1
|
Zhang X, Wu N, Geng K, Yuan C, Wang B, Shi J, Qiu J, He J. Identification of a chlorosalicylic acid decarboxylase (CsaD) involved in decarboxylation of 3,6-DCSA from an anaerobic dicamba-degrading sludge. Appl Environ Microbiol 2024; 90:e0131924. [PMID: 39248463 PMCID: PMC11497826 DOI: 10.1128/aem.01319-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
3,6-Dichlorosalicylic acid (3,6-DCSA) is the demethylation metabolite of herbicide 3,6-dichloro-2-methoxy benzoic acid (dicamba). Previous studies have shown that anaerobic sludge further transformed 3,6-DCSA through decarboxylation and dechlorination. However, the anaerobe, enzyme, and gene involved in the anaerobic degradation of 3,6-DCSA are still unknown. In this study, an anaerobic sludge that efficiently degraded dicamba was enriched, and a 3,6-DCSA decarboxylase, designated chlorosalicylic acid decarboxylase (CsaD), was partially purified and identified from the anaerobic sludge. Metagenomic analysis showed that the csaD gene was located in a gene cluster of metagenome-assembled genome 8 (MAG8). MAG8 belonged to an uncultured order, OPB41, in the class Coriobacteriia of the phylum Actinobacteria, and its abundance increased approximately once during the enrichment process. CsaD was a non-oxidative decarboxylase in the amidohydrolase 2 family catalyzing the decarboxylation of 3,6-DCSA and 6-chlorosalicylic acid (6-CSA). Its affinity and catalytic efficiency for 3,6-DCSA were significantly higher than those for 6-CSA. This study provides new insights into the anaerobic catabolism of herbicide dicamba.IMPORTANCEDicamba, an important hormone herbicide, easily migrates to anoxic habitats such as sediment, ground water, and deep soil. Thus, the anaerobic catabolism of dicamba is of importance. Anaerobic bacteria or sludge demethylated dicamba to 3,6-DCSA, and in a previous study, based on metabolite identification, it was proposed that 3,6-DCSA be further degraded via two pathways: decarboxylation to 2,5-dichlorophenol, then dechlorination to 3-chlorophenol (3-CP); or dechlorination to 6-CSA, then decarboxylation to 3-CP. However, there was no physiological and genetic validation for the pathway. In this study, CsaD catalyzed the decarboxylation of both 3,6-DCSA and 6-CSA, providing enzyme-level evidence for the anaerobic catabolism of 3,6-DCSA through the two pathways. CsaD was located in MAG8, which belonged to an uncultured anaerobic actinomycetes order, OPB41, indicating that anaerobic actinomycetes in OPB41 was involved in the decarboxylation of 3,6-DCSA. This study provides a basis for understanding the anaerobic catabolism of dicamba and the demethylation product, 3,6-DCSA.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Ningning Wu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Keke Geng
- College of Rural Revitalization, Jiangsu Open University, Nanjing, China
| | - Cansheng Yuan
- College of Rural Revitalization, Jiangsu Open University, Nanjing, China
| | - Baozhan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Junyu Shi
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Jiguo Qiu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Jian He
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Agricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu Province, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Wang X, Yang Y, Chen L, Hu G, Jiang X, Mao D, Qiu J, He J, Zhang B. Nocardioides imazamoxiresistens sp. nov. Isolated from the Activated Sludge. Curr Microbiol 2024; 81:214. [PMID: 38849626 DOI: 10.1007/s00284-024-03731-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/05/2024] [Indexed: 06/09/2024]
Abstract
A Gram-staining-positive actinomycete named YZH12T was isolated from the sediment of the Yangtze River in Nanjing, Jiangsu province, China. Cells were aerobic, non-spore forming, non-motile, short rod (0.4-0.6 × 0.5-1.0 µm) or coccus (0.4-0.6 µm in diameter). Colonies were circular, smooth, and beige to yellowish. Growth occurred at 15-42 °C (optimal 28 °C), pH 5.0-9.0 (optimal 7.0), and 0-10% (w/v) NaCl (optimal 2%). The strain could tolerate 1500 mg/L of imazamox. Strain YZH12T showed 98.7% 16S rRNA gene sequence similarity Nocardioides zeae JM-1068T and less than 97% similarities with other type strains in the genus Nocardioides. Phylogenetic analysis based on genome and 16S rRNA gene sequences indicated that strain YZH12T was phylogenetically affiliated to the genus Nocardioides and formed a subclade with N. zeae JM-1068T and N. alkalitolerans DSM 16699T. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between YZH12T and closely related type strain N. zeae JM-1068T were 79.9% and 35.2%, respectively. The major fatty acids (> 5%) were C18: 1ω9c, iso-C16: 0, C16: 0, C17: 1ω8cand C18: 0; the major respiratory quinone was MK-8(H4); and the polar lipids profiles were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), glycolipid (GL), two aminophospholipids (APL1, APL2), and an unknown polar lipid (L). The genomic DNA G + C content is 73.5%. Based on the phenotypic, chemotaxonomic, phylogenetic analyses, and genomic data, strain YZH12T represents a novel species of the genus Nocardioides, for which the name Nocardioides imazamoxiresistens YZH12T is proposed, with strain YZH12T (= KCTC 49964T = MCCC 1K0892T) as the type strain.
Collapse
Affiliation(s)
- Xiao Wang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Yuwen Yang
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Le Chen
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Gang Hu
- Biological Experiment Center, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xueting Jiang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Dongmei Mao
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jiguo Qiu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| | - Jian He
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- Agricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu Province, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Baolong Zhang
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Zhang M, Gao S, Pan K, Liu H, Li Q, Bai X, Zhu Q, Chen Z, Yan X, Hong Q. Functional analysis, diversity, and distribution of the ean cluster responsible for 17 β-estradiol degradation in sphingomonads. Appl Environ Microbiol 2024; 90:e0197423. [PMID: 38619269 PMCID: PMC11107178 DOI: 10.1128/aem.01974-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/20/2024] [Indexed: 04/16/2024] Open
Abstract
17β-estradiol (E2) is a natural endocrine disruptor that is frequently detected in surface and groundwater sources, thereby threatening ecosystems and human health. The newly isolated E2-degrading strain Sphingomonas colocasiae C3-2 can degrade E2 through both the 4,5-seco pathway and the 9,10-seco pathway; the former is the primary pathway supporting the growth of this strain and the latter is a branching pathway. The novel gene cluster ean was found to be responsible for E2 degradation through the 4,5-seco pathway, where E2 is converted to estrone (E1) by EanA, which belongs to the short-chain dehydrogenases/reductases (SDR) superfamily. A three-component oxygenase system (including the P450 monooxygenase EanB1, the small iron-sulfur protein ferredoxin EanB2, and the ferredoxin reductase EanB3) was responsible for hydroxylating E1 to 4-hydroxyestrone (4-OH-E1). The enzymatic assay showed that the proportion of the three components is critical for its function. The dioxygenase EanC catalyzes ring A cleavage of 4-OH-E1, and the oxidoreductase EanD is responsible for the decarboxylation of the ring A-cleavage product of 4-OH-E1. EanR, a TetR family transcriptional regulator, acts as a transcriptional repressor of the ean cluster. The ean cluster was also found in other reported E2-degrading sphingomonads. In addition, the novel two-component monooxygenase EanE1E2 can open ring B of 4-OH-E1 via the 9,10-seco pathway, but its encoding genes are not located within the ean cluster. These results refine research on genes involved in E2 degradation and enrich the understanding of the cleavages of ring A and ring B of E2.IMPORTANCESteroid estrogens have been detected in diverse environments, ranging from oceans and rivers to soils and groundwater, posing serious risks to both human health and ecological safety. The United States National Toxicology Program and the World Health Organization have both classified estrogens as Group 1 carcinogens. Several model organisms (proteobacteria) have established the 4,5-seco pathway for estrogen degradation. In this study, the newly isolated Sphingomonas colocasiae C3-2 could degrade E2 through both the 4,5-seco pathway and the 9,10-seco pathway. The novel gene cluster ean (including eanA, eanB1, eanC, and eanD) responsible for E2 degradation by the 4,5-seco pathway was identified; the novel two-component monooxygenase EanE1E2 can open ring B of 4-OH-E1 through the 9,10-seco pathway. The TetR family transcriptional regulator EanR acts as a transcriptional repressor of the ean cluster. The cluster ean was also found to be present in other reported E2-degrading sphingomonads, indicating the ubiquity of the E2 metabolism in the environment.
Collapse
Affiliation(s)
- Mingliang Zhang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Siyuan Gao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Kaihua Pan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Hongfei Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Qian Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Xuekun Bai
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Qian Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Zeyou Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, China
| | - Xin Yan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Qing Hong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| |
Collapse
|
4
|
Canella Vieira C, Zhou J, Jarquin D, Zhou J, Diers B, Riechers DE, Nguyen HT, Shannon G. Genetic architecture of soybean tolerance to off-target dicamba. FRONTIERS IN PLANT SCIENCE 2023; 14:1230068. [PMID: 37877091 PMCID: PMC10590897 DOI: 10.3389/fpls.2023.1230068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
Abstract
The adoption of dicamba-tolerant (DT) soybean in the United States resulted in extensive off-target dicamba damage to non-DT vegetation across soybean-producing states. Although soybeans are highly sensitive to dicamba, the intensity of observed symptoms and yield losses are affected by the genetic background of genotypes. Thus, the objective of this study was to detect novel marker-trait associations and expand on previously identified genomic regions related to soybean response to off-target dicamba. A total of 551 non-DT advanced breeding lines derived from 232 unique bi-parental populations were phenotyped for off-target dicamba across nine environments for three years. Breeding lines were genotyped using the Illumina Infinium BARCSoySNP6K BeadChip. Filtered SNPs were included as predictors in Random Forest (RF) and Support Vector Machine (SVM) models in a forward stepwise selection loop to identify the combination of SNPs yielding the highest classification accuracy. Both RF and SVM models yielded high classification accuracies (0.76 and 0.79, respectively) with minor extreme misclassifications (observed tolerant predicted as susceptible, and vice-versa). Eight genomic regions associated with off-target dicamba tolerance were identified on chromosomes 6 [Linkage Group (LG) C2], 8 (LG A2), 9 (LG K), 10 (LG O), and 19 (LG L). Although the genetic architecture of tolerance is complex, high classification accuracies were obtained when including the major effect SNP identified on chromosome 6 as the sole predictor. In addition, candidate genes with annotated functions associated with phases II (conjugation of hydroxylated herbicides to endogenous sugar molecules) and III (transportation of herbicide conjugates into the vacuole) of herbicide detoxification in plants were co-localized with significant markers within each genomic region. Genomic prediction models, as reported in this study, can greatly facilitate the identification of genotypes with superior tolerance to off-target dicamba.
