and beta(1)-subunit expression was quantified by Western blot techniques. Na(+)/H(+) exchanger activity, changes in membrane potential, cell viability, hydrogen peroxide production and cellular proliferation were determined using fluorimetric assays. In vitro cell ageing is accompanied by an increase in transepithelial Na(+) transport, which results from an increase in the number of Na(+)/K(+)-ATPase alpha(1)- and beta(1)-subunits, in the membrane. Increases in Na(+)/K(+)-ATPase activity were accompanied by increases in K(+) conductance as a result of functional coupling between Na(+)/K(+)-ATPase and basolateral K(+) channels. Cell depolarization induced by both KCl and ouabain was more pronounced in aged cells. No changes in Na(+)/H(+) exchanger activity were observed. H(2)O(2) production was increased in aged cells, but exposure for 5 days to 1 and 10 microM: of H(2)O(2) had no effect on Na(+)/K(+)-ATPase expression. Ouabain (100 nM: ) increased alpha(1)-subunit, but not beta(1)-subunit, Na(+)/K(+)-ATPase expression in aged cells only. These cells constitute an interesting model for the study of renal epithelial cell ageing.
Collapse
Affiliation(s)
- E Silva
- Faculty of Medicine, Institute of Pharmacology and Therapeutics, 4200-319 , Porto, Portugal
| | | | | |
Collapse
|
31
|
Felder RA, Jose PA. Mechanisms of disease: the role of GRK4 in the etiology of essential hypertension and salt sensitivity. ACTA ACUST UNITED AC 2006; 2:637-50. [PMID: 17066056 DOI: 10.1038/ncpneph0301] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 07/03/2006] [Indexed: 12/15/2022]
Abstract
Hypertension and salt sensitivity of blood pressure are two conditions the etiologies of which are still elusive because of the complex influences of genes, environment, and behavior. Recent understanding of the molecular mechanisms that govern sodium homeostasis is shedding new light on how genes, their protein products, and interacting metabolic pathways contribute to disease. Sodium transport is increased in the proximal tubule and thick ascending limb of Henle of the kidney in human essential hypertension. This Review focuses on the counter-regulation between the dopaminergic and renin-angiotensin systems in the renal proximal tubule, which is the site of about 70% of total renal sodium reabsorption. The inhibitory effect of dopamine is most evident under conditions of moderate sodium excess, whereas the stimulatory effect of angiotensin II is most evident under conditions of sodium deficit. Dopamine and angiotensin II exert their actions via G protein-coupled receptors, which are in turn regulated by G protein-coupled receptor kinases (GRKs). Polymorphisms that lead to aberrant action of GRKs cause a number of conditions, including hypertension and salt sensitivity. Polymorphisms in one particular member of this family-GRK4-have been shown to cause hyperphosphorylation, desensitization and internalization of a member of the dopamine receptor family, the dopamine 1 receptor, while increasing the expression of a key receptor of the renin-angiotensin system, the angiotensin II type 1 receptor. Novel diagnostic and therapeutic approaches for identifying at-risk subjects, followed by selective treatment of hypertension and salt sensitivity, might center on restoring normal receptor function through blocking the effects of GRK4 polymorphisms.
Collapse
Affiliation(s)
- Robin A Felder
- Department of Pathology, Post Office Box 800403, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
32
|
Efendiev R, Cinelli AR, Leibiger IB, Bertorello AM, Pedemonte CH. FRET analysis reveals a critical conformational change within the Na,K-ATPase α1 subunit N-terminus during GPCR-dependent endocytosis. FEBS Lett 2006; 580:5067-70. [PMID: 16949583 DOI: 10.1016/j.febslet.2006.08.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 08/08/2006] [Accepted: 08/14/2006] [Indexed: 11/24/2022]
Abstract
Dopamine is a major regulator of sodium reabsorption in proximal tubule epithelia. It induces the endocytosis of plasma membrane Na,K-ATPase molecules, and this results in a reduced capacity of the cells to transport sodium. Dopamine induces the phosphorylation of Ser-18 in the alpha1-subunit of Na,K-ATPase. Fluorescence resonance energy transfer analysis of cells expressing YFP-alpha1 and beta1-CFP reveals that treatment of the cells with dopamine increases energy transfer between CFP and YFP. This is consistent with a protein conformational change that results in the N-terminal end of alpha1 moving closer to the internal face of the plasma membrane.
