1
|
Novy B, Dagunts A, Weishaar T, Holland EE, Adoff H, Hutchinson E, De Maria M, Kampmann M, Tsvetanova NG, Lobingier BT. An engineered trafficking biosensor reveals a role for DNAJC13 in DOR downregulation. Nat Chem Biol 2024:10.1038/s41589-024-01705-2. [PMID: 39223388 DOI: 10.1038/s41589-024-01705-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Trafficking of G protein-coupled receptors (GPCRs) through the endosomal-lysosomal pathway is critical to homeostatic regulation of GPCRs following activation with agonist. Identifying the genes involved in GPCR trafficking is challenging due to the complexity of sorting operations and the large number of cellular proteins involved in the process. Here, we developed a high-sensitivity biosensor for GPCR expression and agonist-induced trafficking to the lysosome by leveraging the ability of the engineered peroxidase APEX2 to activate the fluorogenic substrate Amplex UltraRed (AUR). We used the GPCR-APEX2/AUR assay to perform a genome-wide CRISPR interference screen focused on identifying genes regulating expression and trafficking of the δ-opioid receptor (DOR). We identified 492 genes consisting of both known and new regulators of DOR function. We demonstrate that one new regulator, DNAJC13, controls trafficking of multiple GPCRs, including DOR, through the endosomal-lysosomal pathway by regulating the composition of the endosomal proteome and endosomal homeostasis.
Collapse
Affiliation(s)
- Brandon Novy
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Aleksandra Dagunts
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Tatum Weishaar
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Emily E Holland
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Hayden Adoff
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Emily Hutchinson
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Monica De Maria
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Martin Kampmann
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA, USA
| | | | - Braden T Lobingier
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
2
|
Yoshida S, Hasegawa T, Nakamura T, Sato K, Sugeno N, Ishiyama S, Sekiguchi K, Tobita M, Takeda A, Aoki M. Dysregulation of SNX1-retromer axis in pharmacogenetic models of Parkinson's disease. Cell Death Discov 2024; 10:290. [PMID: 38886344 PMCID: PMC11183211 DOI: 10.1038/s41420-024-02062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
Since the identification of vacuolar protein sorting (VPS) 35, as a causative molecule for familial Parkinson's disease (PD), retromer-mediated endosomal machinery has been a rising factor in the pathogenesis of the disease. The retromer complex cooperates with sorting nexin (SNX) dimer and DNAJC13, another causal molecule in PD, to transport cargoes from endosomes to the trans-Golgi network, and is also involved in mitochondrial dynamics and autophagy. Retromer dysfunction may induce neuronal death leading to PD via several biological cascades, including misfolded, insoluble α-synuclein (aS) accumulation and mitochondrial dysfunction; however, the detailed mechanisms remain poorly understood. In this study, we showed that the stagnation of retromer-mediated retrograde transport consistently occurs in different PD-mimetic conditions, i.e., overexpression of PD-linked mutant DNAJC13, excess aS induction, or toxin-induced mitochondrial dysfunction. Mechanistically, DNAJC13 was found to be involved in clathrin-dependent retromer transport as a functional modulator of SNX1 together with heat shock cognate 70 kDa protein (Hsc70), which was controlled by the binding and dissociation of DNAJC13 and SNX1 in an Hsc70 activity-dependent manner. In addition, excess amount of aS decreased the interaction between SNX1 and VPS35, the core component of retromer. Furthermore, R33, a pharmacological retromer chaperone, reduced insoluble aS and mitigated rotenone-induced neuronal apoptosis. These findings suggest that retrograde transport regulated by SNX1-retromer may be profoundly involved in the pathogenesis of PD and is a potential target for disease-modifying therapy for the disease.
Collapse
Grants
- 20K07896 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23K06823 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 19K16998 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23K14769 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20K07862 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23K19557 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Shun Yoshida
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
- Department of Neurology, NHO Yonezawa National Hospital, Yonezawa, Yamagata, 992-1202, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan.
- Department of Neurology, NHO Sendai-Nishitaga Hospital, Sendai, Miyagi, 982-8555, Japan.
| | - Takaaki Nakamura
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
- Department of Neurology, NHO Miyagi National Hospital, Watari, Miyagi, 989-2202, Japan
| | - Kazuki Sato
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Naoto Sugeno
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Shun Ishiyama
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Muneshige Tobita
- Department of Neurology, NHO Yonezawa National Hospital, Yonezawa, Yamagata, 992-1202, Japan
| | - Atsushi Takeda
- Department of Neurology, NHO Sendai-Nishitaga Hospital, Sendai, Miyagi, 982-8555, Japan
| | - Masashi Aoki
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
3
|
Li W, Zhu J, Li J, Jiang Y, Sun J, Xu Y, Pan H, Zhou Y, Zhu J. Research advances of tissue-derived extracellular vesicles in cancers. J Cancer Res Clin Oncol 2024; 150:184. [PMID: 38598014 PMCID: PMC11006789 DOI: 10.1007/s00432-023-05596-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/23/2023] [Indexed: 04/11/2024]
Abstract
BACKGROUND Extracellular vesicles (EVs) can mediate cell-to-cell communication and affect various physiological and pathological processes in both parent and recipient cells. Currently, extensive research has focused on the EVs derived from cell cultures and various body fluids. However, insufficient attention has been paid to the EVs derived from tissues. Tissue EVs can reflect the microenvironment of the specific tissue and the cross-talk of communication among different cells, which can provide more accurate and comprehensive information for understanding the development and progression of diseases. METHODS We review the state-of-the-art technologies involved in the isolation and purification of tissue EVs. Then, the latest research progress of tissue EVs in the mechanism of tumor occurrence and development is presented. And finally, the application of tissue EVs in the clinical diagnosis and treatment of cancer is anticipated. RESULTS We evaluate the strengths and weaknesses of various tissue processing and EVs isolation methods, and subsequently analyze the significance of protein characterization in determining the purity of tissue EVs. Furthermore, we focus on outlining the importance of EVs derived from tumor and adipose tissues in tumorigenesis and development, as well as their potential applications in early tumor diagnosis, prognosis, and treatment. CONCLUSION When isolating and characterizing tissue EVs, the most appropriate protocol needs to be specified based on the characteristics of different tissues. Tissue EVs are valuable in the diagnosis, prognosis, and treatment of tumors, and the potential risks associated with tissue EVs need to be considered as therapeutic agents.
Collapse
Affiliation(s)
- Wei Li
- Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 201800, People's Republic of China
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Jingyao Zhu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jiayuan Li
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Yiyun Jiang
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Jiuai Sun
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Yan Xu
- Research Laboratory for Functional Nanomaterial, National Engineering Research Center for Nanotechnology, Shanghai, 200241, People's Republic of China
| | - Hongzhi Pan
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China.
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 200120, People's Republic of China.
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Jun Zhu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Research Laboratory for Functional Nanomaterial, National Engineering Research Center for Nanotechnology, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
4
|
Mutagenesis and structural modeling implicate RME-8 IWN domains as conformational control points. PLoS Genet 2022; 18:e1010296. [DOI: 10.1371/journal.pgen.1010296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/08/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
After endocytosis, transmembrane cargo is differentially sorted into degradative or recycling pathways. This process is facilitated by recruitment into physically distinct degradative or recycling microdomains on the limiting membrane of individual endosomes. Endosomal sorting complexes required for transport (ESCRT) mark the degradative microdomain, while the recycling domain is marked by the retromer complex and associated proteins RME-8 and SNX-1. The separation of endosomal microdomains is also controlled by RME-8 and SNX-1, at least in part via removal of degradative component HRS/HGRS-1 from the recycling microdomain. This activity is likely due to recruitment and activation of chaperone Hsc70 on the endosome by the RME-8 DNAJ domain. To better understand the mechanism of RME-8 function we performed a new phylogenetic analysis of RME-8 and identified new conserved sequence features. In a complementary approach, we performed structure-function analysis that identified the C-terminus as important for microdomain localization and likely substrate binding, while N-terminal sequences beyond the known single N-terminal PH-like domain are important for endosome recruitment. Random mutagenesis identified IWN4, and by analogy IWN3, to be important for the autoinhibitory DNAJ domain binding, with IWN3 playing a critical role in HRS uncoating activity. Combining AlphaFold structural predictions with in vivo mutation analysis of RME-8, we propose a model whereby SNX-1 and the IWN domains control the conformation of RME-8 and hence the productive exposure of the DNAJ domain. Furthermore, we propose that the activation of RME-8 is cyclical, with SNX-1 acting as an activator and a target of RME-8 uncoating activity.
Collapse
|
5
|
Che N, Zhao N, Zhao X, Su S, Zhang Y, Bai X, Li F, Zhang D, Li Y. The expression and prognostic significance of PIK3CB in lung adenocarcinoma. Ann Diagn Pathol 2022; 60:152001. [PMID: 35780638 DOI: 10.1016/j.anndiagpath.2022.152001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of this study was to explore the expression and prognostic significance of PIK3CB in lung adenocarcinoma (LUAD) and to analyse the possible molecular mechanism that promotes LUAD development. METHODS Differences of PIK3CB expression at transcriptional level between LUAD and normal tissues were analysed with the Timer and UALCAN databases. Then, immunohistochemical staining was performed to investigate PIK3CB expression at the protein level, and relationships between PIK3CB and clinical characteristics were accessed. Univariate and multivariate Cox regression were performed to identify the independent prognostic risk factors for LUAD. Genetic alterations were analysed using the cBioPortal database. The main coexpressed genes and enrichment pathways of PIK3CB were estimated with the LinkedOmics database. RESULTS Compared with normal tissues, PIK3CB was higherly expressed in LUAD at the transcriptional level and protein level, respectively. PIK3CB expression was closely related to prognosis of LUAD patients, and PIK3CB protein expression was associated with lymph node metastasis and pathological differentiation, but not related to sex, age, pleural invasion, vascular invasion, tumour site, tumour size or clinical stage. PIK3CB and tumour size were independent risk factors for LUAD patients. The expression of PIK3CB was negatively correlated with AKT1 and AKT2, but there was no significant correlation with AKT3, and strong positive correlations with ARMC8, DNAJC13 and PIK3R4. The main enrichment pathways of PIK3CB and related genes included adherens junctions and the phosphatidylinositol signalling pathways, ErbB signalling pathways, Hedgehog signalling pathways, and C-type lectin receptor signalling pathways. Therefore, we hypothesized that PIK3CB expression did not promote LUAD development through the classical PI3K/AKT pathway. CONCLUSION High PIK3CB expression was associated with the development of LUAD and worse prognosis. PIK3CB was an independent risk factor for LUAD patients. Therefore, this study provides a reliable reference for the prognostic assessment and targeted therapy for LUAD patients.
Collapse
Affiliation(s)
- Na Che
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Nan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shuai Su
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, 300052, China
| | - Yanhui Zhang
- Department of Pathology, Tianjin Medical University Cancer Hospital, Tianjin 300060, China
| | - Xiaoyu Bai
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fan Li
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
6
|
Schechter M, Sharon R. An Emerging Role for Phosphoinositides in the Pathophysiology of Parkinson’s Disease. JOURNAL OF PARKINSON'S DISEASE 2021; 11:1725-1750. [PMID: 34151859 PMCID: PMC8609718 DOI: 10.3233/jpd-212684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Recent data support an involvement of defects in homeostasis of phosphoinositides (PIPs) in the pathophysiology of Parkinson’s disease (PD). Genetic mutations have been identified in genes encoding for PIP-regulating and PIP-interacting proteins, that are associated with familial and sporadic PD. Many of these proteins are implicated in vesicular membrane trafficking, mechanisms that were recently highlighted for their close associations with PD. PIPs are phosphorylated forms of the membrane phospholipid, phosphatidylinositol. Their composition in the vesicle’s membrane of origin, as well as membrane of destination, controls vesicular membrane trafficking. We review the converging evidence that points to the involvement of PIPs in PD. The review describes PD- and PIP-associated proteins implicated in clathrin-mediated endocytosis and autophagy, and highlights the involvement of α-synuclein in these mechanisms.