Collapse
Affiliation(s)
- Caio Canella Vieira
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Jing Zhou
- Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Diego Jarquin
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Jianfeng Zhou
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Brian Diers
- Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Dean E. Riechers
- Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Henry T. Nguyen
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Grover Shannon
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
5
|
Quareshy M, Shanmugam M, Cameron AD, Bugg TDH, Chen Y. Characterisation of an unusual cysteine pair in the Rieske carnitine monooxygenase CntA catalytic site. FEBS J 2023; 290:2939-2953. [PMID: 36617384 PMCID: PMC10952381 DOI: 10.1111/febs.16722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/01/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Rieske monooxygenases undertake complex catalysis integral to marine, terrestrial and human gut-ecosystems. Group-I to -IV Rieske monooxygenases accept aromatic substrates and have well-characterised catalytic mechanisms. Nascent to our understanding are Group-V members catalysing the oxidation/breakdown of quaternary ammonium substrates. Phylogenetic analysis of Group V highlights a cysteine residue-pair adjacent to the mononuclear Fe active site with no established role. Following our elucidation of the carnitine monooxygenase CntA structure, we probed the function of the cysteine pair Cys206/Cys209. Utilising biochemical and biophysical techniques, we found the cysteine residues do not play a structural role nor influence the electron transfer pathway, but rather are used in a nonstoichiometric role to ensure the catalytic iron centre remains in an Fe(II) state.
Collapse
Affiliation(s)
| | | | | | | | - Yin Chen
- School of Life SciencesUniversity of WarwickCoventryUK
| |
Collapse
|
6
|
Tian J, Garcia AA, Donnan PH, Bridwell-Rabb J. Leveraging a Structural Blueprint to Rationally Engineer the Rieske Oxygenase TsaM. Biochemistry 2023. [PMID: 37188334 DOI: 10.1021/acs.biochem.3c00150] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Rieske nonheme iron oxygenases use two metallocenters, a Rieske-type [2Fe-2S] cluster and a mononuclear iron center, to catalyze oxidation reactions on a broad range of substrates. These enzymes are widely used by microorganisms to degrade environmental pollutants and to build complexity in a myriad of biosynthetic pathways that are industrially interesting. However, despite the value of this chemistry, there is a dearth of understanding regarding the structure-function relationships in this enzyme class, which limits our ability to rationally redesign, optimize, and ultimately exploit the chemistry of these enzymes. Therefore, in this work, by leveraging a combination of available structural information and state-of-the-art protein modeling tools, we show that three "hotspot" regions can be targeted to alter the site selectivity, substrate preference, and substrate scope of the Rieske oxygenase p-toluenesulfonate methyl monooxygenase (TsaM). Through mutation of six to 10 residues distributed between three protein regions, TsaM was engineered to behave as either vanillate monooxygenase (VanA) or dicamba monooxygenase (DdmC). This engineering feat means that TsaM was rationally engineered to catalyze an oxidation reaction at the meta and ortho positions of an aromatic substrate, rather than its favored native para position, and that TsaM was redesigned to perform chemistry on dicamba, a substrate that is not natively accepted by the enzyme. This work thus contributes to unlocking our understanding of structure-function relationships in the Rieske oxygenase enzyme class and expands foundational principles for future engineering of these metalloenzymes.
Collapse
Affiliation(s)
- Jiayi Tian
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Patrick H Donnan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jennifer Bridwell-Rabb
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Canella Vieira C, Jarquin D, do Nascimento EF, Lee D, Zhou J, Smothers S, Zhou J, Diers B, Riechers DE, Xu D, Shannon G, Chen P, Nguyen HT. Identification of genomic regions associated with soybean responses to off-target dicamba exposure. FRONTIERS IN PLANT SCIENCE 2022; 13:1090072. [PMID: 36570921 PMCID: PMC9780662 DOI: 10.3389/fpls.2022.1090072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The widespread adoption of genetically modified (GM) dicamba-tolerant (DT) soybean was followed by numerous reports of off-target dicamba damage and yield losses across most soybean-producing states. In this study, a subset of the USDA Soybean Germplasm Collection consisting of 382 genetically diverse soybean accessions originating from 15 countries was used to identify genomic regions associated with soybean response to off-target dicamba exposure. Accessions were genotyped with the SoySNP50K BeadChip and visually screened for damage in environments with prolonged exposure to off-target dicamba. Two models were implemented to detect significant marker-trait associations: the Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) and a model that allows the inclusion of population structure in interaction with the environment (G×E) to account for variable patterns of genotype responses in different environments. Most accessions (84%) showed a moderate response, either moderately tolerant or moderately susceptible, with approximately 8% showing tolerance and susceptibility. No differences in off-target dicamba damage were observed across maturity groups and centers of origin. Both models identified significant associations in regions of chromosomes 10 and 19. The BLINK model identified additional significant marker-trait associations on chromosomes 11, 14, and 18, while the G×E model identified another significant marker-trait association on chromosome 15. The significant SNPs identified by both models are located within candidate genes possessing annotated functions involving different phases of herbicide detoxification in plants. These results entertain the possibility of developing non-GM soybean cultivars with improved tolerance to off-target dicamba exposure and potentially other synthetic auxin herbicides. Identification of genetic sources of tolerance and genomic regions conferring higher tolerance to off-target dicamba may sustain and improve the production of other non-DT herbicide soybean production systems, including the growing niche markets of organic and conventional soybean.
Collapse
Affiliation(s)
- Caio Canella Vieira
- Fisher Delta Research, Extension, and Education Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO, United States
| | - Diego Jarquin
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Emanuel Ferrari do Nascimento
- Fisher Delta Research, Extension, and Education Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO, United States
| | - Dongho Lee
- Fisher Delta Research, Extension, and Education Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO, United States
| | - Jing Zhou
- Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Scotty Smothers
- Fisher Delta Research, Extension, and Education Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO, United States
| | - Jianfeng Zhou
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Brian Diers
- Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Dean E. Riechers
- Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Grover Shannon
- Fisher Delta Research, Extension, and Education Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO, United States
| | - Pengyin Chen
- Fisher Delta Research, Extension, and Education Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO, United States
| | - Henry T. Nguyen
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
8
|
Hu WY, Li K, Weitz A, Wen A, Kim H, Murray JC, Cheng R, Chen B, Naowarojna N, Grinstaff MW, Elliott SJ, Chen JS, Liu P. Light-Driven Oxidative Demethylation Reaction Catalyzed by a Rieske-Type Non-heme Iron Enzyme Stc2. ACS Catal 2022; 12:14559-14570. [PMID: 37168530 PMCID: PMC10168674 DOI: 10.1021/acscatal.2c04232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rieske-type non-heme iron oxygenases/oxidases catalyze a wide range of transformations. Their applications in bioremediation or biocatalysis face two key barriers: the need of expensive NAD(P)H as a reductant and a proper reductase to mediate the electron transfer from NAD(P)H to the oxygenases. To bypass the need of both the reductase and NAD(P)H, using Rieske-type oxygenase (Stc2) catalyzed oxidative demethylation as the model system, we report Stc2 photocatalysis using eosin Y/sulfite as the photosensitizer/sacrificial reagent pair. In a flow-chemistry setting to separate the photo-reduction half-reaction and oxidation half-reaction, Stc2 photo-biocatalysis outperforms the Stc2-NAD(P)H-reductase (GbcB) system. In addition, in a few other selected Rieske enzymes (NdmA, CntA, and GbcA), and a flavin-dependent enzyme (iodotyrosine deiodinase, IYD), the eosin Y/sodium sulfite photo-reduction pair could also serve as the NAD(P)H-reductase surrogate to support catalysis, which implies the potential applicability of this photo-reduction system to other redox enzymes.
Collapse
Affiliation(s)
- Wei-Yao Hu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Kelin Li
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Andrew Weitz
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Aiwen Wen
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Hyomin Kim
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Jessica C. Murray
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Ronghai Cheng
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Baixiong Chen
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Nathchar Naowarojna
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Mark W. Grinstaff
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Sean J. Elliott
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| |
Collapse
|
9
|
Li N, Chen L, Chen E, Yuan C, Zhang H, He J. Cloning of a novel tetrahydrofolate-dependent dicamba demethylase gene from dicamba-degrading consortium and characterization of the gene product. Front Microbiol 2022; 13:978577. [PMID: 36033860 PMCID: PMC9404685 DOI: 10.3389/fmicb.2022.978577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Dicamba, an important hormone-type systemic herbicide, is widely used to control more than 200 kinds of broadleaf weeds in agriculture. Due to its broad-spectrum, high efficiency and effectively killing glyphosate-resistant weeds, dicamba is considered as an excellent target herbicide for the engineering of herbicide-resistant crops. In this study, an efficient dicamba-degrading microbial consortium was enriched from soil collected from the outfall of a pesticide factory. The enriched consortium could almost completely degrade 500 mg/L of dicamba within 12 h of incubation. A novel tetrahydrofolate (THF)-dependent dicamba demethylase gene, named dmt06, was cloned from the total DNA of the enriched consortium. Dmt06 shared the highest identity (72.3%) with dicamba demethylase Dmt50 from Rhizorhabdus dicambivorans Ndbn-20. Dmt06 was expressed in Escherichia coli BL21 and purified to homogeneity using Co2+-charged nitrilotriacetic acid affinity chromatography. The purified Dmt06 catalyzed the transfer of methyl from dicamba to THF, generating the herbicidally inactive metabolite 3,6-dichlorosalicylate (3,6-DCSA) and 5-methyl-THF. The optimum pH and temperature for Dmt06 were detected to be 7.4 and 35°C, respectively. Under the optimal condition, the specific activity of Dmt06 reached 165 nmol/min/mg toward dicamba, which was much higher than that of Dmt and Dmt50. In conclusion, this study cloned a novel gene, dmt06, encoding an efficient THF-dependent dicamba demethylase, which was a good candidate for dicamba-resistant transgenic engineering.
Collapse
Affiliation(s)
- Na Li
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Le Chen
- Jiangsu Academy of Agricultural Sciences, Institute of Germplasm Resources and Biotechnology, Nanjing, China
| | - E. Chen
- The Environmental Monitoring Center of Gansu Province, Lanzhou, China
| | - Cansheng Yuan
- College of Rural Revitalization, Jiangsu Open University, Nanjing, China
- Cansheng Yuan,
| | - Hao Zhang
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- College of Rural Revitalization, Jiangsu Open University, Nanjing, China
- *Correspondence: Jian He, ;
| |
Collapse
|
10
|
Cheng M, Chen D, Parales RE, Jiang J. Oxygenases as Powerful Weapons in the Microbial Degradation of Pesticides. Annu Rev Microbiol 2022; 76:325-348. [PMID: 35650666 DOI: 10.1146/annurev-micro-041320-091758] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oxygenases, which catalyze the reductive activation of O2 and incorporation of oxygen atoms into substrates, are widely distributed in aerobes. They function by switching the redox states of essential cofactors that include flavin, heme iron, Rieske non-heme iron, and Fe(II)/α-ketoglutarate. This review summarizes the catalytic features of flavin-dependent monooxygenases, heme iron-dependent cytochrome P450 monooxygenases, Rieske non-heme iron-dependent oxygenases, Fe(II)/α-ketoglutarate-dependent dioxygenases, and ring-cleavage dioxygenases, which are commonly involved in pesticide degradation. Heteroatom release (hydroxylation-coupled hetero group release), aromatic/heterocyclic ring hydroxylation to form ring-cleavage substrates, and ring cleavage are the main chemical fates of pesticides catalyzed by these oxygenases. The diversity of oxygenases, specificities for electron transport components, and potential applications of oxygenases are also discussed. This article summarizes our current understanding of the catalytic mechanisms of oxygenases and a framework for distinguishing the roles of oxygenases in pesticide degradation. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Minggen Cheng
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs and Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China;
| | - Dian Chen
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California, USA
| | - Jiandong Jiang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs and Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China;
| |
Collapse
|
11
|
Differentiate Soybean Response to Off-Target Dicamba Damage Based on UAV Imagery and Machine Learning. REMOTE SENSING 2022. [DOI: 10.3390/rs14071618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The wide adoption of dicamba-tolerant (DT) soybean has led to numerous cases of off-target dicamba damage to non-DT soybean and dicot crops. This study aimed to develop a method to differentiate soybean response to dicamba using unmanned-aerial-vehicle-based imagery and machine learning models. Soybean lines were visually classified into three classes of injury, i.e., tolerant, moderate, and susceptible to off-target dicamba. A quadcopter with a built-in RGB camera was used to collect images of field plots at a height of 20 m above ground level. Seven image features were extracted for each plot, including canopy coverage, contrast, entropy, green leaf index, hue, saturation, and triangular greenness index. Classification models based on artificial neural network (ANN) and random forest (RF) algorithms were developed to differentiate the three classes of response to dicamba. Significant differences for each feature were observed among classes and no significant differences across fields were observed. The ANN and RF models were able to precisely distinguish tolerant and susceptible lines with an overall accuracy of 0.74 and 0.75, respectively. The imagery-based classification model can be implemented in a breeding program to effectively differentiate phenotypic dicamba response and identify soybean lines with tolerance to off-target dicamba damage.
