1
|
Bagherinia E, Falahi S, Mortazavi SH, Salari F, Rezaiemanesh A, Karaji AG. Co-treatment with Fexofenadine and Budesonide Increases FoxP3 Gene Expression in Patients with Allergic Rhinitis. Am J Rhinol Allergy 2023; 37:623-629. [PMID: 36882993 DOI: 10.1177/19458924231160596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
BACKGROUND T helper type 2 (Th2), Th17, and regulatory T cells (Tregs) play essential roles in the pathogenesis and control of allergic rhinitis (AR). Fexofenadine and budesonide are first-line treatments for AR. This study aimed to investigate the effect of co-treatment with fexofenadine and budesonide on the expression of Th2, Th17, and Treg-specific transcription factors (GATA-binding protein 3 [GATA-3], RAR-related orphan receptor gamma [RORγt], and forkhead box P3 [FoxP3], respectively) in AR patients. METHODS In this study, 29 AR patients were co-treated with fexofenadine and budesonide for 1 month. Blood was collected from AR patients before and after 1 month of treatment. The gene expression levels of GATA-3, RORγt, and FoxP3 transcription factors in blood samples were measured. In addition, serum immunoglobulin E (IgE) levels and eosinophil percentages in blood samples were determined. FINDINGS The expression level of FoxP3 increased significantly after treatment compared with that before treatment (P < .001). In contrast, GATA-3 and RORγt expression levels did not show any noticeable changes. In addition, the percentage of peripheral blood eosinophils significantly decreased (P < .01). Serum IgE levels decreased compared with those before treatment, but the difference was not statistically significant. Furthermore, the clinical symptoms of the patients improved compared with those before treatment. CONCLUSION Our results showed that combined treatment with fexofenadine and budesonide increased the expression level of the FoxP3 gene, decreased the percentage of peripheral blood eosinophils, and improved the clinical symptoms of AR patients. This regimen appears to improve disease symptoms, at least in part by increasing the Treg population and decreasing the eosinophil population.
Collapse
Affiliation(s)
- Elham Bagherinia
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Falahi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Hamidreza Mortazavi
- Department of Pediatrics, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Salari
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Gorgin Karaji
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Vijeyakumaran M, Jawhri MA, Fortunato J, Solomon L, Shrestha Palikhe N, Vliagoftis H, Cameron L. Dual activation of estrogen receptor alpha and glucocorticoid receptor upregulate CRTh2-mediated type 2 inflammation; mechanism driving asthma severity in women? Allergy 2023; 78:767-779. [PMID: 36207765 DOI: 10.1111/all.15543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/20/2022] [Accepted: 08/10/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Type 2-high asthma is characterized by elevated levels of circulating Th2 cells and eosinophils, cells that express chemoattractant-homologous receptor expressed on Th2 cells (CRTh2). Severe asthma is more common in women than men; however, the underlying mechanism(s) remain elusive. Here we examined whether the relationship between severe asthma and type 2 inflammation differs by sex and if estrogen influences Th2 cell response to glucocorticoid (GC). METHODS Type 2 inflammation and the proportion of blood Th2 cells (CD4+ CRTh2+ ) were assessed in whole blood from subjects with asthma (n = 66). The effects of GC and estrogen receptor alpha (ERα) agonist on in vitro differentiated Th2 cells were examined. Expression of CRTh2, type 2 cytokines and degree of apoptosis (Annexin V+ , 7-AAD) were determined by flow cytometry, qRT-PCR, western blot and ELISA. RESULTS In severe asthma, the proportion of circulating Th2 cells and hospitalizations were higher in women than men. Women with severe asthma also had more Th2 cells and serum IL-13 than women with mild/moderate asthma. Th2 cells, eosinophils and CRTh2 mRNA correlated with clinical characteristics associated with asthma control in women but not men. In vitro, GC and ERα agonist treated Th2 cells exhibited less apoptosis, more CRTh2 as well as IL-5 and IL-13 following CRTh2 activation than Th2 cells treated with GC alone. CONCLUSION Women with severe asthma had higher levels of circulating Th2 cells than men, which may be due to estrogen modifying the effects of GC, enhancing Th2 cell survival and type 2 cytokine production.
Collapse
Affiliation(s)
- Meerah Vijeyakumaran
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - MohdWessam Al Jawhri
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Jenna Fortunato
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Lauren Solomon
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Nami Shrestha Palikhe
- Division of Pulmonary Medicine, Department of Medicine and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Harissios Vliagoftis
- Division of Pulmonary Medicine, Department of Medicine and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Lisa Cameron
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
3
|
Gindlhuber J, Tomin T, Wiesenhofer F, Zacharias M, Liesinger L, Demichev V, Kratochwill K, Gorkiewicz G, Schittmayer M, Birner-Gruenberger R. Proteomic profiling of end-stage COVID-19 lung biopsies. Clin Proteomics 2022; 19:46. [PMID: 36526981 PMCID: PMC9758034 DOI: 10.1186/s12014-022-09386-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
The outbreak of a novel coronavirus (SARS-CoV-2) in 2019 led to a worldwide pandemic, which remains an integral part of our lives to this day. Coronavirus disease (COVID-19) is a flu like condition, often accompanied by high fever and respiratory distress. In some cases, conjointly with other co-morbidities, COVID-19 can become severe, leading to lung arrest and even death. Although well-known from a clinical standpoint, the mechanistic understanding of lethal COVID-19 is still rudimentary. Studying the pathology and changes on a molecular level associated with the resulting COVID-19 disease is impeded by the highly infectious nature of the virus and the concomitant sampling challenges. We were able to procure COVID-19 post-mortem lung tissue specimens by our collaboration with the BSL-3 laboratory of the Biobanking and BioMolecular resources Research Infrastructure Austria which we subjected to state-of-the-art quantitative proteomic analysis to better understand the pulmonary manifestations of lethal COVID-19. Lung tissue samples from age-matched non-COVID-19 patients who died within the same period were used as controls. Samples were subjected to parallel accumulation-serial fragmentation combined with data-independent acquisition (diaPASEF) on a timsTOF Pro and obtained raw data was processed using DIA-NN software. Here we report that terminal COVID-19 patients display an increase in inflammation, acute immune response and blood clot formation (with concomitant triggering of fibrinolysis). Furthermore, we describe that COVID-19 diseased lungs undergo severe extracellular matrix restructuring, which was corroborated on the histopathological level. However, although undergoing an injury, diseased lungs seem to have impaired proliferative and tissue repair signalling, with several key kinase-mediated signalling pathways being less active. This might provide a mechanistic link to post-acute sequelae of COVID-19 (PASC; "Long COVID"). Overall, we emphasize the importance of histopathological patient stratification when interpreting molecular COVID-19 data.
Collapse
Affiliation(s)
- Juergen Gindlhuber
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Tamara Tomin
- Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Technische Universität Wien, Vienna, Austria
| | - Florian Wiesenhofer
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Martin Zacharias
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Laura Liesinger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Vadim Demichev
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus Kratochwill
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Gregor Gorkiewicz
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Matthias Schittmayer
- Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Technische Universität Wien, Vienna, Austria.
| | - Ruth Birner-Gruenberger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria.
- Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Technische Universität Wien, Vienna, Austria.
| |
Collapse
|
4
|
Rothenberg ME, Roufosse F, Faguer S, Gleich GJ, Steinfeld J, Yancey SW, Mavropoulou E, Kwon N. Mepolizumab Reduces Hypereosinophilic Syndrome Flares Irrespective of Blood Eosinophil Count and Interleukin-5. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2367-2374.e3. [PMID: 35568330 DOI: 10.1016/j.jaip.2022.04.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/14/2022] [Accepted: 04/29/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Mepolizumab, an anti-interleukin-5 (IL-5) antibody, reduces disease flares in patients with hypereosinophilic syndrome (HES). Factors predicting treatment response are unknown. OBJECTIVE To assess mepolizumab efficacy by baseline blood eosinophil count (BEC) and serum IL-5 level in patients with HES. METHODS This post hoc analysis used data from the phase III study assessing mepolizumab in patients with HES (NCT02836496). Patients 12 years old or older, with HES for 6 or more months, 2 or more flares in the previous year, and BEC ≥1,000 cells/μL at screening were randomized (1:1) to 4-weekly subcutaneous mepolizumab (300 mg) or placebo, plus baseline HES therapy, for 32 weeks. The proportion of patients experiencing 1 or more flares (wk 32), annualized flare rate, and proportion of patients with change from baseline in Brief Fatigue Inventory (BFI) item 3 (wk 32), were analyzed by baseline BEC (<1500/≥1500 to <2500/≥2500 cells/μL). Flare outcomes were assessed by baseline serum IL-5 (<7.81/≥7.81 pg/mL). RESULTS Across baseline BEC subgroups, mepolizumab reduced the proportion of patients experiencing 1 or more flares by 63% to 90% and flare rate by 58% to 84% (treatment-by-eosinophil interaction P = .76 and P = .90, respectively); patients had improved BFI item 3 score with mepolizumab versus placebo (cells/μL: <1,500: 54% vs 37%; ≥1,500 to <2,500: 47% vs 31%; ≥2,500: 61% vs 0%; treatment-by-eosinophil interaction P = .42). Most patients had undetectable baseline serum IL-5 levels; among these, mepolizumab versus placebo reduced the proportion of patients with 1 or more flares (77%) and flare rate (67%). CONCLUSIONS Mepolizumab was efficacious in the patients with HES studied, irrespective of baseline BEC. Undetectable IL-5 levels should not preclude mepolizumab treatment.