Collapse
Affiliation(s)
- Meir Schechter
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Ein Kerem, Jerusalem, Israel
| | - Ronit Sharon
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Ein Kerem, Jerusalem, Israel
| |
Collapse
|
7
|
Hounjet J, Vooijs M. The Role of Intracellular Trafficking of Notch Receptors in Ligand-Independent Notch Activation. Biomolecules 2021; 11:biom11091369. [PMID: 34572582 PMCID: PMC8466058 DOI: 10.3390/biom11091369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
Aberrant Notch signaling has been found in a broad range of human malignancies. Consequently, small molecule inhibitors and antibodies targeting Notch signaling in human cancers have been developed and tested; however, these have failed due to limited anti-tumor efficacy because of dose-limiting toxicities in normal tissues. Therefore, there is an unmet need to discover novel regulators of malignant Notch signaling, which do not affect Notch signaling in healthy tissues. This review provides a comprehensive overview of the current knowledge on the role of intracellular trafficking in ligand-independent Notch receptor activation, the possible mechanisms involved, and possible therapeutic opportunities for inhibitors of intracellular trafficking in Notch targeting.
Collapse
|
8
|
Erskine D, Koss D, Korolchuk VI, Outeiro TF, Attems J, McKeith I. Lipids, lysosomes and mitochondria: insights into Lewy body formation from rare monogenic disorders. Acta Neuropathol 2021; 141:511-526. [PMID: 33515275 PMCID: PMC7952289 DOI: 10.1007/s00401-021-02266-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Accumulation of the protein α-synuclein into insoluble intracellular deposits termed Lewy bodies (LBs) is the characteristic neuropathological feature of LB diseases, such as Parkinson's disease (PD), Parkinson's disease dementia (PDD) and dementia with LB (DLB). α-Synuclein aggregation is thought to be a critical pathogenic event in the aetiology of LB disease, based on genetic analyses, fundamental studies using model systems, and the observation of LB pathology in post-mortem tissue. However, some monogenic disorders not traditionally characterised as synucleinopathies, such as lysosomal storage disorders, iron storage disorders and mitochondrial diseases, appear disproportionately vulnerable to the deposition of LBs, perhaps suggesting the process of LB formation may be a result of processes perturbed as a result of these conditions. The present review discusses biological pathways common to monogenic disorders associated with LB formation, identifying catabolic processes, particularly related to lipid homeostasis, autophagy and mitochondrial function, as processes that could contribute to LB formation. These findings are discussed in the context of known mediators of α-synuclein aggregation, highlighting the potential influence of impairments to these processes in the aetiology of LB formation.
Collapse
Affiliation(s)
- Daniel Erskine
- Newcastle University Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
- Wellcome Centre for Mitochondrial Research, Newcastle upon Tyne, UK.
| | - David Koss
- Newcastle University Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Viktor I Korolchuk
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tiago F Outeiro
- Newcastle University Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
- Max Planck Institute for Experimental Medicine, Goettingen, Germany
- Scientific Employee With an Honorary Contract at Deutsches Zentrum Für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Johannes Attems
- Newcastle University Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ian McKeith
- Newcastle University Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
9
|
Norris A, Grant BD. Endosomal microdomains: Formation and function. Curr Opin Cell Biol 2020; 65:86-95. [PMID: 32247230 PMCID: PMC7529669 DOI: 10.1016/j.ceb.2020.02.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022]
Abstract
It is widely recognized that after endocytosis, internalized cargo is delivered to endosomes that act as sorting stations. The limiting membrane of endosomes contain specialized subregions, or microdomains, that represent distinct functions of the endosome, including regions competing for cargo capture leading to degradation or recycling. Great progress has been made in defining the endosomal protein coats that sort cargo in these domains, including Retromer that recycles transmembrane cargo, and ESCRT (endosomal sorting complex required for transport) that degrades transmembrane cargo. In this review, we discuss recent work that is beginning to unravel how such coat complexes contribute to the creation and maintenance of endosomal microdomains. We highlight data that indicates that adjacent microdomains do not act independently but rather interact to cross-regulate. We posit that these interactions provide an agile means for the cell to adjust sorting in response to extracellular signals and intracellular metabolic cues.
Collapse
Affiliation(s)
- Anne Norris
- Rutgers University, Department of Molecular Biology and Biochemistry, Piscataway, NJ, 08854, USA
| | - Barth D Grant
- Rutgers University, Department of Molecular Biology and Biochemistry, Piscataway, NJ, 08854, USA.
| |
Collapse
|
10
|
Han J, Goldstein LA, Hou W, Watkins SC, Rabinowich H. Involvement of CASP9 (caspase 9) in IGF2R/CI-MPR endosomal transport. Autophagy 2020; 17:1393-1409. [PMID: 32397873 DOI: 10.1080/15548627.2020.1761742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Recently, we reported that increased expression of CASP9 pro-domain, at the endosomal membrane in response to HSP90 inhibition, mediates a cell-protective effect that does not involve CASP9 apoptotic activity. We report here that a non-apoptotic activity of endosomal membrane CASP9 facilitates the retrograde transport of IGF2R/CI-MPR from the endosomes to the trans-Golgi network, indicating the involvement of CASP9 in endosomal sorting and lysosomal biogenesis. CASP9-deficient cells demonstrate the missorting of CTSD (cathepsin D) and other acid hydrolases, accumulation of late endosomes, and reduced degradation of bafilomycin A1-sensitive proteins. In the absence of CASP9, IGF2R undergoes significant degradation, and its rescue is achieved by the re-expression of a non-catalytic CASP9 mutant. This endosomal activity of CASP9 is potentially mediated by herein newly identified interactions of CASP9 with the components of the endosomal membrane transport complexes. These endosomal complexes include the retromer VPS35 and the SNX dimers, SNX1-SNX5 and SNX2-SNX6, which are involved in the IGF2R retrieval mechanism. Additionally, CASP9 interacts with HGS/HRS/ESCRT-0 and the CLTC (clathrin heavy chain) that participate in the initiation of the endosomal ESCRT degradation pathway. We propose that endosomal CASP9 inhibits the endosomal membrane degradative subdomain(s) from initiating the ESCRT-mediated degradation of IGF2R, allowing its retrieval to transport-designated endosomal membrane subdomain(s). These findings are the first to identify a cell survival, non-apoptotic function for CASP9 at the endosomal membrane, a site distinctly removed from the cytoplasmic apoptosome. Via its non-apoptotic endosomal function, CASP9 impacts the retrograde transport of IGF2R and, consequently, lysosomal biogenesis.Abbreviations: ACTB: actin beta; ATG7: autophagy related 7; BafA1: bafilomycin A1; CASP: caspase; CLTC/CHC: clathrin, heavy chain; CTSD: cathepsin D; ESCRT: endosomal sorting complexes required for transport; HEXB: hexosaminidase subunit beta; HGS/HRS/ESCRT-0: hepatocyte growth factor-regulated tyrosine kinase substrate; IGF2R/CI-MPR: insulin like growth factor 2 receptor; ILV: intraluminal vesicles; KD: knockdown; KO: knockout; M6PR/CD-MPR: mannose-6-phosphate receptor, cation dependent; MEF: murine embryonic fibroblasts; MWU: Mann-Whitney U test; PepA: pepstatin A; RAB7A: RAB7, member RAS oncogene family; SNX-BAR: sorting nexin dimers with a Bin/Amphiphysin/Rvs (BAR) domain each; TGN: trans-Golgi network; TUBB: tubulin beta; VPS26: VPS26 retromer complex component; VPS29: VPS29 retromer complex component; VPS35: VPS35 retromer complex component.
Collapse
Affiliation(s)
- Jie Han
- Departments of Pathology, University of Pittsburgh School of Medicine and the University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Leslie A Goldstein
- Departments of Pathology, University of Pittsburgh School of Medicine and the University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Wen Hou
- Departments of Pathology, University of Pittsburgh School of Medicine and the University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Simon C Watkins
- Cell Biology, University of Pittsburgh School of Medicine and the University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Hannah Rabinowich
- Departments of Pathology, University of Pittsburgh School of Medicine and the University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Esposito F, Boccarelli A, Del Buono N. An NMF-Based Methodology for Selecting Biomarkers in the Landscape of Genes of Heterogeneous Cancer-Associated Fibroblast Populations. Bioinform Biol Insights 2020; 14:1177932220906827. [PMID: 32425511 PMCID: PMC7218276 DOI: 10.1177/1177932220906827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/22/2020] [Indexed: 01/27/2023] Open
Abstract
The rapid development of high-performance technologies has greatly promoted studies of molecular oncology producing large amounts of data. Even if these data are publicly available, they need to be processed and studied to extract information useful to better understand mechanisms of pathogenesis of complex diseases, such as tumors. In this article, we illustrated a procedure for mining biologically meaningful biomarkers from microarray datasets of different tumor histotypes. The proposed methodology allows to automatically identify a subset of potentially informative genes from microarray data matrices, which differs either in the number of rows (genes) and of columns (patients). The methodology integrates nonnegative matrix factorization method, a functional enrichment analysis web tool with a properly designed gene extraction procedure to allow the analysis of omics input data with different row size. The proposed methodology has been used to mine microarray of solid tumors of different embryonic origin to verify the presence of common genes characterizing the heterogeneity of cancer-associated fibroblasts. These automatically extracted biomarkers could be used to suggest appropriate therapies to inactivate the state of active fibroblasts, thus avoiding their action on tumor progression.
Collapse
Affiliation(s)
- Flavia Esposito
- Department of Electronic and Information Engineering, Politecnico di Bari, Bari, Italy
| | - Angelina Boccarelli
- Department of Biomedical Science and Human Oncology, University of Bari Medical School, Bari, Italy
| | | |
Collapse
|
12
|
Besemer AS, Maus J, Ax MDA, Stein A, Vo S, Freese C, Nalbach K, von Hilchen C, Pfalzgraf IF, Koziollek-Drechsler I, Silva B, Huesmann H, Boukhallouk F, Florin L, Kern A, Behl C, Clement AM. Receptor-mediated endocytosis 8 (RME-8)/DNAJC13 is a novel positive modulator of autophagy and stabilizes cellular protein homeostasis. Cell Mol Life Sci 2020; 78:645-660. [PMID: 32322926 PMCID: PMC7873018 DOI: 10.1007/s00018-020-03521-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/20/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022]
Abstract
The cellular protein homeostasis (proteostasis) network responds effectively to insults. In a functional screen in C. elegans, we recently identified the gene receptor-mediated endocytosis 8 (rme-8; human ortholog: DNAJC13) as a component of the proteostasis network. Accumulation of aggregation-prone proteins, such as amyloid-β 42 (Aβ), α-synuclein, or mutant Cu/Zn-superoxide dismutase (SOD1), were aggravated upon the knockdown of rme-8/DNAJC13 in C. elegans and in human cell lines, respectively. DNAJC13 is involved in endosomal protein trafficking and associated with the retromer and the WASH complex. As both complexes have been linked to autophagy, we investigated the role of DNAJC13 in this degradative pathway. In knockdown and overexpression experiments, DNAJC13 acts as a positive modulator of autophagy. In contrast, the overexpression of the Parkinson’s disease-associated mutant DNAJC13(N855S) did not enhance autophagy. Reduced DNAJC13 levels affected ATG9A localization at and its transport from the recycling endosome. As a consequence, ATG9A co-localization at LC3B-positive puncta under steady-state and autophagy-induced conditions is impaired. These data demonstrate a novel function of RME-8/DNAJC13 in cellular homeostasis by modulating ATG9A trafficking and autophagy.