Collapse
|
12
|
Shahid M, Khan MS. Tolerance of pesticides and antibiotics among beneficial soil microbes recovered from contaminated rhizosphere of edible crops. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100091. [PMID: 34977827 PMCID: PMC8683648 DOI: 10.1016/j.crmicr.2021.100091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Soil bacterial isolates were recovered from contaminated rhizosphere regions. Majority of bacterial isolatesshowed multifarious plant growth promoting (PGP) activities. Bacterial isolates exhibited a varied level of pesticide tolerance. Sensitivity/resistance pattern among isolates was variable Pesticides tolerance and antibiotic resistance among soil isolates were variably correlated
A total of 45 beneficial soil bacterial isolates (15 each of Pseudomonas, Azotobacter and phosphate solubilizing bacteria: PSB) recovered from polluted rhizosphere soils were morphologically and biochemically characterized. Bacterial isolates produced indole-3-acetic acid (IAA), phenolate siderophores; SA (salicylic acid) and 2, 3-dihydroxy benzoic acid (2, 3-DHBA), 1-amino cyclopropane 1-carboxylate (ACC) deaminase, solubilised insoluble phosphate (Pi), secreted exopolysaccharides (EPS) and produced ammonia and cyanogenic compound (HCN). Isolates were tested for their tolerance ability against 12 different agrochemicals (chemical pesticides) and 14 antibiotics. Among Pseudomonas, isolate PS1 showed maximum (2183 µg mL−1) tolerance to all tested agrochemicals. Likewise, among all Azotobacter isolates (n = 15), AZ12 showed maximum (1766 µg mL−1) while AZ7 had lowest (950 µg mL−1) tolerance ability to all tested agrochemicals. Moreover, among phosphate solubilizing bacterial isolates, maximum (1970 µg mL−1) and minimum (1308 µg mL−1) tolerance to agrochemicals was represented by PSB8 and PSB13 isolates, respectively. The antibiotic sensitivity/resistance among isolates varied considerably. As an example, Pseudomonas spp. was susceptible to several antibiotics, and inhibition zone differed between 10 mm (polymyxin B) to 34 mm (nalidixic acid). Also, isolate PS2 showed resistance to erythromycin, ciprofloxacin, methicillin, novobiocin and penicillin. The resistance percentage to multiple antibiotics among Azotobacter isolates varied between 7 and 33%. Among PSB isolates, inhibition zone differed between 10 and 40 mm and maximum and minimum resistance percentage to multiple antibiotics was recorded as 47% and 20%, respectively. The persistence of pesticides in agricultural soil may contribute to an increase in multidrug resistance among soil microorganisms. In conclusion, plant growth promoting (PGP) substances releasing soil microorganisms comprising of inherent/intrinsic properties of pesticides tolerance and antibiotics resistance may provide an attractive, agronomically feasible, and long-term prospective alternative for the augmentation of edible crops. However, in future, more research is needed to uncover the molecular processes behind the development of pesticide tolerance and antibiotic resistance among soil microorganisms.
Collapse
Affiliation(s)
- Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| |
Collapse
|
13
|
Qamar Z, Nasir IA, Abouhaidar MG, Hefferon KL, Rao AQ, Latif A, Ali Q, Anwar S, Rashid B, Shahid AA. Novel approaches to circumvent the devastating effects of pests on sugarcane. Sci Rep 2021; 11:12428. [PMID: 34127751 PMCID: PMC8203629 DOI: 10.1038/s41598-021-91985-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/21/2021] [Indexed: 02/05/2023] Open
Abstract
Sugarcane (Saccharum officinarum L.) is a cash crop grown commercially for its higher amounts of sucrose, stored within the mature internodes of the stem. Numerous studies have been done for the resistance development against biotic and abiotic stresses to save the sucrose yields. Quality and yield of sugarcane production is always threatened by the damages of cane borers and weeds. In current study two problems were better addressed through the genetic modification of sugarcane for provision of resistance against insects and weedicide via the expression of two modified cane borer resistant CEMB-Cry1Ac (1.8 kb), CEMB-Cry2A (1.9 kb) and one glyphosate tolerant CEMB-GTGene (1.4 kb) genes, driven by maize Ubiquitin Promoter and nos terminator. Insect Bio-toxicity assays were carried out for the assessment of Cry proteins through mortality percent of shoot borer Chilo infuscatellus at 2nd instar larvae stage. During V0, V1 and V2 generations young leaves from the transgenic sugarcane plants were collected at plant age of 20, 40, 60, 80 days and fed to the Chilo infuscatellus larvae. Up to 100% mortality of Chilo infuscatellus from 80 days old transgenic plants of V2 generation indicated that these transgenic plants were highly resistant against shoot borer and the gene expression level is sufficient to provide complete resistance against target pests. Glyphosate spray assay was carried out for complete removal of weeds. In V1-generation, 70-76% transgenic sugarcane plants were found tolerant against glyphosate spray (3000 mL/ha) under field conditions. While in V2-generation, the replicates of five selected lines 4L/2, 5L/5, 6L/5, L8/4, and L9/6 were found 100% tolerant against 3000 mL/ha glyphosate spray. It is evident from current study that CEMB-GTGene, CEMB-Cry1Ac and CEMB-Cry2A genes expression in sugarcane variety CPF-246 showed an efficient resistance against cane borers (Chilo infuscatellus) and was also highly tolerant against glyphosate spray. The selected transgenic sugarcane lines showed sustainable resistance against cane borer and glyphosate spray can be further exploited at farmer's field level after fulfilling the biosafety requirements to boost the sugarcane production in the country.
Collapse
Affiliation(s)
- Zahida Qamar
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | - Idrees Ahmad Nasir
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Mounir G Abouhaidar
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | - Abdul Qayyum Rao
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ayesha Latif
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Qurban Ali
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Saima Anwar
- Pakistan Biomedical Engineering Centre University of Engineering and Technology, New Campus, Lahore, Pakistan
| | - Bushra Rashid
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ahmad Ali Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
14
|
A Novel Gene Cluster Is Involved in the Degradation of Lignin-Derived Monoaromatics in Thermus oshimai JL-2. Appl Environ Microbiol 2021; 87:AEM.01589-20. [PMID: 33741620 DOI: 10.1128/aem.01589-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 03/09/2021] [Indexed: 11/20/2022] Open
Abstract
A novel gene cluster involved in the degradation of lignin-derived monoaromatics such as p-hydroxybenzoate, vanillate, and ferulate has been identified in the thermophilic nitrate reducer Thermus oshimai JL-2. Based on conserved domain analyses and metabolic pathway mapping, the cluster was classified into upper- and peripheral-pathway operons. The upper-pathway genes, responsible for the degradation of p-hydroxybenzoate and vanillate, are located on a 0.27-Mb plasmid, whereas the peripheral-pathway genes, responsible for the transformation of ferulate, are spread throughout the plasmid and the chromosome. In addition, a lower-pathway operon was also identified in the plasmid that corresponds to the meta-cleavage pathway of catechol. Spectrophotometric and gene induction data suggest that the upper and lower operons are induced by p-hydroxybenzoate, which the strain can degrade completely within 4 days of incubation, whereas the peripheral genes are expressed constitutively. The upper degradation pathway follows a less common route, proceeding via the decarboxylation of protocatechuate to form catechol, and involves a novel thermostable γ-carboxymuconolactone decarboxylase homolog, identified as protocatechuate decarboxylase based on gene deletion experiments. This gene cluster is conserved in only a few members of the Thermales and shows traces of vertical expansion of catabolic pathways in these organisms toward lignoaromatics.IMPORTANCE High-temperature steam treatment of lignocellulosic biomass during the extraction of cellulose and hemicellulose fractions leads to the release of a wide array of lignin-derived aromatics into the natural ecosystem, some of which can have detrimental effects on the environment. Not only will identifying organisms capable of using such aromatics aid in environmental cleanup, but thermostable enzymes, if characterized, can also be used for efficient lignin valorization. However, no thermophilic lignin degraders have been reported thus far. The present study reports T. oshimai JL-2 as a thermophilic bacterium with the potential to use lignin-derived aromatics. The identification of a novel thermostable protocatechuate decarboxylase gene in the strain further adds to its significance, as such an enzyme can be efficiently used in the biosynthesis of cis,cis-muconate, an important intermediate in the commercial production of plastics.
Collapse
|
15
|
Shanmugam M, Quareshy M, Cameron AD, Bugg TDH, Chen Y. Light-Activated Electron Transfer and Catalytic Mechanism of Carnitine Oxidation by Rieske-Type Oxygenase from Human Microbiota. Angew Chem Int Ed Engl 2020; 60:4529-4534. [PMID: 33180358 PMCID: PMC7986066 DOI: 10.1002/anie.202012381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/23/2020] [Indexed: 01/18/2023]
Abstract
Oxidation of quaternary ammonium substrate, carnitine by non‐heme iron containing Acinetobacter baumannii (Ab) oxygenase CntA/reductase CntB is implicated in the onset of human cardiovascular disease. Herein, we develop a blue‐light (365 nm) activation of NADH coupled to electron paramagnetic resonance (EPR) measurements to study electron transfer from the excited state of NADH to the oxidized, Rieske‐type, [2Fe‐2S]2+ cluster in the AbCntA oxygenase domain with and without the substrate, carnitine. Further electron transfer from one‐electron reduced, Rieske‐type [2Fe‐2S]1+ center in AbCntA‐WT to the mono‐nuclear, non‐heme iron center through the bridging glutamate E205 and subsequent catalysis occurs only in the presence of carnitine. The electron transfer process in the AbCntA‐E205A mutant is severely affected, which likely accounts for the significant loss of catalytic activity in the AbCntA‐E205A mutant. The NADH photo‐activation coupled with EPR is broadly applicable to trap reactive intermediates at low temperature and creates a new method to characterize elusive intermediates in multiple redox‐centre containing proteins.