Collapse
Affiliation(s)
- Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Florence Roufosse
- Department of Internal Medicine, Erasmus Hospital, Free University of Brussels, Brussels, Belgium
| | - Stanislas Faguer
- Department of Nephrology and Organ Transplantation, Reference Center for Rare Kidney Diseases, Rangueil Hospital, Toulouse University Hospital, Toulouse, France
| | - Gerald J Gleich
- Departments of Dermatology and Medicine, School of Medicine, University of Utah, Salt Lake City, Utah
| | | | - Steven W Yancey
- Respiratory Therapeutic Area, GSK, Research Triangle Park, NC
| | | | - Namhee Kwon
- Respiratory Research & Development, GSK, Brentford, Middlesex, UK.
| | | |
Collapse
|
5
|
Bilvayeh S, Mortazavi SH, Salari F, Gorginkaraji A. Glucocorticoids Decreased GATA-3 Expression but Increased FOXP3 Expression in Allergic Rhinitis Patients. TURKISH JOURNAL OF IMMUNOLOGY 2022. [DOI: 10.4274/tji.galenos.2022.35220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Quatrini L, Ricci B, Ciancaglini C, Tumino N, Moretta L. Regulation of the Immune System Development by Glucocorticoids and Sex Hormones. Front Immunol 2021; 12:672853. [PMID: 34248954 PMCID: PMC8260976 DOI: 10.3389/fimmu.2021.672853] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Through the release of hormones, the neuro-endocrine system regulates the immune system function promoting adaptation of the organism to the external environment and to intrinsic physiological changes. Glucocorticoids (GCs) and sex hormones not only regulate immune responses, but also control the hematopoietic stem cell (HSC) differentiation and subsequent maturation of immune cell subsets. During the development of an organism, this regulation has long-term consequences. Indeed, the effects of GC exposure during the perinatal period become evident in the adulthood. Analogously, in the context of HSC transplantation (HSCT), the immune system development starts de novo from the donor HSCs. In this review, we summarize the effects of GCs and sex hormones on the regulation of HSC, as well as of adaptive and innate immune cells. Moreover, we discuss the short and long-term implications on hematopoiesis of sex steroid ablation and synthetic GC administration upon HSCT.
Collapse
Affiliation(s)
- Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Biancamaria Ricci
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Cecilia Ciancaglini
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Nicola Tumino
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
7
|
Munro SK, Balakrishnan B, Lissaman AC, Gujral P, Ponnampalam AP. Cytokines and pregnancy: Potential regulation by histone deacetylases. Mol Reprod Dev 2021; 88:321-337. [PMID: 33904218 DOI: 10.1002/mrd.23430] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 12/26/2022]
Abstract
Cytokines are important regulators of pregnancy and parturition. Aberrant expression of proinflammatory cytokines during pregnancy contributes towards preterm labor, pre-eclampsia, and gestational diabetes mellitus. The regulation of cytokine expression in human cells is highly complex, involving interactions between environment, transcription factors, and feedback mechanisms. Recent developments in epigenetic research have made tremendous advancements in exploring histone modifications as a key epigenetic regulator of cytokine expression and the effect of their signaling molecules on various organ systems in the human body. Histone acetylation and subsequent deacetylation by histone deacetylases (HDACs) are major epigenetic regulators of protein expression in the human body. The expression of various proinflammatory cytokines, their role in normal and abnormal pregnancy, and their epigenetic regulation via HDACs will be discussed in this review.
Collapse
Affiliation(s)
- Sheryl K Munro
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Biju Balakrishnan
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Abbey C Lissaman
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Palak Gujral
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Anna P Ponnampalam
- Liggins Institute, The University of Auckland, Auckland, New Zealand.,Department of Physiology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Camiolo MJ, Zhou X, Oriss TB, Yan Q, Gorry M, Horne W, Trudeau JB, Scholl K, Chen W, Kolls JK, Ray P, Weisel FJ, Weisel NM, Aghaeepour N, Nadeau K, Wenzel SE, Ray A. High-dimensional profiling clusters asthma severity by lymphoid and non-lymphoid status. Cell Rep 2021; 35:108974. [PMID: 33852838 PMCID: PMC8133874 DOI: 10.1016/j.celrep.2021.108974] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Clinical definitions of asthma fail to capture the heterogeneity of immune dysfunction in severe, treatment-refractory disease. Applying mass cytometry and machine learning to bronchoalveolar lavage (BAL) cells, we find that corticosteroid-resistant asthma patients cluster largely into two groups: one enriched in interleukin (IL)-4+ innate immune cells and another dominated by interferon (IFN)-γ+ T cells, including tissue-resident memory cells. In contrast, BAL cells of a healthier population are enriched in IL-10+ macrophages. To better understand cellular mediators of severe asthma, we developed the Immune Cell Linkage through Exploratory Matrices (ICLite) algorithm to perform deconvolution of bulk RNA sequencing of mixed-cell populations. Signatures of mitosis and IL-7 signaling in CD206-FcεRI+CD127+IL-4+ innate cells in one patient group, contrasting with adaptive immune response in T cells in the other, are preserved across technologies. Transcriptional signatures uncovered by ICLite identify T-cell-high and T-cell-poor severe asthma patients in an independent cohort, suggesting broad applicability of our findings.
Collapse
Affiliation(s)
- Matthew J Camiolo
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Systems Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Xiaoying Zhou
- Sean N Parker Center for Allergy Research and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | - Timothy B Oriss
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Qi Yan
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael Gorry
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - William Horne
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John B Trudeau
- Department of Environmental Medicine and Occupational Health, Graduate School of Public Health, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kathryn Scholl
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Wei Chen
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jay K Kolls
- Department of Medicine and Center for Translational Research in Infection and Inflammation Tulane School of Medicine, New Orleans, LA, USA
| | - Prabir Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Florian J Weisel
- Departments of Anesthesiology, Pain, and Peri-operative Medicine and Biomedical Data Sciences, Stanford University, Stanford, CA, USA
| | - Nadine M Weisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nima Aghaeepour
- Departments of Anesthesiology, Pain, and Peri-operative Medicine and Biomedical Data Sciences, Stanford University, Stanford, CA, USA
| | - Kari Nadeau
- Sean N Parker Center for Allergy Research and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | - Sally E Wenzel
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Environmental Medicine and Occupational Health, Graduate School of Public Health, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Luo W, Ige OO, Beacon TH, Su RC, Huang S, Davie JR, Lakowski TM. The treatment of SARS-CoV2 with antivirals and mitigation of the cytokine storm syndrome: the role of gene expression. Genome 2020; 64:400-415. [PMID: 33197212 DOI: 10.1139/gen-2020-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the absence of a vaccine, the treatment of SARS-CoV2 has focused on eliminating the virus with antivirals or mitigating the cytokine storm syndrome (CSS) that leads to the most common cause of death: respiratory failure. Herein we discuss the mechanisms of antiviral treatments for SARS-CoV2 and treatment strategies for the CSS. Antivirals that have shown in vitro activity against SARS-CoV2, or the closely related SARS-CoV1 and MERS-CoV, are compared on the enzymatic level and by potency in cells. For treatment of the CSS, we discuss medications that reduce the effects or expression of cytokines involved in the CSS with an emphasis on those that reduce IL-6 because of its central role in the development of the CSS. We show that some of the medications covered influence the activity or expression of enzymes involved in epigenetic processes and specifically those that add or remove modifications to histones or DNA. Where available, the latest clinical data showing the efficacy of the medications is presented. With respect to their mechanisms, we explain why some medications are successful, why others have failed, and why some untested medications may yet prove useful.
Collapse
Affiliation(s)
- Wenxia Luo
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Olufola O Ige
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Tasnim H Beacon
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Ruey-Chyi Su
- National HIV and Retrovirology Laboratory, JC Wilt Infectious Disease Research Centre, Winnipeg, MB R3E 3R2, Canada
| | - Shujun Huang
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Ted M Lakowski
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|
10
|
Comparative efficacy of glucocorticoid receptor agonists on Th2 cell function and attenuation by progesterone. BMC Immunol 2020; 21:54. [PMID: 33076829 PMCID: PMC7574173 DOI: 10.1186/s12865-020-00383-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Corticosteroids (CS)s suppress cytokine production and induce apoptosis of inflammatory cells. Prednisone and dexamethasone are oral CSs prescribed for treating asthma exacerbations. While prednisone is more commonly prescribed, dexamethasone is long acting and a more potent glucocorticoid receptor (GR) agonist. It can be administered as a one or two dose regime, unlike the five to seven days required for prednisone, a feature that increases compliance. We compared the relative ability of these two oral CSs to suppress type 2 inflammation. Since progesterone has affinity for the GR and women are more likely to relapse following an asthma exacerbation, we assessed its influence on CS action. RESULTS Dexamethasone suppressed the level of IL-5 and IL-13 mRNA within Th2 cells with ~ 10-fold higher potency than prednisolone (the active form of prednisone). Dexamethasone induced a higher proportion of apoptotic and dying cells than prednisolone, at all concentrations examined. Addition of progesterone reduced the capacity of both CS to drive cell death, though dexamethasone maintained significantly more killing activity. Progesterone blunted dexamethasone-induction of FKBP5 mRNA, indicating that the mechanism of action was by interference of the CS:GR complex. CONCLUSIONS Dexamethasone is both more potent and effective than prednisolone in suppressing type 2 cytokine levels and mediating apoptosis. Progesterone attenuated these anti-inflammatory effects, indicating its potential influence on CS responses in vivo. Collectively, our data suggest that when oral CS is required, dexamethasone may be better able to control type 2 inflammation, eliminate Th2 cells and ultimately lead to improved long-term outcomes. Further research in asthmatics is needed.
Collapse
|
11
|
New insights into the cell- and tissue-specificity of glucocorticoid actions. Cell Mol Immunol 2020; 18:269-278. [PMID: 32868909 PMCID: PMC7456664 DOI: 10.1038/s41423-020-00526-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/11/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
Glucocorticoids (GCs) are endogenous hormones that are crucial for the homeostasis of the organism and adaptation to the external environment. Because of their anti-inflammatory effects, synthetic GCs are also extensively used in clinical practice. However, almost all cells in the body are sensitive to GC regulation. As a result, these mediators have pleiotropic effects, which may be undesirable or detrimental to human health. Here, we summarize the recent findings that contribute to deciphering the molecular mechanisms downstream of glucocorticoid receptor activation. We also discuss the complex role of GCs in infectious diseases such as sepsis and COVID-19, in which the balance between pathogen elimination and protection against excessive inflammation and immunopathology needs to be tightly regulated. An understanding of the cell type- and context-specific actions of GCs from the molecular to the organismal level would help to optimize their therapeutic use.