Collapse
Affiliation(s)
- Riad Efendiev
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5037, USA.
| | | | | | | | | |
Collapse
|
33
|
Collawn JF. Unlocking the mysteries of Na+-K+-ATPase endocytosis: phosphorylation is the key. Am J Respir Cell Mol Biol 2006; 35:1-2. [PMID: 16782842 PMCID: PMC2658690 DOI: 10.1165/rcmb.f317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
34
|
Yuan X, Luo S, Lin Z, Wu Y. Cyclic stretch translocates the alpha2-subunit of the Na pump to plasma membrane in skeletal muscle cells in vitro. Biochem Biophys Res Commun 2006; 348:750-7. [PMID: 16893515 DOI: 10.1016/j.bbrc.2006.07.120] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 07/21/2006] [Indexed: 10/24/2022]
Abstract
The Na+-K+-ATPase and its regulation is important for maintaining membrane potential and transmembrane Na(+) gradient in all skeletal muscle cells and thus is essential for cell survival and function. In our previous study, cyclic stretch activated the Na pump in cultured skeletal muscle cells. Presently, we investigated whether this stimulation was the result of translocation of Na+-K+-ATPase from endosomes to the plasma membrane, and also evaluated the role of phosphatidylinositol 3-kinase (PI 3-kinase), the activation of which initiated vesicular trafficking and targeting of proteins to specific cell compartments. Skeletal muscle cells were stretched at 25% elongation continuous for 24h using the Flexercell Strain Unit. The plasma membrane and endosome fractions were isolated and Western blotted to localize the Na+-K+-ATPase alpha1- and alpha2-subunit protein. The results showed stretch increased Na+-K+-ATPase alpha1- and alpha2-subunit protein expression in plasma membrane fractions and decreased it in endosomes. The alpha2-subunit had a more dynamic response to mechanical stretch. PI 3-kinase inhibitors (LY294002) blocked the stretch-induced translocation of the Na+-K+-ATPase alpha2-subunit, while LY294002 had no effect on the transfer of alpha1-subunit. We concluded that cyclic stretch mainly stimulated the translocation of the alpha2-subunit of Na+-K+-ATPase from endosomes to the plasma membrane via a PI 3-kinase-dependent mechanism in cultured skeletal muscle cells in vitro, which in turn increased the activity of the Na pump.
Collapse
Affiliation(s)
- Xiao Yuan
- Department of Orthodontics, The 4th Military Medical University, Xi'an, Shanxi Province 710032, People's Republic of China.
| | | | | | | |
Collapse
|
35
|
Abstract
14-3-3 proteins affect the cell surface expression of several unrelated cargo membrane proteins, e.g., MHC II invariant chain, the two-pore potassium channels KCNK3 and KCNK9, and a number of different reporter proteins exposing Arg-based endoplasmic reticulum localization signals in mammalian and yeast cells. These multimeric membrane proteins have a common feature in that they all expose coatomer protein complex I (COPI)- and 14-3-3-binding motifs. 14-3-3 binding depends on phosphorylation of the membrane protein in some and on multimerization of the membrane protein in other cases. Evidence from mutant proteins that are unable to interact with either COPI or 14-3-3 and from yeast cells with an altered 14-3-3 content suggests that 14-3-3 proteins affect forward transport in the secretory pathway. Mechanistically, this could be explained by clamping, masking, or scaffolding. In the clamping mechanism, 14-3-3 binding alters the conformation of the signal-exposing tail of the membrane protein, whereas masking or scaffolding would abolish or allow the interaction of the membrane protein with other proteins or complexes. Interaction partners identified as putative 14-3-3 binding partners in affinity purification approaches constitute a pool of candidate proteins for downstream effectors, such as coat components, coat recruitment GTPases, Rab GTPases, GTPase-activating proteins (GAPs), guanine-nucleotide exchange factors (GEFs) and motor proteins.