Collapse
Affiliation(s)
- Muralidharan Shanmugam
- Manchester Institute of Biotechnology (MIB) & Photon Science Institute (PSI), University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Mussa Quareshy
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Alexander D Cameron
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Yin Chen
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| |
Collapse
|
16
|
Shanmugam M, Quareshy M, Cameron AD, Bugg TDH, Chen Y. Light‐Activated Electron Transfer and Catalytic Mechanism of Carnitine Oxidation by Rieske‐Type Oxygenase from Human Microbiota. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Muralidharan Shanmugam
- Manchester Institute of Biotechnology (MIB) & Photon Science Institute (PSI) University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Mussa Quareshy
- School of Life Sciences University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Alexander D. Cameron
- School of Life Sciences University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Timothy D. H. Bugg
- Department of Chemistry University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Yin Chen
- School of Life Sciences University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
17
|
Li N, Peng Q, Yao L, He Q, Qiu J, Cao H, He J, Niu Q, Lu Y, Hui F. Roles of the Gentisate 1,2-Dioxygenases DsmD and GtdA in the Catabolism of the Herbicide Dicamba in Rhizorhabdus dicambivorans Ndbn-20. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9287-9298. [PMID: 32786824 DOI: 10.1021/acs.jafc.0c01523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
3-Chlorogentisate is a key intermediate in the catabolism of the herbicide dicamba in R. dicambivorans Ndbn-20. In this study, we identified two gentisate 1,2-dioxygenases (GDOs), DsmD and GtdA, from Ndbn-20. The amino acid sequence similarity between DsmD and GtdA is 51%. Both of them are dimers and showed activities to gentisate and 3-chlorogentisate but not 3,6-dichlorogentisate (3,6-DCGA) or 6-chlorogentisate in vitro. The kcat/Km of DsmD for 3-chlorogentisate was 28.7 times higher than that of GtdA, whereas the kcat/Km of DsmD for gentisate was only one-fourth of that of GtdA. Transcription of dsmD was dramatically induced by 3-chlorogentisate but not gentisate, whereas gtdA was not induced. Disruption of dsmD resulted in a significant decline in the degradation rates of 3-chlorogentisate and dicamba but had no effect on the degradation of gentisate, whereas the result of disruption of gtdA was converse; the disruption of both dsmD and gtdA led to the inability to degrade 3-chlorogentisate and gentisate. This study revealed that 3-chlorogentisate but not gentisate or 3,6-DCGA is the ring-cleavage substrate in the dicamba degradation pathway in R. dicambivorans Ndbn-20; DsmD is specifically responsible for cleavage of 3-chlorogentisate, whereas GtdA is a general GDO involved in the catabolism of various natural aromatic compounds.
Collapse
Affiliation(s)
- Na Li
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan 473061, China
| | - Qian Peng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Li Yao
- School of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224002, China
| | - Qin He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qiuhong Niu
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan 473061, China
| | - Yunfeng Lu
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan 473061, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang, Henan 473000, China
| | - Fengli Hui
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan 473061, China
| |
Collapse
|
18
|
Naegeli H, Bresson JL, Dalmay T, Dewhurst IC, Epstein M, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Álvarez F, Fernandez Dumont A, Papadopoulou N, Ardizzone M, Devos Y, Gennaro A, Ruiz Gómez JÁ, Lanzoni A, Neri FM, Paraskevopoulos K, Raffaello T, De Sanctis G. Assessment of genetically modified soybean MON 87708 × MON 89788 × A5547-127, for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2016-135). EFSA J 2020; 17:e05733. [PMID: 32626364 PMCID: PMC7009197 DOI: 10.2903/j.efsa.2019.5733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Soybean MON 87708 × MON 89788 × A5547‐127 (three‐event stack soybean) was produced by conventional crossing to combine three single events: MON 87708, MON 89788 and A5547‐127. The GMO Panel previously assessed the three single events and did not identify safety concerns. No new data on the single events, leading to modification of the original conclusions on their safety have been identified. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single soybean events and of the newly expressed proteins in the three‐event stack soybean does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that the three‐event stack soybean, as described in this application, is as safe as and nutritionally equivalent to its conventional counterpart and the non‐GM reference varieties tested. The nutritional impact of food/feed derived from the three‐event stack soybean is expected to be the same as that of food/feed derived from the conventional counterpart and non‐GM reference varieties. In the case of accidental release of viable seeds of the three‐event stack soybean into the environment, this would not raise environmental safety concerns. The post‐market environmental monitoring plan and reporting intervals are in line with the intended uses of the three‐event stack soybean. Post‐market monitoring of food/feed is not considered necessary. The GMO Panel concludes that the three‐event stack soybean is as safe as its conventional counterpart and the tested non‐GM reference varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
19
|
Yoshida H, Takeda H, Wakana D, Sato F, Hosoe T. Identification of a multi-component berberine 11-hydroxylase from Burkholderia sp. strain CJ1. Biosci Biotechnol Biochem 2020; 84:1274-1284. [DOI: 10.1080/09168451.2020.1722056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
ABSTRACT
Berberine (BBR) is a protoberberine alkaloid extracted from plants such as Coptis japonica (Ranunculaceae). In a previous report, we demonstrated the existence of a 11-hydroxylation pathway employed by BBR-utilizing bacteria for metabolism of BBR. In the present study, we report the identification of the genes brhA, brhB, and brhC as encoding a multicomponent BBR 11-hydroxylase in Burkholderia sp. strain CJ1. BrhA is belonging to the Rieske non-heme iron oxygenase (RO) family, a class of enzymes known to catalyze the first step in bacterial aromatic-ring hydroxylation. We further demonstrate that BrhA activity requires BrhB (ferredoxin reductase) and BrhC (ferredoxin) as electron transport chain components. A BLAST search revealed that BrhA exhibits 38% and 33% sequence identity to dicamba O-demethylase (DdmC; AY786443) and chloroacetanilide herbicides N-dealkylase (CndA; KJ461679), respectively. To our knowledge, this work represents the first report of a bacterial oxygenase catalyzing the metabolism of a polycyclic aromatic-ring alkaloid.
Abbreviations: BBR: berberine; D-BBR: demethyleneberberine; H-BBR: 11-hydroxyberberine; HD-BBR: 11-hydroxydemethyleneberberine; HDBA: 2-hydroxy-3,4-dimethoxybenzeneacetic acid; PAL: palmatine; H-PAL: 11-hydroxypalmatine; BRU: berberrubine; Fd: ferredoxin; FdR: ferredoxin reductase; ETC: electron transport chain
Collapse
Affiliation(s)
- Hinaka Yoshida
- Department of Organic chemistry, Hoshi University, Tokyo, Japan
| | - Hisashi Takeda
- Department of Organic chemistry, Hoshi University, Tokyo, Japan
| | - Daigo Wakana
- Department of Organic chemistry, Hoshi University, Tokyo, Japan
| | - Fumihiko Sato
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tomoo Hosoe
- Department of Organic chemistry, Hoshi University, Tokyo, Japan
| |
Collapse
|
20
|
Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Álvarez F, Ardizzone M, De Sanctis G, Dumont A, Devos Y, Gennaro A, Gómez Ruiz JÁ, Lanzoni A, Neri FM, Papadopoulou N, Paraskevopoulos K, Raffaello T. Assessment of genetically modified soybean MON 87705 × MON 87708 × MON 89788, for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2015-126). EFSA J 2020; 18:e06111. [PMID: 37649527 PMCID: PMC10464710 DOI: 10.2903/j.efsa.2020.6111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Soybean MON 87705 × MON 87708 × MON 89788 (three-event stack soybean) was produced by conventional crossing to combine three single soybean events: MON 87705, MON 87708 and MON 89788. This combination is intended to alter the fatty acid profile in the seed (in particular increasing the levels of oleic acid) and tolerance to glyphosate-based and dicamba herbicides. The Genetically Modified Organisms Panel previously assessed the three single soybean events and did not identify safety concerns. No new data on the single soybean events, leading to modification of the original conclusions on their safety have been identified. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single soybean events and of the newly expressed proteins in the three-event stack soybean does not give rise to food and feed safety and nutritional concerns. In the case of accidental release of viable three-event stack soybean seeds into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and the reporting intervals are in line with the intended uses of soybean MON 87705 × MON 87708 × MON 89788. Considering the altered fatty acid profile of the three-event stack soybean, a proposal for post-market monitoring needs to be provided by the applicant. The GMO Panel notes that in the context of this application EFSA-GMO-NL-2015-126 the applicant did not provide a 90-day study on MON 87705 soybean in line with the applicable legal requirements. Therefore, the GMO Panel is not in the position to finalise the risk assessment of soybean MON 87705 × MON 87708 × MON 89788 under the current regulatory frame.
Collapse
|
21
|
Naegeli H, Bresson JL, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Álvarez F, Ardizzone M, De Sanctis G, Devos Y, Dumont AF, Gennaro A, Gómez Ruiz JÁ, Lanzoni A, Neri FM, Papadopoulou N, Paraskevopoulos K, Raffaello T. Assessment of genetically modified soybean MON 87751 × MON 87701 × MON 87708 × MON 89788 for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2016-128). EFSA J 2019; 17:e05847. [PMID: 32626154 PMCID: PMC7008788 DOI: 10.2903/j.efsa.2019.5847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Soybean MON 87751 × MON 87701 × MON 87708 × MON 89788 (four-event stack soybean) was produced by conventional crossing to combine four single events: MON 87751, MON 87701, MON 87708 and MON 89788. The GMO Panel previously assessed the four single events and did not identify safety concerns. No new data on the single events have been identified that would lead to modification of the original conclusions on their safety. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological and allergenicity assessment indicate that the combination of the single soybean events and of the newly expressed proteins in the four-event stack soybean does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that the four-event stack soybean, as described in this application, is as safe as and nutritionally equivalent to the non-GM comparator and the non-GM reference varieties tested. In the case of accidental release of viable seeds of the four-event stack soybean into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of the four-event stack soybean. Post-market monitoring of food/feed is not considered necessary. The GMO Panel concludes that the four-event stack soybean is as safe as the non-GM comparator and the tested non-GM reference varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
22
|
Venkatesagowda B. Enzymatic demethylation of lignin for potential biobased polymer applications. FUNGAL BIOL REV 2019. [DOI: 10.1016/j.fbr.2019.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Chen L, Yao S, Chen T, Tao Q, Xie X, Xiao X, Ding D, He Q, He J. Coexpression of Methyltransferase Gene dmt50 and Methylene Tetrahydrofolate Reductase Gene Increases Arabidopsis thaliana Dicamba Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1443-1452. [PMID: 30653319 DOI: 10.1021/acs.jafc.8b04944] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dicamba, a broad-spectrum and highly efficient herbicide, is an excellent target herbicide for the engineering of herbicide-resistant crops. In this study, a new tetrahydrofolate (THF)-dependent dicamba methyltransferase gene, dmt50, was cloned from the dicamba-degrading strain Rhizorhabdus dicambivorans Ndbn-20. Dmt50 catalyzed the methyl transfer from dicamba to THF, generating the herbicidally inactive product 3,6-dichlorosalicylic acid (3,6-DCSA) and 5-methyl-THF. A dmt50 transgenic Arabidopsis thaliana clearly showed dicamba resistance (560 g/ha, the normal field application rate). However, Dmt50 demethylation activity was inhibited by the product 5-methyl-THF. Mthfr66, encoded by the 5,10-methylene-THF reductase gene mthfr66 could relieve the inhibition by removing 5-methyl-THF in vitro. Compared with expression of dmt50 alone, simultaneous expression of dmt50 and mthfr66 further improved the dicamba resistance (1120 g/ha) of transgenic A. thaliana. This study provides new genes for dicamba detoxification and a strategy for the engineering of dicamba-resistant crops.