Collapse
|
12
|
Chen MH, Huang MT, Yu WK, Lee SS, Wang JH, Cheng TJR, Bowman MR, Hsieh SL. Antibody blockade of Dectin-2 suppresses house dust mite-induced Th2 cytokine production in dendritic cell- and monocyte-depleted peripheral blood mononuclear cell co-cultures from asthma patients. J Biomed Sci 2019; 26:97. [PMID: 31861989 PMCID: PMC6925444 DOI: 10.1186/s12929-019-0598-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Background Dectin-2, which is a C-type lectin, interacts with the house dust mite (HDM) Dermatophagoides pteronyssinus allergen. This study aimed to investigate whether Dectin-2 blockade by antagonistic monoclonal antibodies (MoAbs) attenuates HDM-induced allergic responses. Methods Two anti-Dectin-2 MoAbs were generated and validated for specific binding to Dectin-2 Fc fusion protein (Dectin-2.Fc) and inhibition of Dectin-2.Fc/HDM interaction. Patients with asthma exhibiting high titers of anti-D. pteronyssinus IgE were enrolled. Peripheral blood mononuclear cells with depleted CD14+ monocytes were obtained from these patients and co-cultured with autologous monocyte-derived conventional dendritic cells in the presence of D. pteronyssinus or its group 2 allergens (Der p 2). Interleukin (IL)-5 and IL-13 levels in the culture supernatants were determined using ELISA in the presence or absence of anti-Dectin-2 MoAbs. Results Two MoAbs, 6A4G7 and 17A1D10, showed specific binding to recombinant Dectin-2.Fc and inhibited HDM binding to Dectin-2.Fc. Both anti-Dectin-2 MoAbs inhibited IL-5 and IL-13 production in co-cultures with Der p 2 stimulation in a dose-dependent manner. 6A4G7 and 17A1D10 (3 μg/mL) significantly inhibited Der p 2-induced (3 μg/mL) IL-5 production by 69.7 and 86.4% and IL-13 production by 84.0 and 81.4%, respectively. Moreover, this inhibitory effect of the two MoAbs remained significant in the presence of D. pteronyssinus. Conclusions Anti-Dectin-2 MoAbs significantly inhibited HDM-induced allergic responses in vitro and therefore have the potential to become therapeutic agents in mite-induced allergic diseases.
Collapse
Affiliation(s)
- Ming-Han Chen
- Division of Allergy, Immunology & Rheumatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | - Wen-Kuang Yu
- Department of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shinn-Shing Lee
- Section of Allergy, Immunology, and Rheumatology, Department of Medicine, Cheng Hsin Rehabilitation Medical Center, Taipei, Taiwan
| | - Jia-Horng Wang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Critical Care, Far Eastern Memorial Hospital, Taipei, Taiwan
| | | | - Michael R Bowman
- Inflammation and Immunology Research Unit, Pfizer Inc, Cambridge, MA, USA.,Present address: Immunology and Inflammation Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan. .,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan. .,Institute for Cancer Biology and Drug Discovery, Taipei Medical University, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan.
| |
Collapse
|
13
|
Strehl C, Ehlers L, Gaber T, Buttgereit F. Glucocorticoids-All-Rounders Tackling the Versatile Players of the Immune System. Front Immunol 2019; 10:1744. [PMID: 31396235 PMCID: PMC6667663 DOI: 10.3389/fimmu.2019.01744] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids regulate fundamental processes of the human body and control cellular functions such as cell metabolism, growth, differentiation, and apoptosis. Moreover, endogenous glucocorticoids link the endocrine and immune system and ensure the correct function of inflammatory events during tissue repair, regeneration, and pathogen elimination via genomic and rapid non-genomic pathways. Due to their strong immunosuppressive, anti-inflammatory and anti-allergic effects on immune cells, tissues and organs, glucocorticoids significantly improve the quality of life of many patients suffering from diseases caused by a dysregulated immune system. Despite the multitude and seriousness of glucocorticoid-related adverse events including diabetes mellitus, osteoporosis and infections, these agents remain indispensable, representing the most powerful, and cost-effective drugs in the treatment of a wide range of rheumatic diseases. These include rheumatoid arthritis, vasculitis, and connective tissue diseases, as well as many other pathological conditions of the immune system. Depending on the therapeutically affected cell type, glucocorticoid actions strongly vary among different diseases. While immune responses always represent complex reactions involving different cells and cellular processes, specific immune cell populations with key responsibilities driving the pathological mechanisms can be identified for certain autoimmune diseases. In this review, we will focus on the mechanisms of action of glucocorticoids on various leukocyte populations, exemplarily portraying different autoimmune diseases as heterogeneous targets of glucocorticoid actions: (i) Abnormalities in the innate immune response play a crucial role in the initiation and perpetuation of giant cell arteritis (GCA). (ii) Specific types of CD4+ T helper (Th) lymphocytes, namely Th1 and Th17 cells, represent important players in the establishment and course of rheumatoid arthritis (RA), whereas (iii) B cells have emerged as central players in systemic lupus erythematosus (SLE). (iv) Allergic reactions are mainly triggered by several different cytokines released by activated Th2 lymphocytes. Using these examples, we aim to illustrate the versatile modulating effects of glucocorticoids on the immune system. In contrast, in the treatment of lymphoproliferative disorders the pro-apoptotic action of glucocorticoids prevails, but their mechanisms differ depending on the type of cancer. Therefore, we will also give a brief insight into the current knowledge of the mode of glucocorticoid action in oncological treatment focusing on leukemia.
Collapse
Affiliation(s)
- Cindy Strehl
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| | - Lisa Ehlers
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| |
Collapse
|
14
|
Zinc and iron complexes of oleanolic acid, (OA) attenuate allergic airway inflammation in rats. Inflammopharmacology 2019; 27:1179-1192. [PMID: 31069605 DOI: 10.1007/s10787-019-00597-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Oleanolic acid (OA) is a hydroxyl pentacyclic triterpene acid (HTAs) used in various ailments. Inflammatory diseases may be profoundly influenced by iron (Fe) and zinc (Zn) status. We studied the anti-asthmatic effects of two metal complexes (Fe and Zn) of OA in the ovalbumin (OVA)-induced rat model. Delayed type hypersensitivity (DTH) was measured. Total and differential leucocyte count was done in blood as well as bronchoalveolar lavage fluid (BALF). The mRNA expression levels of pro-inflammatory cytokines were measured in lung tissue by reverse transcription polymerase chain reaction. The levels of cyclooxygenase-2 (COX-2), immunoglobulin E (IgE) and 5-lipoxygenase (5-LOX) were estimated by enzyme linked immunosorbent assay. Splenocyte proliferation was performed through BrdU uptake method and nitric oxide levels were measured by colorimetric assay kit. The acute toxicity study was also done for the complexes. The asthmatic group developed allergic airway inflammation shown by increased DTH and inflammatory markers in blood and BALF. OA + Fe and OA + Zn displayed significant decrease in DTH, NO, expression of IL-4, 5, 13, 17, toll-like receptor-2, nuclear factor-kappa B and tumor necrosis factor-α; serum IgE, COX-2, and 5-LOX. The metal complexes also attenuated OVA-stimulated splenocyte proliferation. While no hepatotoxic or nephrotoxic potential was shown by OA + Fe and OA + Zn. Our findings indicate that both OA + Fe and OA + Zn possess significant anti-asthmatic effect which may be ascribed to its immunomodulatory and anti-inflammatory features.
Collapse
|
15
|
Kanagalingam T, Solomon L, Vijeyakumaran M, Palikhe NS, Vliagoftis H, Cameron L. IL-2 modulates Th2 cell responses to glucocorticosteroid: A cause of persistent type 2 inflammation? IMMUNITY INFLAMMATION AND DISEASE 2019; 7:112-124. [PMID: 30994266 PMCID: PMC6688076 DOI: 10.1002/iid3.249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/20/2019] [Accepted: 03/12/2019] [Indexed: 12/22/2022]
Abstract
Background Glucocorticosteroids (GCs) are the main treatment for asthma as they reduce type 2 cytokine expression and induce apoptosis. Asthma severity is associated with type 2 inflammation, circulating Th2 cells and higher GC requirements. Objective The aim of this study was to assess whether ex vivo production of interleukin 2 (IL‐2), a T‐cell survival factor, associated with clinical features of asthma severity, the proportion of blood Th2 cells and Th2 cell responses to GC. Methods Peripheral blood from asthma patients (n = 18) was obtained and the proportion of Th2 cells determined by flow cytometry. Peripheral blood cells were activated with mitogen (24 hours) and supernatant levels of IL‐2 and IL‐13 measured by enzyme‐linked immunosorbent assay. In vitro differentiated Th2 cells were treated with dexamethasone (DEX) and IL‐2 and assessed for apoptosis by flow cytometry (annexin V). Level of messenger RNA (mRNA) for antiapoptotic (BCL‐2) and proapoptotic (BIM) genes, IL‐13, GC receptor (GR) and FKBP5 were determined by quantitative real‐time polymerase chain reaction. GR binding was assessed by chromatin immunoprecipitation. Results IL‐2 produced by activated peripheral blood cells correlated negatively with lung function and positively with a daily dose of inhaled GC. When patients were stratified based on IL‐2 level, high IL‐2 producers made more IL‐13 and had a higher proportion of circulating Th2 cells. In vitro, increasing the level of IL‐2 in the culture media was associated with resistance to DEX‐induced apoptosis, with more BCL‐2/less BIM mRNA. Th2 cells cultured in high IL‐2 had more IL‐13, less GR mRNA, showed reduced binding of the GR to FKBP5, a known GC‐induced gene, and required higher concentrations of DEX for cytokine suppression. Conclusions and Clinical Relevance IL‐2 downregulates Th2 cell responses to GC, supporting both their survival and pro‐inflammatory capacity. These results suggest that a patient's potential to produce IL‐2 may be a determinant in asthma severity.
Collapse
Affiliation(s)
- Tharsan Kanagalingam
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Lauren Solomon
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Meerah Vijeyakumaran
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Nami Shrestha Palikhe
- Department of Medicine, and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Harissios Vliagoftis
- Department of Medicine, and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Lisa Cameron
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.,Department of Medicine, and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
16
|
Ishijima Y, Ohmori S, Uneme A, Aoki Y, Kobori M, Ohida T, Arai M, Hosaka M, Ohneda K. The Gata2 repression during 3T3-L1 preadipocyte differentiation is dependent on a rapid decrease in histone acetylation in response to glucocorticoid receptor activation. Mol Cell Endocrinol 2019; 483:39-49. [PMID: 30615908 DOI: 10.1016/j.mce.2019.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/27/2018] [Accepted: 01/03/2019] [Indexed: 12/20/2022]
Abstract
The transcription factor GATA2 is an anti-adipogenic factor whose expression is downregulated during adipocyte differentiation. The present study attempted to clarify the molecular mechanism underlying the GATA2 repression and found that the repression is dependent on the activation of the glucocorticoid receptor (GR) during 3T3-L1 preadipocyte differentiation. Although several recognition sequences for GR were found in both the proximal and distal regions of the Gata2 locus, the promoter activity was not affected by the GR activation in the reporter assays, and the CRISPR-Cas9-mediated deletion of the two distal regions of the Gata2 locus was not involved in the GR-mediated Gata2 repression. Notably, the level of histone acetylation was markedly reduced at the Gata2 locus during 3T3-L1 differentiation, and the GR-mediated Gata2 repression was significantly relieved by histone deacetylase inhibition. These results suggest that GR regulates the Gata2 gene by reducing histone acetylation in the early phase of adipogenesis.