Collapse
Affiliation(s)
- Anna S Besemer
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany
| | - Joanna Maus
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany
| | - Mirjam D A Ax
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany
| | - Anna Stein
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany
| | - Stella Vo
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany
| | - Christian Freese
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany
| | - Karsten Nalbach
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany
| | - Christian von Hilchen
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany
| | - Ines F Pfalzgraf
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany
| | - Ingrid Koziollek-Drechsler
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany
| | - Beate Silva
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany
| | - Heike Huesmann
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany
| | - Fatima Boukhallouk
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University, 55101 Mainz, Germany
| | - Luise Florin
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, 55101 Mainz, Germany
| | - Andreas Kern
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany
| | - Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany.
| | - Albrecht M Clement
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany.
| |
Collapse
|
13
|
A review of possible therapies for Parkinson's disease. J Clin Neurosci 2020; 76:1-4. [PMID: 32278516 DOI: 10.1016/j.jocn.2020.03.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/21/2020] [Indexed: 11/23/2022]
Abstract
Parkinson's disease (PD) is a complex condition with a wide range of symptoms, like impaired movement, tremors, apathy and depression, and many other symptoms. The disease results from degeneration of dopaminergic neural cells. No cure at present but symptomatic some palliative treatments are available to slow down the disease progression. According to the Parkinson's Foundation every year in U.S., approximately 60,000 Americans diagnosed with PD. Nearly one million will be living with PD in the U.S. by 2020, which is more than the combined number of people diagnosed with multiple sclerosis, muscular dystrophy and Amyotrophic Lateral Sclerosis (ALS). There is no diagnostic test for PD, yet, but this article will review all kinds symptomatic and disease-modifying therapy.
Collapse
|
14
|
Chakraborty A, Brauer S, Diwan A. Possible therapies of Parkinson's disease: A review. J Clin Neurosci 2020; 75:1-4. [PMID: 32247740 DOI: 10.1016/j.jocn.2020.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a complex condition with a wide range of symptoms, like impaired movement, tremors, apathy and depression, and many other symptoms. The disease results from degeneration of dopaminergic neural cells. No cure at present but symptomatic some palliative treatments are available to slow down the disease progression. According to the Parkinson's Foundation every year in U.S., approximately 60,000 Americans diagnosed with PD. Nearly one million will be living with PD in the U.S. by 2020, which is more than the combined number of people diagnosed with multiple sclerosis, muscular dystrophy and Amyotrophic Lateral Sclerosis (ALS). There is no diagnostic test for PD, yet, but this article will review all kinds symptomatic and disease-modifying therapy.
Collapse
Affiliation(s)
| | - Sam Brauer
- Allexcel, Inc., 1 Controls Drive, Shelton 06484, CT, United States
| | - Anil Diwan
- Allexcel, Inc., 1 Controls Drive, Shelton 06484, CT, United States
| |
Collapse
|
15
|
Crescitelli R, Lässer C, Jang SC, Cvjetkovic A, Malmhäll C, Karimi N, Höög JL, Johansson I, Fuchs J, Thorsell A, Gho YS, Olofsson Bagge R, Lötvall J. Subpopulations of extracellular vesicles from human metastatic melanoma tissue identified by quantitative proteomics after optimized isolation. J Extracell Vesicles 2020; 9:1722433. [PMID: 32128073 PMCID: PMC7034452 DOI: 10.1080/20013078.2020.1722433] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 01/08/2023] Open
Abstract
The majority of extracellular vesicle (EV) studies conducted to date have been performed on cell lines with little knowledge on how well these represent the characteristics of EVs in vivo. The aim of this study was to establish a method to isolate and categorize subpopulations of EVs isolated directly from tumour tissue. First we established an isolation protocol for subpopulations of EVs from metastatic melanoma tissue, which included enzymatic treatment (collagenase D and DNase). Small and large EVs were isolated with differential ultracentrifugation, and these were further separated into high and low-density (HD and LD) fractions. All EV subpopulations were then analysed in depth using electron microscopy, Bioanalyzer®, nanoparticle tracking analysis, and quantitative mass spectrometry analysis. Subpopulations of EVs with distinct size, morphology, and RNA and protein cargo could be isolated from the metastatic melanoma tissue. LD EVs showed an RNA profile with the presence of 18S and 28S ribosomal subunits. In contrast, HD EVs had RNA profiles with small or no peaks for ribosomal RNA subunits. Quantitative proteomics showed that several proteins such as flotillin-1 were enriched in both large and small LD EVs, while ADAM10 were exclusively enriched in small LD EVs. In contrast, mitofilin was enriched only in the large EVs. We conclude that enzymatic treatments improve EV isolation from dense fibrotic tissue without any apparent effect on molecular or morphological characteristics. By providing a detailed categorization of several subpopulations of EVs isolated directly from tumour tissues, we might better understand the function of EVs in tumour biology and their possible use in biomarker discovery.
Collapse
Affiliation(s)
- Rossella Crescitelli
- Krefting Research Centre, Institute of Medicine Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Su Chul Jang
- Krefting Research Centre, Institute of Medicine Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Aleksander Cvjetkovic
- Krefting Research Centre, Institute of Medicine Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Carina Malmhäll
- Krefting Research Centre, Institute of Medicine Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Nasibeh Karimi
- Krefting Research Centre, Institute of Medicine Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Johanna L Höög
- Krefting Research Centre, Institute of Medicine Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Chemistry and Molecular Biology, Faculty of Natural Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Iva Johansson
- Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johannes Fuchs
- Proteomic Core Facility, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Annika Thorsell
- Proteomic Core Facility, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - R Olofsson Bagge
- Sahlgrenska Cancer Center, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Region Västra Götaland, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
Ebanks K, Lewis PA, Bandopadhyay R. Vesicular Dysfunction and the Pathogenesis of Parkinson's Disease: Clues From Genetic Studies. Front Neurosci 2020; 13:1381. [PMID: 31969802 PMCID: PMC6960401 DOI: 10.3389/fnins.2019.01381] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a common age-related neurodegenerative disorder with disabling motor symptoms and no available disease modifying treatment. The majority of the PD cases are of unknown etiology, with both genetics and environment playing important roles. Over the past 25 years, however, genetic analysis of patients with familial history of Parkinson's and, latterly, genome wide association studies (GWAS) have provided significant advances in our understanding of the causes of the disease. These genetic insights have uncovered pathways that are affected in both genetic and sporadic forms of PD. These pathways involve oxidative stress, abnormal protein homeostasis, mitochondrial dysfunction, and lysosomal defects. In addition, newly identified PD genes and GWAS nominated genes point toward synaptic changes involving vesicles. This review will highlight the genes that contribute PD risk relating to intracellular vesicle trafficking and their functional consequences. There is still much to investigate on this newly identified and converging pathway of vesicular dynamics and PD, which will aid in better understanding and suggest novel therapeutic strategies for PD patients.
Collapse
Affiliation(s)
- Kirsten Ebanks
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Clinical and Motor Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Patrick A. Lewis
- School of Pharmacy, University of Reading, Reading, United Kingdom
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Rina Bandopadhyay
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Clinical and Motor Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
17
|
Roosen DA, Blauwendraat C, Cookson MR, Lewis PA. DNAJC
proteins and pathways to parkinsonism. FEBS J 2019; 286:3080-3094. [DOI: 10.1111/febs.14936] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/21/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Dorien A. Roosen
- Laboratory of Neurogenetics National Institute on AgingNational Institutes of Health Bethesda MD USA
- School of Pharmacy University of Reading UK
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics National Institute on AgingNational Institutes of Health Bethesda MD USA
| | - Mark R. Cookson
- Laboratory of Neurogenetics National Institute on AgingNational Institutes of Health Bethesda MD USA
| | - Patrick A. Lewis
- School of Pharmacy University of Reading UK
- Department of Neurodegenerative Disease UCL Institute of Neurology London UK
| |
Collapse
|
18
|
Follett J, Fox JD, Gustavsson EK, Kadgien C, Munsie LN, Cao LP, Tatarnikov I, Milnerwood AJ, Farrer MJ. DNAJC13 p.Asn855Ser, implicated in familial parkinsonism, alters membrane dynamics of sorting nexin 1. Neurosci Lett 2019; 706:114-122. [PMID: 31082451 DOI: 10.1016/j.neulet.2019.04.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/10/2019] [Accepted: 04/20/2019] [Indexed: 10/26/2022]
Abstract
DNAJC13 (RME-8) is a core co-chaperone that facilitates membrane recycling and cargo sorting of endocytosed proteins. DNAJ/Hsp40 (heat shock protein 40) proteins are highly conserved throughout evolution and mediate the folding of nascent proteins, and the unfolding, refolding or degradation of misfolded proteins while assisting in associated-membrane translocation. DNAJC13 is one of five DNAJ 'C' class chaperone variants implicated in monogenic parkinsonism. Here we examine the effect of the DNAJC13 disease-linked mutation (p.Asn855Ser) on its interacting partners, focusing on sorting nexin 1 (SNX1) membrane dynamics in primary cortical neurons derived from a novel Dnajc13 p.Asn855Ser knock-in (DKI) mouse model. Dnajc13 p.Asn855Ser mutant and wild type protein expression were equivalent in mature heterozygous cultures (DIV21). While SNX1-positive puncta density, area, and WASH-retromer assembly were comparable between cultures derived from DKI and wild type littermates, the formation of SNX1-enriched tubules in DKI neuronal cultures was significantly increased. Thus, Dnajc13 p.Asn855Ser disrupts SNX1 membrane-tubulation and trafficking, analogous to results from RME-8 depletion studies. The data suggest the mutation confers a dominant-negative gain-of-function in RME-8. Implications for the pathogenesis of Parkinson's disease are discussed.
Collapse
Affiliation(s)
- Jordan Follett
- Centre for Applied Neurogenetics, Department of Medical Genetics, University of British Columbia, Vancouver, B.C., Canada.
| | - Jesse D Fox
- Centre for Applied Neurogenetics, Department of Medical Genetics, University of British Columbia, Vancouver, B.C., Canada
| | - Emil K Gustavsson
- Centre for Applied Neurogenetics, Department of Medical Genetics, University of British Columbia, Vancouver, B.C., Canada; Department of Neurology, St. Olav's Hospital, Trondheim, Norway
| | - Chelsie Kadgien
- Centre for Applied Neurogenetics, Department of Medical Genetics, University of British Columbia, Vancouver, B.C., Canada
| | - Lise N Munsie
- Centre for Applied Neurogenetics, Department of Medical Genetics, University of British Columbia, Vancouver, B.C., Canada
| | - Li Ping Cao
- Centre for Applied Neurogenetics, Department of Medical Genetics, University of British Columbia, Vancouver, B.C., Canada
| | - Igor Tatarnikov
- Centre for Applied Neurogenetics, Department of Medical Genetics, University of British Columbia, Vancouver, B.C., Canada
| | - Austen J Milnerwood
- Centre for Applied Neurogenetics, Department of Medical Genetics, University of British Columbia, Vancouver, B.C., Canada
| | - Matthew J Farrer
- Centre for Applied Neurogenetics, Department of Medical Genetics, University of British Columbia, Vancouver, B.C., Canada
| |
Collapse
|
19
|
Farrer MJ, Follett J. Endosomal trafficking leads the way in Parkinson's disease. Mov Disord 2019; 34:443-445. [PMID: 30812061 DOI: 10.1002/mds.27647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 01/28/2023] Open
Affiliation(s)
- Matthew J Farrer
- Centre for Applied Neurogenetics, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jordan Follett
- Centre for Applied Neurogenetics, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Yoshida S, Hasegawa T, Suzuki M, Sugeno N, Kobayashi J, Ueyama M, Fukuda M, Ido-Fujibayashi A, Sekiguchi K, Ezura M, Kikuchi A, Baba T, Takeda A, Mochizuki H, Nagai Y, Aoki M. Parkinson's disease-linked DNAJC13 mutation aggravates alpha-synuclein-induced neurotoxicity through perturbation of endosomal trafficking. Hum Mol Genet 2019; 27:823-836. [PMID: 29309590 DOI: 10.1093/hmg/ddy003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/29/2017] [Indexed: 01/23/2023] Open
Abstract
Mutations in DNAJC13 gene have been linked to familial form of Parkinson's disease (PD) with Lewy pathology. DNAJC13 is an endosome-related protein and believed to regulate endosomal membrane trafficking. However, the mechanistic link between DNAJC13 mutation and α-synuclein (αSYN) pathology toward neurodegeneration remains poorly understood. In this study, we showed that PD-linked N855S-mutant DNAJC13 caused αSYN accumulation in the endosomal compartment, presumably due to defective cargo trafficking from the early endosome to the late and/or recycling endosome. In vivo experiments using human αSYN transgenic flies showed that mutant DNAJC13 not only increased the amount of insoluble αSYN in fly head but also induced dopaminergic neurodegeneration, rough eye phenotype and age-dependent locomotor impairment. Together, these findings suggest that DNAJC13 mutation perturbs multi-directional endosomal trafficking, resulting in the aberrant endosomal retention of αSYN, which might predispose to the neurodegenerative process that leads to PD.