Collapse
Affiliation(s)
- Le Chen
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , Nanjing 210095 , Jiangsu , P. R. China
| | - Shigang Yao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , Nanjing 210095 , Jiangsu , P. R. China
| | - Tao Chen
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , Nanjing 210095 , Jiangsu , P. R. China
| | - Qin Tao
- Beijing DBN Biotech Company, Limited , Beijing 100080 , P. R. China
| | - Xiangting Xie
- Beijing DBN Biotech Company, Limited , Beijing 100080 , P. R. China
| | - Xiang Xiao
- Beijing DBN Biotech Company, Limited , Beijing 100080 , P. R. China
| | - Derong Ding
- Beijing DBN Biotech Company, Limited , Beijing 100080 , P. R. China
| | - Qin He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , Nanjing 210095 , Jiangsu , P. R. China
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , Nanjing 210095 , Jiangsu , P. R. China
| |
Collapse
|
24
|
Chiu LW, Heckert MJ, You Y, Albanese N, Fenwick T, Siehl DL, Castle LA, Tao Y. Members of the GH3 Family of Proteins Conjugate 2,4-D and Dicamba with Aspartate and Glutamate. PLANT & CELL PHYSIOLOGY 2018; 59:2366-2380. [PMID: 30101323 DOI: 10.1093/pcp/pcy160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Auxin homeostasis is a highly regulated process that must be maintained to allow auxin to exert critical growth and developmental controls. Auxin conjugase and hydrolase family proteins play important roles in auxin homeostasis through means of storage, activation, inactivation, response inhibition and degradation of auxins in plants. We systematically evaluated 60 GRETCHEN HAGEN3 (GH3) proteins from diverse plant species for amino acid conjugation activity with the known substrates jasmonic acid (JA), IAA and 4-hydroxybenzoate (4-HBA). While our results largely confirm that Group II conjugases prefer IAA, we observed no clear substrate preference among Group III proteins, and only three of 11 Group I proteins showed the expected preference for JA, indicating that sequence similarity does not always predict substrate specificity. Such a sequence-substrate relationship held true when sequence similarity at the acyl acid-binding site was used for grouping. Several GH3 proteins could catalyze formation of the potentially degradation-destined aspartate (Asp) and glutamate (Glu) conjugates of IAA and the synthetic auxins 2,4-D and dicamba. We found that 2,4-D-Asp/Glu conjugates, but not dicamba and IAA conjugates, were hydrolyzed in Arabidopsis and soybean by AtILL5- and AtIAR3-like amidohydrolases, releasing free 2,4-D in plant cells when conjugates were exogenously applied to seedlings. Dicamba-Asp or dicamba-Glu conjugates were not hydrolyzed in vivo in infiltrated plants nor in vitro with recombinant amidohydrolases. These findings could open the door for exploration of a dicamba herbicide tolerance strategy through conjugation.
Collapse
Affiliation(s)
- Li-Wei Chiu
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| | - Matthew J Heckert
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| | - You You
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| | - Nicholas Albanese
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| | - Tamara Fenwick
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| | - Daniel L Siehl
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| | - Linda A Castle
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| | - Yumin Tao
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| |
Collapse
|
25
|
Lukowski AL, Ellinwood DC, Hinze ME, DeLuca RJ, Du Bois J, Hall S, Narayan ARH. C-H Hydroxylation in Paralytic Shellfish Toxin Biosynthesis. J Am Chem Soc 2018; 140:11863-11869. [PMID: 30192526 PMCID: PMC6558983 DOI: 10.1021/jacs.8b08901] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The remarkable degree of synthetic selectivity found in Nature is exemplified by the biosynthesis of paralytic shellfish toxins such as saxitoxin. The polycyclic core shared by saxitoxin and its relatives is assembled and subsequently elaborated through the installation of hydroxyl groups with exquisite precision that is not possible to replicate with traditional synthetic methods. Here, we report the identification of the enzymes that carry out a subset of C-H functionalizations involved in paralytic shellfish toxin biosynthesis. We have shown that three Rieske oxygenases mediate hydroxylation reactions with perfect site- and stereoselectivity. Specifically, the Rieske oxygenase SxtT is responsible for selective hydroxylation of a tricyclic precursor to the famous natural product saxitoxin, and a second Rieske oxygenase, GxtA, selectively hydroxylates saxitoxin to access the oxidation pattern present in gonyautoxin natural products. Unexpectedly, a third Rieske oxygenase, SxtH, does not hydroxylate tricyclic intermediates, but rather a linear substrate prior to tricycle formation, rewriting the biosynthetic route to paralytic shellfish toxins. Characterization of SxtT, SxtH, and GxtA is the first demonstration of enzymes carrying out C-H hydroxylation reactions in paralytic shellfish toxin biosynthesis. Additionally, the reactions of these oxygenases with a suite of saxitoxin-related molecules are reported, highlighting the substrate promiscuity of these catalysts and the potential for their application in the synthesis of natural and unnatural saxitoxin congeners.
Collapse
Affiliation(s)
- April L. Lukowski
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Duncan C. Ellinwood
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Meagan E. Hinze
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Ryan J. DeLuca
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - J. Du Bois
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - Sherwood Hall
- United States Food and Drug Administration, College Park, Maryland 20740
| | - Alison R. H. Narayan
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
26
|
Abstract
Detoxification (detox) plays a major role in pesticide action and resistance. The mechanisms involved are sometimes part of the discovery and development process in seeking new biochemical targets and metabolic pathways. Genetically modified and chemical-safener-modified crops are a marked exception and often involve herbicide detox by design to achieve the required crop tolerance. This perspective evaluates the role of detox by design or chance and target-site-based selectivity in insecticide, herbicide, and fungicide action and human health and environmental effects.
Collapse
Affiliation(s)
- John E Casida
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy, and Management , University of California, Berkeley , Berkeley , California 94720 , United States
| |
Collapse
|
27
|
Evaluation of microbiological management strategy of herbicide toxicity to greengram plants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Li N, Yao L, He Q, Qiu J, Cheng D, Ding D, Tao Q, He J, Jiang J. 3,6-Dichlorosalicylate Catabolism Is Initiated by the DsmABC Cytochrome P450 Monooxygenase System in Rhizorhabdus dicambivorans Ndbn-20. Appl Environ Microbiol 2018; 84:e02133-17. [PMID: 29196293 PMCID: PMC5795090 DOI: 10.1128/aem.02133-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/28/2017] [Indexed: 11/20/2022] Open
Abstract
The degradation of the herbicide dicamba is initiated by demethylation to form 3,6-dichlorosalicylate (3,6-DCSA) in Rhizorhabdusdicambivorans Ndbn-20. In the present study, a 3,6-DCSA degradation-deficient mutant, Ndbn-20m, was screened. A cluster, dsmR1DABCEFGR2, was lost in this mutant. The cluster consisted of nine genes, all of which were apparently induced by 3,6-DCSA. DsmA shared 30 to 36% identity with the monooxygenase components of reported three-component cytochrome P450 systems and formed a monophyletic branch in the phylogenetic tree. DsmB and DsmC were most closely related to the reported [2Fe-2S] ferredoxin and ferredoxin reductase, respectively. The disruption of dsmA in strain Ndbn-20 resulted in inactive 3,6-DCSA degradation. When dsmABC, but not dsmA alone, was introduced into mutant Ndbn-20m and Sphingobium quisquiliarum DC-2 (which is unable to degrade salicylate and its derivatives), they acquired the ability to hydroxylate 3,6-DCSA. Single-crystal X-ray diffraction demonstrated that the DsmABC-catalyzed hydroxylation occurred at the C-5 position of 3,6-DCSA, generating 3,6-dichlorogentisate (3,6-DCGA). In addition, DsmD shared 51% identity with GtdA (a gentisate and 3,6-DCGA 1,2-dioxygenase) from Sphingomonas sp. strain RW5. However, unlike GtdA, the purified DsmD catalyzed the cleavage of gentisate and 3-chlorogentisate but not 6-chlorogentisate or 3,6-DCGA in vitro Based on the bioinformatic analysis and gene function studies, a possible catabolic pathway of dicamba in R. dicambivorans Ndbn-20 was proposed.IMPORTANCE Dicamba is widely used to control a variety of broadleaf weeds and is a promising target herbicide for the engineering of herbicide-resistant crops. The catabolism of dicamba has thus received increasing attention. Bacteria mineralize dicamba initially via demethylation, generating 3,6-dichlorosalicylate. However, the catabolism of 3,6-dichlorosalicylate remains unknown. In this study, we cloned a gene cluster, dsmR1DABCEFGR2, involved in 3,6-dichlorosalicylate degradation from R. dicambivorans Ndbn-20, demonstrated that the cytochrome P450 monooxygenase system DsmABC was responsible for the 5-hydroxylation of 3,6-dichlorosalicylate, and proposed a dicamba catabolic pathway. This study provides a basis to elucidate the catabolism of dicamba and has benefits for the ecotoxicological study of dicamba. Furthermore, the hydroxylation of salicylate has been previously reported to be catalyzed by single-component flavoprotein or three-component Rieske non-heme iron oxygenase, whereas DsmABC was the only cytochrome P450 monooxygenase system hydroxylating salicylate and its methyl- or chloro-substituted derivatives.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Li Yao
- School of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, China
| | - Qin He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Dan Cheng
- Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Derong Ding
- Beijing DBN Biotech Co., Ltd., Beijing, China
| | - Qing Tao
- Beijing DBN Biotech Co., Ltd., Beijing, China
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiandong Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
29
|
Shahid M, Khan MS. Glyphosate induced toxicity to chickpea plants and stress alleviation by herbicide tolerant phosphate solubilizing Burkholderia cepacia PSBB1 carrying multifarious plant growth promoting activities. 3 Biotech 2018; 8:131. [PMID: 29450121 PMCID: PMC5812922 DOI: 10.1007/s13205-018-1145-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/31/2018] [Indexed: 12/17/2022] Open
Abstract
In this study, strain PSBB1 isolated from Vicia faba rhizosphere was identified as Burkholderia cepacia, by 16S rDNA sequence analysis and characterized. Strain PSBB1 tolerated glyphosate up to 3200 μg ml-1 and produced IAA (81.6 μg ml-1), ACC deaminase (69.3 mg-1 protein h-1), SA (39.3 μg ml-1) and 2,3-DHBA (26.6 μg ml-1), solubilized insoluble P (50.8 μg ml-1) and secreted 29.4 μg ml-1 exopolysaccharides, which decreased with increasing concentrations of glyphosate. Cell damage following glyphosate application was visible under SEM and CLSM. The phytotoxicity of glyphosate on chickpea was variable but significant. B. cepacia mitigated toxicity and enhanced the size, dry matter, symbiosis, seed attributes and nutritional contents of chickpea. Further, B. cepacia strain PSBB1 declined the levels of CAT, POD, APX and GPX and MDA contents at 4332 μg kg-1 soil glyphosate. Proline also increased under glyphosate stress but declined in B. cepacia inoculated plants. The ability to tolerate higher concentration of glyphosate, the capacity to secrete plant growth regulators even under herbicide stress and potential to reduce the level of proline and antioxidant enzymes makes B. cepacia as an interesting choice for enhancing chickpea production in soils contaminated even with herbicides.