Collapse
Affiliation(s)
- Yasushi Ishijima
- Department of Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Shin'ya Ohmori
- Department of Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Ai Uneme
- Department of Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Yusuke Aoki
- Department of Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Miki Kobori
- Department of Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Terutoshi Ohida
- Department of Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Momoko Arai
- Department of Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Misa Hosaka
- Department of Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Kinuko Ohneda
- Department of Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan.
| |
Collapse
|
17
|
Lempiäinen JK, Niskanen EA, Vuoti KM, Lampinen RE, Göös H, Varjosalo M, Palvimo JJ. Agonist-specific Protein Interactomes of Glucocorticoid and Androgen Receptor as Revealed by Proximity Mapping. Mol Cell Proteomics 2017; 16:1462-1474. [PMID: 28611094 DOI: 10.1074/mcp.m117.067488] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/02/2017] [Indexed: 11/06/2022] Open
Abstract
Glucocorticoid receptor (GR) and androgen receptor (AR) are steroid-inducible transcription factors (TFs). The GR and the AR are central regulators of various metabolic, homeostatic and differentiation processes and hence important therapeutic targets, especially in inflammation and prostate cancer, respectively. Hormone binding to these steroid receptors (SRs) leads to DNA binding and activation or repression of their target genes with the aid of interacting proteins, coregulators. However, protein interactomes of these important drug targets have remained poorly defined. We used proximity-dependent biotin identification to map the protein interaction landscapes of GR and AR in the presence and absence of their cognate agonist (dexamethasone, 5α-dihydrotestosterone) and antagonist (RU486, enzalutamide) in intact human cells. We reproducibly identified more than 30 proteins that interacted with the GR in an agonist-specific manner and whose interactions were significantly influenced by the DNA-binding function of the receptor. Interestingly, the agonist-dependent interactome of the GR overlapped considerably with that of the AR. In addition to known coactivators, corepressors and components of BAF (SWI/SNF) chromatin-remodeling complex, we identified a number of proteins, including lysine methyltransferases and demethylases that have not been previously linked to glucocorticoid or androgen signaling. A substantial number of these novel agonist-dependent GR/AR-interacting proteins, e.g. BCOR, IRF2BP2, RCOR1, and TLE3, have previously been implicated in transcription repression. This together with our data on the effect of BCOR, IRF2BP2, and RCOR1 on GR target gene expression suggests multifaceted functions and roles for SR coregulators. These first high confidence SR interactomes will aid in therapeutic targeting of the GR and the AR.
Collapse
Affiliation(s)
- Joanna K Lempiäinen
- From the ‡Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Einari A Niskanen
- From the ‡Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Kaisa-Mari Vuoti
- From the ‡Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Riikka E Lampinen
- From the ‡Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Helka Göös
- §Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Markku Varjosalo
- §Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jorma J Palvimo
- From the ‡Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland;
| |
Collapse
|
18
|
The Interactome of the Glucocorticoid Receptor and Its Influence on the Actions of Glucocorticoids in Combatting Inflammatory and Infectious Diseases. Microbiol Mol Biol Rev 2016; 80:495-522. [PMID: 27169854 DOI: 10.1128/mmbr.00064-15] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids (GCs) have been widely used for decades as a first-line treatment for inflammatory and autoimmune diseases. However, their use is often hampered by the onset of adverse effects or resistance. GCs mediate their effects via binding to glucocorticoid receptor (GR), a transcription factor belonging to the family of nuclear receptors. An important aspect of GR's actions, including its anti-inflammatory capacity, involves its interactions with various proteins, such as transcription factors, cofactors, and modifying enzymes, which codetermine receptor functionality. In this review, we provide a state-of-the-art overview of the protein-protein interactions (PPIs) of GR that positively or negatively affect its anti-inflammatory properties, along with mechanistic insights, if known. Emphasis is placed on the interactions that affect its anti-inflammatory effects in the presence of inflammatory and microbial diseases.
Collapse
|
19
|
Donor-derived exosomes induce specific regulatory T cells to suppress immune inflammation in the allograft heart. Sci Rep 2016; 7:20077. [PMID: 26822278 PMCID: PMC4731812 DOI: 10.1038/srep20077] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 12/09/2015] [Indexed: 02/08/2023] Open
Abstract
To inhibit the immune inflammation in the allografts can be beneficial to organ transplantation. This study aims to induce the donor antigen specific regulatory T cells (Treg cell) inhibit the immune inflammation in the allograft heart. In this study, peripheral exosomes were purified from the mouse serum. A heart transplantation mouse model was developed. The immune inflammation of the allograft heart was assessed by histology and flow cytometry. The results showed that the donor antigen-specific T helper (Th)2 pattern inflammation was observed in the allograft hearts; the inflammation was inhibited by immunizing the recipient mice with the donor-derived exosomes. Purified peripheral exosomes contained integrin MMP1a; the latter induced CD4+ T cells to express Fork head protein-3 and transforming growth factor (TGF)-β via inhibiting the Th2 transcription factor, GATA binding protein 3, in CD4+ T cells. Administration with the donor-derived exosomes significantly prolonged the allograft heart survival. We conclude that the donor-derived peripheral exosomes have the capacity to inhibit the immune inflammation in the allograft heart via inducing specific Treg cells, implicating that administration with the donor-derived exosomes may be beneficial to cardiac transplantation.
Collapse
|
20
|
Ellestad LE, Puckett SA, Porter TE. Mechanisms involved in glucocorticoid induction of pituitary GH expression during embryonic development. Endocrinology 2015; 156:1066-79. [PMID: 25560830 PMCID: PMC4330307 DOI: 10.1210/en.2014-1686] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/30/2014] [Indexed: 12/26/2022]
Abstract
Glucocorticoid hormones are involved in functional differentiation of GH-producing somatotrophs. Glucocorticoid treatment prematurely induces GH expression in mammals and birds in a process requiring protein synthesis and Rat sarcoma (Ras) signaling. The objective of this study was to investigate mechanisms through which glucocorticoids initiate GH expression during embryogenesis, taking advantage of the unique properties of chicken embryos as a developmental model. We determined that stimulation of GH expression occurred through transcriptional activation of GH, rather than enhancement of mRNA stability, and this process requires histone deacetylase activity. Through pharmacological inhibition, we identified the ERK1/2 pathway as a likely downstream Ras effector necessary for glucocorticoid stimulation of GH. However, we also found that chronic activation of ERK1/2 activity with a constitutively active mutant or stimulatory ligand reduced initiation of GH expression by glucocorticoid treatment. Corticosterone treatment of cultured embryonic pituitary cells increased ERK1/2 activity in an apparent cyclical manner, with a rapid increase within 5 minutes, followed by a reduction to near-basal levels at 3 hours, and a subsequent increase again at 6 hours. Therefore, we conclude that ERK1/2 signaling must be strictly controlled for maximal glucocorticoid induction of GH to occur. These results are the first in any species to demonstrate that Ras- and ERK1/2-mediated transcriptional events requiring histone deacetylase activity are involved in glucocorticoid induction of pituitary GH during embryonic development. This report increases our understanding of the molecular mechanisms underlying glucocorticoid recruitment of somatotrophs during embryogenesis and should provide insight into glucocorticoid-induced developmental changes in other tissues and cell types.
Collapse
Affiliation(s)
- Laura E Ellestad
- Molecular and Cell Biology Program (L.E.E, T.E.P.) and Department of Animal and Avian Sciences (L.E.E., S.A.P., T.E.P.), University of Maryland, College Park, Maryland 20742
| | | | | |
Collapse
|
21
|
Linking GATA-3 and interleukin-13: implications in asthma. Inflamm Res 2013; 63:255-65. [PMID: 24363163 DOI: 10.1007/s00011-013-0700-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/02/2013] [Accepted: 12/12/2013] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Asthma is one of the serious global health problems and cause of huge mortality and morbidity. It is characterized by persistent airway inflammation, airway hyperresponsiveness, increased IgE levels and mucus hypersecretion. Asthma is mediated by dominant Th2 immune response, causing enhanced expression of Th2 cytokines. These cytokines are responsible for the various pathological changes associated with allergic asthma. MATERIALS AND METHODS The role of Th2 cells in the pathogenesis of the asthma is primarily mediated through the cytokine IL-13, also produced by type 2 innate lymphoid cells, that comes under the transcriptional regulation of GATA3. In this review we will try to explore the link between IL-13 and GATA3 in the progression and regulation of asthma and its possible role as a therapeutic target. CONCLUSION Inhibition of GATA3 activity or blockade of GATA3 expression may attenuate the interleukin-13 mediated asthma phenotypes. So, GATA3 might be a potential therapeutic target for the treatment of allergic asthma.
Collapse
|
22
|
Abstract
Asthma affects nearly 300 million people worldwide. The majority respond to inhaled corticosteroid treatment with or without beta-adrenergic agonists. However, a subset of 5 to 10% with severe asthma do not respond optimally to these medications. Different phenotypes of asthma may explain why current therapies show limited benefits in subgroups of patients. Interleukin-13 is implicated as a central regulator in IgE synthesis, mucus hypersecretion, airway hyperresponsiveness, and fibrosis. Promising research suggests that the interleukin-13 pathway may be an important target in the treatment of the different asthma phenotypes.