Collapse
Affiliation(s)
- Shun Yoshida
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.,Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Mari Suzuki
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.,Diabetic Neuropathy Project, Department of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Naoto Sugeno
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Junpei Kobayashi
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Morio Ueyama
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Akemi Ido-Fujibayashi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Michinori Ezura
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Akio Kikuchi
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Toru Baba
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Atsushi Takeda
- Department of Neurology, National Hospital Organization Sendai-Nishitaga Hospital, Sendai 982-8555, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Masashi Aoki
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| |
Collapse
|
21
|
Bentley SJ, Jamabo M, Boshoff A. The Hsp70/J-protein machinery of the African trypanosome, Trypanosoma brucei. Cell Stress Chaperones 2019; 24:125-148. [PMID: 30506377 PMCID: PMC6363631 DOI: 10.1007/s12192-018-0950-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/06/2018] [Accepted: 11/12/2018] [Indexed: 12/28/2022] Open
Abstract
The etiological agent of the neglected tropical disease African trypanosomiasis, Trypanosoma brucei, possesses an expanded and diverse repertoire of heat shock proteins, which have been implicated in cytoprotection, differentiation, as well as progression and transmission of the disease. Hsp70 plays a crucial role in proteostasis, and inhibition of its interactions with co-chaperones is emerging as a potential therapeutic target for numerous diseases. In light of genome annotations and the release of the genome sequence of the human infective subspecies, an updated and current in silico overview of the Hsp70/J-protein machinery in both T. brucei brucei and T. brucei gambiense was conducted. Functional, structural, and evolutionary analyses of the T. brucei Hsp70 and J-protein families were performed. The Hsp70 and J-proteins from humans and selected kinetoplastid parasites were used to assist in identifying proteins from T. brucei, as well as the prediction of potential Hsp70-J-protein partnerships. The Hsp70 and J-proteins were mined from numerous genome-wide proteomics studies, which included different lifecycle stages and subcellular localisations. In this study, 12 putative Hsp70 proteins and 67 putative J-proteins were identified to be encoded on the genomes of both T. brucei subspecies. Interestingly there are 6 type III J-proteins that possess tetratricopeptide repeat-containing (TPR) motifs. Overall, it is envisioned that the results of this study will provide a future context for studying the biology of the African trypanosome and evaluating Hsp70 and J-protein interactions as potential drug targets.
Collapse
Affiliation(s)
| | - Miebaka Jamabo
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa.
| |
Collapse
|
22
|
Soukup SF, Vanhauwaert R, Verstreken P. Parkinson's disease: convergence on synaptic homeostasis. EMBO J 2018; 37:embj.201898960. [PMID: 30065071 DOI: 10.15252/embj.201898960] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/07/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease, the second most common neurodegenerative disorder, affects millions of people globally. There is no cure, and its prevalence will double by 2030. In recent years, numerous causative genes and risk factors for Parkinson's disease have been identified and more than half appear to function at the synapse. Subtle synaptic defects are thought to precede blunt neuronal death, but the mechanisms that are dysfunctional at synapses are only now being unraveled. Here, we review recent work and propose a model where different Parkinson proteins interact in a cell compartment-specific manner at the synapse where these proteins regulate endocytosis and autophagy. While this field is only recently emerging, the work suggests that the loss of synaptic homeostasis may contribute to neurodegeneration and is a key player in Parkinson's disease.
Collapse
Affiliation(s)
- Sandra-Fausia Soukup
- VIB-KU Leuven Center for Brain& Disease Research, Leuven, Belgium .,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Roeland Vanhauwaert
- VIB-KU Leuven Center for Brain& Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain& Disease Research, Leuven, Belgium .,Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Khowal S, Naqvi SH, Monga S, Jain SK, Wajid S. Assessment of cellular and serum proteome from tongue squamous cell carcinoma patient lacking addictive proclivities for tobacco, betel nut, and alcohol: Case study. J Cell Biochem 2018; 119:5186-5221. [PMID: 29236289 DOI: 10.1002/jcb.26554] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023]
Abstract
The intriguing molecular pathways involved in oral carcinogenesis are still ambiguous. The oral squamous cell carcinoma (OSCC) ranks as the most common type constituting more than 90% of the globally diagnosed oral cancers cases. The elevation in the OSCC incidence rate during past 10 years has an alarming impression on human healthcare. The major challenges associated with OSCC include delayed diagnosis, high metastatic rates, and low 5-year survival rates. The present work foundations on reverse genetic strategy and involves the identification of genes showing expressional variability in an OSCC case lacking addictive proclivities for tobacco, betel nut, and/or alcohol, major etiologies. The expression modulations in the identified genes were analyzed in 16 patients comprising oral pre-cancer and cancer histo-pathologies. The genes SCCA1 and KRT1 were found to down regulate while DNAJC13, GIPC2, MRPL17, IG-Vreg, SSFA2, and UPF0415 upregulated in the oral pre-cancer and cancer pathologies, implicating the genes as crucial players in oral carcinogenesis.
Collapse
Affiliation(s)
- Sapna Khowal
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Samar H Naqvi
- Molecular Diagnostics, Genetix Biotech Asia (P) Ltd., New Delhi, India
| | - Seema Monga
- Department of ENT, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| | - Swatantra K Jain
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
- Department of Biochemistry, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
24
|
Gagliardi M, Annesi G, Procopio R, Morelli M, Iannello G, Bonapace G, Mancini M, Nicoletti G, Quattrone A. DNAJC13 mutation screening in patients with Parkinson's disease from South Italy. Parkinsonism Relat Disord 2018; 55:134-137. [PMID: 29887357 DOI: 10.1016/j.parkreldis.2018.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/24/2018] [Accepted: 06/03/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disorder, and the most common neurodegenerative form of parkinsonism. Recently, a pathogenic mutation (p.N855S) in DNAJC13 was linked to autosomal dominant Lewy body PD in a Dutch-German-Russian Mennonite multi-incident kindred, and was found in five additional patients. In this study, we performed a comprehensive screening of the DNAJC13 gene in familial PD and sporadic PD to assess the frequency of known and novel rare nonsynonymous variants. METHODS We screened 563 sporadic and 168 familial PD patients and a control series (n = 1000) for the coding region of DNAJC13. RESULTS Our sequencing analysis identified two carriers of the c.2708G > A (p.R903K) variant in exon 24 of DNAJC13. One of these carriers is a familial PD. CONCLUSION The p. R903K variant was not found in 1000 healthy controls and it is localized in a functional domain of the DNAJC13 protein. Further studies are necessary to evaluate the role of DNAJC13 variants in PD.
Collapse
Affiliation(s)
- Monica Gagliardi
- Institute of Molecular Bioimaging and Physiology, National Research Council, Section of Germaneto, Catanzaro, Italy.
| | - Grazia Annesi
- Institute of Molecular Bioimaging and Physiology, National Research Council, Section of Germaneto, Catanzaro, Italy
| | - Radha Procopio
- Institute of Molecular Bioimaging and Physiology, National Research Council, Section of Germaneto, Catanzaro, Italy; Institute of Neurology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Maurizio Morelli
- Institute of Neurology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Grazia Iannello
- Institute of Molecular Bioimaging and Physiology, National Research Council, Section of Germaneto, Catanzaro, Italy
| | - Giuseppe Bonapace
- Department of Medical and Surgical Science, Pediatrics Unit, University Magna Graecia, Catanzaro, Italy
| | - Manuela Mancini
- Institute of Neurology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Giuseppe Nicoletti
- Institute of Molecular Bioimaging and Physiology, National Research Council, Section of Germaneto, Catanzaro, Italy
| | - Aldo Quattrone
- Institute of Molecular Bioimaging and Physiology, National Research Council, Section of Germaneto, Catanzaro, Italy; Neuroscience Research Center, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Italy
| |
Collapse
|
25
|
Reitz C. Retromer Dysfunction and Neurodegenerative Disease. Curr Genomics 2018; 19:279-288. [PMID: 29755290 PMCID: PMC5930449 DOI: 10.2174/1389202919666171024122809] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/07/2015] [Accepted: 05/25/2016] [Indexed: 11/22/2022] Open
Abstract
In recent years, genomic, animal and cell biology studies have implicated deficiencies in retromer-mediated trafficking of proteins in an increasing number of neurodegenerative diseases including Alzheimer's Disease (AD), Parkinson's Disease (PD) and Frontotemporal Lobar Degener-ation (FTLD). The retromer complex, which is highly conserved across all eukaryotes, regulates the sorting of transmembrane proteins out of endo-somes to the cell surface or to the trans-Golgi network. Within retromer, cargo selection and binding are performed by a trimer of the Vps26, Vps29 and Vps35 proteins, named the "Cargo-Selective Complex (CSC)". Sorting of cargo into tubules for distribution to the trans-Golgi network or the cell sur-face is achieved through the dimeric sorting nexin (SNX) component of retromer and accessory proteins such as the WASH complex which medi-ates the formation of discrete endosomal tubules enabling the sorting of cargo into distinct pathways through production of filamentous actin patch-es. In the present article, we review the molecular structure and function of the retromer and summarize the evidence linking retromer dysfunction to neurodegenerative disease.