Collapse
Affiliation(s)
- Thomas Mrowiec
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | |
Collapse
|
36
|
Bertorello AM, Sznajder JI. The dopamine paradox in lung and kidney epithelia: sharing the same target but operating different signaling networks. Am J Respir Cell Mol Biol 2005; 33:432-7. [PMID: 16234332 PMCID: PMC2715350 DOI: 10.1165/rcmb.2005-0297tr] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Stimulation of dopamine receptors in the lung or kidney epithelia has distinct and opposite effects on the function of Na,K-ATPase, which results in increased Na(+) absorption across the alveolar epithelium and increased sodium excretion via the kidney epithelium. In the lung, dopamine increases Na,K-ATPase by increasing cell basolateral surface expression of Na(+),K(+)-ATPase molecules, whereas in the kidney epithelia it decreases Na(+),K(+)-ATPase activity by removing active units from the plasma membrane by endocytosis. The opposite effects of dopamine over the same target (the Na(+),K(+)-ATPase) involve the activation of a distinct signaling network that it is target specific, and has a different spatial resolution. Understanding the specific signaling pathways involved in these actions of dopamine and their hierarchical organization may facilitate the drug discovery process that could lead to the design of new therapeutic approaches to clear lung edema in patients with acute lung injury and to decrease fluid overload during congestive heart failure and hypertension.
Collapse
Affiliation(s)
- Alejandro M Bertorello
- Department of Medicine, Atherosclerosis Research Unit, Membrane Signaling Networks, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | | |
Collapse
|
37
|
Pedemonte CH, Efendiev R, Bertorello AM. Inhibition of Na,K-ATPase by Dopamine in Proximal Tubule Epithelial Cells. Semin Nephrol 2005; 25:322-7. [PMID: 16139687 DOI: 10.1016/j.semnephrol.2005.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the current report we review the results that lay grounds for the model of intracellular sodium-mediated dopamine-induced endocytosis of Na,K-ATPase. Under conditions of a high salt diet, dopamine activates PKCzeta, which phosphorylates NKA alpha1 Ser-18. The phosphorylation produces a conformational change of alpha1 NH2-terminus, which through interaction with other domains of alpha1 exposes PI3K- and AP-2-binding domains. PI3K bound to the NKA alpha1 induces the recruitment and activation of other proteins involved in endocytosis, and PI3K-generated 3-phosphoinositides affect the local cytoskeleton and modify the biophysical conditions of the membrane for development of clathrin-coated pits. Plasma membrane phosphorylated NKA is internalized to specialized intracellular compartments where the NKA will be dephosphorylated. The NKA internalization results in a reduced Na+ transport by proximal tubule epithelial cells.
Collapse
|
38
|
Bhalla V, Daidié D, Li H, Pao AC, LaGrange LP, Wang J, Vandewalle A, Stockand JD, Staub O, Pearce D. Serum- and glucocorticoid-regulated kinase 1 regulates ubiquitin ligase neural precursor cell-expressed, developmentally down-regulated protein 4-2 by inducing interaction with 14-3-3. Mol Endocrinol 2005; 19:3073-84. [PMID: 16099816 DOI: 10.1210/me.2005-0193] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Serum- and glucocorticoid-regulated kinase 1 (SGK1) is an aldosterone-regulated early response gene product that regulates the activity of several ion transport proteins, most notably that of the epithelial sodium channel (ENaC). Recent evidence has established that SGK1 phosphorylates and inhibits Nedd4-2 (neural precursor cell-expressed, developmentally down-regulated protein 4-2), a ubiquitin ligase that decreases cell surface expression of the channel and possibly stimulates its degradation. The mechanistic basis for this SGK1-induced Nedd4-2 inhibition is currently unknown. In this study we show that SGK1-mediated phosphorylation of Nedd4-2 induces its interaction with members of the 14-3-3 family of regulatory proteins. Through functional characterization of Nedd4-2-mutant proteins, we demonstrate that this interaction is required for SGK1-mediated inhibition of Nedd4-2. The concerted action of SGK1 and 14-3-3 appears to disrupt Nedd4-2-mediated ubiquitination of ENaC, thus providing a mechanism by which SGK1 modulates the ENaC-mediated Na(+) current. Finally, the expression pattern of 14-3-3 is also consistent with a functional role in distal nephron Na(+) transport. These results demonstrate a novel, physiologically significant role for 14-3-3 proteins in modulating ubiquitin ligase-dependent pathways in the control of epithelial ion transport.
Collapse
Affiliation(s)
- Vivek Bhalla
- Division of Nephrology, Department of Medicine, University of California-San Francisco, San Francisco, CA 94143-0532, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|