Collapse
|
23
|
Koenen P, Barczyk K, Wolf M, Roth J, Viemann D. Endothelial cells present an innate resistance to glucocorticoid treatment: implications for therapy of primary vasculitis. Ann Rheum Dis 2012; 71:729-36. [PMID: 22203687 DOI: 10.1136/annrheumdis-2011-200530] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND In contrast to other chronic inflammatory diseases glucocorticoids alone do not maintain sufficient remission in primary vasculitis. The reasons for this therapeutic failure remain unclear. OBJECTIVES To investigate the molecular effects glucocorticoids exert on endothelial cells (EC) and to elucidate the molecular pathways responsible. METHODS A comparative approach was used to treat human micro and macrovascular EC as well as monocytes long and short term with glucocorticoids or glucocorticoids and tumour necrosis factor alpha (TNFα). Gene expression changes were analysed applying microarray technology, sophisticated bioinformatic work-up and quantitative reverse transcription PCR. Glucocorticoid receptor translocation processes were traced by cell fractionation assays and immunofluorescence microscopy. RESULTS In EC glucocorticoids completely failed to inhibit the expression of immune response genes both after sole glucocorticoid exposure and glucocorticoid treatment of a TNFα-induced proinflammatory response. In contrast, an impressive downregulation of proinflammatory genes was seen in monocytes. The study demonstrated that the glucocorticoid receptor is comparably expressed in EC and monocytes, and demonstrated good translocation of ligand-bound glucocorticoid receptor allowing genomic glucocorticoid actions. Refined gene expression analysis showed that in EC transactivation takes place and causes glucocorticoid side effects on growth and metabolism whereas transrepression-mediated anti-inflammatory effects as in monocytes are missing. Insufficient induction of SAP30, an important constituent of the Sin3A-histone deacetylase complex, in EC suggests impairment of transrepression due to co-repressor absence. CONCLUSIONS The impressive unresponsiveness of EC to anti-inflammatory glucocorticoid effects is associated with deficiencies downstream of glucocorticoid receptor translocation not affecting transactivation but transrepression. The findings provide the first molecular clues to the poor benefit of glucocorticoid treatment in patients with primary vasculitis.
Collapse
Affiliation(s)
- Paola Koenen
- Institute of Immunology, University of Muenster, Muenster, Germany
| | | | | | | | | |
Collapse
|
24
|
Durham A, Chou PC, Kirkham P, Adcock IM. Epigenetics in asthma and other inflammatory lung diseases. Epigenomics 2012; 2:523-37. [PMID: 22121972 DOI: 10.2217/epi.10.27] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Asthma is a chronic inflammatory disease of the airways. The causes of asthma and other inflammatory lung diseases are thought to be both environmental and heritable. Genetic studies do not adequately explain the heritability and susceptabilty to the disease, and recent evidence suggests that epigentic changes may underlie these processes. Epigenetics are heritable noncoding changes to DNA and can be influenced by environmental factors such as smoking and traffic pollution, which can cause genome-wide and gene-specific changes in DNA methylation. In addition, alterations in histone acetyltransferase/deacetylase activities can be observed in the cells of patients with lung diseases such as severe asthma and chronic obstructive pulmonary disease, and are often linked to smoking. Drugs such as glucocorticoids, which are used to control inflammation, are dependent on histone deacetylase activity, which may be important in patients with severe asthma and chronic obstructive pulmonary disease who do not respond well to glucocorticoid therapy. Future work targeting specific histone acetyltransferases/deacetylases or (de)methylases may prove to be effective future anti-inflammatory treatments for patients with treatment-unresponsive asthma.
Collapse
Affiliation(s)
- Andrew Durham
- Airways Disease Section, National Heart & Lung Institute, Imperial College, Dovehouse Street, London, SW3 6LY, UK.
| | | | | | | |
Collapse
|
25
|
Yao X, Zha W, Song W, He H, Huang M, Jazrawi E, Lavender P, Barnes PJ, Adcock IM, Durham AL. Coordinated regulation of IL-4 and IL-13 expression in human T cells: 3C analysis for DNA looping. Biochem Biophys Res Commun 2012; 417:996-1001. [PMID: 22226971 DOI: 10.1016/j.bbrc.2011.12.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
Abstract
Asthma is a chronic allergic disorder characterised by chronic inflammation. The balance of type I and type II (CD4+) T helper cells is of critical importance. In asthma there is an overexpression of T(H)2 cytokines, such as IL-4, IL-5 and IL-13. The genes encoding these cytokines are located together the same chromosomal region, 5q31.1 in humans. Here we confirm a central role for the transcription factors NFAT and GATA3 in the regulation of human IL-4 and IL-13. Chromatin Conformation Capture (3C) demonstrated the formation of specific ligation products containing spliced IL-4 and IL-13 DNA sequences in human T(H)2 polarised HuT-78 cells. This suggests that co-ordinate expression of T(H)2 cytokines, under the control of GATA3 and NFAT1 is due to the formation of a chromatin hub by DNA looping.
Collapse
Affiliation(s)
- Xin Yao
- Department of Respiratory Disease, The First Affiliated Hospital of Nanjing Medical University, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bush KA, Krukowski K, Eddy JL, Janusek LW, Mathews HL. Glucocorticoid receptor mediated suppression of natural killer cell activity: identification of associated deacetylase and corepressor molecules. Cell Immunol 2012; 275:80-9. [PMID: 22483981 PMCID: PMC3348463 DOI: 10.1016/j.cellimm.2012.02.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 11/15/2022]
Abstract
Physical and psychological stressors reduce natural killer cell function. This reduction in cellular function results from stress-induced release of glucocorticoids. Glucocorticoids act upon natural killer cells to deacetylate and transrepress immune response genes through epigenetic processes. However, other than the glucocorticoid receptor, the proteins that participate in this process are not well described in natural killer cells. The purpose of this study was to identify the proteins associated with the glucocorticoid receptor that are likely epigenetic participants in this process. Treatment of natural killer cells with the synthetic glucocorticoid, dexamethasone, produced a significant time dependent reduction in natural killer cell activity as early as 8h post treatment. This reduction in natural killer cell activity was preceded by nuclear localization of the glucocorticoid receptor with histone deacetylase 1 and the corepressor, SMRT. Other class I histone deacetylases were not associated with the glucocorticoid receptor nor was the corepressor NCoR. These results demonstrate histone deacetylase 1 and SMRT to associate with the ligand activated glucocorticoid receptor within the nuclei of natural killer cells and to be the likely participants in the histone deacetylation and transrepression that accompanies glucocorticoid mediated reductions in natural killer cell function.
Collapse
Affiliation(s)
- Kristin A Bush
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
27
|
Modulation of antigen-presenting cells by HDAC inhibitors: implications in autoimmunity and cancer. Immunol Cell Biol 2011; 90:55-65. [PMID: 22105512 DOI: 10.1038/icb.2011.96] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is a growing body of evidence to support the use of histone deacetylase inhibitors (HDACi) in the treatment of diverse conditions from autoimmunity to cancer. In this context, HDACi have been ascribed many immunomodulatory effects, assigning novel and promising roles to these compounds. This review summarizes the current observations arising from both pre-clinical and clinical studies in these pathological conditions. However, it is left to be explained how a single agent can have both pro- and anti-inflammatory effects in either physiological or pathological conditions. This question is explored in greater detail by focusing on the effects of HDACi on antigen-presenting cells (APCs), key regulators of immune activation. In particular, HDACi modulation of molecules involved in antigen processing and presentation, as well as co-stimulatory and adhesion molecules, and cytokines will be discussed in the context of both professional and non-professional APCs. Professional APCs encompass classic immune cells; however, it is increasingly evident that other somatic cells, including cancer cells, are not immunologically inert and can display functions similar to professional APCs, a challenging feature that needs to be explored as a potential therapeutic target. In this way, professional and non-professional APCs can regulate their particular micro-environmental niche, affecting either a pro- or anti-inflammatory milieu.
Collapse
|
28
|
Miller L, Foradori CD, Lalmansingh AS, Sharma D, Handa RJ, Uht RM. Histone deacetylase 1 (HDAC1) participates in the down-regulation of corticotropin releasing hormone gene (crh) expression. Physiol Behav 2011; 104:312-20. [PMID: 21463644 DOI: 10.1016/j.physbeh.2011.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/10/2011] [Accepted: 03/25/2011] [Indexed: 10/18/2022]
Abstract
The paraventricular nucleus of the hypothalamus (PVH) plays a central role in regulating the hypothalamic-pituitary-adrenal (HPA) axis. Medial parvocellular neurons of the PVH (mpPVH) integrate sensory and humoral inputs to maintain homeostasis. Humoral inputs include glucocorticoids secreted by the adrenals, which down-regulate HPA activation. A primary glucocorticoid target is the population of mpPVH neurons that synthesize and secrete corticotropin-releasing factors, the most potent of which is corticotropin-releasing hormone (CRH). Although CRH gene (crh) expression is known to be down-regulated by glucocorticoids, the mechanisms by which this process occurs are still poorly understood. To begin this study we postulated that glucocorticoid repression of crh involves HDAC recruitment to the region of the crh proximal promoter. To evaluate this hypothesis, we treated hypothalamic cells that express CRH with the HDAC inhibitor trichostatin A (TSA). As predicted, treatment with TSA led to increased CRH mRNA levels and crh promoter activity. Although co-treatment with Dex (10(-7)M) reduced the TSA effect on mRNA levels, it failed to reduce promoter activity; however co-transfection of HDAC1 but not 3 restored Dex inhibition. A distinction between HDAC1 and 3 was also apparent with respect to crh promoter occupancy. Dex led to increased HDAC1 but not HDAC3 occupancy. In vivo studies revealed that CRH-immunoreactive (-ir) neurons contained HDAC1- and HDAC3-ir. Collectively, these data point to a role for HDAC1 in the physiologic regulation of crh.
Collapse
Affiliation(s)
- Lydia Miller
- Department of Pathology, University of Virginia, 415 Lane Road, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
29
|
Chiba N, Kakimoto K, Masuda A, Matsuguchi T. Functional roles of Cot/Tpl2 in mast cell responses to lipopolysaccharide and FcεRI-clustering. Biochem Biophys Res Commun 2010; 402:1-6. [PMID: 20732300 DOI: 10.1016/j.bbrc.2010.08.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 08/17/2010] [Indexed: 12/26/2022]
Abstract
Cot/Tpl2, a member of MAP kinase kinase kinase (MAPKKK), is indispensable for the ERK activation, as well as the production of TNF-α, IL-1β, IL-23, and PGE(2) in lipopolysaccharide (LPS)-stimulated macrophages. However, the expression and the functional roles of Cot/Tpl2 in mast cells have not been elucidated. The administration of LPS impairs allergic airway inflammation in a mast cell-dependent manner, and LPS stimulates mast cells to produce not only pro-inflammatory cytokines, such as IL-6 and TNF-α, but also Th2-type cytokines, such as IL-5, IL-10 and IL-13. Here, we examine the role of Cot/Tpl2 by using bone marrow-derived mast cells (BMMCs) from cot/tpl2 gene-deficient mice. Phosphorylation of ERKs was significantly decreased, whereas that of JNKs and p38 kinase was normal in LPS-stimulated cot/tpl2(-/-) BMMCs compared with wild-type counterparts. LPS-induced mRNA increase was significantly impaired for IL-5, IL-10, IL-13, and TNF-α, but was normal for IL-6, in cot/tpl2(-/-) BMMCs. On the other hand, degranulation by FcεRI-clustering from cot/tpl2(-/-) BMMCs was significantly enhanced compared with the WT control. Although the phosphorylation of ERKs and p38 kinase by FcεRI-clustering was similar in WT and cot/tpl2(-/-) BMMCs, the phosphorylation of Syk was significantly enhanced in cot/tpl2(-/-) BMMCs, which seemed to be due to the increased protein concentration of Syk. These results imply the functional importance of Cot/Tpl2 in mast cells during the course of allergic diseases such as asthma.