Collapse
Affiliation(s)
- Christiane Reitz
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA; Department of Neurology, Columbia University, New York, NY, USA; Department of Epidemiology, Columbia University, New York, NY, USA
| |
Collapse
|
26
|
Zarouchlioti C, Parfitt DA, Li W, Gittings LM, Cheetham ME. DNAJ Proteins in neurodegeneration: essential and protective factors. Philos Trans R Soc Lond B Biol Sci 2018; 373:20160534. [PMID: 29203718 PMCID: PMC5717533 DOI: 10.1098/rstb.2016.0534] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2017] [Indexed: 12/16/2022] Open
Abstract
Maintenance of protein homeostasis is vitally important in post-mitotic cells, particularly neurons. Neurodegenerative diseases such as polyglutamine expansion disorders-like Huntington's disease or spinocerebellar ataxia (SCA), Alzheimer's disease, fronto-temporal dementia (FTD), amyotrophic lateral sclerosis (ALS) and Parkinson's disease-are often characterized by the presence of inclusions of aggregated protein. Neurons contain complex protein networks dedicated to protein quality control and maintaining protein homeostasis, or proteostasis. Molecular chaperones are a class of proteins with prominent roles in maintaining proteostasis, which act to bind and shield hydrophobic regions of nascent or misfolded proteins while allowing correct folding, conformational changes and enabling quality control. There are many different families of molecular chaperones with multiple functions in proteostasis. The DNAJ family of molecular chaperones is the largest chaperone family and is defined by the J-domain, which regulates the function of HSP70 chaperones. DNAJ proteins can also have multiple other protein domains such as ubiquitin-interacting motifs or clathrin-binding domains leading to diverse and specific roles in the cell, including targeting client proteins for degradation via the proteasome, chaperone-mediated autophagy and uncoating clathrin-coated vesicles. DNAJ proteins can also contain ER-signal peptides or mitochondrial leader sequences, targeting them to specific organelles in the cell. In this review, we discuss the multiple roles of DNAJ proteins and in particular focus on the role of DNAJ proteins in protecting against neurodegenerative diseases caused by misfolded proteins. We also discuss the role of DNAJ proteins as direct causes of inherited neurodegeneration via mutations in DNAJ family genes.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
| | - David A Parfitt
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1 V 9EL, UK
| | - Wenwen Li
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1 V 9EL, UK
| | - Lauren M Gittings
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1 V 9EL, UK
| | | |
Collapse
|
27
|
Hasegawa T, Yoshida S, Sugeno N, Kobayashi J, Aoki M. DnaJ/Hsp40 Family and Parkinson's Disease. Front Neurosci 2018; 11:743. [PMID: 29367843 PMCID: PMC5767785 DOI: 10.3389/fnins.2017.00743] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is the second most common devastating neurodegenerative disorder after Alzheimer's disease. The precise molecular and cellular basis underlying PD still remains uncertain; however, accumulating evidence suggests that neuronal cell death is caused by a combination of environmental and genetic factors. Over the previous two decades, more than 20 genes have been identified as the cause of and/or risk for PD. Because sporadic and familial forms of PD have many similarities in clinical and neuropathological features, common molecular pathways, such as aberrant mitochondrial and protein homeostasis, are likely to exist in both conditions. Of the various genes and proteins involved in PD, the versatile DnaJ/Hsp40 co-chaperones have attracted particular attention since several genes encoding this protein family have been successively identified as the cause of the familial forms of PD/Parkinsonism. In this review, we will introduce the current knowledge regarding the integratory and modulatory effect of DnaJ/Hsp40 in various cellular functions and argue how the failure of these proteins may initiate and/or facilitate of the disease.
Collapse
Affiliation(s)
- Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shun Yoshida
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoto Sugeno
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junpei Kobayashi
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masashi Aoki
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
28
|
Axelsen TM, Woldbye DP. Gene Therapy for Parkinson's Disease, An Update. JOURNAL OF PARKINSON'S DISEASE 2018; 8:195-215. [PMID: 29710735 PMCID: PMC6027861 DOI: 10.3233/jpd-181331] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/25/2018] [Indexed: 12/19/2022]
Abstract
The current mainstay treatment of Parkinson's disease (PD) consists of dopamine replacement therapy which, in addition to causing several side effects, does not delay disease progression. The field of gene therapy offers a potential means to improve current therapy. The present review gives an update of the present status of gene therapy for PD. Both non-disease and disease modifying transgenes have been tested for PD gene therapy in animal and human studies. Non-disease modifying treatments targeting dopamine or GABA synthesis have been successful and promising at improving PD symptomatology in randomized clinical studies, but substantial testing remains before these can be implemented in the standard clinical treatment repertoire. As for disease modifying targets that theoretically offer the possibility of slowing the progression of disease, several neurotrophic factors show encouraging results in preclinical models (e.g., neurturin, GDNF, BDNF, CDNF, VEGF-A). However, so far, clinical trials have only tested neurturin, and, unfortunately, no trial has been able to meet its primary endpoint. Future clinical trials with neurotrophic factors clearly deserve to be conducted, considering the still enticing goal of actually slowing the disease process of PD. As alternative types of gene therapy, opto- and chemogenetics might also find future use in PD treatment and novel genome-editing technology could also potentially be applied as individualized gene therapy for genetic types of PD.
Collapse
Affiliation(s)
- Tobias M. Axelsen
- Department of Neurology, Herlev University Hospital, Herlev, Denmark
| | - David P.D. Woldbye
- Department of Neuroscience, Panum Institute, Mærsk Tower, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
29
|
Woldesemayat AA, Van Heusden P, Ndimba BK, Christoffels A. An integrated and comparative approach towards identification, characterization and functional annotation of candidate genes for drought tolerance in sorghum (Sorghum bicolor (L.) Moench). BMC Genet 2017; 18:119. [PMID: 29273003 PMCID: PMC5741957 DOI: 10.1186/s12863-017-0584-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 12/06/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Drought is the most disastrous abiotic stress that severely affects agricultural productivity worldwide. Understanding the biological basis of drought-regulated traits, requires identification and an in-depth characterization of genetic determinants using model organisms and high-throughput technologies. However, studies on drought tolerance have generally been limited to traditional candidate gene approach that targets only a single gene in a pathway that is related to a trait. In this study, we used sorghum, one of the model crops that is well adapted to arid regions, to mine genes and define determinants for drought tolerance using drought expression libraries and RNA-seq data. RESULTS We provide an integrated and comparative in silico candidate gene identification, characterization and annotation approach, with an emphasis on genes playing a prominent role in conferring drought tolerance in sorghum. A total of 470 non-redundant functionally annotated drought responsive genes (DRGs) were identified using experimental data from drought responses by employing pairwise sequence similarity searches, pathway and interpro-domain analysis, expression profiling and orthology relation. Comparison of the genomic locations between these genes and sorghum quantitative trait loci (QTLs) showed that 40% of these genes were co-localized with QTLs known for drought tolerance. The genome reannotation conducted using the Program to Assemble Spliced Alignment (PASA), resulted in 9.6% of existing single gene models being updated. In addition, 210 putative novel genes were identified using AUGUSTUS and PASA based analysis on expression dataset. Among these, 50% were single exonic, 69.5% represented drought responsive and 5.7% were complete gene structure models. Analysis of biochemical metabolism revealed 14 metabolic pathways that are related to drought tolerance and also had a strong biological network, among categories of genes involved. Identification of these pathways, signifies the interplay of biochemical reactions that make up the metabolic network, constituting fundamental interface for sorghum defence mechanism against drought stress. CONCLUSIONS This study suggests untapped natural variability in sorghum that could be used for developing drought tolerance. The data presented here, may be regarded as an initial reference point in functional and comparative genomics in the Gramineae family.
Collapse
Affiliation(s)
- Adugna Abdi Woldesemayat
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Belleville, 7535, South Africa.
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, UNISA Science Campus, Corner of Christiaan De Wet Road and Pioneer Avenue, Johannesburg, Florida, 1710, South Africa.
| | - Peter Van Heusden
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Belleville, 7535, South Africa
| | - Bongani K Ndimba
- Department of Biotechnology, University of the Western Cape, Private Bag X17, Belleville, Cape Town, 7535, South Africa
- Agricultural Research Council, Infruitech-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599, South Africa
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Belleville, 7535, South Africa
| |
Collapse
|
30
|
Bentley SJ, Boshoff A. Hsp70/J-protein machinery from Glossina morsitans morsitans, vector of African trypanosomiasis. PLoS One 2017; 12:e0183858. [PMID: 28902917 PMCID: PMC5597180 DOI: 10.1371/journal.pone.0183858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/11/2017] [Indexed: 11/18/2022] Open
Abstract
Tsetse flies (Glossina spp.) are the sole vectors of the protozoan parasites of the genus Trypanosoma, the causative agents of African Trypanosomiasis. Species of Glossina differ in vector competence and Glossina morsitans morsitans is associated with transmission of Trypanosoma brucei rhodesiense, which causes an acute and often fatal form of African Trypanosomiasis. Heat shock proteins are evolutionarily conserved proteins that play critical roles in proteostasis. The activity of heat shock protein 70 (Hsp70) is regulated by interactions with its J-protein (Hsp40) co-chaperones. Inhibition of these interactions are emerging as potential therapeutic targets. The assembly and annotation of the G. m. morsitans genome provided a platform to identify and characterize the Hsp70s and J-proteins, and carry out an evolutionary comparison to its well-studied eukaryotic counterparts, Drosophila melanogaster and Homo sapiens, as well as Stomoxys calcitrans, a comparator species. In our study, we identified 9 putative Hsp70 proteins and 37 putative J-proteins in G. m. morsitans. Phylogenetic analyses revealed three evolutionarily distinct groups of Hsp70s, with a closer relationship to orthologues from its blood-feeding dipteran relative Stomoxys calcitrans. G. m. morsitans also lacked the high number of heat inducible Hsp70s found in D. melanogaster. The potential localisations, functions, domain organisations and Hsp70/J-protein partnerships were also identified. A greater understanding of the heat shock 70 (Hsp70) and J-protein (Hsp40) families in G. m. morsitans could enhance our understanding of the cell biology of the tsetse fly.
Collapse
Affiliation(s)
- Stephen J. Bentley
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
- * E-mail:
| |
Collapse
|
31
|
Gorenberg EL, Chandra SS. The Role of Co-chaperones in Synaptic Proteostasis and Neurodegenerative Disease. Front Neurosci 2017; 11:248. [PMID: 28579939 PMCID: PMC5437171 DOI: 10.3389/fnins.2017.00248] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/18/2017] [Indexed: 12/14/2022] Open
Abstract
Synapses must be preserved throughout an organism's lifespan to allow for normal brain function and behavior. Synapse maintenance is challenging given the long distances between the termini and the cell body, reliance on axonal transport for delivery of newly synthesized presynaptic proteins, and high rates of synaptic vesicle exo- and endocytosis. Hence, synapses rely on efficient proteostasis mechanisms to preserve their structure and function. To this end, the synaptic compartment has specific chaperones to support its functions. Without proper synaptic chaperone activity, local proteostasis imbalances lead to neurotransmission deficits, dismantling of synapses, and neurodegeneration. In this review, we address the roles of four synaptic chaperones in the maintenance of the nerve terminal, as well as their genetic links to neurodegenerative disease. Three of these are Hsp40 co-chaperones (DNAJs): Cysteine String Protein alpha (CSPα; DNAJC5), auxilin (DNAJC6), and Receptor-Mediated Endocytosis 8 (RME-8; DNAJC13). These co-chaperones contain a conserved J domain through which they form a complex with heat shock cognate 70 (Hsc70), enhancing the chaperone's ATPase activity. CSPα is a synaptic vesicle protein known to chaperone the t-SNARE SNAP-25 and the endocytic GTPase dynamin-1, thereby regulating synaptic vesicle exocytosis and endocytosis. Auxilin binds assembled clathrin cages, and through its interactions with Hsc70 leads to the uncoating of clathrin-coated vesicles, a process necessary for the regeneration of synaptic vesicles. RME-8 is a co-chaperone on endosomes and may have a role in clathrin-coated vesicle endocytosis on this organelle. These three co-chaperones maintain client function by preserving folding and assembly to prevent client aggregation, but they do not break down aggregates that have already formed. The fourth synaptic chaperone we will discuss is Heat shock protein 110 (Hsp110), which interacts with Hsc70, DNAJAs, and DNAJBs to constitute a disaggregase. Hsp110-related disaggregase activity is present at the synapse and is known to protect against aggregation of proteins such as α-synuclein. Congruent with their importance in the nervous system, mutations of these co-chaperones lead to familial neurodegenerative disease. CSPα mutations cause adult neuronal ceroid lipofuscinosis, while auxilin mutations result in early-onset Parkinson's disease, demonstrating their significance in preservation of the nervous system.