Collapse
Affiliation(s)
- Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| | - Mohd. Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| |
Collapse
|
30
|
Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, Masai E. Bacterial catabolism of lignin-derived aromatics: New findings in a recent decade: Update on bacterial lignin catabolism. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:679-705. [PMID: 29052962 DOI: 10.1111/1758-2229.12597] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/26/2017] [Accepted: 10/03/2017] [Indexed: 05/21/2023]
Abstract
Lignin is the most abundant phenolic polymer; thus, its decomposition by microorganisms is fundamental to carbon cycling on earth. Lignin breakdown is initiated by depolymerization catalysed by extracellular oxidoreductases secreted by white-rot basidiomycetous fungi. On the other hand, bacteria play a predominant role in the mineralization of lignin-derived heterogeneous low-molecular-weight aromatic compounds. The outline of bacterial catabolic pathways for lignin-derived bi- and monoaryls are typically composed of the following sequential steps: (i) funnelling of a wide variety of lignin-derived aromatics into vanillate and syringate, (ii) O demethylation of vanillate and syringate to form catecholic derivatives and (iii) aromatic ring-cleavage of the catecholic derivatives to produce tricarboxylic acid cycle intermediates. Knowledge regarding bacterial catabolic systems for lignin-derived aromatic compounds is not only important for understanding the terrestrial carbon cycle but also valuable for promoting the shift to a low-carbon economy via biological lignin valorisation. This review summarizes recent progress in bacterial catabolic systems for lignin-derived aromatic compounds, including newly identified catabolic pathways and genes for decomposition of lignin-derived biaryls, transcriptional regulation and substrate uptake systems. Recent omics approaches on catabolism of lignin-derived aromatic compounds are also described.
Collapse
Affiliation(s)
- Naofumi Kamimura
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Kenji Takahashi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Kosuke Mori
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Takuma Araki
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Masaya Fujita
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Yudai Higuchi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Eiji Masai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
31
|
Huang X, He J, Yan X, Hong Q, Chen K, He Q, Zhang L, Liu X, Chuang S, Li S, Jiang J. Microbial catabolism of chemical herbicides: Microbial resources, metabolic pathways and catabolic genes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 143:272-297. [PMID: 29183604 DOI: 10.1016/j.pestbp.2016.11.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 06/07/2023]
Abstract
Chemical herbicides are widely used to control weeds and are frequently detected as contaminants in the environment. Due to their toxicity, the environmental fate of herbicides is of great concern. Microbial catabolism is considered the major pathway for the dissipation of herbicides in the environment. In recent decades, there have been an increasing number of reports on the catabolism of various herbicides by microorganisms. This review presents an overview of the recent advances in the microbial catabolism of various herbicides, including phenoxyacetic acid, chlorinated benzoic acid, diphenyl ether, tetra-substituted benzene, sulfonamide, imidazolinone, aryloxyphenoxypropionate, phenylurea, dinitroaniline, s-triazine, chloroacetanilide, organophosphorus, thiocarbamate, trazinone, triketone, pyrimidinylthiobenzoate, benzonitrile, isoxazole and bipyridinium herbicides. This review highlights the microbial resources that are capable of catabolizing these herbicides and the mechanisms involved in the catabolism. Furthermore, the application of herbicide-degrading strains to clean up herbicide-contaminated sites and the construction of genetically modified herbicide-resistant crops are discussed.
Collapse
Affiliation(s)
- Xing Huang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Jian He
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Xin Yan
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Qing Hong
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Kai Chen
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Qin He
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Long Zhang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Xiaowei Liu
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Shaochuang Chuang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Shunpeng Li
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China.
| |
Collapse
|
32
|
Degradation of Diphenyl Ether in Sphingobium phenoxybenzoativorans SC_3 Is Initiated by a Novel Ring Cleavage Dioxygenase. Appl Environ Microbiol 2017; 83:AEM.00104-17. [PMID: 28283519 DOI: 10.1128/aem.00104-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/19/2017] [Indexed: 11/20/2022] Open
Abstract
Sphingobium phenoxybenzoativorans SC_3 degrades and utilizes diphenyl ether (DE) or 2-carboxy-DE as its sole carbon and energy source. In this study, we report the degradation of DE and 2-carboxy-DE initiated by a novel ring cleavage angular dioxygenase (diphenyl ether dioxygenase [Dpe]) in the strain. Dpe functions at the angular carbon and its adjacent carbon (C-1a, C-2) of a benzene ring in DE (or the 2-carboxybenzene ring in 2-carboxy-DE) and cleaves the C-1a-C-2 bond (decarboxylation occurs simultaneously for 2-carboxy-DE), yielding 2,4-hexadienal phenyl ester, which is subsequently hydrolyzed to muconic acid semialdehyde and phenol. Dpe is a type IV Rieske non-heme iron oxygenase (RHO) and consists of three components: a hetero-oligomer oxygenase, a [2Fe-2S]-type ferredoxin, and a glutathione reductase (GR)-type reductase. Genetic analyses revealed that dpeA1A2 plays an essential role in the degradation and utilization of DE and 2-carboxy-DE in S. phenoxybenzoativorans SC_3. Enzymatic study showed that transformation of 1 molecule of DE needs two molecules of oxygen and two molecules of NADH, supporting the assumption that the cleavage of DE catalyzed by Dpe is a continuous two-step dioxygenation process: DE is dioxygenated at C-1a and C-2 to form a hemiacetal-like intermediate, which is further deoxygenated, resulting in the cleavage of the C-1a-C-2 bond to form one molecule of 2,4-hexadienal phenyl ester and two molecules of H2O. This study extends our knowledge of the mode and mechanism of ring cleavage of aromatic compounds.IMPORTANCE Benzene ring cleavage, catalyzed by dioxygenase, is the key and speed-limiting step in the aerobic degradation of aromatic compounds. As previously reported, in the ring cleavage of DEs, the benzene ring needs to be first dihydroxylated at a lateral position and subsequently dehydrogenated and opened through extradiol cleavage. This process requires three enzymes (two dioxygenases and one dehydrogenase). In this study, we identified a novel angular dioxygenase (Dpe) in S. phenoxybenzoativorans SC_3. Under Dpe-mediated catalysis, the benzene ring of DE is dioxygenated at the angular position (C-1a, C-2), resulting in the cleavage of the C-1a-C-2 bond to generate a novel product, 2,4-hexadienal phenyl ester. This process needs only one angular dioxygenase, Dpe. Thus, the ring cleavage catalyzed by Dpe represents a novel mechanism of benzene ring cleavage.
Collapse
|
33
|
Wang C, Glenn KC, Kessenich C, Bell E, Burzio LA, Koch MS, Li B, Silvanovich A. Safety assessment of dicamba mono-oxygenases that confer dicamba tolerance to various crops. Regul Toxicol Pharmacol 2016; 81:171-182. [PMID: 27575686 DOI: 10.1016/j.yrtph.2016.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
Abstract
Dicamba tolerant (DT) soybean, cotton and maize were developed through constitutive expression of dicamba mono-oxygenase (DMO) in chloroplasts. DMO expressed in three DT crops exhibit 91.6-97.1% amino acid sequence identity to wild type DMO. All DMO forms maintain the characteristics of Rieske oxygenases that have a history of safe use. Additionally, they are all functionally similar in vivo since the three DT crops are all tolerant to dicamba treatment. None of these DMO sequences were found to have similarity to any known allergens or toxins. Herein, to further understand the safety of these DMO variants, a weight of evidence approach was employed. Each purified DMO protein was found to be completely deactivated in vitro by heating at temperatures 55 °C and above, and all were completely digested within 30 s or 5 min by pepsin and pancreatin, respectively. Mice orally dosed with each of these DMO proteins showed no adverse effects as evidenced by analysis of body weight gain, food consumption and clinical observations. Therefore, the weight of evidence from all these protein safety studies support the conclusion that the various forms of DMO proteins introduced into DT soybean, cotton and maize are safe for food and feed consumption, and the small amino acid sequence differences outside the active site of DMO do not raise any additional safety concerns.
Collapse
MESH Headings
- Administration, Oral
- Amino Acid Sequence
- Animals
- Computational Biology
- Consumer Product Safety
- Crops, Agricultural/enzymology
- Crops, Agricultural/genetics
- Crops, Agricultural/toxicity
- Databases, Protein
- Dicamba/pharmacology
- Drug Resistance/genetics
- Enzyme Stability
- Female
- Food Safety
- Food, Genetically Modified/parasitology
- Food, Genetically Modified/toxicity
- Gene Expression Regulation, Plant
- Gossypium/enzymology
- Gossypium/genetics
- Gossypium/toxicity
- Herbicides/pharmacology
- Humans
- Male
- Mice
- Mixed Function Oxygenases/administration & dosage
- Mixed Function Oxygenases/genetics
- Mixed Function Oxygenases/metabolism
- Mixed Function Oxygenases/toxicity
- Oxidoreductases, O-Demethylating/toxicity
- Pancreatin/metabolism
- Pepsin A/metabolism
- Plants, Genetically Modified/enzymology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/toxicity
- Protein Denaturation
- Proteolysis
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Recombinant Proteins/toxicity
- Risk Assessment
- Glycine max/enzymology
- Glycine max/genetics
- Glycine max/toxicity
- Stenotrophomonas maltophilia/enzymology
- Stenotrophomonas maltophilia/genetics
- Temperature
- Toxicity Tests, Acute
- Zea mays/enzymology
- Zea mays/genetics
- Zea mays/toxicity
Collapse
Affiliation(s)
- Cunxi Wang
- Monsanto Company, 800 North Lindbergh Blvd, St. Louis, MO 63167, USA.
| | - Kevin C Glenn
- Monsanto Company, 800 North Lindbergh Blvd, St. Louis, MO 63167, USA
| | - Colton Kessenich
- Monsanto Company, 800 North Lindbergh Blvd, St. Louis, MO 63167, USA
| | - Erin Bell
- Monsanto Company, 800 North Lindbergh Blvd, St. Louis, MO 63167, USA
| | - Luis A Burzio
- Monsanto Company, 800 North Lindbergh Blvd, St. Louis, MO 63167, USA
| | - Michael S Koch
- Monsanto Company, 800 North Lindbergh Blvd, St. Louis, MO 63167, USA
| | - Bin Li
- Monsanto Company, 800 North Lindbergh Blvd, St. Louis, MO 63167, USA
| | - Andre Silvanovich
- Monsanto Company, 800 North Lindbergh Blvd, St. Louis, MO 63167, USA
| |
Collapse
|
34
|
A Tetrahydrofolate-Dependent Methyltransferase Catalyzing the Demethylation of Dicamba in Sphingomonas sp. Strain Ndbn-20. Appl Environ Microbiol 2016; 82:5621-30. [PMID: 27422839 DOI: 10.1128/aem.01201-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/22/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Sphingomonas sp. strain Ndbn-20 degrades and utilizes the herbicide dicamba as its sole carbon and energy source. In the present study, a tetrahydrofolate (THF)-dependent dicamba methyltransferase gene, dmt, was cloned from the strain, and three other genes, metF, dhc, and purU, which are involved in THF metabolism, were found to be located downstream of dmt A transcriptional study revealed that the four genes constituted one transcriptional unit that was constitutively transcribed. Lysates of cells grown with glucose or dicamba exhibited almost the same activities, which further suggested that the dmt gene is constitutively expressed in the strain. Dmt shared 46% and 45% identities with the methyltransferases DesA and LigM from Sphingomonas paucimobilis SYK-6, respectively. The purified Dmt catalyzed the transfer of methyl from dicamba to THF to form the herbicidally inactive metabolite 3,6-dichlorosalicylic acid (DCSA) and 5-methyl-THF. The activity of Dmt was inhibited by 5-methyl-THF but not by DCSA. The introduction of a codon-optimized dmt gene into Arabidopsis thaliana enhanced resistance against dicamba. In conclusion, this study identified a THF-dependent dicamba methyltransferase, Dmt, with potential applications for the genetic engineering of dicamba-resistant crops. IMPORTANCE Dicamba is a very important herbicide that is widely used to control more than 200 types of broadleaf weeds and is a suitable target herbicide for the engineering of herbicide-resistant transgenic crops. A study of the mechanism of dicamba metabolism by soil microorganisms will benefit studies of its dissipation, transformation, and migration in the environment. This study identified a THF-dependent methyltransferase, Dmt, capable of catalyzing dicamba demethylation in Sphingomonas sp. Ndbn-20, and a preliminary study of its enzymatic characteristics was performed. Introduction of a codon-optimized dmt gene into Arabidopsis thaliana enhanced resistance against dicamba, suggesting that the dmt gene has potential applications for the genetic engineering of herbicide-resistant crops.