Collapse
Affiliation(s)
- Norika Chiba
- Division of Biochemistry and Molecular Dentistry, Department of Developmental Medicine, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | | | | | | |
Collapse
|
30
|
SATB1 dictates expression of multiple genes including IL-5 involved in human T helper cell differentiation. Blood 2010; 116:1443-53. [PMID: 20522714 DOI: 10.1182/blood-2009-11-252205] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Special AT-rich binding protein 1 (SATB1) is a global chromatin organizer and a transcription factor regulated by interleukin-4 (IL-4) during the early T helper 2 (Th2) cell differentiation. Here we show that SATB1 controls multiple IL-4 target genes involved in human Th cell polarization or function. Among the genes regulated by SATB1 is that encoding the cytokine IL-5, which is predominantly produced by Th2 cells and plays a key role in the development of eosinophilia in asthma. We demonstrate that, during the early Th2 cell differentiation, IL-5 expression is repressed through direct binding of SATB1 to the IL-5 promoter. Furthermore, SATB1 knockdown-induced up-regulation of IL-5 is partly counteracted by down-regulating GATA3 expression using RNAi in polarizing Th2 cells. Our results suggest that a competitive mechanism involving SATB1 and GATA3 regulates IL-5 transcription, and provide new mechanistic insights into the stringent regulation of IL-5 expression during human Th2 cell differentiation.
Collapse
|
31
|
Histone deacetylases and the immunological network: implications in cancer and inflammation. Oncogene 2009; 29:157-73. [DOI: 10.1038/onc.2009.334] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
32
|
Kim SH, Kim DH, Lavender P, Seo JH, Kim YS, Park JS, Kwak SJ, Jee YK. Repression of TNF-alpha-induced IL-8 expression by the glucocorticoid receptor-beta involves inhibition of histone H4 acetylation. Exp Mol Med 2009; 41:297-306. [PMID: 19307749 DOI: 10.3858/emm.2009.41.5.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Increased expression of a number of proinflammatory genes, including IL-8, is associated with inflammatory conditions such as asthma. Glucocorticoid receptor (GR)beta, one of the GR isoforms, has been suggested to be upregulated in asthma associated with glucocorticoid insensitivity and to work as a dominant negative inhibitor of wild type GRalpha. However, recent data suggest that GRbeta is not a dominant negative inhibitor of GRalpha in the transrepressive process and has its own functional role. We investigated the functional role of GRbeta expression in the suppressive effect of glucocorticoids on tumor necrosis factor (TNF)-alpha-induced IL-8 release in an airway epithelial cell line. GRbeta expression was induced by treatment of epithelial cells with either dexamethasone or TNF-alpha. GRbeta was able to inhibit glucocorticoid-induced transcriptional activation mediated by binding to glucocorticoid response elements (GREs). The suppressive effect of dexamethasone on TNF-alpha-induced IL-8 transcription was not affected by GRbeta overexpression, rather GRbeta had its own weak suppressive activity on TNF-alpha-induced IL-8 expression. Overall histone deacetylase activity and histone acetyltransferase activity were not changed by GRbeta overexpression, but TNF-alpha-induced histone H4 acetylation at the IL-8 promoter was decreased with GRbeta overexpression. This study suggests that GRbeta overexpression does not affect glucocorticoid-induced suppression of IL-8 expression in airway epithelial cells and GRbeta induces its own histone deacetylase activity around IL-8 promoter site.
Collapse
Affiliation(s)
- Sang-Hoon Kim
- Eulji Hospital, Eulji University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Steelman AJ, Dean DD, Young CR, Smith R, Prentice TW, Meagher MW, Welsh CJR. Restraint stress modulates virus specific adaptive immunity during acute Theiler's virus infection. Brain Behav Immun 2009; 23:830-43. [PMID: 19348911 PMCID: PMC2710426 DOI: 10.1016/j.bbi.2009.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 03/21/2009] [Accepted: 03/22/2009] [Indexed: 10/20/2022] Open
Abstract
Multiple sclerosis (MS) is a devastating CNS disease of unknown origin. Multiple factors including genetic background, infection, and psychological stress affect the onset or progression of MS. Theiler's murine encephalomyelitis virus (TMEV) infection is an animal model of MS in which aberrant immunity leads to viral persistence and subsequently results in demyelination that resembles MS. Here, we examined how stress during acute TMEV infection altered virus-specific cell mediated responses. Using immunodominant viral peptides specific for either CD4(+) or CD8(+) T cells, we found that stress reduced IFN-gamma producing virus-specific CD4(+) and CD8(+) T cells in the spleen and CD8(+) T cells CNS. Cytokine production by cells isolated from the CNS or spleens following stimulation with virus or viral peptides, indicated that stress decreased both type 1 and type 2 responses. Glucocorticoids were implicated in the decreased T cell function as the effects of stress were partially reversed by concurrent RU486 administration but mimicked by dexamethasone. As T cells mediate viral clearance in this model, our data support the hypothesis that stress-induced immunosuppression may provide a mechanism for enhanced viral persistence within the CNS.
Collapse
Affiliation(s)
- Andrew J. Steelman
- Dept of Veterinary Integrative Biosciences, College of Veterinary Medical & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A
| | - Dana D. Dean
- Dept of Veterinary Integrative Biosciences, College of Veterinary Medical & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A
| | - Colin R. Young
- Dept of Veterinary Integrative Biosciences, College of Veterinary Medical & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A
| | - Roger Smith
- Dept of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A
| | - Thomas W. Prentice
- Dept of Psychology, College of Liberal Arts, Texas A&M University, College Station, Texas 77843 U.S.A
| | - Mary W. Meagher
- Dept of Psychology, College of Liberal Arts, Texas A&M University, College Station, Texas 77843 U.S.A
| | - C. Jane R. Welsh
- Dept of Veterinary Integrative Biosciences, College of Veterinary Medical & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A, Dept of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A
| |
Collapse
|
34
|
Maneechotesuwan K, Yao X, Ito K, Jazrawi E, Usmani OS, Adcock IM, Barnes PJ. Suppression of GATA-3 nuclear import and phosphorylation: a novel mechanism of corticosteroid action in allergic disease. PLoS Med 2009; 6:e1000076. [PMID: 19436703 PMCID: PMC2674207 DOI: 10.1371/journal.pmed.1000076] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 04/02/2009] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND GATA-3 plays a critical role in regulating the expression of the cytokines interleukin (IL)-4, IL-5, and IL-13 from T helper-2 (Th2) cells and therefore is a key mediator of allergic diseases. Corticosteroids are highly effective in suppressing allergic inflammation, but their effects on GATA-3 are unknown. We investigated the effect of the corticosteroid fluticasone propionate on GATA-3 regulation in human T-lymphocytes in vitro and in vivo. METHODS AND FINDINGS In a T lymphocyte cell line (HuT-78) and peripheral blood mononuclear cells stimulated by anti-CD3 and anti-CD28 in vitro we demonstrated that fluticasone inhibits nuclear translocation of GATA-3 and expression of Th2 cytokines via a mechanism independent of nuclear factor-kappaB and is due, in part, to competition between GATA-3 and the ligand-activated glucocorticoid receptor for nuclear transport through the nuclear importer importin-alpha. In addition, fluticasone induces the expression of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1), the endogenous inhibitor of p38 MAPK, which is necessary for GATA-3 nuclear translocation. These inhibitory effects of fluticasone are rapid, potent, and prolonged. We also demonstrated that inhaled fluticasone inhibits GATA-3 nuclear translocation in peripheral blood lymphocytes of patients with asthma in vivo. CONCLUSIONS Corticosteroids have a potent inhibitory effect on GATA-3 via two interacting mechanisms that potently suppress Th2 cytokine expression. This novel mechanism of action of corticosteroids may account for the striking clinical efficacy of corticosteroids in the treatment of allergic diseases.
Collapse
Affiliation(s)
| | - Xin Yao
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Kazuhiro Ito
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Elen Jazrawi
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Omar S. Usmani
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ian M. Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Peter J. Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Liberman AC, Druker J, Garcia FA, Holsboer F, Arzt E. Intracellular Molecular Signaling. Ann N Y Acad Sci 2009; 1153:6-13. [DOI: 10.1111/j.1749-6632.2008.03958.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Mechanisms regulating the susceptibility of hematopoietic malignancies to glucocorticoid-induced apoptosis. Adv Cancer Res 2009; 101:127-248. [PMID: 19055945 DOI: 10.1016/s0065-230x(08)00406-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glucocorticoids (GCs) are commonly used in the treatment of hematopoietic malignancies owing to their ability to induce apoptosis of these cancerous cells. Whereas some types of lymphoma and leukemia respond well to this drug, others are resistant. Also, GC-resistance gradually develops upon repeated treatments ultimately leading to refractory relapsed disease. Understanding the mechanisms regulating GC-induced apoptosis is therefore uttermost important for designing novel treatment strategies that overcome GC-resistance. This review discusses updated data describing the complex regulation of the cell's susceptibility to apoptosis triggered by GCs. We address both the genomic and nongenomic effects involved in promoting the apoptotic signals as well as the resistance mechanisms opposing these signals. Eventually we address potential strategies of clinical relevance that sensitize GC-resistant lymphoma and leukemia cells to this drug. The major target is the nongenomic signal transduction machinery where the interplay between protein kinases determines the cell fate. Shifting the balance of the kinome towards a state where Glycogen synthase kinase 3alpha (GSK3alpha) is kept active, favors an apoptotic response. Accumulating data show that it is possible to therapeutically modulate GC-resistance in patients, thereby improving the response to GC therapy.