Collapse
Affiliation(s)
- Erica L Gorenberg
- Interdepartmental Neuroscience Program, Yale UniversityNew Haven, CT, United States
| | - Sreeganga S Chandra
- Department of Neurology, Yale UniversityNew Haven, CT, United States.,Department of Neuroscience, Yale UniversityNew Haven, CT, United States
| |
Collapse
|
32
|
SNX-1 and RME-8 oppose the assembly of HGRS-1/ESCRT-0 degradative microdomains on endosomes. Proc Natl Acad Sci U S A 2017; 114:E307-E316. [PMID: 28053230 DOI: 10.1073/pnas.1612730114] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
After endocytosis, transmembrane cargo reaches endosomes, where it encounters complexes dedicated to opposing functions: recycling and degradation. Microdomains containing endosomal sorting complexes required for transport (ESCRT)-0 component Hrs [hepatocyte growth factor-regulated tyrosine kinase substrate (HGRS-1) in Caenorhabditis elegans] mediate cargo degradation, concentrating ubiquitinated cargo and organizing the activities of ESCRT. At the same time, retromer associated sorting nexin one (SNX-1) and its binding partner, J-domain protein RME-8, sort cargo away from degradation, promoting cargo recycling to the Golgi. Thus, we hypothesized that there could be important regulatory interactions between retromer and ESCRT that balance degradative and recycling functions. Taking advantage of the naturally large endosomes of the C. elegans coelomocyte, we visualized complementary ESCRT-0 and RME-8/SNX-1 microdomains in vivo and assayed the ability of retromer and ESCRT microdomains to regulate one another. We found in snx-1(0) and rme-8(ts) mutants increased endosomal coverage and intensity of HGRS-1-labeled microdomains, as well as increased total levels of HGRS-1 bound to membranes. These effects are specific to SNX-1 and RME-8, as loss of other retromer components SNX-3 and vacuolar protein sorting-associated protein 35 (VPS-35) did not affect HGRS-1 microdomains. Additionally, knockdown of hgrs-1 had little to no effect on SNX-1 and RME-8 microdomains, suggesting directionality to the interaction. Separation of the functionally distinct ESCRT-0 and SNX-1/RME-8 microdomains was also compromised in the absence of RME-8 and SNX-1, a phenomenon we observed to be conserved, as depletion of Snx1 and Snx2 in HeLa cells also led to greater overlap of Rme-8 and Hrs on endosomes.
Collapse
|
33
|
Analysis of DNAJC13 mutations in French-Canadian/French cohort of Parkinson's disease. Neurobiol Aging 2016; 45:212.e13-212.e17. [DOI: 10.1016/j.neurobiolaging.2016.04.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/29/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022]
|
34
|
Lorenzo-Betancor O, Ogaki K, Soto-Ortolaza AI, Labbe C, Walton RL, Strongosky AJ, van Gerpen JA, Uitti RJ, McLean PJ, Springer W, Siuda J, Opala G, Krygowska-Wajs A, Barcikowska M, Czyzewski K, McCarthy A, Lynch T, Puschmann A, Rektorova I, Sanotsky Y, Vilariño-Güell C, Farrer MJ, Ferman TJ, Boeve BF, Petersen RC, Parisi JE, Graff-Radford NR, Dickson DW, Wszolek ZK, Ross OA. DNAJC13 p.Asn855Ser mutation screening in Parkinson's disease and pathologically confirmed Lewy body disease patients. Eur J Neurol 2016; 22:1323-5. [PMID: 26278106 DOI: 10.1111/ene.12770] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/06/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND Recently, a novel mutation in exon 24 of DNAJC13 gene (p.Asn855Ser, rs387907571) has been reported to cause autosomal dominant Parkinson's disease (PD) in a multi-incident Mennonite family. METHODS In the present study the mutation containing exon of the DNAJC13 gene has been sequenced in a Caucasian series consisting of 1938 patients with clinical PD and 838 with pathologically diagnosed Lewy body disease (LBD). RESULTS Our sequence analysis did not identify any coding variants in exon 24 of DNAJC13. Two previously described variants in intron 23 (rs200204728 and rs2369796) were observed. CONCLUSION Our results indicate that the region surrounding the DNAJC13 p.Asn855Ser substitution is highly conserved and mutations in this exon are not a common cause of PD or LBD among Caucasian populations.
Collapse
Affiliation(s)
| | - K Ogaki
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - C Labbe
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - R L Walton
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - A J Strongosky
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - J A van Gerpen
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - R J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - P J McLean
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - W Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - J Siuda
- Department of Neurology, Medical University of Silesia, Katowice, Poland
| | - G Opala
- Department of Neurology, Medical University of Silesia, Katowice, Poland
| | - A Krygowska-Wajs
- Department of Neurology, Jagiellonian University, Krakow, Poland
| | - M Barcikowska
- Department of Neurodegenerative Disorders, Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - K Czyzewski
- Department of Neurology, Central Hospital of the Ministry of Interior and Administration, Warsaw, Poland
| | - A McCarthy
- Dublin Neurological Institute at the Mater Misericordiae University Hospital, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - T Lynch
- Dublin Neurological Institute at the Mater Misericordiae University Hospital, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - A Puschmann
- Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - I Rektorova
- School of Medicine, Central European Institute of Technology and First Department of Neurology, Masaryk University, Brno, Czech Republic
| | - Y Sanotsky
- Lviv Regional Clinical Hospital, Lviv, Ukraine
| | - C Vilariño-Güell
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - M J Farrer
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - T J Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | - B F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - R C Petersen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - J E Parisi
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - D W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.,Department of Pathology, Mayo Clinic, Jacksonville, FL, USA
| | - Z K Wszolek
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - O A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
35
|
Schreij AMA, Fon EA, McPherson PS. Endocytic membrane trafficking and neurodegenerative disease. Cell Mol Life Sci 2016; 73:1529-45. [PMID: 26721251 PMCID: PMC11108351 DOI: 10.1007/s00018-015-2105-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/26/2015] [Accepted: 11/26/2015] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases are amongst the most devastating of human disorders. New technologies have led to a rapid increase in the identification of disease-related genes with an enhanced appreciation of the key roles played by genetics in the etiology of these disorders. Importantly, pinpointing the normal function of disease gene proteins leads to new understanding of the cellular machineries and pathways that are altered in the disease process. One such emerging pathway is membrane trafficking in the endosomal system. This key cellular process controls the localization and levels of a myriad of proteins and is thus critical for normal cell function. In this review we will focus on three neurodegenerative diseases; Parkinson disease, amyotrophic lateral sclerosis, and hereditary spastic paraplegias, for which a large number of newly discovered disease genes encode proteins that function in endosomal membrane trafficking. We will describe how alterations in these proteins affect endosomal function and speculate on the contributions of these disruptions to disease pathophysiology.
Collapse
Affiliation(s)
- Andrea M A Schreij
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Edward A Fon
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|
36
|
Cirillo F, Ghiroldi A, Fania C, Piccoli M, Torretta E, Tettamanti G, Gelfi C, Anastasia L. NEU3 Sialidase Protein Interactors in the Plasma Membrane and in the Endosomes. J Biol Chem 2016; 291:10615-24. [PMID: 26987901 DOI: 10.1074/jbc.m116.719518] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 11/06/2022] Open
Abstract
NEU3 sialidase has been shown to be a key player in many physio- and pathological processes, including cell differentiation, cellular response to hypoxic stress, and carcinogenesis. The enzyme, peculiarly localized on the outer leaflet of the plasma membrane, has been shown to be able to remove sialic acid residues from the gangliosides present on adjacent cells, thus creating cell to cell interactions. Nonetheless, herein we report that the enzyme localization is dynamically regulated between the plasma membrane and the endosomes, where a substantial amount of NEU3 is stored with low enzymatic activity. However, under opportune stimuli, NEU3 is shifted from the endosomes to the plasma membrane, where it greatly increases the sialidase activity. Finally, we found that NEU3 possesses also the ability to interact with specific proteins, many of which are different in each cell compartment. They were identified by mass spectrometry, and some selected ones were also confirmed by cross-immunoprecipitation with the enzyme, supporting NEU3 involvement in the cell stress response, protein folding, and intracellular trafficking.
Collapse
Affiliation(s)
- Federica Cirillo
- From the Istituto Di Ricovero e Cura a Carattere Scientifico Policlinico San Donato, 20097 San Donato Milanese, Milan and
| | - Andrea Ghiroldi
- From the Istituto Di Ricovero e Cura a Carattere Scientifico Policlinico San Donato, 20097 San Donato Milanese, Milan and
| | - Chiara Fania
- From the Istituto Di Ricovero e Cura a Carattere Scientifico Policlinico San Donato, 20097 San Donato Milanese, Milan and
| | - Marco Piccoli
- From the Istituto Di Ricovero e Cura a Carattere Scientifico Policlinico San Donato, 20097 San Donato Milanese, Milan and
| | - Enrica Torretta
- the Department of Biomedical Sciences for Health, University of Milan, 20122 Milan, Italy
| | - Guido Tettamanti
- From the Istituto Di Ricovero e Cura a Carattere Scientifico Policlinico San Donato, 20097 San Donato Milanese, Milan and
| | - Cecilia Gelfi
- From the Istituto Di Ricovero e Cura a Carattere Scientifico Policlinico San Donato, 20097 San Donato Milanese, Milan and the Department of Biomedical Sciences for Health, University of Milan, 20122 Milan, Italy
| | - Luigi Anastasia
- From the Istituto Di Ricovero e Cura a Carattere Scientifico Policlinico San Donato, 20097 San Donato Milanese, Milan and the Department of Biomedical Sciences for Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
37
|
Ioannou MS, Girard M, McPherson PS. Rab13 Traffics on Vesicles Independent of Prenylation. J Biol Chem 2016; 291:10726-35. [PMID: 26969162 DOI: 10.1074/jbc.m116.722298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 01/06/2023] Open
Abstract
Rab GTPases are critical regulators of membrane trafficking. The canonical view is that Rabs are soluble in their inactive GDP-bound form, and only upon activation and conversion to their GTP-bound state are they anchored to membranes through membrane insertion of a C-terminal prenyl group. Here we demonstrate that C-terminal prenylation is not required for Rab13 to associate with and traffic on vesicles. Instead, inactive Rab13 appears to associate with vesicles via protein-protein interactions. Only following activation does Rab13 associate with the plasma membrane, presumably with insertion of the C-terminal prenyl group into the membrane.