Collapse
|
35
|
Ferrocenyl compounds derived from the reaction of phenylamines with ferrocenecarbonyl chloride: Synthesis, characterisation and their biological activity. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.03.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part III. {[Fe2S2](Cys)3(X)} (X=Asp, Arg, His) and {[Fe2S2](Cys)2(His)2} proteins. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
A Review on the Genetics of Aliphatic and Aromatic Hydrocarbon Degradation. Appl Biochem Biotechnol 2015; 178:224-50. [DOI: 10.1007/s12010-015-1881-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
|
38
|
Scientific Opinion on application (EFSA‐GMO‐NL‐2012‐108) for the placing on the market of the herbicide‐tolerant genetically modified soybean MON 87708 × MON 89788 for food and feed uses, import and processing under Regulation (EC) No 1829/2003 from Monsanto. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
39
|
Involvement of the cytochrome P450 system EthBAD in the N-deethoxymethylation of acetochlor by Rhodococcus sp. strain T3-1. Appl Environ Microbiol 2015; 81:2182-8. [PMID: 25595756 DOI: 10.1128/aem.03764-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide] is a widely applied herbicide with potential carcinogenic properties. N-Deethoxymethylation is the key step in acetochlor biodegradation. N-Deethoxymethylase is a multicomponent enzyme that catalyzes the conversion of acetochlor to 2'-methyl-6'-ethyl-2-chloroacetanilide (CMEPA). Fast detection of CMEPA by a two-enzyme (N-deethoxymethylase-amide hydrolase) system was established in this research. Based on the fast detection method, a three-component enzyme was purified from Rhodococcus sp. strain T3-1 using ammonium sulfate precipitation and hydrophobic interaction chromatography. The molecular masses of the components of the purified enzyme were estimated to be 45, 43, and 11 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Based on the results of peptide mass fingerprint analysis, acetochlor N-deethoxymethylase was identified as a cytochrome P450 system, composed of a cytochrome P450 oxygenase (43-kDa component; EthB), a ferredoxin (45 kDa; EthA), and a reductase (11 kDa; EthD), that is involved in the degradation of methyl tert-butyl ether. The gene cluster ethABCD was cloned by PCR amplification and expressed in Escherichia coli BL21(DE3). Resting cells of a recombinant E. coli strain showed deethoxymethylation activity against acetochlor. Subcloning of ethABCD showed that ethABD expressed in E. coli BL21(DE3) has the activity of acetochlor N-deethoxymethylase and is capable of converting acetochlor to CMEPA.
Collapse
|
40
|
Yoshikata T, Suzuki K, Kamimura N, Namiki M, Hishiyama S, Araki T, Kasai D, Otsuka Y, Nakamura M, Fukuda M, Katayama Y, Masai E. Three-Component O-Demethylase System Essential for Catabolism of a Lignin-Derived Biphenyl Compound in Sphingobium sp. Strain SYK-6. Appl Environ Microbiol 2014; 80:7142-53. [PMID: 25217011 PMCID: PMC4249175 DOI: 10.1128/aem.02236-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/05/2014] [Indexed: 11/20/2022] Open
Abstract
Sphingobium sp. strain SYK-6 is able to assimilate lignin-derived biaryls, including a biphenyl compound, 5,5'-dehydrodivanillate (DDVA). Previously, ligXa (SLG_07770), which is similar to the gene encoding oxygenase components of Rieske-type nonheme iron aromatic-ring-hydroxylating oxygenases, was identified to be essential for the conversion of DDVA; however, the genes encoding electron transfer components remained unknown. Disruption of putative electron transfer component genes scattered through the SYK-6 genome indicated that SLG_08500 and SLG_21200, which showed approximately 60% amino acid sequence identities with ferredoxin and ferredoxin reductase of dicamba O-demethylase, were essential for the normal growth of SYK-6 on DDVA. LigXa and the gene products of SLG_08500 (LigXc) and SLG_21200 (LigXd) were purified and were estimated to be a trimer, a monomer, and a monomer, respectively. LigXd contains FAD as the prosthetic group and showed much higher reductase activity toward 2,6-dichlorophenolindophenol with NADH than with NADPH. A mixture of purified LigXa, LigXc, and LigXd converted DDVA into 2,2',3-trihydroxy-3'-methoxy-5,5'-dicarboxybiphenyl in the presence of NADH, indicating that DDVA O-demethylase is a three-component monooxygenase. This enzyme requires Fe(II) for its activity and is highly specific for DDVA, with a Km value of 63.5 μM and kcat of 6.1 s(-1). Genome searches in six other sphingomonads revealed genes similar to ligXc and ligXd (>58% amino acid sequence identities) with a limited number of electron transfer component genes, yet a number of diverse oxygenase component genes were found. This fact implies that these few electron transfer components are able to interact with numerous oxygenase components and the conserved LigXc and LigXd orthologs are important in sphingomonads.
Collapse
Affiliation(s)
- Taichi Yoshikata
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Kazuya Suzuki
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Naofumi Kamimura
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Masahiro Namiki
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Shojiro Hishiyama
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Takuma Araki
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Daisuke Kasai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Yuichiro Otsuka
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Masaya Nakamura
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Masao Fukuda
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Yoshihiro Katayama
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Eiji Masai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| |
Collapse
|
41
|
Novel three-component Rieske non-heme iron oxygenase system catalyzing the N-dealkylation of chloroacetanilide herbicides in sphingomonads DC-6 and DC-2. Appl Environ Microbiol 2014; 80:5078-85. [PMID: 24928877 DOI: 10.1128/aem.00659-14] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingomonads DC-6 and DC-2 degrade the chloroacetanilide herbicides alachlor, acetochlor, and butachlor via N-dealkylation. In this study, we report a three-component Rieske non-heme iron oxygenase (RHO) system catalyzing the N-dealkylation of these herbicides. The oxygenase component gene cndA is located in a transposable element that is highly conserved in the two strains. CndA shares 24 to 42% amino acid sequence identities with the oxygenase components of some RHOs that catalyze N- or O-demethylation. Two putative [2Fe-2S] ferredoxin genes and one glutathione reductase (GR)-type reductase gene were retrieved from the genome of each strain. These genes were not located in the immediate vicinity of cndA. The four ferredoxins share 64 to 72% amino acid sequence identities to the ferredoxin component of dicamba O-demethylase (DMO), and the two reductases share 62 to 65% amino acid sequence identities to the reductase component of DMO. cndA, the four ferredoxin genes, and the two reductases genes were expressed in Escherichia coli, and the recombinant proteins were purified using Ni-affinity chromatography. The individual components or the components in pairs displayed no activity; the enzyme mixture showed N-dealkylase activities toward alachlor, acetochlor, and butachlor only when CndA-His6 was combined with one of the four ferredoxins and one of the two reductases, suggesting that the enzyme consists of three components, a homo-oligomer oxygenase, a [2Fe-2S] ferredoxin, and a GR-type reductase, and CndA has a low specificity for the electron transport component (ETC). The N-dealkylase utilizes NADH, but not NADPH, as the electron donor.
Collapse
|
42
|
Jiang WZ, Adamec J, Weeks DP. A small-scale, inexpensive method for detecting formaldehyde or methanol in biochemical reactions containing interfering substances. Anal Biochem 2013; 442:146-8. [PMID: 23938775 DOI: 10.1016/j.ab.2013.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 11/30/2022]
Abstract
A simple, inexpensive microdistillation device is described for capturing methanol or formaldehyde as end products of biochemical reactions or in environmental samples. We demonstrate that the microdistillation protocol, coupled with the use of alcohol oxidase and the formaldehyde-sensitive reagent Purpald (4-amino-3-hydrazino-5-mercapto-1,2,4-triazole), serves as a quick and inexpensive alternative to chromatographic and mass spectrometer analyses for determining if formaldehyde or methanol is a product of reactions that contain substances that interfere with the Purpald reaction. These techniques were used to affirm formaldehyde as the end product of the dicamba monooxygenase-catalyzed O-demethylation of the herbicide dicamba (2-methoxy-3,6-dichlorobenzoic acid).
Collapse
Affiliation(s)
- Wen Zhi Jiang
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664, USA
| | | | | |
Collapse
|
43
|
Khan F, Pal D, Ghosh A, Cameotra SS. Degradation of 2,4-dinitroanisole (DNAN) by metabolic cooperative activity of Pseudomonas sp. strain FK357and Rhodococcus imtechensis strain RKJ300. CHEMOSPHERE 2013; 93:2883-2888. [PMID: 24075532 DOI: 10.1016/j.chemosphere.2013.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 08/26/2013] [Accepted: 09/01/2013] [Indexed: 06/02/2023]
Abstract
2,4-Dinitroanisole (DNAN) is an insensitive explosive ingredient used by many defense agencies as a replacement for 2,4,6-trinitrotoluene. Although the biotransformation of DNAN under anaerobic condition has been reported, aerobic microbial degradation pathway has not been elucidated. An n-methyl-4-nitroaniline degrading bacterium Pseudomonas sp. strain FK357 transformed DNAN into 2,4-dinitrophenol (2,4-DNP) as an end product. Interestingly, when strain FK357 was co-cultured with a 2,4-DNP degrading Rhodococcus imtechensis strain RKJ300, complete and high rate of DNAN degradation was observed with no accumulation of intermediates. Enzyme assay using cell extracts of strain FK357 demonstrated that O-demethylation reaction is the first step of DNAN degradation with formation of 2,4-DNP and formaldehyde as intermediates. Subsequently, 2,4-DNP was degraded by strain RKJ300 via the formation of hydride-Meisenheimer complex. The present study clearly demonstrates that complete degradation of DNAN occurs as a result of the metabolic cooperative activity of two members within a bacterial consortium.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | | | | | | |
Collapse
|
44
|
The novel bacterial N-demethylase PdmAB is responsible for the initial step of N,N-dimethyl-substituted phenylurea herbicide degradation. Appl Environ Microbiol 2013; 79:7846-56. [PMID: 24123738 DOI: 10.1128/aem.02478-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The environmental fate of phenylurea herbicides has received considerable attention in recent decades. The microbial metabolism of N,N-dimethyl-substituted phenylurea herbicides can generally be initiated by mono-N-demethylation. In this study, the molecular basis for this process was revealed. The pdmAB genes in Sphingobium sp. strain YBL2 were shown to be responsible for the initial mono-N-demethylation of commonly used N,N-dimethyl-substituted phenylurea herbicides. PdmAB is the oxygenase component of a bacterial Rieske non-heme iron oxygenase (RO) system. The genes pdmAB, encoding the α subunit PdmA and the β subunit PdmB, are organized in a transposable element flanked by two direct repeats of an insertion element resembling ISRh1. Furthermore, this transposable element is highly conserved among phenylurea herbicide-degrading sphingomonads originating from different areas of the world. However, there was no evidence of a gene for an electron carrier (a ferredoxin or a reductase) located in the immediate vicinity of pdmAB. Without its cognate electron transport components, expression of PdmAB in Escherichia coli, Pseudomonas putida, and other sphingomonads resulted in a functional enzyme. Moreover, coexpression of a putative [3Fe-4S]-type ferredoxin from Sphingomonas sp. strain RW1 greatly enhanced the catalytic activity of PdmAB in E. coli. These data suggested that PdmAB has a low specificity for electron transport components and that its optimal ferredoxin may be the [3Fe-4S] type. PdmA exhibited low homology to the α subunits of previously characterized ROs (less than 37% identity) and did not cluster with the RO group involved in O- or N-demethylation reactions, indicating that PdmAB is a distinct bacterial RO N-demethylase.