Collapse
|
37
|
Liberman AC, Druker J, Refojo D, Holsboer F, Arzt E. Glucocorticoids inhibit GATA-3 phosphorylation and activity in T cells. FASEB J 2009; 23:1558-71. [PMID: 19124555 DOI: 10.1096/fj.08-121236] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glucocorticoid (GC) immunosuppression and anti-inflammatory action involve the regulation of several transcription factors (TFs). GCs inhibit the acute production of T-helper (Th) 1 and Th2 cytokines but ultimately favor a shift toward Th2 phenotype. GCs inhibit the transcriptional activity of T-bet Th1 TF by a transrepression mechanism. Here we analyze GC regulation of GATA-3, the master driver of Th2 differentiation. We found that GCs inhibit GATA-3 transcriptional activity. We demonstrate that this mechanism does not involve physical interaction between the glucocorticoid receptor (GR) and GATA-3 or reduction of GATA-3 binding to DNA, as described previously for T-bet. Instead, GCs inhibit GATA-3 activity by inhibition of p38 mitogen-activated protein kinase induced GATA-3 phosphorylation. GCs also inhibit GATA-3 mRNA and protein expression. Finally, GATA-3 inhibition affects the interleukin-5 gene, a central Th2 cytokine. The IC(50) of dexamethasone is 10 nM with a maximum effect at 100 nM. All inhibitory actions were blocked by the GR antagonist RU38486 (1 uM), proving the specificity of GR action. In view of the crucial role of GATA-3 in T-cell differentiation and inflammation, we propose that the mechanism of GATA-3 inhibition compared with that in T-bet may have relevant implications in understanding and modulating the anti-inflammatory and Th-regulatory properties of GCs.
Collapse
Affiliation(s)
- Ana C Liberman
- Laboratorio de Fisiología y Biología Molecular, Molecular, Departamento de Fisiología y Biología Molecular y Celular, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
38
|
Perretti M, D'Acquisto F. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol 2009; 9:62-70. [DOI: 10.1038/nri2470] [Citation(s) in RCA: 633] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
De Bosscher K, Haegeman G. Minireview: latest perspectives on antiinflammatory actions of glucocorticoids. Mol Endocrinol 2008; 23:281-91. [PMID: 19095768 DOI: 10.1210/me.2008-0283] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Taking into consideration that glucocorticoid (GC) hormones have been used clinically for over half a century and that more than 20 yr have passed since the cloning of the GC receptor (GR), it is hard to imagine that novel aspects in the molecular mechanism by which GCs mediate their antiinflammatory actions are still being unveiled today. Partly, this is because almost on a daily basis, novel insights arise from parallel fields, e.g. nuclear receptor cofactor and chromatin regulation and their concomitant impact on gene transcription events, eventually leading to a revisitation or refinement of old hypotheses. On the other hand, it does remain striking and puzzling why GCs use different mechanisms in so many different cell types and on many different target genes to elicit an antiinflammatory effect. Meanwhile, the obvious question for the clinic remains: is the separation of GR functionalities through differential ligand design the strategy of choice to avoid most GC-mediated side effects? This minireview aims to highlight some of the latest findings on aspects of the antiinflammatory working mechanisms of GCs.
Collapse
Affiliation(s)
- Karolien De Bosscher
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Physiology, Ghent University, KL Ledeganckstraat 35, 9000 Gent, Belgium.
| | | |
Collapse
|
40
|
McKinley L, Alcorn JF, Peterson A, Dupont RB, Kapadia S, Logar A, Henry A, Irvin CG, Piganelli JD, Ray A, Kolls JK. TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. THE JOURNAL OF IMMUNOLOGY 2008; 181:4089-97. [PMID: 18768865 DOI: 10.4049/jimmunol.181.6.4089] [Citation(s) in RCA: 598] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Steroid-resistant asthma comprises an important source of morbidity in patient populations. T(H)17 cells represent a distinct population of CD4(+) Th cells that mediate neutrophilic inflammation and are characterized by the production of IL-17, IL-22, and IL-6. To investigate the function of T(H)17 cells in the context of Ag-induced airway inflammation, we polarized naive CD4(+) T cells from DO11.10 OVA-specific TCR-transgenic mice to a T(H)2 or T(H)17 phenotype by culturing in conditioned medium. In addition, we also tested the steroid responsiveness of T(H)2 and T(H)17 cells. In vitro, T(H)17 cytokine responses were not sensitive to dexamethasone (DEX) treatment despite immunocytochemistry confirming glucocorticoid receptor translocation to the nucleus following treatment. Transfer of T(H)2 cells to mice challenged with OVA protein resulted in lymphocyte and eosinophil emigration into the lung that was markedly reduced by DEX treatment, whereas T(H)17 transfer resulted in increased CXC chemokine secretion and neutrophil influx that was not attenuated by DEX. Transfer of T(H)17 or T(H)2 cells was sufficient to induce airway hyperresponsiveness (AHR) to methacholine. Interestingly, AHR was not attenuated by DEX in the T(H)17 group. These data demonstrate that polarized Ag-specific T cells result in specific lung pathologies. Both T(H)2 and T(H)17 cells are able to induce AHR, whereas T(H)17 cell-mediated airway inflammation and AHR are steroid resistant, indicating a potential role for T(H)17 cells in steroid-resistant asthma.
Collapse
Affiliation(s)
- Laura McKinley
- Department of Pediatrics, Lung Immunology and Host Defense Laboratory, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cousins DJ, McDonald J, Lee TH. Therapeutic approaches for control of transcription factors in allergic disease. J Allergy Clin Immunol 2008; 121:803-9; quiz 810-1. [PMID: 18395546 DOI: 10.1016/j.jaci.2008.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/08/2008] [Accepted: 02/12/2008] [Indexed: 11/29/2022]
Abstract
The inflammatory response observed in allergic disease involves multiple cell types but is orchestrated in part by the T(H)2 cytokines IL-4, IL-5, and IL-13. In recent years, the transcription factors that control the expression and function of these cytokines have been elucidated, including signal transducer and activator of transcription 6, GATA3, nuclear factor of activated T cells, and nuclear factor kappaB. These molecules are attractive targets for therapeutic intervention because they regulate the expression of numerous effector molecules and functions simultaneously. For instance, the immunosuppressive agents glucocorticoids and cyclosporin A both function by repressing the activity of transcription factors through a variety of mechanisms. In this review we examine the role of each transcription factor in allergic disease and discuss approaches that have been taken to therapeutically interfere with transcription factor function in allergic disease.
Collapse
Affiliation(s)
- David J Cousins
- MRC-Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, United Kingdom.
| | | | | |
Collapse
|
42
|
T-cell effector pathways in allergic diseases: Transcriptional mechanisms and therapeutic targets. J Allergy Clin Immunol 2008; 121:812-23; quiz 824-5. [DOI: 10.1016/j.jaci.2008.02.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 02/13/2008] [Accepted: 02/15/2008] [Indexed: 12/21/2022]
|
43
|
Caramori G, Groneberg D, Ito K, Casolari P, Adcock IM, Papi A. New drugs targeting Th2 lymphocytes in asthma. J Occup Med Toxicol 2008; 3 Suppl 1:S6. [PMID: 18315837 PMCID: PMC2259400 DOI: 10.1186/1745-6673-3-s1-s6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Asthma represents a profound worldwide public health problem. The most effective anti-asthmatic drugs currently available include inhaled beta2-agonists and glucocorticoids and control asthma in about 90-95% of patients. The current asthma therapies are not cures and symptoms return soon after treatment is stopped even after long term therapy. Although glucocorticoids are highly effective in controlling the inflammatory process in asthma, they appear to have little effect on the lower airway remodelling processes that appear to play a role in the pathophysiology of asthma at currently prescribed doses. The development of novel drugs may allow resolution of these changes. In addition, severe glucocorticoid-dependent and resistant asthma presents a great clinical burden and reducing the side-effects of glucocorticoids using novel steroid-sparing agents is needed. Furthermore, the mechanisms involved in the persistence of inflammation are poorly understood and the reasons why some patients have severe life threatening asthma and others have very mild disease are still unknown. Drug development for asthma has been directed at improving currently available drugs and findings new compounds that usually target the Th2-driven airway inflammatory response. Considering the apparently central role of T lymphocytes in the pathogenesis of asthma, drugs targeting disease-inducing Th2 cells are promising therapeutic strategies. However, although animal models of asthma suggest that this is feasible, the translation of these types of studies for the treatment of human asthma remains poor due to the limitations of the models currently used. The myriad of new compounds that are in development directed to modulate Th2 cells recruitment and/or activation will clarify in the near future the relative importance of these cells and their mediators in the complex interactions with the other pro-inflammatory/anti-inflammatory cells and mediators responsible of the different asthmatic phenotypes. Some of these new Th2-oriented strategies may in the future not only control symptoms and modify the natural course of asthma, but also potentially prevent or cure the disease.
Collapse
Affiliation(s)
- Gaetano Caramori
- Dipartimento di Medicina Clinica e Sperimentale, Centro di Ricerca su Asma e BPCO, Università di Ferrara, Ferrara, Italy
| | - David Groneberg
- Institute of Occupational Medicine, Charité- Universitätsmedizin Berlin, Free University and Humboldt University, Berlin, Germany
| | - Kazuhiro Ito
- Airway Disease Section, National Heart and Lung Institute, Imperial College of London, London, UK
| | - Paolo Casolari
- Dipartimento di Medicina Clinica e Sperimentale, Centro di Ricerca su Asma e BPCO, Università di Ferrara, Ferrara, Italy
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College of London, London, UK
| | - Alberto Papi
- Dipartimento di Medicina Clinica e Sperimentale, Centro di Ricerca su Asma e BPCO, Università di Ferrara, Ferrara, Italy
| |
Collapse
|
44
|
Bhavsar P, Ahmad T, Adcock IM. The role of histone deacetylases in asthma and allergic diseases. J Allergy Clin Immunol 2008; 121:580-4. [PMID: 18234319 DOI: 10.1016/j.jaci.2007.12.1156] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 12/14/2007] [Accepted: 12/14/2007] [Indexed: 02/06/2023]
Abstract
Diverse cellular functions, including inflammatory gene expression, DNA repair, and cell proliferation, are regulated by histone acetylation. Transcriptional coactivators possess intrinsic histone acetyltransferase activity, and this activity drives inflammatory gene expression and the development of tolerance in macrophages. Eleven histone deacetylases (HDACs) act to regulate the expression of distinct subsets of inflammatory/immune genes. Other proteins, particularly transcription factors, are also acetylated and are targets for deacetylation by HDACs and sirtuins, a group of protein deacetylases. HDAC inhibitors can further enhance inflammatory gene expression. However, the acetylation/deacetylation status of nonhistone proteins can also affect the overall expression pattern of inflammatory genes. HDAC2 expression and activity is reduced in lung macrophages, biopsy specimens, and blood cells from patients with severe asthma and smoking-induced asthma, as well as in patients with chronic obstructive pulmonary disease, perhaps accounting for the enhanced inflammation and reduced steroid responsiveness seen in these patients. Targeting specific enzymes involved in this process might lead to new therapeutic agents, particularly in situations in which current anti-inflammatory therapies are suboptimal.