Collapse
Affiliation(s)
- Maria S Ioannou
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Martine Girard
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Peter S McPherson
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
38
|
Bellipanni G, Cappello F, Scalia F, Conway de Macario E, Macario AJ, Giordano A. Zebrafish as a Model for the Study of Chaperonopathies. J Cell Physiol 2016; 231:2107-14. [DOI: 10.1002/jcp.25319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Gianfranco Bellipanni
- Sbarro Institute for Cancer Research and Molecular Medicine; Philadelphia Pennsylvania
- Department of Biology; College of Science and Technology, Temple University; Philadelphia Pennsylvania
- Euro-Mediterranean Institute of Science and Technology (IEMEST); Palermo Italy
| | - Francesco Cappello
- Department of Biology; College of Science and Technology, Temple University; Philadelphia Pennsylvania
- Euro-Mediterranean Institute of Science and Technology (IEMEST); Palermo Italy
- Department of Experimental Biomedicine and Clinical Neuroscience; University of Palermo; Palermo Italy
| | - Federica Scalia
- Department of Experimental Biomedicine and Clinical Neuroscience; University of Palermo; Palermo Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology; School of Medicine, University of Maryland at Baltimore and IMET; Baltimore Maryland
| | - Alberto J.L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST); Palermo Italy
- Department of Microbiology and Immunology; School of Medicine, University of Maryland at Baltimore and IMET; Baltimore Maryland
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine; Philadelphia Pennsylvania
- Department of Biology; College of Science and Technology, Temple University; Philadelphia Pennsylvania
| |
Collapse
|
39
|
Dysregulation of ErbB Receptor Trafficking and Signaling in Demyelinating Charcot-Marie-Tooth Disease. Mol Neurobiol 2016; 54:87-100. [PMID: 26732592 DOI: 10.1007/s12035-015-9668-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/17/2015] [Indexed: 12/12/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is the most common inherited peripheral neuropathy with the majority of cases involving demyelination of peripheral nerves. The pathogenic mechanisms of demyelinating CMT remain unclear, and no effective therapy currently exists for this disease. The discovery that mutations in different genes can cause a similar phenotype of demyelinating peripheral neuropathy raises the possibility that there may be convergent mechanisms leading to demyelinating CMT pathogenesis. Increasing evidence indicates that ErbB receptor-mediated signaling plays a major role in the control of Schwann cell-axon communication and myelination in the peripheral nervous system. Recent studies reveal that several demyelinating CMT-linked proteins are novel regulators of endocytic trafficking and/or phosphoinositide metabolism that may affect ErbB receptor signaling. Emerging data have begun to suggest that dysregulation of ErbB receptor trafficking and signaling in Schwann cells may represent a common pathogenic mechanism in multiple subtypes of demyelinating CMT. In this review, we focus on the roles of ErbB receptor trafficking and signaling in regulation of peripheral nerve myelination and discuss the emerging evidence supporting the potential involvement of altered ErbB receptor trafficking and signaling in demyelinating CMT pathogenesis and the possibility of modulating these trafficking and signaling processes for treating demyelinating peripheral neuropathy.
Collapse
|
40
|
Sun N, Tischfield JA, King RA, Heiman GA. Functional Evaluations of Genes Disrupted in Patients with Tourette's Disorder. Front Psychiatry 2016; 7:11. [PMID: 26903887 PMCID: PMC4746269 DOI: 10.3389/fpsyt.2016.00011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/18/2016] [Indexed: 01/04/2023] Open
Abstract
Tourette's disorder (TD) is a highly heritable neurodevelopmental disorder with complex genetic architecture and unclear neuropathology. Disruptions of particular genes have been identified in subsets of TD patients. However, none of the findings have been replicated, probably due to the complex and heterogeneous genetic architecture of TD that involves both common and rare variants. To understand the etiology of TD, functional analyses are required to characterize the molecular and cellular consequences caused by mutations in candidate genes. Such molecular and cellular alterations may converge into common biological pathways underlying the heterogeneous genetic etiology of TD patients. Herein, we review specific genes implicated in TD etiology, discuss the functions of these genes in the mammalian central nervous system and the corresponding behavioral anomalies exhibited in animal models, and importantly, review functional analyses that can be performed to evaluate the role(s) that the genetic disruptions might play in TD. Specifically, the functional assays include novel cell culture systems, genome editing techniques, bioinformatics approaches, transcriptomic analyses, and genetically modified animal models applied or developed to study genes associated with TD or with other neurodevelopmental and neuropsychiatric disorders. By describing methods used to study diseases with genetic architecture similar to TD, we hope to develop a systematic framework for investigating the etiology of TD and related disorders.
Collapse
Affiliation(s)
- Nawei Sun
- Department of Genetics, Rutgers University, Piscataway, NJ, USA; Human Genetics Institute of New Jersey, Piscataway, NJ, USA
| | - Jay A Tischfield
- Department of Genetics, Rutgers University, Piscataway, NJ, USA; Human Genetics Institute of New Jersey, Piscataway, NJ, USA
| | - Robert A King
- Child Study Center, Yale School of Medicine , New Haven, CT , USA
| | - Gary A Heiman
- Department of Genetics, Rutgers University, Piscataway, NJ, USA; Human Genetics Institute of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
41
|
Spang N, Feldmann A, Huesmann H, Bekbulat F, Schmitt V, Hiebel C, Koziollek-Drechsler I, Clement AM, Moosmann B, Jung J, Behrends C, Dikic I, Kern A, Behl C. RAB3GAP1 and RAB3GAP2 modulate basal and rapamycin-induced autophagy. Autophagy 2015; 10:2297-309. [PMID: 25495476 PMCID: PMC4502700 DOI: 10.4161/15548627.2014.994359] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Macroautophagy is a degradative pathway that sequesters and transports cytosolic cargo in autophagosomes to lysosomes, and its deterioration affects intracellular proteostasis. Membrane dynamics accompanying autophagy are mostly elusive and depend on trafficking processes. RAB GTPase activating proteins (RABGAPs) are important factors for the coordination of cellular vesicle transport systems, and several TBC (TRE2-BUB2-CDC16) domain-containing RABGAPs are associated with autophagy. Employing C. elegans and human primary fibroblasts, we show that RAB3GAP1 and RAB3GAP2, which are components of the TBC domain-free RAB3GAP complex, influence protein aggregation and affect autophagy at basal and rapamycin-induced conditions. Correlating the activity of RAB3GAP1/2 with ATG3 and ATG16L1 and analyzing ATG5 punctate structures, we illustrate that the RAB3GAPs modulate autophagosomal biogenesis. Significant levels of RAB3GAP1/2 colocalize with members of the Atg8 family at lipid droplets, and their autophagy modulatory activity depends on the GTPase-activating activity of RAB3GAP1 but is independent of the RAB GTPase RAB3. Moreover, we analyzed RAB3GAP1/2 in relation to the previously reported suppressive autophagy modulators FEZ1 and FEZ2 and demonstrate that both reciprocally regulate autophagy. In conclusion, we identify RAB3GAP1/2 as novel conserved factors of the autophagy and proteostasis network.
Collapse
Key Words
- ATG, autophagy-related
- ATG16L1
- ATG3
- BSA, bovine serum albumin
- Bafi, bafilomycin A1
- C. elegans, Caenorhabditis elegans
- CALCOCO2, calcium binding and coiled-coil domain 2
- DAPI, 4’, 6-diamidino-2-phenylindole
- DMSO, dimethyl sulfoxide
- DPH, 1, 6-diphenyl-1, 3, 5-hexatriene
- FEZ, fasciculation and elongation protein zeta
- FEZ1
- FEZ2
- GABARAP, GABA(A) receptor-associated protein
- GEF, guanine nucleotide exchange factor
- GFP, green fluorescent protein
- MAP1LC3, microtubule-associated protein 1 light chain 3
- NBR1, neighbor of BRCA1 gene 1
- PBS, phosphate-buffered saline
- PE, phosphatidylethanolamine
- RAB3GAP1
- RAB3GAP2
- RABGAP, RAB GTPase activating protein
- SQSTM1, sequestosome 1
- TBC domain, TRE2-BUB2-CDC16 domain
- autophagy
- eV, empty vector
- lipid droplets
- proteostasis
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Natalie Spang
- a Institute for Pathobiochemistry ; University Medical Center of the Johannes Gutenberg University ; Mainz , Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The evolutionarily conserved endosomal retromer complex rescues transmembrane proteins from the lysosomal degradative pathway and facilitates their recycling to other cellular compartments. Retromer functions in conjunction with numerous associated proteins, including select members of the sorting nexin (SNX) family. In the present article, we review the molecular architecture and cellular roles of retromer and its various functional partners. The endosomal network is a crucial hub in the trafficking of proteins through the cellular endomembrane system. Transmembrane proteins, here termed cargos, enter endosomes by endocytosis from the plasma membrane or by trafficking from the trans-Golgi network (TGN). Endosomal cargo proteins face one of the two fates: retention in the endosome, leading ultimately to lysosomal degradation or export from the endosome for reuse ('recycling'). The balance of protein degradation and recycling is crucial to cellular homoeostasis; inappropriate sorting of proteins to either fate leads to cellular dysfunction. Retromer is an endosome-membrane-associated protein complex central to the recycling of many cargo proteins from endosomes, both to the TGN and the plasma membrane (and other specialized compartments, e.g. lysosome-related organelles). Retromer function is reliant on a number of proteins from the SNX family. In the present article, we discuss this inter-relationship and how defects in retromer function are increasingly being linked with human disease.
Collapse
|
43
|
Gomez-Lamarca MJ, Snowdon LA, Seib E, Klein T, Bray SJ. Rme-8 depletion perturbs Notch recycling and predisposes to pathogenic signaling. J Cell Biol 2015; 210:303-18. [PMID: 26169355 PMCID: PMC4508892 DOI: 10.1083/jcb.201411001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 06/11/2015] [Indexed: 02/07/2023] Open
Abstract
The retromer-associated DNAJ protein Rme-8 is necessary for normal Notch recycling, and reductions in Rme-8 sensitize cells so that additional loss-of-sorting retromer or ESCRT-0 components have catastrophic effects. Notch signaling is a major regulator of cell fate, proliferation, and differentiation. Like other signaling pathways, its activity is strongly influenced by intracellular trafficking. Besides contributing to signal activation and down-regulation, differential fluxes between trafficking routes can cause aberrant Notch pathway activation. Investigating the function of the retromer-associated DNAJ protein Rme-8 in vivo, we demonstrate a critical role in regulating Notch receptor recycling. In the absence of Rme-8, Notch accumulated in enlarged tubulated Rab4-positive endosomes, and as a consequence, signaling was compromised. Strikingly, when the retromer component Vps26 was depleted at the same time, Notch no longer accumulated and instead was ectopically activated. Likewise, depletion of ESCRT-0 components Hrs or Stam in combination with Rme-8 also led to high levels of ectopic Notch activity. Together, these results highlight the importance of Rme-8 in coordinating normal endocytic recycling route and reveal that its absence predisposes toward conditions in which pathological Notch signaling can occur.
Collapse
Affiliation(s)
- Maria J Gomez-Lamarca
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, England, UK
| | - Laura A Snowdon
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, England, UK
| | - Ekatarina Seib
- Institute of Genetics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Thomas Klein
- Institute of Genetics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sarah J Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, England, UK
| |
Collapse
|
44
|
Xhabija B, Vacratsis PO. Receptor-mediated Endocytosis 8 Utilizes an N-terminal Phosphoinositide-binding Motif to Regulate Endosomal Clathrin Dynamics. J Biol Chem 2015; 290:21676-89. [PMID: 26134565 DOI: 10.1074/jbc.m115.644757] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Indexed: 11/06/2022] Open
Abstract
Receptor-mediated endocytosis 8 (RME-8) is a DnaJ domain containing protein implicated in translocation of Hsc70 to early endosomes for clathrin removal during retrograde transport. Previously, we have demonstrated that RME-8 associates with early endosomes in a phosphatidylinositol 3-phosphate (PI(3)P)-dependent fashion. In this study, we have now identified amino acid determinants required for PI(3)P binding within a region predicted to adopt a pleckstrin homology-like fold in the N terminus of RME-8. The ability of RME-8 to associate with PI(3)P and early endosomes is largely abolished when residues Lys(17), Trp(20), Tyr(24), or Arg(26) are mutated resulting in diffuse cytoplasmic localization of RME-8 while maintaining the ability to interact with Hsc70. We also provide evidence that RME-8 PI(3)P binding regulates early endosomal clathrin dynamics and alters the steady state localization of the cation-independent mannose 6-phosphate receptor. Interestingly, RME-8 endosomal association is also regulated by the PI(3)P-binding protein SNX1, a member of the retromer complex. Wild type SNX1 restores endosomal localization of RME-8 W20A, whereas a SNX1 variant deficient in PI(3)P binding disrupts endosomal localization of wild type RME-8. These results further highlight the critical role for PI(3)P in the RME-8-mediated organizational control of various endosomal activities, including retrograde transport.