Collapse
|
45
|
Jiang W, Wilson MA, Weeks DP. O-Demethylations catalyzed by Rieske nonheme iron monooxygenases involve the difficult oxidation of a saturated C-H bond. ACS Chem Biol 2013; 8:1687-91. [PMID: 23719540 DOI: 10.1021/cb400154a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dicamba monooxygenase (DMO) catalyzes the O-demethylation of dicamba (3,6-dichloro-2-methoxybenzoate) to produce 3,6-dichlorosalicylate and formaldehyde. Recent crystallographic studies suggest that DMO catalyzes the challenging oxidation of a saturated C-H bond within the methyl group of dicamba to form a hemiacetal intermediate. Testing of this hypothesis was made possible by our development of two new independent techniques. As a novel method to allow use of (18)O2 to follow reaction products, bisulfite was used to trap newly formed (18)O-formaldehyde in the stable adduct, hydroxymethanesulfonate (HMS(-)), and thereby prevent the rapid exchange of (18)O in formaldehyde with (16)O in water. The second technique utilized unique properties of Pseudomonas putida formaldehyde dehydrogenase that allow rapid conversion of (18)O-formaldehyde into stable and easily detectable (18)O-formic acid. Experiments using these two new techniques provided compelling evidence for DMO-catalyzed oxidation of the methyl group of dicamba, thus validating a mechanism for DMO [and for vanillate monooxygenase, a related Rieske nonheme iron monooxygenase] that involves the difficult oxidation of a saturated C-H bond.
Collapse
Affiliation(s)
- Wenzhi Jiang
- Department
of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United
States
| | - Mark A. Wilson
- Department
of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United
States
| | - Donald P. Weeks
- Department
of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United
States
| |
Collapse
|
46
|
Mueller AH, Dockter C, Gough SP, Lundqvist U, von Wettstein D, Hansson M. Characterization of mutations in barley fch2 encoding chlorophyllide a oxygenase. PLANT & CELL PHYSIOLOGY 2012; 53:1232-46. [PMID: 22537757 DOI: 10.1093/pcp/pcs062] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The barley (Hordeum vulgare L.) mutants fch2 and clo-f2 comprise an allelic group of 14 Chl b-deficient lines. The genetic map position of fch2 corresponds to the physical map position of the gene encoding chlorophyllide a oxygenase. This enzyme converts chlorophyllide a to chlorophyllide b and it is essential for Chl b biosynthesis. The fch2 and clo-f2 barley lines were shown to be mutated in the gene for chlorophyllide a oxygenase. A five-base insertion was found in fch2 and base deletions in clo-f2.101, clo-f2.105, clo-f2.2800 and clo-f2.3613. In clo-f2.105 and clo-f2.108, nonsense base exchanges were discovered. All of these mutations led to a premature stop of translation and none of the mutants formed Chl b. The mutant clo-f2.2807 was transcript deficient and formed no Chl b. Missense mutations in clo-f2.102 (leading to the amino acid exchange D495N) and clo-f2.103 (G280D) resulted in a total lack of Chl b, whereas in the missense mutants clo-f2.107 (P419L), clo-f2.109 (A94T), clo-f2.122 (C320Y), clo-f2.123 (A94T), clo-f2.133 (A376V) and clo-f2.181 (L373F) intermediate contents of Chl b were determined. The missense mutations affect conserved residues, and their effect on chlorophyllide a oxygenase is discussed. The mutations in clo-f2.102, clo-f2.103, clo-f2.133 and clo-f2.181 may influence electron transfer as illustrated in the active site of a structural model protein. The changes in clo-f2.107, clo-f2.109, clo-f2.122 and clo-f2.123 may lead to Chlb deficiency by interfering with the regulation of chlorophyllide a oxygenase. The correlation of mutations and phenotypes strongly supports that the barley locus fch2 encodes chlorophyllide a oxygenase.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Catalytic Domain
- Chlorophyll/genetics
- Chlorophyll/metabolism
- Chromosome Mapping
- Chromosomes, Plant/genetics
- Chromosomes, Plant/metabolism
- Cloning, Molecular
- Codon, Nonsense/genetics
- Codon, Nonsense/metabolism
- Electron Transport
- Frameshift Mutation
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genes, Plant
- Hordeum/enzymology
- Hordeum/genetics
- Molecular Sequence Data
- Mutation, Missense
- Oxygenases/genetics
- Oxygenases/metabolism
- Phenotype
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Protein Structure, Tertiary
- Sequence Alignment
- Synteny
Collapse
|
47
|
Ahemad M, Khan MS. Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonasputida isolated from mustard (Brassica compestris) rhizosphere. CHEMOSPHERE 2012; 86:945-950. [PMID: 22133911 DOI: 10.1016/j.chemosphere.2011.11.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/31/2011] [Accepted: 11/04/2011] [Indexed: 05/27/2023]
Abstract
This study was navigated to examine the effects of fungicide-stress on the activities of plant-growth-promoting rhizobacterium Pseudomonasputida with inherent phosphate solubilizing activity. The fungicide-tolerant and phosphate solubilizing P.putida strain PS9 was isolated from the mustard rhizosphere and tentatively identified following standard morphological, physiological and biochemical tests. To further consolidate the identity of the strain PS9, the 16S rDNA sequence analysis was performed. Following the BLAST program, the strain PS9 was identified as P.putida. In the presence of the varying concentrations (0-3200 μg mL(-1); at a two fold dilution interval) of four fungicides of different chemical families (tebuconazole, hexaconazole, metalaxyl and kitazin) amended in minimal salt agar medium, the P.putida strain PS9 showed a variable tolerance levels (1400-3200 μg mL(-1)) against the tested fungicides. The strain PS9 produced plant-growth-promoting (PGP) substances in significant amount in the absence of fungicides. In general, fungicides applied at the recommended, two and three times of the recommended rates, decreased the PGP attributes of P.putida the strain PS9 and affected the PGP activities in concentration-dependent manner. Fungicides at the recommended dose had minor reducing effect while the doses higher than the recommended dose significantly reduced the PGP activities (phosphate solubilization, salicylic acid, 2,3-dihydroxy benzoic acid, and indole-3-acetic acid production except exo-polysaccharides, hydrogen cyanate and ammonia production). Of the four fungicides, tebuconazole generally, showed maximum toxicity to the PGP activities of the strain PS9. This study inferred that fungicides must be examined in vitro for their possible adverse effects on soil micro flora before their application in agricultural fields. Moreover, the results also suggested the prerequisite of application of fungicide-tolerant PGPR strains as bioinoculants so that their PGP activities may not be suppressed under fungicide stress.
Collapse
Affiliation(s)
- Munees Ahemad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202 002, UP, India.
| | | |
Collapse
|
48
|
Novel, highly specific N-demethylases enable bacteria to live on caffeine and related purine alkaloids. J Bacteriol 2012; 194:2041-9. [PMID: 22328667 DOI: 10.1128/jb.06637-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular basis for the ability of bacteria to live on caffeine as a sole carbon and nitrogen source is unknown. Pseudomonas putida CBB5, which grows on several purine alkaloids, metabolizes caffeine and related methylxanthines via sequential N-demethylation to xanthine. Metabolism of caffeine by CBB5 was previously attributed to one broad-specificity methylxanthine N-demethylase composed of two subunits, NdmA and NdmB. Here, we report that NdmA and NdmB are actually two independent Rieske nonheme iron monooxygenases with N(1)- and N(3)-specific N-demethylation activity, respectively. Activity for both enzymes is dependent on electron transfer from NADH via a redox-center-dense Rieske reductase, NdmD. NdmD itself is a novel protein with one Rieske [2Fe-2S] cluster, one plant-type [2Fe-2S] cluster, and one flavin mononucleotide (FMN) per enzyme. All ndm genes are located in a 13.2-kb genomic DNA fragment which also contained a formaldehyde dehydrogenase. ndmA, ndmB, and ndmD were cloned as His(6) fusion genes, expressed in Escherichia coli, and purified using a Ni-NTA column. NdmA-His(6) plus His(6)-NdmD catalyzed N(1)-demethylation of caffeine, theophylline, paraxanthine, and 1-methylxanthine to theobromine, 3-methylxanthine, 7-methylxanthine, and xanthine, respectively. NdmB-His(6) plus His(6)-NdmD catalyzed N(3)-demethylation of theobromine, 3-methylxanthine, caffeine, and theophylline to 7-methylxanthine, xanthine, paraxanthine, and 1-methylxanthine, respectively. One formaldehyde was produced from each methyl group removed. Activity of an N(7)-specific N-demethylase, NdmC, has been confirmed biochemically. This is the first report of bacterial N-demethylase genes that enable bacteria to live on caffeine. These genes represent a new class of Rieske oxygenases and have the potential to produce biofuels, animal feed, and pharmaceuticals from coffee and tea waste.
Collapse
|
49
|
Evaluation of plant-growth-promoting activities of rhizobacterium Pseudomonas putida under herbicide stress. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-011-0407-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
50
|
Structural and molecular genetic analyses of the bacterial carbazole degradation system. Biosci Biotechnol Biochem 2012; 76:1-18. [PMID: 22232235 DOI: 10.1271/bbb.110620] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbazole degradation by several bacterial strains, including Pseudomonas resinovorans CA10, has been investigated over the last two decades. As the initial reaction in degradation pathways, carbazole is commonly oxygenated at angular (C9a) and adjacent (C1) carbons as two hydroxyl groups in a cis configuration. This type of dioxygenation is termed "angular dioxygenation," and is catalyzed by carbazole 1,9a-dioxygenase (CARDO), consisting of terminal oxygenase, ferredoxin, and ferredoxin reductase components. The crystal structures of all components and the electron transfer complex between terminal oxygenase and ferredoxin indicate substrate recognition mechanisms suitable for angular dioxygenation and specific electron transfer among the three components. In contrast, the carbazole degradative car operon of CA10 is located on IncP-7 conjugative plasmid pCAR1. Together with conventional molecular genetic and biochemical investigations, recent genome sequencing and RNA mapping studies have clarified that transcriptional cross-regulation via nucleoid-associated proteins is established between pCAR1 and the host chromosome.
Collapse
|