Collapse
Affiliation(s)
- Pankaj Bhavsar
- Cell and Molecular Biology, Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | | |
Collapse
|
45
|
Antiinflammatory glucocorticoid receptor ligand with reduced side effects exhibits an altered protein-protein interaction profile. Proc Natl Acad Sci U S A 2007; 104:19244-9. [PMID: 18032610 DOI: 10.1073/pnas.0705517104] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glucocorticoids are commonly used antiinflammatory agents whose use is limited by side effects. We have developed a series of glucocorticoid receptor (GR) ligands that retain the strong antiinflammatory activity of conventional glucocorticoids with reduced side effects. We present a compound, LGD5552, that binds the receptor efficiently and strongly represses inflammatory gene expression. LGD5552 bound to GR activates gene expression somewhat differently than glucocorticoids. It activates some genes with an efficacy similar to that of the glucocorticoids. However, other glucocorticoid-activated genes are not regulated by LGD5552. These differences may be because of the more efficient binding of corepressor in the presence of LGD5552, compared with glucocorticoid agonists. This class of nonsteroidal, GR-dependent antiinflammatory drugs may offer a safer alternative to steroidal glucocorticoids in the treatment of inflammatory disease.
Collapse
|
46
|
Kelly A, Bowen H, Jee YK, Mahfiche N, Soh C, Lee T, Hawrylowicz C, Lavender P. The glucocorticoid receptor beta isoform can mediate transcriptional repression by recruiting histone deacetylases. J Allergy Clin Immunol 2007; 121:203-208.e1. [PMID: 18028994 DOI: 10.1016/j.jaci.2007.09.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 09/05/2007] [Accepted: 09/10/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND The glucocorticoid receptor (GR) is able to participate in regulation of transcription by a variety of mechanisms, one of which involves DNA binding and recruitment of regulatory cofactors. The best-studied forms of the receptor are the 777-amino-acid alpha and the 742-amino-acid beta variants. The beta isoform, which does not bind cortisol in human subjects, has been proposed to be a dominant-negative inhibitor of the transcriptional activation-competent GRalpha isoform. OBJECTIVE GRalpha has roles in both transcriptional activation and repression. We wished to determine the influence of GRbeta on genes that are normally transcriptionally repressed by glucocorticoids. We studied IL5 and IL13, which both contribute to the asthmatic phenotype. METHODS We used transient transfection systems and coimmunoprecipitation experiments to determine whether GRbeta has repressive activity on the promoters of the human IL5 and IL13 genes. RESULTS GRbeta is able to act as a transcriptional repressor of cytokine genes and mediates its function through the recruitment of histone deacetylase complexes. CONCLUSION GRalpha and GRbeta act in a similar manner on IL5 and IL13 promoters, serving to repress transcription. In this circumstance GRbeta does not act as a dominant-negative inhibitor of GRalpha.
Collapse
Affiliation(s)
- Audrey Kelly
- Kings College London, Medical Research Council/Asthma UK Centre in Allergic Mechanisms of Asthma, Guy's Hospital, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kassel O, Herrlich P. Crosstalk between the glucocorticoid receptor and other transcription factors: molecular aspects. Mol Cell Endocrinol 2007; 275:13-29. [PMID: 17689856 DOI: 10.1016/j.mce.2007.07.003] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 06/26/2007] [Accepted: 07/03/2007] [Indexed: 01/10/2023]
Abstract
Glucocorticoids (GCs) regulate cell fate by altering gene expression via the glucocorticoid receptor (GR). Ligand-bound GR can activate the transcription of genes carrying the specific GR binding sequence, the glucocorticoid response element (GRE). In addition, GR can modulate, positively or negatively, directly or indirectly, the activity of other transcription factors (TFs), a process referred to as "crosstalk". In the indirect crosstalk, GR interferes with transduction pathways upstream of other TFs. In the direct crosstalk, GR and other TFs modulate each other's activity when bound to the promoters of their target genes. The multiplicity of molecular actions exerted by TFs, particularly the GR, is not only fascinating in terms of molecular structure, it also implies that the TFs participate in a wide range of regulatory processes, broader than anticipated. This review focuses on the molecular mechanisms involved in the crosstalk, on both current ideas and unresolved questions, and discusses the possible significance of the crosstalk for the physiologic and therapeutic actions of GCs.
Collapse
Affiliation(s)
- Olivier Kassel
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, D-76021 Karlsruhe, Germany.
| | | |
Collapse
|
48
|
Hämäläinen M, Lilja R, Kankaanranta H, Moilanen E. Inhibition of iNOS expression and NO production by anti-inflammatory steroids. Reversal by histone deacetylase inhibitors. Pulm Pharmacol Ther 2007; 21:331-9. [PMID: 17913526 DOI: 10.1016/j.pupt.2007.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 07/04/2007] [Accepted: 08/08/2007] [Indexed: 10/22/2022]
Abstract
In inflammation, nitric oxide (NO) is produced by inducible nitric oxide synthase (iNOS) induced by bacterial products and cytokines, and NO acts as a regulatory and pro-inflammatory mediator. Glucocorticoids are powerful anti-inflammatory agents that inhibit the expression of iNOS and various other inflammatory factors. Histone deacetylation has been recently described as a novel mechanism how glucocorticoids down-regulate transcriptional activation of some inflammatory genes. The aim of the present study was to investigate the effects of inhibitors of histone deacetylation on the suppressive effects of glucocorticoids on NO production and iNOS expression. Dexamethasone and a dissociated glucocorticoid RU24858 inhibited NO production, and iNOS protein and mRNA expression in macrophages exposed to bacterial lipopolysaccharide (LPS). In the presence of a glucocorticoid receptor (GR) antagonist mifepristone, dexamethasone and RU24858 had no effect on NO production. The role of histone deacetylation in the glucocorticoid effect was studied by using three structurally different inhibitors of histone deacetylases (HDACs): trichostatin A, apicidin and MC1293. HDAC inhibitors reversed the effects of dexamethasone and RU24858 on iNOS expression and NO production. Stably transfected A549/8 cells containing luciferase gene under the control of human iNOS promoter were used in promoter-activity studies. iNOS promoter activity induced by IL-1beta was inhibited by dexamethasone and the inhibitory effect was reversed by HDAC inhibitor trichostatin A. The results suggest that glucocorticoids inhibit iNOS expression and NO production by a GR-mediated and GRE-independent manner through histone deacetylation and transcriptional silencing.
Collapse
Affiliation(s)
- Mari Hämäläinen
- The Immunopharmacology Research Group, University of Tampere Medical School and Tampere University Hospital, Research Unit, Tampere, Finland
| | | | | | | |
Collapse
|
49
|
Druker J, Liberman AC, Acuña M, Giacomini D, Refojo D, Silberstein S, Pereda MP, Stalla GK, Holsboer F, Arzt E. Molecular understanding of cytokine-steroid hormone dialogue: implications for human diseases. Ann N Y Acad Sci 2007; 1088:297-306. [PMID: 17192575 DOI: 10.1196/annals.1366.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Highly sophisticated mechanisms confer upon the immune system the capacity to respond with a certain degree of autonomy. However, the final outcome of an adaptative immune response depends on the interaction with other systems of the organism. The immune-neuroendocrine systems have an intimate cross-communication, making possible a satisfactory response to environmental changes. Part of this interaction occurs through cytokines and steroid hormones. The last step of this crosstalk is at the molecular level. In this article we will focus on the physical and functional interrelationship between cytokine signaling pathway-activated transcription factors (TFs) and steroid receptors in different cell models, where the signals triggered by cytokines and steroid hormones have major roles: (1) the ligand-dependent-activated glucocorticoid receptor (GR) influence the genetic program that specifies lineage commitment in T helper (Th) cell differentiation. How posttranslational modifications of several TFs as well as nuclear hormone receptors could be implicated in the molecular crosstalk between the immune-neuroendocrine messengers is discussed. (2) glucocorticoid (GC) antagonism on the TCR-induced T cell apoptosis. (3) estrogen receptor/TGF-beta family proteins molecular interaction implicated on pituitary prolactinomas pathogenesis. The functional crosstalk at the molecular level between immune and steroids signals is essential to determine an integrative response to both mediators (which in the last instance results in a new gene activation/repression profile) and constitutes the ultimate integrative level of interaction between the immune and neuroendocrine systems.
Collapse
Affiliation(s)
- Jimena Druker
- Laboratorio de Fisiología y Biología Molecular, Departmento de Fisiologiía y Biooogía Molecular y Celular, Universidad de Buenos Aires, Ciudad Universitaria, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Liberman AC, Druker J, Perone MJ, Arzt E. Glucocorticoids in the regulation of transcription factors that control cytokine synthesis. Cytokine Growth Factor Rev 2007; 18:45-56. [PMID: 17336577 DOI: 10.1016/j.cytogfr.2007.01.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The interaction at different levels between intracellular signals elicited by cytokines and activated glucocorticoid receptors (GR) is essential for the regulation of immune responses. We describe different levels of interaction between glucocorticoids and cytokines which result in the induction or repression of gene transcription. These include the regulation of cytokine receptor expression, the molecular cross-talk between the GR and transcription factors (TFs) activated by cytokine signaling, the interaction with several signaling pathways and also posttranslational modifications of both GR and TFs. Also, an overview of the implications of chromatin remodeling in this interplay is discussed. The complexity of the intricate network involved in the interaction between GR and TFs is pivotal for the final outcome of cytokines biological action.
Collapse
Affiliation(s)
- Ana C Liberman
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBYNE-CONICET, C1428 Buenos Aires, Argentina
| | | | | | | |
Collapse
|