Collapse
Affiliation(s)
- Besa Xhabija
- From the Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Panayiotis O Vacratsis
- From the Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
45
|
Munsie LN, Milnerwood AJ, Seibler P, Beccano-Kelly DA, Tatarnikov I, Khinda J, Volta M, Kadgien C, Cao LP, Tapia L, Klein C, Farrer MJ. Retromer-dependent neurotransmitter receptor trafficking to synapses is altered by the Parkinson's disease VPS35 mutation p.D620N. Hum Mol Genet 2014; 24:1691-703. [PMID: 25416282 DOI: 10.1093/hmg/ddu582] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vacuolar protein sorting 35 (VPS35) is a core component of the retromer complex, crucial to endosomal protein sorting and intracellular trafficking. We recently linked a mutation in VPS35 (p.D620N) to familial parkinsonism. Here, we characterize human VPS35 and retromer function in mature murine neuronal cultures and investigate neuron-specific consequences of the p.D620N mutation. We find VPS35 localizes to dendritic spines and is involved in the trafficking of excitatory AMPA-type glutamate receptors (AMPARs). Fundamental neuronal processes, including excitatory synaptic transmission, AMPAR surface expression and synaptic recycling are altered by VPS35 overexpression. VPS35 p.D620N acts as a loss-of-function mutation with respect to VPS35 activity regulating synaptic transmission and AMPAR recycling in mouse cortical neurons and dopamine neuron-like cells produced from induced pluripotent stem cells of human p.D620N carriers. Such perturbations to synaptic function likely produce chronic pathophysiological stress upon neuronal circuits that may contribute to neurodegeneration in this, and other, forms of parkinsonism.
Collapse
Affiliation(s)
- L N Munsie
- Department Medical Genetics, Centre for Applied Neurogenetics, Djavad Mowafagian Centre for Brain Health, Vancouver, Canada
| | - A J Milnerwood
- Department Medical Genetics, Centre for Applied Neurogenetics, Djavad Mowafagian Centre for Brain Health, Vancouver, Canada, Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada V6T 2B5
| | - P Seibler
- Division of Neurogenetics, Department of Neurology, University of Lübeck, Lübeck, Germany
| | - D A Beccano-Kelly
- Department Medical Genetics, Centre for Applied Neurogenetics, Djavad Mowafagian Centre for Brain Health, Vancouver, Canada
| | - I Tatarnikov
- Department Medical Genetics, Centre for Applied Neurogenetics, Djavad Mowafagian Centre for Brain Health, Vancouver, Canada
| | - J Khinda
- Department Medical Genetics, Centre for Applied Neurogenetics, Djavad Mowafagian Centre for Brain Health, Vancouver, Canada
| | - M Volta
- Department Medical Genetics, Centre for Applied Neurogenetics, Djavad Mowafagian Centre for Brain Health, Vancouver, Canada
| | - C Kadgien
- Department Medical Genetics, Centre for Applied Neurogenetics, Djavad Mowafagian Centre for Brain Health, Vancouver, Canada
| | - L P Cao
- Department Medical Genetics, Centre for Applied Neurogenetics, Djavad Mowafagian Centre for Brain Health, Vancouver, Canada
| | - L Tapia
- Department Medical Genetics, Centre for Applied Neurogenetics, Djavad Mowafagian Centre for Brain Health, Vancouver, Canada
| | - C Klein
- Division of Neurogenetics, Department of Neurology, University of Lübeck, Lübeck, Germany
| | - M J Farrer
- Department Medical Genetics, Centre for Applied Neurogenetics, Djavad Mowafagian Centre for Brain Health, Vancouver, Canada
| |
Collapse
|
46
|
AP-1/σ1B-Dependent SV Protein Recycling Is Regulated in Early Endosomes and Is Coupled to AP-2 Endocytosis. Mol Neurobiol 2014; 52:142-61. [PMID: 25128028 DOI: 10.1007/s12035-014-8852-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/04/2014] [Indexed: 12/22/2022]
Abstract
Adaptor protein (AP)-1/σ1B(-/-) mice have reduced synaptic-vesicle (SV) recycling and increased endosomes. Mutant mice have impaired spatial memory, and σ1B-deficient humans have a severe mental retardation. In order to define these σ1B(-/-) 'bulk' endosomes and to determine their functions in SV recycling, we developed a protocol to separate them from the majority of the neuronal endosomes. The σ1B(-/-) 'bulk' endosomes proved to be classic early endosomes with an increase in the phospholipid phosphatidylinositol 3-phosphate (PI-3-P), which recruits proteins mediating protein sorting out of early endosomes into different routes. σ1B deficiency induced alterations in the endosomal proteome reveals two major functions: SV protein storage and sorting into endolysosomes. Alternative endosomal recycling pathways are not up-regulated, but certain SV proteins are misrouted. Tetraspanins are enriched in σ1B(-/-) synaptosomes, but not in their endosomes or in their clathrin-coated-vesicles (CCVs), indicating AP-1/σ1B-dependent sorting. Synapses contain also more AP-2 CCV, although it is expected that they contain less due to reduced SV recycling. Coat composition of these AP-2 CCVs is altered, and thus, they represent a subpopulation of AP-2 CCVs. Association of calmodulin-dependent protein kinase (CaMK)-IIα, -δ and casein kinase (CK)-IIα with the endosome/SV pool is altered, as well as 14-3-3η, indicating changes in specific signalling pathways regulating synaptic plasticity. The accumulation of early endosomes and endocytotic AP-2 CCV indicates the regulation of SV recycling via early endosomes by the interdependent regulation of AP-2-mediated endocytosis and AP-1/σ1B-mediated SV reformation.
Collapse
|
47
|
McGough IJ, Steinberg F, Jia D, Barbuti PA, McMillan KJ, Heesom KJ, Whone AL, Caldwell MA, Billadeau DD, Rosen MK, Cullen PJ. Retromer binding to FAM21 and the WASH complex is perturbed by the Parkinson disease-linked VPS35(D620N) mutation. Curr Biol 2014; 24:1670-1676. [PMID: 24980502 PMCID: PMC4110399 DOI: 10.1016/j.cub.2014.06.024] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 05/16/2014] [Accepted: 06/10/2014] [Indexed: 11/16/2022]
Abstract
Retromer is a protein assembly that plays a central role in orchestrating export of transmembrane-spanning cargo proteins from endosomes into retrieval pathways destined for the Golgi apparatus and the plasma membrane [1]. Recently, a specific mutation in the retromer component VPS35, VPS35(D620N), has linked retromer dysfunction to familial autosomal dominant and sporadic Parkinson disease [2, 3]. However, the effect of this mutation on retromer function remains poorly characterized. Here we established that in cells expressing VPS35(D620N) there is a perturbation in endosome-to-TGN transport but not endosome-to-plasma membrane recycling, which we confirm in patient cells harboring the VPS35(D620N) mutation. Through comparative stable isotope labeling by amino acids in cell culture (SILAC)-based analysis of wild-type VPS35 versus the VPS35(D620N) mutant interactomes, we establish that the major defect of the D620N mutation lies in the association to the actin-nucleating Wiskott-Aldrich syndrome and SCAR homolog (WASH) complex. Moreover, using isothermal calorimetry, we establish that the primary defect of the VPS35(D620N) mutant is a 2.2 ± 0.5-fold decrease in affinity for the WASH complex component FAM21. These data define the primary molecular defect in retromer assembly that arises from the VPS35(D620N) mutation and, by revealing functional effects on retromer-mediated endosome-to-TGN transport, provide new insight into retromer deregulation in Parkinson disease.
Collapse
Affiliation(s)
- Ian J McGough
- The Henry Wellcome Integrated Signaling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Florian Steinberg
- The Henry Wellcome Integrated Signaling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Da Jia
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peter A Barbuti
- Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Kirsty J McMillan
- The Henry Wellcome Integrated Signaling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Kate J Heesom
- Proteomics Facility, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Alan L Whone
- Institute of Clinical Neurosciences, University of Bristol, Frenchay Hospital, Bristol BS16 1LE, UK
| | - Maeve A Caldwell
- Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Daniel D Billadeau
- Departments of Biochemistry and Molecular Biology and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael K Rosen
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peter J Cullen
- The Henry Wellcome Integrated Signaling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
48
|
Koutras C, Braun JEA. J protein mutations and resulting proteostasis collapse. Front Cell Neurosci 2014; 8:191. [PMID: 25071450 PMCID: PMC4086201 DOI: 10.3389/fncel.2014.00191] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/21/2014] [Indexed: 01/20/2023] Open
Abstract
Despite a century of intensive investigation the effective treatment of protein aggregation diseases remains elusive. Ordinarily, molecular chaperones ensure that proteins maintain their functional conformation. The appearance of misfolded proteins that aggregate implies the collapse of the cellular chaperone quality control network. That said, the cellular chaperone network is extensive and functional information regarding the detailed action of specific chaperones is not yet available. J proteins (DnaJ/Hsp40) are a family of chaperone cofactors that harness Hsc70 (heat shock cognate protein of 70 kDa) for diverse conformational cellular tasks and, as such, represent novel clinically relevant targets for diseases resulting from the disruption of proteostasis. Here we review incisive reports identifying mutations in individual J protein chaperones and the proteostasis collapse that ensues.
Collapse
Affiliation(s)
- Carolina Koutras
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of CalgaryCalgary, AB, Canada
| | - Janice E. A. Braun
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of CalgaryCalgary, AB, Canada
| |
Collapse
|
49
|
Abstract
The counterbalancing action of the endocytosis and secretory pathways maintains a dynamic equilibrium that regulates the composition of the plasma membrane, allowing it to maintain homeostasis and to change rapidly in response to alterations in the extracellular environment and/or intracellular metabolism. These pathways are intimately integrated with intercellular signaling systems and play critical roles in all cells. Studies in Caenorhabditis elegans have revealed diverse roles of membrane trafficking in physiology and development and have also provided molecular insight into the fundamental mechanisms that direct cargo sorting, vesicle budding, and membrane fisson and fusion. In this review, we summarize progress in understanding membrane trafficking mechanisms derived from work in C. elegans, focusing mainly on work done in non-neuronal cell-types, especially the germline, early embryo, coelomocytes, and intestine.
Collapse
Affiliation(s)
- Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan. ;
| | | | | | | |
Collapse
|
50
|
Freeman CL, Hesketh G, Seaman MNJ. RME-8 coordinates the activity of the WASH complex with the function of the retromer SNX dimer to control endosomal tubulation. J Cell Sci 2014; 127:2053-70. [PMID: 24643499 DOI: 10.1242/jcs.144659] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Retromer is a vital element of the endosomal protein sorting machinery and comprises two subcomplexes that operate together to sort membrane proteins (cargo) and tubulate membranes. Tubules are formed by a dimer of sorting nexins, a key component of which is SNX1. Cargo selection is mediated by the VPS35-VPS29-VPS26 trimer, which additionally recruits the WASH complex through VPS35 binding to the WASH complex subunit FAM21. Loss of function of the WASH complex leads to dysregulation of endosome tubulation, although it is unclear how this occurs. Here, we show that FAM21 also binds to the SNX1-interacting DNAJ protein RME-8. Loss of RME-8 causes altered kinetics of SNX1 membrane association and a pronounced increase in highly branched endosomal tubules. Building on previous observations from other laboratories, we show that these tubules contain membrane proteins that are dependent upon WASH complex activity for their localization to the plasma membrane. Therefore, we propose that the interaction between RME-8 and the WASH complex provides a means to coordinate the activity of the WASH complex with the membrane-tubulating function of the sorting nexins at sites where retromer-mediated endosomal protein sorting occurs.
Collapse
Affiliation(s)
- Caroline L Freeman
- University of Cambridge, Cambridge Institute for Medical Research/Department of Clinical Biochemistry, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Cambridge CB2 0XY, UK
| | | | | |
Collapse
|